1 //===- VPlan.cpp - Vectorizer Plan ----------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 /// 10 /// \file 11 /// This is the LLVM vectorization plan. It represents a candidate for 12 /// vectorization, allowing to plan and optimize how to vectorize a given loop 13 /// before generating LLVM-IR. 14 /// The vectorizer uses vectorization plans to estimate the costs of potential 15 /// candidates and if profitable to execute the desired plan, generating vector 16 /// LLVM-IR code. 17 /// 18 //===----------------------------------------------------------------------===// 19 20 #include "VPlan.h" 21 #include "llvm/ADT/DepthFirstIterator.h" 22 #include "llvm/ADT/PostOrderIterator.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/Twine.h" 25 #include "llvm/Analysis/LoopInfo.h" 26 #include "llvm/IR/BasicBlock.h" 27 #include "llvm/IR/CFG.h" 28 #include "llvm/IR/Dominators.h" 29 #include "llvm/IR/InstrTypes.h" 30 #include "llvm/IR/Instruction.h" 31 #include "llvm/IR/Instructions.h" 32 #include "llvm/IR/Type.h" 33 #include "llvm/IR/Value.h" 34 #include "llvm/Support/Casting.h" 35 #include "llvm/Support/Debug.h" 36 #include "llvm/Support/ErrorHandling.h" 37 #include "llvm/Support/GraphWriter.h" 38 #include "llvm/Support/raw_ostream.h" 39 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 40 #include <cassert> 41 #include <iterator> 42 #include <string> 43 #include <vector> 44 45 using namespace llvm; 46 47 #define DEBUG_TYPE "vplan" 48 49 raw_ostream &llvm::operator<<(raw_ostream &OS, const VPValue &V) { 50 if (const VPInstruction *Instr = dyn_cast<VPInstruction>(&V)) 51 Instr->print(OS); 52 else 53 V.printAsOperand(OS); 54 return OS; 55 } 56 57 /// \return the VPBasicBlock that is the entry of Block, possibly indirectly. 58 const VPBasicBlock *VPBlockBase::getEntryBasicBlock() const { 59 const VPBlockBase *Block = this; 60 while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 61 Block = Region->getEntry(); 62 return cast<VPBasicBlock>(Block); 63 } 64 65 VPBasicBlock *VPBlockBase::getEntryBasicBlock() { 66 VPBlockBase *Block = this; 67 while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 68 Block = Region->getEntry(); 69 return cast<VPBasicBlock>(Block); 70 } 71 72 /// \return the VPBasicBlock that is the exit of Block, possibly indirectly. 73 const VPBasicBlock *VPBlockBase::getExitBasicBlock() const { 74 const VPBlockBase *Block = this; 75 while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 76 Block = Region->getExit(); 77 return cast<VPBasicBlock>(Block); 78 } 79 80 VPBasicBlock *VPBlockBase::getExitBasicBlock() { 81 VPBlockBase *Block = this; 82 while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 83 Block = Region->getExit(); 84 return cast<VPBasicBlock>(Block); 85 } 86 87 VPBlockBase *VPBlockBase::getEnclosingBlockWithSuccessors() { 88 if (!Successors.empty() || !Parent) 89 return this; 90 assert(Parent->getExit() == this && 91 "Block w/o successors not the exit of its parent."); 92 return Parent->getEnclosingBlockWithSuccessors(); 93 } 94 95 VPBlockBase *VPBlockBase::getEnclosingBlockWithPredecessors() { 96 if (!Predecessors.empty() || !Parent) 97 return this; 98 assert(Parent->getEntry() == this && 99 "Block w/o predecessors not the entry of its parent."); 100 return Parent->getEnclosingBlockWithPredecessors(); 101 } 102 103 void VPBlockBase::deleteCFG(VPBlockBase *Entry) { 104 SmallVector<VPBlockBase *, 8> Blocks; 105 for (VPBlockBase *Block : depth_first(Entry)) 106 Blocks.push_back(Block); 107 108 for (VPBlockBase *Block : Blocks) 109 delete Block; 110 } 111 112 BasicBlock * 113 VPBasicBlock::createEmptyBasicBlock(VPTransformState::CFGState &CFG) { 114 // BB stands for IR BasicBlocks. VPBB stands for VPlan VPBasicBlocks. 115 // Pred stands for Predessor. Prev stands for Previous - last visited/created. 116 BasicBlock *PrevBB = CFG.PrevBB; 117 BasicBlock *NewBB = BasicBlock::Create(PrevBB->getContext(), getName(), 118 PrevBB->getParent(), CFG.LastBB); 119 LLVM_DEBUG(dbgs() << "LV: created " << NewBB->getName() << '\n'); 120 121 // Hook up the new basic block to its predecessors. 122 for (VPBlockBase *PredVPBlock : getHierarchicalPredecessors()) { 123 VPBasicBlock *PredVPBB = PredVPBlock->getExitBasicBlock(); 124 auto &PredVPSuccessors = PredVPBB->getSuccessors(); 125 BasicBlock *PredBB = CFG.VPBB2IRBB[PredVPBB]; 126 assert(PredBB && "Predecessor basic-block not found building successor."); 127 auto *PredBBTerminator = PredBB->getTerminator(); 128 LLVM_DEBUG(dbgs() << "LV: draw edge from" << PredBB->getName() << '\n'); 129 if (isa<UnreachableInst>(PredBBTerminator)) { 130 assert(PredVPSuccessors.size() == 1 && 131 "Predecessor ending w/o branch must have single successor."); 132 PredBBTerminator->eraseFromParent(); 133 BranchInst::Create(NewBB, PredBB); 134 } else { 135 assert(PredVPSuccessors.size() == 2 && 136 "Predecessor ending with branch must have two successors."); 137 unsigned idx = PredVPSuccessors.front() == this ? 0 : 1; 138 assert(!PredBBTerminator->getSuccessor(idx) && 139 "Trying to reset an existing successor block."); 140 PredBBTerminator->setSuccessor(idx, NewBB); 141 } 142 } 143 return NewBB; 144 } 145 146 void VPBasicBlock::execute(VPTransformState *State) { 147 bool Replica = State->Instance && 148 !(State->Instance->Part == 0 && State->Instance->Lane == 0); 149 VPBasicBlock *PrevVPBB = State->CFG.PrevVPBB; 150 VPBlockBase *SingleHPred = nullptr; 151 BasicBlock *NewBB = State->CFG.PrevBB; // Reuse it if possible. 152 153 // 1. Create an IR basic block, or reuse the last one if possible. 154 // The last IR basic block is reused, as an optimization, in three cases: 155 // A. the first VPBB reuses the loop header BB - when PrevVPBB is null; 156 // B. when the current VPBB has a single (hierarchical) predecessor which 157 // is PrevVPBB and the latter has a single (hierarchical) successor; and 158 // C. when the current VPBB is an entry of a region replica - where PrevVPBB 159 // is the exit of this region from a previous instance, or the predecessor 160 // of this region. 161 if (PrevVPBB && /* A */ 162 !((SingleHPred = getSingleHierarchicalPredecessor()) && 163 SingleHPred->getExitBasicBlock() == PrevVPBB && 164 PrevVPBB->getSingleHierarchicalSuccessor()) && /* B */ 165 !(Replica && getPredecessors().empty())) { /* C */ 166 NewBB = createEmptyBasicBlock(State->CFG); 167 State->Builder.SetInsertPoint(NewBB); 168 // Temporarily terminate with unreachable until CFG is rewired. 169 UnreachableInst *Terminator = State->Builder.CreateUnreachable(); 170 State->Builder.SetInsertPoint(Terminator); 171 // Register NewBB in its loop. In innermost loops its the same for all BB's. 172 Loop *L = State->LI->getLoopFor(State->CFG.LastBB); 173 L->addBasicBlockToLoop(NewBB, *State->LI); 174 State->CFG.PrevBB = NewBB; 175 } 176 177 // 2. Fill the IR basic block with IR instructions. 178 LLVM_DEBUG(dbgs() << "LV: vectorizing VPBB:" << getName() 179 << " in BB:" << NewBB->getName() << '\n'); 180 181 State->CFG.VPBB2IRBB[this] = NewBB; 182 State->CFG.PrevVPBB = this; 183 184 for (VPRecipeBase &Recipe : Recipes) 185 Recipe.execute(*State); 186 187 LLVM_DEBUG(dbgs() << "LV: filled BB:" << *NewBB); 188 } 189 190 void VPRegionBlock::execute(VPTransformState *State) { 191 ReversePostOrderTraversal<VPBlockBase *> RPOT(Entry); 192 193 if (!isReplicator()) { 194 // Visit the VPBlocks connected to "this", starting from it. 195 for (VPBlockBase *Block : RPOT) { 196 LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n'); 197 Block->execute(State); 198 } 199 return; 200 } 201 202 assert(!State->Instance && "Replicating a Region with non-null instance."); 203 204 // Enter replicating mode. 205 State->Instance = {0, 0}; 206 207 for (unsigned Part = 0, UF = State->UF; Part < UF; ++Part) { 208 State->Instance->Part = Part; 209 for (unsigned Lane = 0, VF = State->VF; Lane < VF; ++Lane) { 210 State->Instance->Lane = Lane; 211 // Visit the VPBlocks connected to \p this, starting from it. 212 for (VPBlockBase *Block : RPOT) { 213 LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n'); 214 Block->execute(State); 215 } 216 } 217 } 218 219 // Exit replicating mode. 220 State->Instance.reset(); 221 } 222 223 void VPRecipeBase::insertBefore(VPRecipeBase *InsertPos) { 224 Parent = InsertPos->getParent(); 225 Parent->getRecipeList().insert(InsertPos->getIterator(), this); 226 } 227 228 iplist<VPRecipeBase>::iterator VPRecipeBase::eraseFromParent() { 229 return getParent()->getRecipeList().erase(getIterator()); 230 } 231 232 void VPInstruction::generateInstruction(VPTransformState &State, 233 unsigned Part) { 234 IRBuilder<> &Builder = State.Builder; 235 236 if (Instruction::isBinaryOp(getOpcode())) { 237 Value *A = State.get(getOperand(0), Part); 238 Value *B = State.get(getOperand(1), Part); 239 Value *V = Builder.CreateBinOp((Instruction::BinaryOps)getOpcode(), A, B); 240 State.set(this, V, Part); 241 return; 242 } 243 244 switch (getOpcode()) { 245 case VPInstruction::Not: { 246 Value *A = State.get(getOperand(0), Part); 247 Value *V = Builder.CreateNot(A); 248 State.set(this, V, Part); 249 break; 250 } 251 default: 252 llvm_unreachable("Unsupported opcode for instruction"); 253 } 254 } 255 256 void VPInstruction::execute(VPTransformState &State) { 257 assert(!State.Instance && "VPInstruction executing an Instance"); 258 for (unsigned Part = 0; Part < State.UF; ++Part) 259 generateInstruction(State, Part); 260 } 261 262 void VPInstruction::print(raw_ostream &O, const Twine &Indent) const { 263 O << " +\n" << Indent << "\"EMIT "; 264 print(O); 265 O << "\\l\""; 266 } 267 268 void VPInstruction::print(raw_ostream &O) const { 269 printAsOperand(O); 270 O << " = "; 271 272 switch (getOpcode()) { 273 case VPInstruction::Not: 274 O << "not"; 275 break; 276 default: 277 O << Instruction::getOpcodeName(getOpcode()); 278 } 279 280 for (const VPValue *Operand : operands()) { 281 O << " "; 282 Operand->printAsOperand(O); 283 } 284 } 285 286 /// Generate the code inside the body of the vectorized loop. Assumes a single 287 /// LoopVectorBody basic-block was created for this. Introduce additional 288 /// basic-blocks as needed, and fill them all. 289 void VPlan::execute(VPTransformState *State) { 290 // 0. Set the reverse mapping from VPValues to Values for code generation. 291 for (auto &Entry : Value2VPValue) 292 State->VPValue2Value[Entry.second] = Entry.first; 293 294 BasicBlock *VectorPreHeaderBB = State->CFG.PrevBB; 295 BasicBlock *VectorHeaderBB = VectorPreHeaderBB->getSingleSuccessor(); 296 assert(VectorHeaderBB && "Loop preheader does not have a single successor."); 297 BasicBlock *VectorLatchBB = VectorHeaderBB; 298 299 // 1. Make room to generate basic-blocks inside loop body if needed. 300 VectorLatchBB = VectorHeaderBB->splitBasicBlock( 301 VectorHeaderBB->getFirstInsertionPt(), "vector.body.latch"); 302 Loop *L = State->LI->getLoopFor(VectorHeaderBB); 303 L->addBasicBlockToLoop(VectorLatchBB, *State->LI); 304 // Remove the edge between Header and Latch to allow other connections. 305 // Temporarily terminate with unreachable until CFG is rewired. 306 // Note: this asserts the generated code's assumption that 307 // getFirstInsertionPt() can be dereferenced into an Instruction. 308 VectorHeaderBB->getTerminator()->eraseFromParent(); 309 State->Builder.SetInsertPoint(VectorHeaderBB); 310 UnreachableInst *Terminator = State->Builder.CreateUnreachable(); 311 State->Builder.SetInsertPoint(Terminator); 312 313 // 2. Generate code in loop body. 314 State->CFG.PrevVPBB = nullptr; 315 State->CFG.PrevBB = VectorHeaderBB; 316 State->CFG.LastBB = VectorLatchBB; 317 318 for (VPBlockBase *Block : depth_first(Entry)) 319 Block->execute(State); 320 321 // 3. Merge the temporary latch created with the last basic-block filled. 322 BasicBlock *LastBB = State->CFG.PrevBB; 323 // Connect LastBB to VectorLatchBB to facilitate their merge. 324 assert(isa<UnreachableInst>(LastBB->getTerminator()) && 325 "Expected VPlan CFG to terminate with unreachable"); 326 LastBB->getTerminator()->eraseFromParent(); 327 BranchInst::Create(VectorLatchBB, LastBB); 328 329 // Merge LastBB with Latch. 330 bool Merged = MergeBlockIntoPredecessor(VectorLatchBB, nullptr, State->LI); 331 (void)Merged; 332 assert(Merged && "Could not merge last basic block with latch."); 333 VectorLatchBB = LastBB; 334 335 updateDominatorTree(State->DT, VectorPreHeaderBB, VectorLatchBB); 336 } 337 338 void VPlan::updateDominatorTree(DominatorTree *DT, BasicBlock *LoopPreHeaderBB, 339 BasicBlock *LoopLatchBB) { 340 BasicBlock *LoopHeaderBB = LoopPreHeaderBB->getSingleSuccessor(); 341 assert(LoopHeaderBB && "Loop preheader does not have a single successor."); 342 DT->addNewBlock(LoopHeaderBB, LoopPreHeaderBB); 343 // The vector body may be more than a single basic-block by this point. 344 // Update the dominator tree information inside the vector body by propagating 345 // it from header to latch, expecting only triangular control-flow, if any. 346 BasicBlock *PostDomSucc = nullptr; 347 for (auto *BB = LoopHeaderBB; BB != LoopLatchBB; BB = PostDomSucc) { 348 // Get the list of successors of this block. 349 std::vector<BasicBlock *> Succs(succ_begin(BB), succ_end(BB)); 350 assert(Succs.size() <= 2 && 351 "Basic block in vector loop has more than 2 successors."); 352 PostDomSucc = Succs[0]; 353 if (Succs.size() == 1) { 354 assert(PostDomSucc->getSinglePredecessor() && 355 "PostDom successor has more than one predecessor."); 356 DT->addNewBlock(PostDomSucc, BB); 357 continue; 358 } 359 BasicBlock *InterimSucc = Succs[1]; 360 if (PostDomSucc->getSingleSuccessor() == InterimSucc) { 361 PostDomSucc = Succs[1]; 362 InterimSucc = Succs[0]; 363 } 364 assert(InterimSucc->getSingleSuccessor() == PostDomSucc && 365 "One successor of a basic block does not lead to the other."); 366 assert(InterimSucc->getSinglePredecessor() && 367 "Interim successor has more than one predecessor."); 368 assert(pred_size(PostDomSucc) == 2 && 369 "PostDom successor has more than two predecessors."); 370 DT->addNewBlock(InterimSucc, BB); 371 DT->addNewBlock(PostDomSucc, BB); 372 } 373 } 374 375 const Twine VPlanPrinter::getUID(const VPBlockBase *Block) { 376 return (isa<VPRegionBlock>(Block) ? "cluster_N" : "N") + 377 Twine(getOrCreateBID(Block)); 378 } 379 380 const Twine VPlanPrinter::getOrCreateName(const VPBlockBase *Block) { 381 const std::string &Name = Block->getName(); 382 if (!Name.empty()) 383 return Name; 384 return "VPB" + Twine(getOrCreateBID(Block)); 385 } 386 387 void VPlanPrinter::dump() { 388 Depth = 1; 389 bumpIndent(0); 390 OS << "digraph VPlan {\n"; 391 OS << "graph [labelloc=t, fontsize=30; label=\"Vectorization Plan"; 392 if (!Plan.getName().empty()) 393 OS << "\\n" << DOT::EscapeString(Plan.getName()); 394 if (!Plan.Value2VPValue.empty()) { 395 OS << ", where:"; 396 for (auto Entry : Plan.Value2VPValue) { 397 OS << "\\n" << *Entry.second; 398 OS << DOT::EscapeString(" := "); 399 Entry.first->printAsOperand(OS, false); 400 } 401 } 402 OS << "\"]\n"; 403 OS << "node [shape=rect, fontname=Courier, fontsize=30]\n"; 404 OS << "edge [fontname=Courier, fontsize=30]\n"; 405 OS << "compound=true\n"; 406 407 for (VPBlockBase *Block : depth_first(Plan.getEntry())) 408 dumpBlock(Block); 409 410 OS << "}\n"; 411 } 412 413 void VPlanPrinter::dumpBlock(const VPBlockBase *Block) { 414 if (const VPBasicBlock *BasicBlock = dyn_cast<VPBasicBlock>(Block)) 415 dumpBasicBlock(BasicBlock); 416 else if (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 417 dumpRegion(Region); 418 else 419 llvm_unreachable("Unsupported kind of VPBlock."); 420 } 421 422 void VPlanPrinter::drawEdge(const VPBlockBase *From, const VPBlockBase *To, 423 bool Hidden, const Twine &Label) { 424 // Due to "dot" we print an edge between two regions as an edge between the 425 // exit basic block and the entry basic of the respective regions. 426 const VPBlockBase *Tail = From->getExitBasicBlock(); 427 const VPBlockBase *Head = To->getEntryBasicBlock(); 428 OS << Indent << getUID(Tail) << " -> " << getUID(Head); 429 OS << " [ label=\"" << Label << '\"'; 430 if (Tail != From) 431 OS << " ltail=" << getUID(From); 432 if (Head != To) 433 OS << " lhead=" << getUID(To); 434 if (Hidden) 435 OS << "; splines=none"; 436 OS << "]\n"; 437 } 438 439 void VPlanPrinter::dumpEdges(const VPBlockBase *Block) { 440 auto &Successors = Block->getSuccessors(); 441 if (Successors.size() == 1) 442 drawEdge(Block, Successors.front(), false, ""); 443 else if (Successors.size() == 2) { 444 drawEdge(Block, Successors.front(), false, "T"); 445 drawEdge(Block, Successors.back(), false, "F"); 446 } else { 447 unsigned SuccessorNumber = 0; 448 for (auto *Successor : Successors) 449 drawEdge(Block, Successor, false, Twine(SuccessorNumber++)); 450 } 451 } 452 453 void VPlanPrinter::dumpBasicBlock(const VPBasicBlock *BasicBlock) { 454 OS << Indent << getUID(BasicBlock) << " [label =\n"; 455 bumpIndent(1); 456 OS << Indent << "\"" << DOT::EscapeString(BasicBlock->getName()) << ":\\n\""; 457 bumpIndent(1); 458 for (const VPRecipeBase &Recipe : *BasicBlock) 459 Recipe.print(OS, Indent); 460 461 // Dump the condition bit. 462 const VPValue *CBV = BasicBlock->getCondBit(); 463 if (CBV) { 464 OS << " +\n" << Indent << " \"CondBit: "; 465 if (const VPInstruction *CBI = dyn_cast<VPInstruction>(CBV)) { 466 CBI->printAsOperand(OS); 467 OS << " (" << DOT::EscapeString(CBI->getParent()->getName()) << ")\\l\""; 468 } else 469 CBV->printAsOperand(OS); 470 } 471 472 bumpIndent(-2); 473 OS << "\n" << Indent << "]\n"; 474 dumpEdges(BasicBlock); 475 } 476 477 void VPlanPrinter::dumpRegion(const VPRegionBlock *Region) { 478 OS << Indent << "subgraph " << getUID(Region) << " {\n"; 479 bumpIndent(1); 480 OS << Indent << "fontname=Courier\n" 481 << Indent << "label=\"" 482 << DOT::EscapeString(Region->isReplicator() ? "<xVFxUF> " : "<x1> ") 483 << DOT::EscapeString(Region->getName()) << "\"\n"; 484 // Dump the blocks of the region. 485 assert(Region->getEntry() && "Region contains no inner blocks."); 486 for (const VPBlockBase *Block : depth_first(Region->getEntry())) 487 dumpBlock(Block); 488 bumpIndent(-1); 489 OS << Indent << "}\n"; 490 dumpEdges(Region); 491 } 492 493 void VPlanPrinter::printAsIngredient(raw_ostream &O, Value *V) { 494 std::string IngredientString; 495 raw_string_ostream RSO(IngredientString); 496 if (auto *Inst = dyn_cast<Instruction>(V)) { 497 if (!Inst->getType()->isVoidTy()) { 498 Inst->printAsOperand(RSO, false); 499 RSO << " = "; 500 } 501 RSO << Inst->getOpcodeName() << " "; 502 unsigned E = Inst->getNumOperands(); 503 if (E > 0) { 504 Inst->getOperand(0)->printAsOperand(RSO, false); 505 for (unsigned I = 1; I < E; ++I) 506 Inst->getOperand(I)->printAsOperand(RSO << ", ", false); 507 } 508 } else // !Inst 509 V->printAsOperand(RSO, false); 510 RSO.flush(); 511 O << DOT::EscapeString(IngredientString); 512 } 513 514 void VPWidenRecipe::print(raw_ostream &O, const Twine &Indent) const { 515 O << " +\n" << Indent << "\"WIDEN\\l\""; 516 for (auto &Instr : make_range(Begin, End)) 517 O << " +\n" << Indent << "\" " << VPlanIngredient(&Instr) << "\\l\""; 518 } 519 520 void VPWidenIntOrFpInductionRecipe::print(raw_ostream &O, 521 const Twine &Indent) const { 522 O << " +\n" << Indent << "\"WIDEN-INDUCTION"; 523 if (Trunc) { 524 O << "\\l\""; 525 O << " +\n" << Indent << "\" " << VPlanIngredient(IV) << "\\l\""; 526 O << " +\n" << Indent << "\" " << VPlanIngredient(Trunc) << "\\l\""; 527 } else 528 O << " " << VPlanIngredient(IV) << "\\l\""; 529 } 530 531 void VPWidenPHIRecipe::print(raw_ostream &O, const Twine &Indent) const { 532 O << " +\n" << Indent << "\"WIDEN-PHI " << VPlanIngredient(Phi) << "\\l\""; 533 } 534 535 void VPBlendRecipe::print(raw_ostream &O, const Twine &Indent) const { 536 O << " +\n" << Indent << "\"BLEND "; 537 Phi->printAsOperand(O, false); 538 O << " ="; 539 if (!User) { 540 // Not a User of any mask: not really blending, this is a 541 // single-predecessor phi. 542 O << " "; 543 Phi->getIncomingValue(0)->printAsOperand(O, false); 544 } else { 545 for (unsigned I = 0, E = User->getNumOperands(); I < E; ++I) { 546 O << " "; 547 Phi->getIncomingValue(I)->printAsOperand(O, false); 548 O << "/"; 549 User->getOperand(I)->printAsOperand(O); 550 } 551 } 552 O << "\\l\""; 553 } 554 555 void VPReplicateRecipe::print(raw_ostream &O, const Twine &Indent) const { 556 O << " +\n" 557 << Indent << "\"" << (IsUniform ? "CLONE " : "REPLICATE ") 558 << VPlanIngredient(Ingredient); 559 if (AlsoPack) 560 O << " (S->V)"; 561 O << "\\l\""; 562 } 563 564 void VPPredInstPHIRecipe::print(raw_ostream &O, const Twine &Indent) const { 565 O << " +\n" 566 << Indent << "\"PHI-PREDICATED-INSTRUCTION " << VPlanIngredient(PredInst) 567 << "\\l\""; 568 } 569 570 void VPWidenMemoryInstructionRecipe::print(raw_ostream &O, 571 const Twine &Indent) const { 572 O << " +\n" << Indent << "\"WIDEN " << VPlanIngredient(&Instr); 573 if (User) { 574 O << ", "; 575 User->getOperand(0)->printAsOperand(O); 576 } 577 O << "\\l\""; 578 } 579