1 //===- VPlan.cpp - Vectorizer Plan ----------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 /// 10 /// \file 11 /// This is the LLVM vectorization plan. It represents a candidate for 12 /// vectorization, allowing to plan and optimize how to vectorize a given loop 13 /// before generating LLVM-IR. 14 /// The vectorizer uses vectorization plans to estimate the costs of potential 15 /// candidates and if profitable to execute the desired plan, generating vector 16 /// LLVM-IR code. 17 /// 18 //===----------------------------------------------------------------------===// 19 20 #include "VPlan.h" 21 #include "llvm/ADT/DepthFirstIterator.h" 22 #include "llvm/ADT/PostOrderIterator.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/Twine.h" 25 #include "llvm/Analysis/LoopInfo.h" 26 #include "llvm/IR/BasicBlock.h" 27 #include "llvm/IR/CFG.h" 28 #include "llvm/IR/Dominators.h" 29 #include "llvm/IR/InstrTypes.h" 30 #include "llvm/IR/Instruction.h" 31 #include "llvm/IR/Instructions.h" 32 #include "llvm/IR/Type.h" 33 #include "llvm/IR/Value.h" 34 #include "llvm/Support/Casting.h" 35 #include "llvm/Support/Debug.h" 36 #include "llvm/Support/ErrorHandling.h" 37 #include "llvm/Support/GraphWriter.h" 38 #include "llvm/Support/raw_ostream.h" 39 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 40 #include <cassert> 41 #include <iterator> 42 #include <string> 43 #include <vector> 44 45 using namespace llvm; 46 47 #define DEBUG_TYPE "vplan" 48 49 raw_ostream &llvm::operator<<(raw_ostream &OS, const VPValue &V) { 50 if (const VPInstruction *Instr = dyn_cast<VPInstruction>(&V)) 51 Instr->print(OS); 52 else 53 V.printAsOperand(OS); 54 return OS; 55 } 56 57 /// \return the VPBasicBlock that is the entry of Block, possibly indirectly. 58 const VPBasicBlock *VPBlockBase::getEntryBasicBlock() const { 59 const VPBlockBase *Block = this; 60 while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 61 Block = Region->getEntry(); 62 return cast<VPBasicBlock>(Block); 63 } 64 65 VPBasicBlock *VPBlockBase::getEntryBasicBlock() { 66 VPBlockBase *Block = this; 67 while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 68 Block = Region->getEntry(); 69 return cast<VPBasicBlock>(Block); 70 } 71 72 /// \return the VPBasicBlock that is the exit of Block, possibly indirectly. 73 const VPBasicBlock *VPBlockBase::getExitBasicBlock() const { 74 const VPBlockBase *Block = this; 75 while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 76 Block = Region->getExit(); 77 return cast<VPBasicBlock>(Block); 78 } 79 80 VPBasicBlock *VPBlockBase::getExitBasicBlock() { 81 VPBlockBase *Block = this; 82 while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 83 Block = Region->getExit(); 84 return cast<VPBasicBlock>(Block); 85 } 86 87 VPBlockBase *VPBlockBase::getEnclosingBlockWithSuccessors() { 88 if (!Successors.empty() || !Parent) 89 return this; 90 assert(Parent->getExit() == this && 91 "Block w/o successors not the exit of its parent."); 92 return Parent->getEnclosingBlockWithSuccessors(); 93 } 94 95 VPBlockBase *VPBlockBase::getEnclosingBlockWithPredecessors() { 96 if (!Predecessors.empty() || !Parent) 97 return this; 98 assert(Parent->getEntry() == this && 99 "Block w/o predecessors not the entry of its parent."); 100 return Parent->getEnclosingBlockWithPredecessors(); 101 } 102 103 void VPBlockBase::deleteCFG(VPBlockBase *Entry) { 104 SmallVector<VPBlockBase *, 8> Blocks; 105 for (VPBlockBase *Block : depth_first(Entry)) 106 Blocks.push_back(Block); 107 108 for (VPBlockBase *Block : Blocks) 109 delete Block; 110 } 111 112 BasicBlock * 113 VPBasicBlock::createEmptyBasicBlock(VPTransformState::CFGState &CFG) { 114 // BB stands for IR BasicBlocks. VPBB stands for VPlan VPBasicBlocks. 115 // Pred stands for Predessor. Prev stands for Previous - last visited/created. 116 BasicBlock *PrevBB = CFG.PrevBB; 117 BasicBlock *NewBB = BasicBlock::Create(PrevBB->getContext(), getName(), 118 PrevBB->getParent(), CFG.LastBB); 119 LLVM_DEBUG(dbgs() << "LV: created " << NewBB->getName() << '\n'); 120 121 // Hook up the new basic block to its predecessors. 122 for (VPBlockBase *PredVPBlock : getHierarchicalPredecessors()) { 123 VPBasicBlock *PredVPBB = PredVPBlock->getExitBasicBlock(); 124 auto &PredVPSuccessors = PredVPBB->getSuccessors(); 125 BasicBlock *PredBB = CFG.VPBB2IRBB[PredVPBB]; 126 assert(PredBB && "Predecessor basic-block not found building successor."); 127 auto *PredBBTerminator = PredBB->getTerminator(); 128 LLVM_DEBUG(dbgs() << "LV: draw edge from" << PredBB->getName() << '\n'); 129 if (isa<UnreachableInst>(PredBBTerminator)) { 130 assert(PredVPSuccessors.size() == 1 && 131 "Predecessor ending w/o branch must have single successor."); 132 PredBBTerminator->eraseFromParent(); 133 BranchInst::Create(NewBB, PredBB); 134 } else { 135 assert(PredVPSuccessors.size() == 2 && 136 "Predecessor ending with branch must have two successors."); 137 unsigned idx = PredVPSuccessors.front() == this ? 0 : 1; 138 assert(!PredBBTerminator->getSuccessor(idx) && 139 "Trying to reset an existing successor block."); 140 PredBBTerminator->setSuccessor(idx, NewBB); 141 } 142 } 143 return NewBB; 144 } 145 146 void VPBasicBlock::execute(VPTransformState *State) { 147 bool Replica = State->Instance && 148 !(State->Instance->Part == 0 && State->Instance->Lane == 0); 149 VPBasicBlock *PrevVPBB = State->CFG.PrevVPBB; 150 VPBlockBase *SingleHPred = nullptr; 151 BasicBlock *NewBB = State->CFG.PrevBB; // Reuse it if possible. 152 153 // 1. Create an IR basic block, or reuse the last one if possible. 154 // The last IR basic block is reused, as an optimization, in three cases: 155 // A. the first VPBB reuses the loop header BB - when PrevVPBB is null; 156 // B. when the current VPBB has a single (hierarchical) predecessor which 157 // is PrevVPBB and the latter has a single (hierarchical) successor; and 158 // C. when the current VPBB is an entry of a region replica - where PrevVPBB 159 // is the exit of this region from a previous instance, or the predecessor 160 // of this region. 161 if (PrevVPBB && /* A */ 162 !((SingleHPred = getSingleHierarchicalPredecessor()) && 163 SingleHPred->getExitBasicBlock() == PrevVPBB && 164 PrevVPBB->getSingleHierarchicalSuccessor()) && /* B */ 165 !(Replica && getPredecessors().empty())) { /* C */ 166 NewBB = createEmptyBasicBlock(State->CFG); 167 State->Builder.SetInsertPoint(NewBB); 168 // Temporarily terminate with unreachable until CFG is rewired. 169 UnreachableInst *Terminator = State->Builder.CreateUnreachable(); 170 State->Builder.SetInsertPoint(Terminator); 171 // Register NewBB in its loop. In innermost loops its the same for all BB's. 172 Loop *L = State->LI->getLoopFor(State->CFG.LastBB); 173 L->addBasicBlockToLoop(NewBB, *State->LI); 174 State->CFG.PrevBB = NewBB; 175 } 176 177 // 2. Fill the IR basic block with IR instructions. 178 LLVM_DEBUG(dbgs() << "LV: vectorizing VPBB:" << getName() 179 << " in BB:" << NewBB->getName() << '\n'); 180 181 State->CFG.VPBB2IRBB[this] = NewBB; 182 State->CFG.PrevVPBB = this; 183 184 for (VPRecipeBase &Recipe : Recipes) 185 Recipe.execute(*State); 186 187 LLVM_DEBUG(dbgs() << "LV: filled BB:" << *NewBB); 188 } 189 190 void VPRegionBlock::execute(VPTransformState *State) { 191 ReversePostOrderTraversal<VPBlockBase *> RPOT(Entry); 192 193 if (!isReplicator()) { 194 // Visit the VPBlocks connected to "this", starting from it. 195 for (VPBlockBase *Block : RPOT) { 196 LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n'); 197 Block->execute(State); 198 } 199 return; 200 } 201 202 assert(!State->Instance && "Replicating a Region with non-null instance."); 203 204 // Enter replicating mode. 205 State->Instance = {0, 0}; 206 207 for (unsigned Part = 0, UF = State->UF; Part < UF; ++Part) { 208 State->Instance->Part = Part; 209 for (unsigned Lane = 0, VF = State->VF; Lane < VF; ++Lane) { 210 State->Instance->Lane = Lane; 211 // Visit the VPBlocks connected to \p this, starting from it. 212 for (VPBlockBase *Block : RPOT) { 213 LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n'); 214 Block->execute(State); 215 } 216 } 217 } 218 219 // Exit replicating mode. 220 State->Instance.reset(); 221 } 222 223 void VPInstruction::generateInstruction(VPTransformState &State, 224 unsigned Part) { 225 IRBuilder<> &Builder = State.Builder; 226 227 if (Instruction::isBinaryOp(getOpcode())) { 228 Value *A = State.get(getOperand(0), Part); 229 Value *B = State.get(getOperand(1), Part); 230 Value *V = Builder.CreateBinOp((Instruction::BinaryOps)getOpcode(), A, B); 231 State.set(this, V, Part); 232 return; 233 } 234 235 switch (getOpcode()) { 236 case VPInstruction::Not: { 237 Value *A = State.get(getOperand(0), Part); 238 Value *V = Builder.CreateNot(A); 239 State.set(this, V, Part); 240 break; 241 } 242 default: 243 llvm_unreachable("Unsupported opcode for instruction"); 244 } 245 } 246 247 void VPInstruction::execute(VPTransformState &State) { 248 assert(!State.Instance && "VPInstruction executing an Instance"); 249 for (unsigned Part = 0; Part < State.UF; ++Part) 250 generateInstruction(State, Part); 251 } 252 253 void VPInstruction::print(raw_ostream &O, const Twine &Indent) const { 254 O << " +\n" << Indent << "\"EMIT "; 255 print(O); 256 O << "\\l\""; 257 } 258 259 void VPInstruction::print(raw_ostream &O) const { 260 printAsOperand(O); 261 O << " = "; 262 263 switch (getOpcode()) { 264 case VPInstruction::Not: 265 O << "not"; 266 break; 267 default: 268 O << Instruction::getOpcodeName(getOpcode()); 269 } 270 271 for (const VPValue *Operand : operands()) { 272 O << " "; 273 Operand->printAsOperand(O); 274 } 275 } 276 277 /// Generate the code inside the body of the vectorized loop. Assumes a single 278 /// LoopVectorBody basic-block was created for this. Introduce additional 279 /// basic-blocks as needed, and fill them all. 280 void VPlan::execute(VPTransformState *State) { 281 // 0. Set the reverse mapping from VPValues to Values for code generation. 282 for (auto &Entry : Value2VPValue) 283 State->VPValue2Value[Entry.second] = Entry.first; 284 285 BasicBlock *VectorPreHeaderBB = State->CFG.PrevBB; 286 BasicBlock *VectorHeaderBB = VectorPreHeaderBB->getSingleSuccessor(); 287 assert(VectorHeaderBB && "Loop preheader does not have a single successor."); 288 BasicBlock *VectorLatchBB = VectorHeaderBB; 289 290 // 1. Make room to generate basic-blocks inside loop body if needed. 291 VectorLatchBB = VectorHeaderBB->splitBasicBlock( 292 VectorHeaderBB->getFirstInsertionPt(), "vector.body.latch"); 293 Loop *L = State->LI->getLoopFor(VectorHeaderBB); 294 L->addBasicBlockToLoop(VectorLatchBB, *State->LI); 295 // Remove the edge between Header and Latch to allow other connections. 296 // Temporarily terminate with unreachable until CFG is rewired. 297 // Note: this asserts the generated code's assumption that 298 // getFirstInsertionPt() can be dereferenced into an Instruction. 299 VectorHeaderBB->getTerminator()->eraseFromParent(); 300 State->Builder.SetInsertPoint(VectorHeaderBB); 301 UnreachableInst *Terminator = State->Builder.CreateUnreachable(); 302 State->Builder.SetInsertPoint(Terminator); 303 304 // 2. Generate code in loop body. 305 State->CFG.PrevVPBB = nullptr; 306 State->CFG.PrevBB = VectorHeaderBB; 307 State->CFG.LastBB = VectorLatchBB; 308 309 for (VPBlockBase *Block : depth_first(Entry)) 310 Block->execute(State); 311 312 // 3. Merge the temporary latch created with the last basic-block filled. 313 BasicBlock *LastBB = State->CFG.PrevBB; 314 // Connect LastBB to VectorLatchBB to facilitate their merge. 315 assert(isa<UnreachableInst>(LastBB->getTerminator()) && 316 "Expected VPlan CFG to terminate with unreachable"); 317 LastBB->getTerminator()->eraseFromParent(); 318 BranchInst::Create(VectorLatchBB, LastBB); 319 320 // Merge LastBB with Latch. 321 bool Merged = MergeBlockIntoPredecessor(VectorLatchBB, nullptr, State->LI); 322 (void)Merged; 323 assert(Merged && "Could not merge last basic block with latch."); 324 VectorLatchBB = LastBB; 325 326 updateDominatorTree(State->DT, VectorPreHeaderBB, VectorLatchBB); 327 } 328 329 void VPlan::updateDominatorTree(DominatorTree *DT, BasicBlock *LoopPreHeaderBB, 330 BasicBlock *LoopLatchBB) { 331 BasicBlock *LoopHeaderBB = LoopPreHeaderBB->getSingleSuccessor(); 332 assert(LoopHeaderBB && "Loop preheader does not have a single successor."); 333 DT->addNewBlock(LoopHeaderBB, LoopPreHeaderBB); 334 // The vector body may be more than a single basic-block by this point. 335 // Update the dominator tree information inside the vector body by propagating 336 // it from header to latch, expecting only triangular control-flow, if any. 337 BasicBlock *PostDomSucc = nullptr; 338 for (auto *BB = LoopHeaderBB; BB != LoopLatchBB; BB = PostDomSucc) { 339 // Get the list of successors of this block. 340 std::vector<BasicBlock *> Succs(succ_begin(BB), succ_end(BB)); 341 assert(Succs.size() <= 2 && 342 "Basic block in vector loop has more than 2 successors."); 343 PostDomSucc = Succs[0]; 344 if (Succs.size() == 1) { 345 assert(PostDomSucc->getSinglePredecessor() && 346 "PostDom successor has more than one predecessor."); 347 DT->addNewBlock(PostDomSucc, BB); 348 continue; 349 } 350 BasicBlock *InterimSucc = Succs[1]; 351 if (PostDomSucc->getSingleSuccessor() == InterimSucc) { 352 PostDomSucc = Succs[1]; 353 InterimSucc = Succs[0]; 354 } 355 assert(InterimSucc->getSingleSuccessor() == PostDomSucc && 356 "One successor of a basic block does not lead to the other."); 357 assert(InterimSucc->getSinglePredecessor() && 358 "Interim successor has more than one predecessor."); 359 assert(pred_size(PostDomSucc) == 2 && 360 "PostDom successor has more than two predecessors."); 361 DT->addNewBlock(InterimSucc, BB); 362 DT->addNewBlock(PostDomSucc, BB); 363 } 364 } 365 366 const Twine VPlanPrinter::getUID(const VPBlockBase *Block) { 367 return (isa<VPRegionBlock>(Block) ? "cluster_N" : "N") + 368 Twine(getOrCreateBID(Block)); 369 } 370 371 const Twine VPlanPrinter::getOrCreateName(const VPBlockBase *Block) { 372 const std::string &Name = Block->getName(); 373 if (!Name.empty()) 374 return Name; 375 return "VPB" + Twine(getOrCreateBID(Block)); 376 } 377 378 void VPlanPrinter::dump() { 379 Depth = 1; 380 bumpIndent(0); 381 OS << "digraph VPlan {\n"; 382 OS << "graph [labelloc=t, fontsize=30; label=\"Vectorization Plan"; 383 if (!Plan.getName().empty()) 384 OS << "\\n" << DOT::EscapeString(Plan.getName()); 385 if (!Plan.Value2VPValue.empty()) { 386 OS << ", where:"; 387 for (auto Entry : Plan.Value2VPValue) { 388 OS << "\\n" << *Entry.second; 389 OS << DOT::EscapeString(" := "); 390 Entry.first->printAsOperand(OS, false); 391 } 392 } 393 OS << "\"]\n"; 394 OS << "node [shape=rect, fontname=Courier, fontsize=30]\n"; 395 OS << "edge [fontname=Courier, fontsize=30]\n"; 396 OS << "compound=true\n"; 397 398 for (VPBlockBase *Block : depth_first(Plan.getEntry())) 399 dumpBlock(Block); 400 401 OS << "}\n"; 402 } 403 404 void VPlanPrinter::dumpBlock(const VPBlockBase *Block) { 405 if (const VPBasicBlock *BasicBlock = dyn_cast<VPBasicBlock>(Block)) 406 dumpBasicBlock(BasicBlock); 407 else if (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 408 dumpRegion(Region); 409 else 410 llvm_unreachable("Unsupported kind of VPBlock."); 411 } 412 413 void VPlanPrinter::drawEdge(const VPBlockBase *From, const VPBlockBase *To, 414 bool Hidden, const Twine &Label) { 415 // Due to "dot" we print an edge between two regions as an edge between the 416 // exit basic block and the entry basic of the respective regions. 417 const VPBlockBase *Tail = From->getExitBasicBlock(); 418 const VPBlockBase *Head = To->getEntryBasicBlock(); 419 OS << Indent << getUID(Tail) << " -> " << getUID(Head); 420 OS << " [ label=\"" << Label << '\"'; 421 if (Tail != From) 422 OS << " ltail=" << getUID(From); 423 if (Head != To) 424 OS << " lhead=" << getUID(To); 425 if (Hidden) 426 OS << "; splines=none"; 427 OS << "]\n"; 428 } 429 430 void VPlanPrinter::dumpEdges(const VPBlockBase *Block) { 431 auto &Successors = Block->getSuccessors(); 432 if (Successors.size() == 1) 433 drawEdge(Block, Successors.front(), false, ""); 434 else if (Successors.size() == 2) { 435 drawEdge(Block, Successors.front(), false, "T"); 436 drawEdge(Block, Successors.back(), false, "F"); 437 } else { 438 unsigned SuccessorNumber = 0; 439 for (auto *Successor : Successors) 440 drawEdge(Block, Successor, false, Twine(SuccessorNumber++)); 441 } 442 } 443 444 void VPlanPrinter::dumpBasicBlock(const VPBasicBlock *BasicBlock) { 445 OS << Indent << getUID(BasicBlock) << " [label =\n"; 446 bumpIndent(1); 447 OS << Indent << "\"" << DOT::EscapeString(BasicBlock->getName()) << ":\\n\""; 448 bumpIndent(1); 449 for (const VPRecipeBase &Recipe : *BasicBlock) 450 Recipe.print(OS, Indent); 451 bumpIndent(-2); 452 OS << "\n" << Indent << "]\n"; 453 dumpEdges(BasicBlock); 454 } 455 456 void VPlanPrinter::dumpRegion(const VPRegionBlock *Region) { 457 OS << Indent << "subgraph " << getUID(Region) << " {\n"; 458 bumpIndent(1); 459 OS << Indent << "fontname=Courier\n" 460 << Indent << "label=\"" 461 << DOT::EscapeString(Region->isReplicator() ? "<xVFxUF> " : "<x1> ") 462 << DOT::EscapeString(Region->getName()) << "\"\n"; 463 // Dump the blocks of the region. 464 assert(Region->getEntry() && "Region contains no inner blocks."); 465 for (const VPBlockBase *Block : depth_first(Region->getEntry())) 466 dumpBlock(Block); 467 bumpIndent(-1); 468 OS << Indent << "}\n"; 469 dumpEdges(Region); 470 } 471 472 void VPlanPrinter::printAsIngredient(raw_ostream &O, Value *V) { 473 std::string IngredientString; 474 raw_string_ostream RSO(IngredientString); 475 if (auto *Inst = dyn_cast<Instruction>(V)) { 476 if (!Inst->getType()->isVoidTy()) { 477 Inst->printAsOperand(RSO, false); 478 RSO << " = "; 479 } 480 RSO << Inst->getOpcodeName() << " "; 481 unsigned E = Inst->getNumOperands(); 482 if (E > 0) { 483 Inst->getOperand(0)->printAsOperand(RSO, false); 484 for (unsigned I = 1; I < E; ++I) 485 Inst->getOperand(I)->printAsOperand(RSO << ", ", false); 486 } 487 } else // !Inst 488 V->printAsOperand(RSO, false); 489 RSO.flush(); 490 O << DOT::EscapeString(IngredientString); 491 } 492 493 void VPWidenRecipe::print(raw_ostream &O, const Twine &Indent) const { 494 O << " +\n" << Indent << "\"WIDEN\\l\""; 495 for (auto &Instr : make_range(Begin, End)) 496 O << " +\n" << Indent << "\" " << VPlanIngredient(&Instr) << "\\l\""; 497 } 498 499 void VPWidenIntOrFpInductionRecipe::print(raw_ostream &O, 500 const Twine &Indent) const { 501 O << " +\n" << Indent << "\"WIDEN-INDUCTION"; 502 if (Trunc) { 503 O << "\\l\""; 504 O << " +\n" << Indent << "\" " << VPlanIngredient(IV) << "\\l\""; 505 O << " +\n" << Indent << "\" " << VPlanIngredient(Trunc) << "\\l\""; 506 } else 507 O << " " << VPlanIngredient(IV) << "\\l\""; 508 } 509 510 void VPWidenPHIRecipe::print(raw_ostream &O, const Twine &Indent) const { 511 O << " +\n" << Indent << "\"WIDEN-PHI " << VPlanIngredient(Phi) << "\\l\""; 512 } 513 514 void VPBlendRecipe::print(raw_ostream &O, const Twine &Indent) const { 515 O << " +\n" << Indent << "\"BLEND "; 516 Phi->printAsOperand(O, false); 517 O << " ="; 518 if (!User) { 519 // Not a User of any mask: not really blending, this is a 520 // single-predecessor phi. 521 O << " "; 522 Phi->getIncomingValue(0)->printAsOperand(O, false); 523 } else { 524 for (unsigned I = 0, E = User->getNumOperands(); I < E; ++I) { 525 O << " "; 526 Phi->getIncomingValue(I)->printAsOperand(O, false); 527 O << "/"; 528 User->getOperand(I)->printAsOperand(O); 529 } 530 } 531 O << "\\l\""; 532 } 533 534 void VPReplicateRecipe::print(raw_ostream &O, const Twine &Indent) const { 535 O << " +\n" 536 << Indent << "\"" << (IsUniform ? "CLONE " : "REPLICATE ") 537 << VPlanIngredient(Ingredient); 538 if (AlsoPack) 539 O << " (S->V)"; 540 O << "\\l\""; 541 } 542 543 void VPPredInstPHIRecipe::print(raw_ostream &O, const Twine &Indent) const { 544 O << " +\n" 545 << Indent << "\"PHI-PREDICATED-INSTRUCTION " << VPlanIngredient(PredInst) 546 << "\\l\""; 547 } 548 549 void VPWidenMemoryInstructionRecipe::print(raw_ostream &O, 550 const Twine &Indent) const { 551 O << " +\n" << Indent << "\"WIDEN " << VPlanIngredient(&Instr); 552 if (User) { 553 O << ", "; 554 User->getOperand(0)->printAsOperand(O); 555 } 556 O << "\\l\""; 557 } 558