xref: /llvm-project/llvm/lib/Transforms/Vectorize/VPlan.cpp (revision d4626eb0bd5b9331b2f62cadd726eca7c2e7890a)
1 //===- VPlan.cpp - Vectorizer Plan ----------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This is the LLVM vectorization plan. It represents a candidate for
11 /// vectorization, allowing to plan and optimize how to vectorize a given loop
12 /// before generating LLVM-IR.
13 /// The vectorizer uses vectorization plans to estimate the costs of potential
14 /// candidates and if profitable to execute the desired plan, generating vector
15 /// LLVM-IR code.
16 ///
17 //===----------------------------------------------------------------------===//
18 
19 #include "VPlan.h"
20 #include "VPlanDominatorTree.h"
21 #include "llvm/ADT/DepthFirstIterator.h"
22 #include "llvm/ADT/PostOrderIterator.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/Twine.h"
26 #include "llvm/Analysis/IVDescriptors.h"
27 #include "llvm/Analysis/LoopInfo.h"
28 #include "llvm/IR/BasicBlock.h"
29 #include "llvm/IR/CFG.h"
30 #include "llvm/IR/InstrTypes.h"
31 #include "llvm/IR/Instruction.h"
32 #include "llvm/IR/Instructions.h"
33 #include "llvm/IR/Type.h"
34 #include "llvm/IR/Value.h"
35 #include "llvm/Support/Casting.h"
36 #include "llvm/Support/CommandLine.h"
37 #include "llvm/Support/Debug.h"
38 #include "llvm/Support/ErrorHandling.h"
39 #include "llvm/Support/GenericDomTreeConstruction.h"
40 #include "llvm/Support/GraphWriter.h"
41 #include "llvm/Support/raw_ostream.h"
42 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
43 #include <cassert>
44 #include <iterator>
45 #include <string>
46 #include <vector>
47 
48 using namespace llvm;
49 extern cl::opt<bool> EnableVPlanNativePath;
50 
51 #define DEBUG_TYPE "vplan"
52 
53 raw_ostream &llvm::operator<<(raw_ostream &OS, const VPValue &V) {
54   const VPInstruction *Instr = dyn_cast<VPInstruction>(&V);
55   VPSlotTracker SlotTracker(
56       (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr);
57   V.print(OS, SlotTracker);
58   return OS;
59 }
60 
61 VPValue::VPValue(const unsigned char SC, Value *UV, VPDef *Def)
62     : SubclassID(SC), UnderlyingVal(UV), Def(Def) {
63   if (Def)
64     Def->addDefinedValue(this);
65 }
66 
67 VPValue::~VPValue() {
68   assert(Users.empty() && "trying to delete a VPValue with remaining users");
69   if (Def)
70     Def->removeDefinedValue(this);
71 }
72 
73 void VPValue::print(raw_ostream &OS, VPSlotTracker &SlotTracker) const {
74   if (const VPRecipeBase *R = dyn_cast_or_null<VPRecipeBase>(Def))
75     R->print(OS, "", SlotTracker);
76   else
77     printAsOperand(OS, SlotTracker);
78 }
79 
80 void VPValue::dump() const {
81   const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this->Def);
82   VPSlotTracker SlotTracker(
83       (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr);
84   print(dbgs(), SlotTracker);
85   dbgs() << "\n";
86 }
87 
88 void VPDef::dump() const {
89   const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this);
90   VPSlotTracker SlotTracker(
91       (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr);
92   print(dbgs(), "", SlotTracker);
93   dbgs() << "\n";
94 }
95 
96 VPUser *VPRecipeBase::toVPUser() {
97   if (auto *U = dyn_cast<VPInstruction>(this))
98     return U;
99   if (auto *U = dyn_cast<VPWidenRecipe>(this))
100     return U;
101   if (auto *U = dyn_cast<VPWidenCallRecipe>(this))
102     return U;
103   if (auto *U = dyn_cast<VPWidenSelectRecipe>(this))
104     return U;
105   if (auto *U = dyn_cast<VPWidenGEPRecipe>(this))
106     return U;
107   if (auto *U = dyn_cast<VPBlendRecipe>(this))
108     return U;
109   if (auto *U = dyn_cast<VPInterleaveRecipe>(this))
110     return U;
111   if (auto *U = dyn_cast<VPReplicateRecipe>(this))
112     return U;
113   if (auto *U = dyn_cast<VPBranchOnMaskRecipe>(this))
114     return U;
115   if (auto *U = dyn_cast<VPWidenMemoryInstructionRecipe>(this))
116     return U;
117   if (auto *U = dyn_cast<VPReductionRecipe>(this))
118     return U;
119   if (auto *U = dyn_cast<VPPredInstPHIRecipe>(this))
120     return U;
121   return nullptr;
122 }
123 
124 // Get the top-most entry block of \p Start. This is the entry block of the
125 // containing VPlan. This function is templated to support both const and non-const blocks
126 template <typename T> static T *getPlanEntry(T *Start) {
127   T *Next = Start;
128   T *Current = Start;
129   while ((Next = Next->getParent()))
130     Current = Next;
131 
132   SmallSetVector<T *, 8> WorkList;
133   WorkList.insert(Current);
134 
135   for (unsigned i = 0; i < WorkList.size(); i++) {
136     T *Current = WorkList[i];
137     if (Current->getNumPredecessors() == 0)
138       return Current;
139     auto &Predecessors = Current->getPredecessors();
140     WorkList.insert(Predecessors.begin(), Predecessors.end());
141   }
142 
143   llvm_unreachable("VPlan without any entry node without predecessors");
144 }
145 
146 VPlan *VPBlockBase::getPlan() { return getPlanEntry(this)->Plan; }
147 
148 const VPlan *VPBlockBase::getPlan() const { return getPlanEntry(this)->Plan; }
149 
150 /// \return the VPBasicBlock that is the entry of Block, possibly indirectly.
151 const VPBasicBlock *VPBlockBase::getEntryBasicBlock() const {
152   const VPBlockBase *Block = this;
153   while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
154     Block = Region->getEntry();
155   return cast<VPBasicBlock>(Block);
156 }
157 
158 VPBasicBlock *VPBlockBase::getEntryBasicBlock() {
159   VPBlockBase *Block = this;
160   while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
161     Block = Region->getEntry();
162   return cast<VPBasicBlock>(Block);
163 }
164 
165 void VPBlockBase::setPlan(VPlan *ParentPlan) {
166   assert(ParentPlan->getEntry() == this &&
167          "Can only set plan on its entry block.");
168   Plan = ParentPlan;
169 }
170 
171 /// \return the VPBasicBlock that is the exit of Block, possibly indirectly.
172 const VPBasicBlock *VPBlockBase::getExitBasicBlock() const {
173   const VPBlockBase *Block = this;
174   while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
175     Block = Region->getExit();
176   return cast<VPBasicBlock>(Block);
177 }
178 
179 VPBasicBlock *VPBlockBase::getExitBasicBlock() {
180   VPBlockBase *Block = this;
181   while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
182     Block = Region->getExit();
183   return cast<VPBasicBlock>(Block);
184 }
185 
186 VPBlockBase *VPBlockBase::getEnclosingBlockWithSuccessors() {
187   if (!Successors.empty() || !Parent)
188     return this;
189   assert(Parent->getExit() == this &&
190          "Block w/o successors not the exit of its parent.");
191   return Parent->getEnclosingBlockWithSuccessors();
192 }
193 
194 VPBlockBase *VPBlockBase::getEnclosingBlockWithPredecessors() {
195   if (!Predecessors.empty() || !Parent)
196     return this;
197   assert(Parent->getEntry() == this &&
198          "Block w/o predecessors not the entry of its parent.");
199   return Parent->getEnclosingBlockWithPredecessors();
200 }
201 
202 void VPBlockBase::deleteCFG(VPBlockBase *Entry) {
203   SmallVector<VPBlockBase *, 8> Blocks(depth_first(Entry));
204 
205   for (VPBlockBase *Block : Blocks)
206     delete Block;
207 }
208 
209 VPBasicBlock::iterator VPBasicBlock::getFirstNonPhi() {
210   iterator It = begin();
211   while (It != end() && (isa<VPWidenPHIRecipe>(&*It) ||
212                          isa<VPWidenIntOrFpInductionRecipe>(&*It) ||
213                          isa<VPPredInstPHIRecipe>(&*It) ||
214                          isa<VPWidenCanonicalIVRecipe>(&*It)))
215     It++;
216   return It;
217 }
218 
219 Value *VPTransformState::get(VPValue *Def, const VPIteration &Instance) {
220   if (!Def->getDef() && OrigLoop->isLoopInvariant(Def->getLiveInIRValue()))
221     return Def->getLiveInIRValue();
222 
223   if (hasScalarValue(Def, Instance))
224     return Data.PerPartScalars[Def][Instance.Part][Instance.Lane];
225 
226   if (hasVectorValue(Def, Instance.Part)) {
227     assert(Data.PerPartOutput.count(Def));
228     auto *VecPart = Data.PerPartOutput[Def][Instance.Part];
229     if (!VecPart->getType()->isVectorTy()) {
230       assert(Instance.Lane == 0 && "cannot get lane > 0 for scalar");
231       return VecPart;
232     }
233     // TODO: Cache created scalar values.
234     return Builder.CreateExtractElement(VecPart,
235                                         Builder.getInt32(Instance.Lane));
236   }
237   return Callback.getOrCreateScalarValue(VPValue2Value[Def], Instance);
238 }
239 
240 BasicBlock *
241 VPBasicBlock::createEmptyBasicBlock(VPTransformState::CFGState &CFG) {
242   // BB stands for IR BasicBlocks. VPBB stands for VPlan VPBasicBlocks.
243   // Pred stands for Predessor. Prev stands for Previous - last visited/created.
244   BasicBlock *PrevBB = CFG.PrevBB;
245   BasicBlock *NewBB = BasicBlock::Create(PrevBB->getContext(), getName(),
246                                          PrevBB->getParent(), CFG.LastBB);
247   LLVM_DEBUG(dbgs() << "LV: created " << NewBB->getName() << '\n');
248 
249   // Hook up the new basic block to its predecessors.
250   for (VPBlockBase *PredVPBlock : getHierarchicalPredecessors()) {
251     VPBasicBlock *PredVPBB = PredVPBlock->getExitBasicBlock();
252     auto &PredVPSuccessors = PredVPBB->getSuccessors();
253     BasicBlock *PredBB = CFG.VPBB2IRBB[PredVPBB];
254 
255     // In outer loop vectorization scenario, the predecessor BBlock may not yet
256     // be visited(backedge). Mark the VPBasicBlock for fixup at the end of
257     // vectorization. We do not encounter this case in inner loop vectorization
258     // as we start out by building a loop skeleton with the vector loop header
259     // and latch blocks. As a result, we never enter this function for the
260     // header block in the non VPlan-native path.
261     if (!PredBB) {
262       assert(EnableVPlanNativePath &&
263              "Unexpected null predecessor in non VPlan-native path");
264       CFG.VPBBsToFix.push_back(PredVPBB);
265       continue;
266     }
267 
268     assert(PredBB && "Predecessor basic-block not found building successor.");
269     auto *PredBBTerminator = PredBB->getTerminator();
270     LLVM_DEBUG(dbgs() << "LV: draw edge from" << PredBB->getName() << '\n');
271     if (isa<UnreachableInst>(PredBBTerminator)) {
272       assert(PredVPSuccessors.size() == 1 &&
273              "Predecessor ending w/o branch must have single successor.");
274       PredBBTerminator->eraseFromParent();
275       BranchInst::Create(NewBB, PredBB);
276     } else {
277       assert(PredVPSuccessors.size() == 2 &&
278              "Predecessor ending with branch must have two successors.");
279       unsigned idx = PredVPSuccessors.front() == this ? 0 : 1;
280       assert(!PredBBTerminator->getSuccessor(idx) &&
281              "Trying to reset an existing successor block.");
282       PredBBTerminator->setSuccessor(idx, NewBB);
283     }
284   }
285   return NewBB;
286 }
287 
288 void VPBasicBlock::execute(VPTransformState *State) {
289   bool Replica = State->Instance && !State->Instance->isFirstIteration();
290   VPBasicBlock *PrevVPBB = State->CFG.PrevVPBB;
291   VPBlockBase *SingleHPred = nullptr;
292   BasicBlock *NewBB = State->CFG.PrevBB; // Reuse it if possible.
293 
294   // 1. Create an IR basic block, or reuse the last one if possible.
295   // The last IR basic block is reused, as an optimization, in three cases:
296   // A. the first VPBB reuses the loop header BB - when PrevVPBB is null;
297   // B. when the current VPBB has a single (hierarchical) predecessor which
298   //    is PrevVPBB and the latter has a single (hierarchical) successor; and
299   // C. when the current VPBB is an entry of a region replica - where PrevVPBB
300   //    is the exit of this region from a previous instance, or the predecessor
301   //    of this region.
302   if (PrevVPBB && /* A */
303       !((SingleHPred = getSingleHierarchicalPredecessor()) &&
304         SingleHPred->getExitBasicBlock() == PrevVPBB &&
305         PrevVPBB->getSingleHierarchicalSuccessor()) && /* B */
306       !(Replica && getPredecessors().empty())) {       /* C */
307     NewBB = createEmptyBasicBlock(State->CFG);
308     State->Builder.SetInsertPoint(NewBB);
309     // Temporarily terminate with unreachable until CFG is rewired.
310     UnreachableInst *Terminator = State->Builder.CreateUnreachable();
311     State->Builder.SetInsertPoint(Terminator);
312     // Register NewBB in its loop. In innermost loops its the same for all BB's.
313     Loop *L = State->LI->getLoopFor(State->CFG.LastBB);
314     L->addBasicBlockToLoop(NewBB, *State->LI);
315     State->CFG.PrevBB = NewBB;
316   }
317 
318   // 2. Fill the IR basic block with IR instructions.
319   LLVM_DEBUG(dbgs() << "LV: vectorizing VPBB:" << getName()
320                     << " in BB:" << NewBB->getName() << '\n');
321 
322   State->CFG.VPBB2IRBB[this] = NewBB;
323   State->CFG.PrevVPBB = this;
324 
325   for (VPRecipeBase &Recipe : Recipes)
326     Recipe.execute(*State);
327 
328   VPValue *CBV;
329   if (EnableVPlanNativePath && (CBV = getCondBit())) {
330     Value *IRCBV = CBV->getUnderlyingValue();
331     assert(IRCBV && "Unexpected null underlying value for condition bit");
332 
333     // Condition bit value in a VPBasicBlock is used as the branch selector. In
334     // the VPlan-native path case, since all branches are uniform we generate a
335     // branch instruction using the condition value from vector lane 0 and dummy
336     // successors. The successors are fixed later when the successor blocks are
337     // visited.
338     Value *NewCond = State->Callback.getOrCreateVectorValues(IRCBV, 0);
339     NewCond = State->Builder.CreateExtractElement(NewCond,
340                                                   State->Builder.getInt32(0));
341 
342     // Replace the temporary unreachable terminator with the new conditional
343     // branch.
344     auto *CurrentTerminator = NewBB->getTerminator();
345     assert(isa<UnreachableInst>(CurrentTerminator) &&
346            "Expected to replace unreachable terminator with conditional "
347            "branch.");
348     auto *CondBr = BranchInst::Create(NewBB, nullptr, NewCond);
349     CondBr->setSuccessor(0, nullptr);
350     ReplaceInstWithInst(CurrentTerminator, CondBr);
351   }
352 
353   LLVM_DEBUG(dbgs() << "LV: filled BB:" << *NewBB);
354 }
355 
356 void VPBasicBlock::dropAllReferences(VPValue *NewValue) {
357   for (VPRecipeBase &R : Recipes) {
358     for (auto *Def : R.definedValues())
359       Def->replaceAllUsesWith(NewValue);
360 
361     if (auto *User = R.toVPUser())
362       for (unsigned I = 0, E = User->getNumOperands(); I != E; I++)
363         User->setOperand(I, NewValue);
364   }
365 }
366 
367 void VPRegionBlock::dropAllReferences(VPValue *NewValue) {
368   for (VPBlockBase *Block : depth_first(Entry))
369     // Drop all references in VPBasicBlocks and replace all uses with
370     // DummyValue.
371     Block->dropAllReferences(NewValue);
372 }
373 
374 void VPRegionBlock::execute(VPTransformState *State) {
375   ReversePostOrderTraversal<VPBlockBase *> RPOT(Entry);
376 
377   if (!isReplicator()) {
378     // Visit the VPBlocks connected to "this", starting from it.
379     for (VPBlockBase *Block : RPOT) {
380       if (EnableVPlanNativePath) {
381         // The inner loop vectorization path does not represent loop preheader
382         // and exit blocks as part of the VPlan. In the VPlan-native path, skip
383         // vectorizing loop preheader block. In future, we may replace this
384         // check with the check for loop preheader.
385         if (Block->getNumPredecessors() == 0)
386           continue;
387 
388         // Skip vectorizing loop exit block. In future, we may replace this
389         // check with the check for loop exit.
390         if (Block->getNumSuccessors() == 0)
391           continue;
392       }
393 
394       LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n');
395       Block->execute(State);
396     }
397     return;
398   }
399 
400   assert(!State->Instance && "Replicating a Region with non-null instance.");
401 
402   // Enter replicating mode.
403   State->Instance = VPIteration(0, 0);
404 
405   for (unsigned Part = 0, UF = State->UF; Part < UF; ++Part) {
406     State->Instance->Part = Part;
407     assert(!State->VF.isScalable() && "VF is assumed to be non scalable.");
408     for (unsigned Lane = 0, VF = State->VF.getKnownMinValue(); Lane < VF;
409          ++Lane) {
410       State->Instance->Lane = Lane;
411       // Visit the VPBlocks connected to \p this, starting from it.
412       for (VPBlockBase *Block : RPOT) {
413         LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n');
414         Block->execute(State);
415       }
416     }
417   }
418 
419   // Exit replicating mode.
420   State->Instance.reset();
421 }
422 
423 void VPRecipeBase::insertBefore(VPRecipeBase *InsertPos) {
424   assert(!Parent && "Recipe already in some VPBasicBlock");
425   assert(InsertPos->getParent() &&
426          "Insertion position not in any VPBasicBlock");
427   Parent = InsertPos->getParent();
428   Parent->getRecipeList().insert(InsertPos->getIterator(), this);
429 }
430 
431 void VPRecipeBase::insertAfter(VPRecipeBase *InsertPos) {
432   assert(!Parent && "Recipe already in some VPBasicBlock");
433   assert(InsertPos->getParent() &&
434          "Insertion position not in any VPBasicBlock");
435   Parent = InsertPos->getParent();
436   Parent->getRecipeList().insertAfter(InsertPos->getIterator(), this);
437 }
438 
439 void VPRecipeBase::removeFromParent() {
440   assert(getParent() && "Recipe not in any VPBasicBlock");
441   getParent()->getRecipeList().remove(getIterator());
442   Parent = nullptr;
443 }
444 
445 iplist<VPRecipeBase>::iterator VPRecipeBase::eraseFromParent() {
446   assert(getParent() && "Recipe not in any VPBasicBlock");
447   return getParent()->getRecipeList().erase(getIterator());
448 }
449 
450 void VPRecipeBase::moveAfter(VPRecipeBase *InsertPos) {
451   removeFromParent();
452   insertAfter(InsertPos);
453 }
454 
455 void VPRecipeBase::moveBefore(VPBasicBlock &BB,
456                               iplist<VPRecipeBase>::iterator I) {
457   assert(I == BB.end() || I->getParent() == &BB);
458   removeFromParent();
459   Parent = &BB;
460   BB.getRecipeList().insert(I, this);
461 }
462 
463 void VPInstruction::generateInstruction(VPTransformState &State,
464                                         unsigned Part) {
465   IRBuilder<> &Builder = State.Builder;
466 
467   if (Instruction::isBinaryOp(getOpcode())) {
468     Value *A = State.get(getOperand(0), Part);
469     Value *B = State.get(getOperand(1), Part);
470     Value *V = Builder.CreateBinOp((Instruction::BinaryOps)getOpcode(), A, B);
471     State.set(this, V, Part);
472     return;
473   }
474 
475   switch (getOpcode()) {
476   case VPInstruction::Not: {
477     Value *A = State.get(getOperand(0), Part);
478     Value *V = Builder.CreateNot(A);
479     State.set(this, V, Part);
480     break;
481   }
482   case VPInstruction::ICmpULE: {
483     Value *IV = State.get(getOperand(0), Part);
484     Value *TC = State.get(getOperand(1), Part);
485     Value *V = Builder.CreateICmpULE(IV, TC);
486     State.set(this, V, Part);
487     break;
488   }
489   case Instruction::Select: {
490     Value *Cond = State.get(getOperand(0), Part);
491     Value *Op1 = State.get(getOperand(1), Part);
492     Value *Op2 = State.get(getOperand(2), Part);
493     Value *V = Builder.CreateSelect(Cond, Op1, Op2);
494     State.set(this, V, Part);
495     break;
496   }
497   case VPInstruction::ActiveLaneMask: {
498     // Get first lane of vector induction variable.
499     Value *VIVElem0 = State.get(getOperand(0), VPIteration(Part, 0));
500     // Get the original loop tripcount.
501     Value *ScalarTC = State.TripCount;
502 
503     auto *Int1Ty = Type::getInt1Ty(Builder.getContext());
504     auto *PredTy = FixedVectorType::get(Int1Ty, State.VF.getKnownMinValue());
505     Instruction *Call = Builder.CreateIntrinsic(
506         Intrinsic::get_active_lane_mask, {PredTy, ScalarTC->getType()},
507         {VIVElem0, ScalarTC}, nullptr, "active.lane.mask");
508     State.set(this, Call, Part);
509     break;
510   }
511   default:
512     llvm_unreachable("Unsupported opcode for instruction");
513   }
514 }
515 
516 void VPInstruction::execute(VPTransformState &State) {
517   assert(!State.Instance && "VPInstruction executing an Instance");
518   for (unsigned Part = 0; Part < State.UF; ++Part)
519     generateInstruction(State, Part);
520 }
521 
522 void VPInstruction::dump() const {
523   VPSlotTracker SlotTracker(getParent()->getPlan());
524   print(dbgs(), "", SlotTracker);
525 }
526 
527 void VPInstruction::print(raw_ostream &O, const Twine &Indent,
528                           VPSlotTracker &SlotTracker) const {
529   O << "EMIT ";
530 
531   if (hasResult()) {
532     printAsOperand(O, SlotTracker);
533     O << " = ";
534   }
535 
536   switch (getOpcode()) {
537   case VPInstruction::Not:
538     O << "not";
539     break;
540   case VPInstruction::ICmpULE:
541     O << "icmp ule";
542     break;
543   case VPInstruction::SLPLoad:
544     O << "combined load";
545     break;
546   case VPInstruction::SLPStore:
547     O << "combined store";
548     break;
549   case VPInstruction::ActiveLaneMask:
550     O << "active lane mask";
551     break;
552 
553   default:
554     O << Instruction::getOpcodeName(getOpcode());
555   }
556 
557   for (const VPValue *Operand : operands()) {
558     O << " ";
559     Operand->printAsOperand(O, SlotTracker);
560   }
561 }
562 
563 /// Generate the code inside the body of the vectorized loop. Assumes a single
564 /// LoopVectorBody basic-block was created for this. Introduce additional
565 /// basic-blocks as needed, and fill them all.
566 void VPlan::execute(VPTransformState *State) {
567   // -1. Check if the backedge taken count is needed, and if so build it.
568   if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) {
569     Value *TC = State->TripCount;
570     IRBuilder<> Builder(State->CFG.PrevBB->getTerminator());
571     auto *TCMO = Builder.CreateSub(TC, ConstantInt::get(TC->getType(), 1),
572                                    "trip.count.minus.1");
573     auto VF = State->VF;
574     Value *VTCMO =
575         VF.isScalar() ? TCMO : Builder.CreateVectorSplat(VF, TCMO, "broadcast");
576     for (unsigned Part = 0, UF = State->UF; Part < UF; ++Part)
577       State->set(BackedgeTakenCount, VTCMO, Part);
578   }
579 
580   // 0. Set the reverse mapping from VPValues to Values for code generation.
581   for (auto &Entry : Value2VPValue)
582     State->VPValue2Value[Entry.second] = Entry.first;
583 
584   BasicBlock *VectorPreHeaderBB = State->CFG.PrevBB;
585   BasicBlock *VectorHeaderBB = VectorPreHeaderBB->getSingleSuccessor();
586   assert(VectorHeaderBB && "Loop preheader does not have a single successor.");
587 
588   // 1. Make room to generate basic-blocks inside loop body if needed.
589   BasicBlock *VectorLatchBB = VectorHeaderBB->splitBasicBlock(
590       VectorHeaderBB->getFirstInsertionPt(), "vector.body.latch");
591   Loop *L = State->LI->getLoopFor(VectorHeaderBB);
592   L->addBasicBlockToLoop(VectorLatchBB, *State->LI);
593   // Remove the edge between Header and Latch to allow other connections.
594   // Temporarily terminate with unreachable until CFG is rewired.
595   // Note: this asserts the generated code's assumption that
596   // getFirstInsertionPt() can be dereferenced into an Instruction.
597   VectorHeaderBB->getTerminator()->eraseFromParent();
598   State->Builder.SetInsertPoint(VectorHeaderBB);
599   UnreachableInst *Terminator = State->Builder.CreateUnreachable();
600   State->Builder.SetInsertPoint(Terminator);
601 
602   // 2. Generate code in loop body.
603   State->CFG.PrevVPBB = nullptr;
604   State->CFG.PrevBB = VectorHeaderBB;
605   State->CFG.LastBB = VectorLatchBB;
606 
607   for (VPBlockBase *Block : depth_first(Entry))
608     Block->execute(State);
609 
610   // Setup branch terminator successors for VPBBs in VPBBsToFix based on
611   // VPBB's successors.
612   for (auto VPBB : State->CFG.VPBBsToFix) {
613     assert(EnableVPlanNativePath &&
614            "Unexpected VPBBsToFix in non VPlan-native path");
615     BasicBlock *BB = State->CFG.VPBB2IRBB[VPBB];
616     assert(BB && "Unexpected null basic block for VPBB");
617 
618     unsigned Idx = 0;
619     auto *BBTerminator = BB->getTerminator();
620 
621     for (VPBlockBase *SuccVPBlock : VPBB->getHierarchicalSuccessors()) {
622       VPBasicBlock *SuccVPBB = SuccVPBlock->getEntryBasicBlock();
623       BBTerminator->setSuccessor(Idx, State->CFG.VPBB2IRBB[SuccVPBB]);
624       ++Idx;
625     }
626   }
627 
628   // 3. Merge the temporary latch created with the last basic-block filled.
629   BasicBlock *LastBB = State->CFG.PrevBB;
630   // Connect LastBB to VectorLatchBB to facilitate their merge.
631   assert((EnableVPlanNativePath ||
632           isa<UnreachableInst>(LastBB->getTerminator())) &&
633          "Expected InnerLoop VPlan CFG to terminate with unreachable");
634   assert((!EnableVPlanNativePath || isa<BranchInst>(LastBB->getTerminator())) &&
635          "Expected VPlan CFG to terminate with branch in NativePath");
636   LastBB->getTerminator()->eraseFromParent();
637   BranchInst::Create(VectorLatchBB, LastBB);
638 
639   // Merge LastBB with Latch.
640   bool Merged = MergeBlockIntoPredecessor(VectorLatchBB, nullptr, State->LI);
641   (void)Merged;
642   assert(Merged && "Could not merge last basic block with latch.");
643   VectorLatchBB = LastBB;
644 
645   // We do not attempt to preserve DT for outer loop vectorization currently.
646   if (!EnableVPlanNativePath)
647     updateDominatorTree(State->DT, VectorPreHeaderBB, VectorLatchBB,
648                         L->getExitBlock());
649 }
650 
651 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
652 LLVM_DUMP_METHOD
653 void VPlan::dump() const { dbgs() << *this << '\n'; }
654 #endif
655 
656 void VPlan::updateDominatorTree(DominatorTree *DT, BasicBlock *LoopPreHeaderBB,
657                                 BasicBlock *LoopLatchBB,
658                                 BasicBlock *LoopExitBB) {
659   BasicBlock *LoopHeaderBB = LoopPreHeaderBB->getSingleSuccessor();
660   assert(LoopHeaderBB && "Loop preheader does not have a single successor.");
661   // The vector body may be more than a single basic-block by this point.
662   // Update the dominator tree information inside the vector body by propagating
663   // it from header to latch, expecting only triangular control-flow, if any.
664   BasicBlock *PostDomSucc = nullptr;
665   for (auto *BB = LoopHeaderBB; BB != LoopLatchBB; BB = PostDomSucc) {
666     // Get the list of successors of this block.
667     std::vector<BasicBlock *> Succs(succ_begin(BB), succ_end(BB));
668     assert(Succs.size() <= 2 &&
669            "Basic block in vector loop has more than 2 successors.");
670     PostDomSucc = Succs[0];
671     if (Succs.size() == 1) {
672       assert(PostDomSucc->getSinglePredecessor() &&
673              "PostDom successor has more than one predecessor.");
674       DT->addNewBlock(PostDomSucc, BB);
675       continue;
676     }
677     BasicBlock *InterimSucc = Succs[1];
678     if (PostDomSucc->getSingleSuccessor() == InterimSucc) {
679       PostDomSucc = Succs[1];
680       InterimSucc = Succs[0];
681     }
682     assert(InterimSucc->getSingleSuccessor() == PostDomSucc &&
683            "One successor of a basic block does not lead to the other.");
684     assert(InterimSucc->getSinglePredecessor() &&
685            "Interim successor has more than one predecessor.");
686     assert(PostDomSucc->hasNPredecessors(2) &&
687            "PostDom successor has more than two predecessors.");
688     DT->addNewBlock(InterimSucc, BB);
689     DT->addNewBlock(PostDomSucc, BB);
690   }
691   // Latch block is a new dominator for the loop exit.
692   DT->changeImmediateDominator(LoopExitBB, LoopLatchBB);
693   assert(DT->verify(DominatorTree::VerificationLevel::Fast));
694 }
695 
696 const Twine VPlanPrinter::getUID(const VPBlockBase *Block) {
697   return (isa<VPRegionBlock>(Block) ? "cluster_N" : "N") +
698          Twine(getOrCreateBID(Block));
699 }
700 
701 const Twine VPlanPrinter::getOrCreateName(const VPBlockBase *Block) {
702   const std::string &Name = Block->getName();
703   if (!Name.empty())
704     return Name;
705   return "VPB" + Twine(getOrCreateBID(Block));
706 }
707 
708 void VPlanPrinter::dump() {
709   Depth = 1;
710   bumpIndent(0);
711   OS << "digraph VPlan {\n";
712   OS << "graph [labelloc=t, fontsize=30; label=\"Vectorization Plan";
713   if (!Plan.getName().empty())
714     OS << "\\n" << DOT::EscapeString(Plan.getName());
715   if (Plan.BackedgeTakenCount) {
716     OS << ", where:\\n";
717     Plan.BackedgeTakenCount->print(OS, SlotTracker);
718     OS << " := BackedgeTakenCount";
719   }
720   OS << "\"]\n";
721   OS << "node [shape=rect, fontname=Courier, fontsize=30]\n";
722   OS << "edge [fontname=Courier, fontsize=30]\n";
723   OS << "compound=true\n";
724 
725   for (const VPBlockBase *Block : depth_first(Plan.getEntry()))
726     dumpBlock(Block);
727 
728   OS << "}\n";
729 }
730 
731 void VPlanPrinter::dumpBlock(const VPBlockBase *Block) {
732   if (const VPBasicBlock *BasicBlock = dyn_cast<VPBasicBlock>(Block))
733     dumpBasicBlock(BasicBlock);
734   else if (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
735     dumpRegion(Region);
736   else
737     llvm_unreachable("Unsupported kind of VPBlock.");
738 }
739 
740 void VPlanPrinter::drawEdge(const VPBlockBase *From, const VPBlockBase *To,
741                             bool Hidden, const Twine &Label) {
742   // Due to "dot" we print an edge between two regions as an edge between the
743   // exit basic block and the entry basic of the respective regions.
744   const VPBlockBase *Tail = From->getExitBasicBlock();
745   const VPBlockBase *Head = To->getEntryBasicBlock();
746   OS << Indent << getUID(Tail) << " -> " << getUID(Head);
747   OS << " [ label=\"" << Label << '\"';
748   if (Tail != From)
749     OS << " ltail=" << getUID(From);
750   if (Head != To)
751     OS << " lhead=" << getUID(To);
752   if (Hidden)
753     OS << "; splines=none";
754   OS << "]\n";
755 }
756 
757 void VPlanPrinter::dumpEdges(const VPBlockBase *Block) {
758   auto &Successors = Block->getSuccessors();
759   if (Successors.size() == 1)
760     drawEdge(Block, Successors.front(), false, "");
761   else if (Successors.size() == 2) {
762     drawEdge(Block, Successors.front(), false, "T");
763     drawEdge(Block, Successors.back(), false, "F");
764   } else {
765     unsigned SuccessorNumber = 0;
766     for (auto *Successor : Successors)
767       drawEdge(Block, Successor, false, Twine(SuccessorNumber++));
768   }
769 }
770 
771 void VPlanPrinter::dumpBasicBlock(const VPBasicBlock *BasicBlock) {
772   OS << Indent << getUID(BasicBlock) << " [label =\n";
773   bumpIndent(1);
774   OS << Indent << "\"" << DOT::EscapeString(BasicBlock->getName()) << ":\\n\"";
775   bumpIndent(1);
776 
777   // Dump the block predicate.
778   const VPValue *Pred = BasicBlock->getPredicate();
779   if (Pred) {
780     OS << " +\n" << Indent << " \"BlockPredicate: \"";
781     if (const VPInstruction *PredI = dyn_cast<VPInstruction>(Pred)) {
782       PredI->printAsOperand(OS, SlotTracker);
783       OS << " (" << DOT::EscapeString(PredI->getParent()->getName())
784          << ")\\l\"";
785     } else
786       Pred->printAsOperand(OS, SlotTracker);
787   }
788 
789   for (const VPRecipeBase &Recipe : *BasicBlock) {
790     OS << " +\n" << Indent << "\"";
791     Recipe.print(OS, Indent, SlotTracker);
792     OS << "\\l\"";
793   }
794 
795   // Dump the condition bit.
796   const VPValue *CBV = BasicBlock->getCondBit();
797   if (CBV) {
798     OS << " +\n" << Indent << " \"CondBit: ";
799     if (const VPInstruction *CBI = dyn_cast<VPInstruction>(CBV)) {
800       CBI->printAsOperand(OS, SlotTracker);
801       OS << " (" << DOT::EscapeString(CBI->getParent()->getName()) << ")\\l\"";
802     } else {
803       CBV->printAsOperand(OS, SlotTracker);
804       OS << "\"";
805     }
806   }
807 
808   bumpIndent(-2);
809   OS << "\n" << Indent << "]\n";
810   dumpEdges(BasicBlock);
811 }
812 
813 void VPlanPrinter::dumpRegion(const VPRegionBlock *Region) {
814   OS << Indent << "subgraph " << getUID(Region) << " {\n";
815   bumpIndent(1);
816   OS << Indent << "fontname=Courier\n"
817      << Indent << "label=\""
818      << DOT::EscapeString(Region->isReplicator() ? "<xVFxUF> " : "<x1> ")
819      << DOT::EscapeString(Region->getName()) << "\"\n";
820   // Dump the blocks of the region.
821   assert(Region->getEntry() && "Region contains no inner blocks.");
822   for (const VPBlockBase *Block : depth_first(Region->getEntry()))
823     dumpBlock(Block);
824   bumpIndent(-1);
825   OS << Indent << "}\n";
826   dumpEdges(Region);
827 }
828 
829 void VPlanPrinter::printAsIngredient(raw_ostream &O, const Value *V) {
830   std::string IngredientString;
831   raw_string_ostream RSO(IngredientString);
832   if (auto *Inst = dyn_cast<Instruction>(V)) {
833     if (!Inst->getType()->isVoidTy()) {
834       Inst->printAsOperand(RSO, false);
835       RSO << " = ";
836     }
837     RSO << Inst->getOpcodeName() << " ";
838     unsigned E = Inst->getNumOperands();
839     if (E > 0) {
840       Inst->getOperand(0)->printAsOperand(RSO, false);
841       for (unsigned I = 1; I < E; ++I)
842         Inst->getOperand(I)->printAsOperand(RSO << ", ", false);
843     }
844   } else // !Inst
845     V->printAsOperand(RSO, false);
846   RSO.flush();
847   O << DOT::EscapeString(IngredientString);
848 }
849 
850 void VPWidenCallRecipe::print(raw_ostream &O, const Twine &Indent,
851                               VPSlotTracker &SlotTracker) const {
852   O << "WIDEN-CALL ";
853 
854   auto *CI = cast<CallInst>(getUnderlyingInstr());
855   if (CI->getType()->isVoidTy())
856     O << "void ";
857   else {
858     printAsOperand(O, SlotTracker);
859     O << " = ";
860   }
861 
862   O << "call @" << CI->getCalledFunction()->getName() << "(";
863   printOperands(O, SlotTracker);
864   O << ")";
865 }
866 
867 void VPWidenSelectRecipe::print(raw_ostream &O, const Twine &Indent,
868                                 VPSlotTracker &SlotTracker) const {
869   O << "WIDEN-SELECT ";
870   printAsOperand(O, SlotTracker);
871   O << " = select ";
872   getOperand(0)->printAsOperand(O, SlotTracker);
873   O << ", ";
874   getOperand(1)->printAsOperand(O, SlotTracker);
875   O << ", ";
876   getOperand(2)->printAsOperand(O, SlotTracker);
877   O << (InvariantCond ? " (condition is loop invariant)" : "");
878 }
879 
880 void VPWidenRecipe::print(raw_ostream &O, const Twine &Indent,
881                           VPSlotTracker &SlotTracker) const {
882   O << "WIDEN ";
883   printAsOperand(O, SlotTracker);
884   O << " = " << getUnderlyingInstr()->getOpcodeName() << " ";
885   printOperands(O, SlotTracker);
886 }
887 
888 void VPWidenIntOrFpInductionRecipe::print(raw_ostream &O, const Twine &Indent,
889                                           VPSlotTracker &SlotTracker) const {
890   O << "WIDEN-INDUCTION";
891   if (Trunc) {
892     O << "\\l\"";
893     O << " +\n" << Indent << "\"  " << VPlanIngredient(IV) << "\\l\"";
894     O << " +\n" << Indent << "\"  " << VPlanIngredient(Trunc);
895   } else
896     O << " " << VPlanIngredient(IV);
897 }
898 
899 void VPWidenGEPRecipe::print(raw_ostream &O, const Twine &Indent,
900                              VPSlotTracker &SlotTracker) const {
901   O << "WIDEN-GEP ";
902   O << (IsPtrLoopInvariant ? "Inv" : "Var");
903   size_t IndicesNumber = IsIndexLoopInvariant.size();
904   for (size_t I = 0; I < IndicesNumber; ++I)
905     O << "[" << (IsIndexLoopInvariant[I] ? "Inv" : "Var") << "]";
906 
907   O << " ";
908   printAsOperand(O, SlotTracker);
909   O << " = getelementptr ";
910   printOperands(O, SlotTracker);
911 }
912 
913 void VPWidenPHIRecipe::print(raw_ostream &O, const Twine &Indent,
914                              VPSlotTracker &SlotTracker) const {
915   O << "WIDEN-PHI " << VPlanIngredient(Phi);
916 }
917 
918 void VPBlendRecipe::print(raw_ostream &O, const Twine &Indent,
919                           VPSlotTracker &SlotTracker) const {
920   O << "BLEND ";
921   Phi->printAsOperand(O, false);
922   O << " =";
923   if (getNumIncomingValues() == 1) {
924     // Not a User of any mask: not really blending, this is a
925     // single-predecessor phi.
926     O << " ";
927     getIncomingValue(0)->printAsOperand(O, SlotTracker);
928   } else {
929     for (unsigned I = 0, E = getNumIncomingValues(); I < E; ++I) {
930       O << " ";
931       getIncomingValue(I)->printAsOperand(O, SlotTracker);
932       O << "/";
933       getMask(I)->printAsOperand(O, SlotTracker);
934     }
935   }
936 }
937 
938 void VPReductionRecipe::print(raw_ostream &O, const Twine &Indent,
939                               VPSlotTracker &SlotTracker) const {
940   O << "REDUCE ";
941   printAsOperand(O, SlotTracker);
942   O << " = ";
943   getChainOp()->printAsOperand(O, SlotTracker);
944   O << " + reduce." << Instruction::getOpcodeName(RdxDesc->getOpcode())
945     << " (";
946   getVecOp()->printAsOperand(O, SlotTracker);
947   if (getCondOp()) {
948     O << ", ";
949     getCondOp()->printAsOperand(O, SlotTracker);
950   }
951   O << ")";
952 }
953 
954 void VPReplicateRecipe::print(raw_ostream &O, const Twine &Indent,
955                               VPSlotTracker &SlotTracker) const {
956   O << (IsUniform ? "CLONE " : "REPLICATE ");
957 
958   if (!getUnderlyingInstr()->getType()->isVoidTy()) {
959     printAsOperand(O, SlotTracker);
960     O << " = ";
961   }
962   O << Instruction::getOpcodeName(getUnderlyingInstr()->getOpcode()) << " ";
963   printOperands(O, SlotTracker);
964 
965   if (AlsoPack)
966     O << " (S->V)";
967 }
968 
969 void VPPredInstPHIRecipe::print(raw_ostream &O, const Twine &Indent,
970                                 VPSlotTracker &SlotTracker) const {
971   O << "PHI-PREDICATED-INSTRUCTION ";
972   printOperands(O, SlotTracker);
973 }
974 
975 void VPWidenMemoryInstructionRecipe::print(raw_ostream &O, const Twine &Indent,
976                                            VPSlotTracker &SlotTracker) const {
977   O << "WIDEN ";
978 
979   if (!isStore()) {
980     getVPValue()->printAsOperand(O, SlotTracker);
981     O << " = ";
982   }
983   O << Instruction::getOpcodeName(Ingredient.getOpcode()) << " ";
984 
985   printOperands(O, SlotTracker);
986 }
987 
988 void VPWidenCanonicalIVRecipe::execute(VPTransformState &State) {
989   Value *CanonicalIV = State.CanonicalIV;
990   Type *STy = CanonicalIV->getType();
991   IRBuilder<> Builder(State.CFG.PrevBB->getTerminator());
992   ElementCount VF = State.VF;
993   assert(!VF.isScalable() && "the code following assumes non scalables ECs");
994   Value *VStart = VF.isScalar()
995                       ? CanonicalIV
996                       : Builder.CreateVectorSplat(VF.getKnownMinValue(),
997                                                   CanonicalIV, "broadcast");
998   for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part) {
999     SmallVector<Constant *, 8> Indices;
1000     for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane)
1001       Indices.push_back(
1002           ConstantInt::get(STy, Part * VF.getKnownMinValue() + Lane));
1003     // If VF == 1, there is only one iteration in the loop above, thus the
1004     // element pushed back into Indices is ConstantInt::get(STy, Part)
1005     Constant *VStep =
1006         VF.isScalar() ? Indices.back() : ConstantVector::get(Indices);
1007     // Add the consecutive indices to the vector value.
1008     Value *CanonicalVectorIV = Builder.CreateAdd(VStart, VStep, "vec.iv");
1009     State.set(getVPValue(), CanonicalVectorIV, Part);
1010   }
1011 }
1012 
1013 void VPWidenCanonicalIVRecipe::print(raw_ostream &O, const Twine &Indent,
1014                                      VPSlotTracker &SlotTracker) const {
1015   O << "EMIT ";
1016   getVPValue()->printAsOperand(O, SlotTracker);
1017   O << " = WIDEN-CANONICAL-INDUCTION";
1018 }
1019 
1020 template void DomTreeBuilder::Calculate<VPDominatorTree>(VPDominatorTree &DT);
1021 
1022 void VPValue::replaceAllUsesWith(VPValue *New) {
1023   for (unsigned J = 0; J < getNumUsers();) {
1024     VPUser *User = Users[J];
1025     unsigned NumUsers = getNumUsers();
1026     for (unsigned I = 0, E = User->getNumOperands(); I < E; ++I)
1027       if (User->getOperand(I) == this)
1028         User->setOperand(I, New);
1029     // If a user got removed after updating the current user, the next user to
1030     // update will be moved to the current position, so we only need to
1031     // increment the index if the number of users did not change.
1032     if (NumUsers == getNumUsers())
1033       J++;
1034   }
1035 }
1036 
1037 void VPValue::printAsOperand(raw_ostream &OS, VPSlotTracker &Tracker) const {
1038   if (const Value *UV = getUnderlyingValue()) {
1039     OS << "ir<";
1040     UV->printAsOperand(OS, false);
1041     OS << ">";
1042     return;
1043   }
1044 
1045   unsigned Slot = Tracker.getSlot(this);
1046   if (Slot == unsigned(-1))
1047     OS << "<badref>";
1048   else
1049     OS << "vp<%" << Tracker.getSlot(this) << ">";
1050 }
1051 
1052 void VPUser::printOperands(raw_ostream &O, VPSlotTracker &SlotTracker) const {
1053   interleaveComma(operands(), O, [&O, &SlotTracker](VPValue *Op) {
1054     Op->printAsOperand(O, SlotTracker);
1055   });
1056 }
1057 
1058 void VPInterleavedAccessInfo::visitRegion(VPRegionBlock *Region,
1059                                           Old2NewTy &Old2New,
1060                                           InterleavedAccessInfo &IAI) {
1061   ReversePostOrderTraversal<VPBlockBase *> RPOT(Region->getEntry());
1062   for (VPBlockBase *Base : RPOT) {
1063     visitBlock(Base, Old2New, IAI);
1064   }
1065 }
1066 
1067 void VPInterleavedAccessInfo::visitBlock(VPBlockBase *Block, Old2NewTy &Old2New,
1068                                          InterleavedAccessInfo &IAI) {
1069   if (VPBasicBlock *VPBB = dyn_cast<VPBasicBlock>(Block)) {
1070     for (VPRecipeBase &VPI : *VPBB) {
1071       assert(isa<VPInstruction>(&VPI) && "Can only handle VPInstructions");
1072       auto *VPInst = cast<VPInstruction>(&VPI);
1073       auto *Inst = cast<Instruction>(VPInst->getUnderlyingValue());
1074       auto *IG = IAI.getInterleaveGroup(Inst);
1075       if (!IG)
1076         continue;
1077 
1078       auto NewIGIter = Old2New.find(IG);
1079       if (NewIGIter == Old2New.end())
1080         Old2New[IG] = new InterleaveGroup<VPInstruction>(
1081             IG->getFactor(), IG->isReverse(), IG->getAlign());
1082 
1083       if (Inst == IG->getInsertPos())
1084         Old2New[IG]->setInsertPos(VPInst);
1085 
1086       InterleaveGroupMap[VPInst] = Old2New[IG];
1087       InterleaveGroupMap[VPInst]->insertMember(
1088           VPInst, IG->getIndex(Inst),
1089           Align(IG->isReverse() ? (-1) * int(IG->getFactor())
1090                                 : IG->getFactor()));
1091     }
1092   } else if (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
1093     visitRegion(Region, Old2New, IAI);
1094   else
1095     llvm_unreachable("Unsupported kind of VPBlock.");
1096 }
1097 
1098 VPInterleavedAccessInfo::VPInterleavedAccessInfo(VPlan &Plan,
1099                                                  InterleavedAccessInfo &IAI) {
1100   Old2NewTy Old2New;
1101   visitRegion(cast<VPRegionBlock>(Plan.getEntry()), Old2New, IAI);
1102 }
1103 
1104 void VPSlotTracker::assignSlot(const VPValue *V) {
1105   assert(Slots.find(V) == Slots.end() && "VPValue already has a slot!");
1106   Slots[V] = NextSlot++;
1107 }
1108 
1109 void VPSlotTracker::assignSlots(const VPBlockBase *VPBB) {
1110   if (auto *Region = dyn_cast<VPRegionBlock>(VPBB))
1111     assignSlots(Region);
1112   else
1113     assignSlots(cast<VPBasicBlock>(VPBB));
1114 }
1115 
1116 void VPSlotTracker::assignSlots(const VPRegionBlock *Region) {
1117   ReversePostOrderTraversal<const VPBlockBase *> RPOT(Region->getEntry());
1118   for (const VPBlockBase *Block : RPOT)
1119     assignSlots(Block);
1120 }
1121 
1122 void VPSlotTracker::assignSlots(const VPBasicBlock *VPBB) {
1123   for (const VPRecipeBase &Recipe : *VPBB) {
1124     for (VPValue *Def : Recipe.definedValues())
1125       assignSlot(Def);
1126   }
1127 }
1128 
1129 void VPSlotTracker::assignSlots(const VPlan &Plan) {
1130 
1131   for (const VPValue *V : Plan.VPExternalDefs)
1132     assignSlot(V);
1133 
1134   for (const VPValue *V : Plan.VPCBVs)
1135     assignSlot(V);
1136 
1137   if (Plan.BackedgeTakenCount)
1138     assignSlot(Plan.BackedgeTakenCount);
1139 
1140   ReversePostOrderTraversal<const VPBlockBase *> RPOT(Plan.getEntry());
1141   for (const VPBlockBase *Block : RPOT)
1142     assignSlots(Block);
1143 }
1144