xref: /llvm-project/llvm/lib/Transforms/Vectorize/VPlan.cpp (revision cd608dc8d3e975fa3c57327d2146b5c223bcf83a)
1 //===- VPlan.cpp - Vectorizer Plan ----------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This is the LLVM vectorization plan. It represents a candidate for
11 /// vectorization, allowing to plan and optimize how to vectorize a given loop
12 /// before generating LLVM-IR.
13 /// The vectorizer uses vectorization plans to estimate the costs of potential
14 /// candidates and if profitable to execute the desired plan, generating vector
15 /// LLVM-IR code.
16 ///
17 //===----------------------------------------------------------------------===//
18 
19 #include "VPlan.h"
20 #include "VPlanDominatorTree.h"
21 #include "llvm/ADT/DepthFirstIterator.h"
22 #include "llvm/ADT/PostOrderIterator.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/Twine.h"
26 #include "llvm/Analysis/IVDescriptors.h"
27 #include "llvm/Analysis/LoopInfo.h"
28 #include "llvm/IR/BasicBlock.h"
29 #include "llvm/IR/CFG.h"
30 #include "llvm/IR/InstrTypes.h"
31 #include "llvm/IR/Instruction.h"
32 #include "llvm/IR/Instructions.h"
33 #include "llvm/IR/Type.h"
34 #include "llvm/IR/Value.h"
35 #include "llvm/Support/Casting.h"
36 #include "llvm/Support/CommandLine.h"
37 #include "llvm/Support/Debug.h"
38 #include "llvm/Support/ErrorHandling.h"
39 #include "llvm/Support/GenericDomTreeConstruction.h"
40 #include "llvm/Support/GraphWriter.h"
41 #include "llvm/Support/raw_ostream.h"
42 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
43 #include <cassert>
44 #include <iterator>
45 #include <string>
46 #include <vector>
47 
48 using namespace llvm;
49 extern cl::opt<bool> EnableVPlanNativePath;
50 
51 #define DEBUG_TYPE "vplan"
52 
53 raw_ostream &llvm::operator<<(raw_ostream &OS, const VPValue &V) {
54   const VPInstruction *Instr = dyn_cast<VPInstruction>(&V);
55   VPSlotTracker SlotTracker(
56       (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr);
57   V.print(OS, SlotTracker);
58   return OS;
59 }
60 
61 VPValue::VPValue(const unsigned char SC, Value *UV, VPDef *Def)
62     : SubclassID(SC), UnderlyingVal(UV), Def(Def) {
63   if (Def)
64     Def->addDefinedValue(this);
65 }
66 
67 VPValue::~VPValue() {
68   assert(Users.empty() && "trying to delete a VPValue with remaining users");
69   if (Def)
70     Def->removeDefinedValue(this);
71 }
72 
73 void VPValue::print(raw_ostream &OS, VPSlotTracker &SlotTracker) const {
74   if (const VPInstruction *Instr = dyn_cast<VPInstruction>(this))
75     Instr->print(OS, SlotTracker);
76   else
77     printAsOperand(OS, SlotTracker);
78 }
79 
80 void VPValue::dump() const {
81   const VPInstruction *Instr = dyn_cast<VPInstruction>(this);
82   VPSlotTracker SlotTracker(
83       (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr);
84   print(dbgs(), SlotTracker);
85   dbgs() << "\n";
86 }
87 
88 void VPRecipeBase::dump() const {
89   VPSlotTracker SlotTracker(nullptr);
90   print(dbgs(), "", SlotTracker);
91   dbgs() << "\n";
92 }
93 
94 VPUser *VPRecipeBase::toVPUser() {
95   if (auto *U = dyn_cast<VPInstruction>(this))
96     return U;
97   if (auto *U = dyn_cast<VPWidenRecipe>(this))
98     return U;
99   if (auto *U = dyn_cast<VPWidenCallRecipe>(this))
100     return U;
101   if (auto *U = dyn_cast<VPWidenSelectRecipe>(this))
102     return U;
103   if (auto *U = dyn_cast<VPWidenGEPRecipe>(this))
104     return U;
105   if (auto *U = dyn_cast<VPBlendRecipe>(this))
106     return U;
107   if (auto *U = dyn_cast<VPInterleaveRecipe>(this))
108     return U;
109   if (auto *U = dyn_cast<VPReplicateRecipe>(this))
110     return U;
111   if (auto *U = dyn_cast<VPBranchOnMaskRecipe>(this))
112     return U;
113   if (auto *U = dyn_cast<VPWidenMemoryInstructionRecipe>(this))
114     return U;
115   if (auto *U = dyn_cast<VPReductionRecipe>(this))
116     return U;
117   if (auto *U = dyn_cast<VPPredInstPHIRecipe>(this))
118     return U;
119   return nullptr;
120 }
121 
122 VPValue *VPRecipeBase::toVPValue() {
123   if (auto *V = dyn_cast<VPInstruction>(this))
124     return V;
125   if (auto *V = dyn_cast<VPReductionRecipe>(this))
126     return V;
127   if (auto *V = dyn_cast<VPWidenMemoryInstructionRecipe>(this)) {
128     if (!V->isStore())
129       return V->getVPValue();
130     else
131       return nullptr;
132   }
133   if (auto *V = dyn_cast<VPWidenCallRecipe>(this))
134     return V;
135   if (auto *V = dyn_cast<VPWidenSelectRecipe>(this))
136     return V;
137   if (auto *V = dyn_cast<VPWidenGEPRecipe>(this))
138     return V;
139   if (auto *V = dyn_cast<VPWidenRecipe>(this))
140     return V;
141   if (auto *V = dyn_cast<VPReplicateRecipe>(this))
142     return V;
143   return nullptr;
144 }
145 
146 const VPValue *VPRecipeBase::toVPValue() const {
147   if (auto *V = dyn_cast<VPInstruction>(this))
148     return V;
149   if (auto *V = dyn_cast<VPReductionRecipe>(this))
150     return V;
151   if (auto *V = dyn_cast<VPWidenMemoryInstructionRecipe>(this)) {
152     if (!V->isStore())
153       return V->getVPValue();
154     else
155       return nullptr;
156   }
157   if (auto *V = dyn_cast<VPWidenCallRecipe>(this))
158     return V;
159   if (auto *V = dyn_cast<VPWidenSelectRecipe>(this))
160     return V;
161   if (auto *V = dyn_cast<VPWidenGEPRecipe>(this))
162     return V;
163   if (auto *V = dyn_cast<VPWidenRecipe>(this))
164     return V;
165   if (auto *V = dyn_cast<VPReplicateRecipe>(this))
166     return V;
167   return nullptr;
168 }
169 
170 // Get the top-most entry block of \p Start. This is the entry block of the
171 // containing VPlan. This function is templated to support both const and non-const blocks
172 template <typename T> static T *getPlanEntry(T *Start) {
173   T *Next = Start;
174   T *Current = Start;
175   while ((Next = Next->getParent()))
176     Current = Next;
177 
178   SmallSetVector<T *, 8> WorkList;
179   WorkList.insert(Current);
180 
181   for (unsigned i = 0; i < WorkList.size(); i++) {
182     T *Current = WorkList[i];
183     if (Current->getNumPredecessors() == 0)
184       return Current;
185     auto &Predecessors = Current->getPredecessors();
186     WorkList.insert(Predecessors.begin(), Predecessors.end());
187   }
188 
189   llvm_unreachable("VPlan without any entry node without predecessors");
190 }
191 
192 VPlan *VPBlockBase::getPlan() { return getPlanEntry(this)->Plan; }
193 
194 const VPlan *VPBlockBase::getPlan() const { return getPlanEntry(this)->Plan; }
195 
196 /// \return the VPBasicBlock that is the entry of Block, possibly indirectly.
197 const VPBasicBlock *VPBlockBase::getEntryBasicBlock() const {
198   const VPBlockBase *Block = this;
199   while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
200     Block = Region->getEntry();
201   return cast<VPBasicBlock>(Block);
202 }
203 
204 VPBasicBlock *VPBlockBase::getEntryBasicBlock() {
205   VPBlockBase *Block = this;
206   while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
207     Block = Region->getEntry();
208   return cast<VPBasicBlock>(Block);
209 }
210 
211 void VPBlockBase::setPlan(VPlan *ParentPlan) {
212   assert(ParentPlan->getEntry() == this &&
213          "Can only set plan on its entry block.");
214   Plan = ParentPlan;
215 }
216 
217 /// \return the VPBasicBlock that is the exit of Block, possibly indirectly.
218 const VPBasicBlock *VPBlockBase::getExitBasicBlock() const {
219   const VPBlockBase *Block = this;
220   while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
221     Block = Region->getExit();
222   return cast<VPBasicBlock>(Block);
223 }
224 
225 VPBasicBlock *VPBlockBase::getExitBasicBlock() {
226   VPBlockBase *Block = this;
227   while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
228     Block = Region->getExit();
229   return cast<VPBasicBlock>(Block);
230 }
231 
232 VPBlockBase *VPBlockBase::getEnclosingBlockWithSuccessors() {
233   if (!Successors.empty() || !Parent)
234     return this;
235   assert(Parent->getExit() == this &&
236          "Block w/o successors not the exit of its parent.");
237   return Parent->getEnclosingBlockWithSuccessors();
238 }
239 
240 VPBlockBase *VPBlockBase::getEnclosingBlockWithPredecessors() {
241   if (!Predecessors.empty() || !Parent)
242     return this;
243   assert(Parent->getEntry() == this &&
244          "Block w/o predecessors not the entry of its parent.");
245   return Parent->getEnclosingBlockWithPredecessors();
246 }
247 
248 void VPBlockBase::deleteCFG(VPBlockBase *Entry) {
249   SmallVector<VPBlockBase *, 8> Blocks;
250 
251   for (VPBlockBase *Block : depth_first(Entry))
252     Blocks.push_back(Block);
253 
254   for (VPBlockBase *Block : Blocks)
255     delete Block;
256 }
257 
258 VPBasicBlock::iterator VPBasicBlock::getFirstNonPhi() {
259   iterator It = begin();
260   while (It != end() && (isa<VPWidenPHIRecipe>(&*It) ||
261                          isa<VPWidenIntOrFpInductionRecipe>(&*It) ||
262                          isa<VPPredInstPHIRecipe>(&*It) ||
263                          isa<VPWidenCanonicalIVRecipe>(&*It)))
264     It++;
265   return It;
266 }
267 
268 BasicBlock *
269 VPBasicBlock::createEmptyBasicBlock(VPTransformState::CFGState &CFG) {
270   // BB stands for IR BasicBlocks. VPBB stands for VPlan VPBasicBlocks.
271   // Pred stands for Predessor. Prev stands for Previous - last visited/created.
272   BasicBlock *PrevBB = CFG.PrevBB;
273   BasicBlock *NewBB = BasicBlock::Create(PrevBB->getContext(), getName(),
274                                          PrevBB->getParent(), CFG.LastBB);
275   LLVM_DEBUG(dbgs() << "LV: created " << NewBB->getName() << '\n');
276 
277   // Hook up the new basic block to its predecessors.
278   for (VPBlockBase *PredVPBlock : getHierarchicalPredecessors()) {
279     VPBasicBlock *PredVPBB = PredVPBlock->getExitBasicBlock();
280     auto &PredVPSuccessors = PredVPBB->getSuccessors();
281     BasicBlock *PredBB = CFG.VPBB2IRBB[PredVPBB];
282 
283     // In outer loop vectorization scenario, the predecessor BBlock may not yet
284     // be visited(backedge). Mark the VPBasicBlock for fixup at the end of
285     // vectorization. We do not encounter this case in inner loop vectorization
286     // as we start out by building a loop skeleton with the vector loop header
287     // and latch blocks. As a result, we never enter this function for the
288     // header block in the non VPlan-native path.
289     if (!PredBB) {
290       assert(EnableVPlanNativePath &&
291              "Unexpected null predecessor in non VPlan-native path");
292       CFG.VPBBsToFix.push_back(PredVPBB);
293       continue;
294     }
295 
296     assert(PredBB && "Predecessor basic-block not found building successor.");
297     auto *PredBBTerminator = PredBB->getTerminator();
298     LLVM_DEBUG(dbgs() << "LV: draw edge from" << PredBB->getName() << '\n');
299     if (isa<UnreachableInst>(PredBBTerminator)) {
300       assert(PredVPSuccessors.size() == 1 &&
301              "Predecessor ending w/o branch must have single successor.");
302       PredBBTerminator->eraseFromParent();
303       BranchInst::Create(NewBB, PredBB);
304     } else {
305       assert(PredVPSuccessors.size() == 2 &&
306              "Predecessor ending with branch must have two successors.");
307       unsigned idx = PredVPSuccessors.front() == this ? 0 : 1;
308       assert(!PredBBTerminator->getSuccessor(idx) &&
309              "Trying to reset an existing successor block.");
310       PredBBTerminator->setSuccessor(idx, NewBB);
311     }
312   }
313   return NewBB;
314 }
315 
316 void VPBasicBlock::execute(VPTransformState *State) {
317   bool Replica = State->Instance &&
318                  !(State->Instance->Part == 0 && State->Instance->Lane == 0);
319   VPBasicBlock *PrevVPBB = State->CFG.PrevVPBB;
320   VPBlockBase *SingleHPred = nullptr;
321   BasicBlock *NewBB = State->CFG.PrevBB; // Reuse it if possible.
322 
323   // 1. Create an IR basic block, or reuse the last one if possible.
324   // The last IR basic block is reused, as an optimization, in three cases:
325   // A. the first VPBB reuses the loop header BB - when PrevVPBB is null;
326   // B. when the current VPBB has a single (hierarchical) predecessor which
327   //    is PrevVPBB and the latter has a single (hierarchical) successor; and
328   // C. when the current VPBB is an entry of a region replica - where PrevVPBB
329   //    is the exit of this region from a previous instance, or the predecessor
330   //    of this region.
331   if (PrevVPBB && /* A */
332       !((SingleHPred = getSingleHierarchicalPredecessor()) &&
333         SingleHPred->getExitBasicBlock() == PrevVPBB &&
334         PrevVPBB->getSingleHierarchicalSuccessor()) && /* B */
335       !(Replica && getPredecessors().empty())) {       /* C */
336     NewBB = createEmptyBasicBlock(State->CFG);
337     State->Builder.SetInsertPoint(NewBB);
338     // Temporarily terminate with unreachable until CFG is rewired.
339     UnreachableInst *Terminator = State->Builder.CreateUnreachable();
340     State->Builder.SetInsertPoint(Terminator);
341     // Register NewBB in its loop. In innermost loops its the same for all BB's.
342     Loop *L = State->LI->getLoopFor(State->CFG.LastBB);
343     L->addBasicBlockToLoop(NewBB, *State->LI);
344     State->CFG.PrevBB = NewBB;
345   }
346 
347   // 2. Fill the IR basic block with IR instructions.
348   LLVM_DEBUG(dbgs() << "LV: vectorizing VPBB:" << getName()
349                     << " in BB:" << NewBB->getName() << '\n');
350 
351   State->CFG.VPBB2IRBB[this] = NewBB;
352   State->CFG.PrevVPBB = this;
353 
354   for (VPRecipeBase &Recipe : Recipes)
355     Recipe.execute(*State);
356 
357   VPValue *CBV;
358   if (EnableVPlanNativePath && (CBV = getCondBit())) {
359     Value *IRCBV = CBV->getUnderlyingValue();
360     assert(IRCBV && "Unexpected null underlying value for condition bit");
361 
362     // Condition bit value in a VPBasicBlock is used as the branch selector. In
363     // the VPlan-native path case, since all branches are uniform we generate a
364     // branch instruction using the condition value from vector lane 0 and dummy
365     // successors. The successors are fixed later when the successor blocks are
366     // visited.
367     Value *NewCond = State->Callback.getOrCreateVectorValues(IRCBV, 0);
368     NewCond = State->Builder.CreateExtractElement(NewCond,
369                                                   State->Builder.getInt32(0));
370 
371     // Replace the temporary unreachable terminator with the new conditional
372     // branch.
373     auto *CurrentTerminator = NewBB->getTerminator();
374     assert(isa<UnreachableInst>(CurrentTerminator) &&
375            "Expected to replace unreachable terminator with conditional "
376            "branch.");
377     auto *CondBr = BranchInst::Create(NewBB, nullptr, NewCond);
378     CondBr->setSuccessor(0, nullptr);
379     ReplaceInstWithInst(CurrentTerminator, CondBr);
380   }
381 
382   LLVM_DEBUG(dbgs() << "LV: filled BB:" << *NewBB);
383 }
384 
385 void VPBasicBlock::dropAllReferences(VPValue *NewValue) {
386   for (VPRecipeBase &R : Recipes) {
387     if (VPValue *Def = R.toVPValue())
388       Def->replaceAllUsesWith(NewValue);
389     else if (auto *IR = dyn_cast<VPInterleaveRecipe>(&R)) {
390       for (auto *Def : IR->definedValues())
391         Def->replaceAllUsesWith(NewValue);
392     }
393 
394     if (auto *User = R.toVPUser())
395       for (unsigned I = 0, E = User->getNumOperands(); I != E; I++)
396         User->setOperand(I, NewValue);
397   }
398 }
399 
400 void VPRegionBlock::dropAllReferences(VPValue *NewValue) {
401   for (VPBlockBase *Block : depth_first(Entry))
402     // Drop all references in VPBasicBlocks and replace all uses with
403     // DummyValue.
404     Block->dropAllReferences(NewValue);
405 }
406 
407 void VPRegionBlock::execute(VPTransformState *State) {
408   ReversePostOrderTraversal<VPBlockBase *> RPOT(Entry);
409 
410   if (!isReplicator()) {
411     // Visit the VPBlocks connected to "this", starting from it.
412     for (VPBlockBase *Block : RPOT) {
413       if (EnableVPlanNativePath) {
414         // The inner loop vectorization path does not represent loop preheader
415         // and exit blocks as part of the VPlan. In the VPlan-native path, skip
416         // vectorizing loop preheader block. In future, we may replace this
417         // check with the check for loop preheader.
418         if (Block->getNumPredecessors() == 0)
419           continue;
420 
421         // Skip vectorizing loop exit block. In future, we may replace this
422         // check with the check for loop exit.
423         if (Block->getNumSuccessors() == 0)
424           continue;
425       }
426 
427       LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n');
428       Block->execute(State);
429     }
430     return;
431   }
432 
433   assert(!State->Instance && "Replicating a Region with non-null instance.");
434 
435   // Enter replicating mode.
436   State->Instance = {0, 0};
437 
438   for (unsigned Part = 0, UF = State->UF; Part < UF; ++Part) {
439     State->Instance->Part = Part;
440     assert(!State->VF.isScalable() && "VF is assumed to be non scalable.");
441     for (unsigned Lane = 0, VF = State->VF.getKnownMinValue(); Lane < VF;
442          ++Lane) {
443       State->Instance->Lane = Lane;
444       // Visit the VPBlocks connected to \p this, starting from it.
445       for (VPBlockBase *Block : RPOT) {
446         LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n');
447         Block->execute(State);
448       }
449     }
450   }
451 
452   // Exit replicating mode.
453   State->Instance.reset();
454 }
455 
456 void VPRecipeBase::insertBefore(VPRecipeBase *InsertPos) {
457   assert(!Parent && "Recipe already in some VPBasicBlock");
458   assert(InsertPos->getParent() &&
459          "Insertion position not in any VPBasicBlock");
460   Parent = InsertPos->getParent();
461   Parent->getRecipeList().insert(InsertPos->getIterator(), this);
462 }
463 
464 void VPRecipeBase::insertAfter(VPRecipeBase *InsertPos) {
465   assert(!Parent && "Recipe already in some VPBasicBlock");
466   assert(InsertPos->getParent() &&
467          "Insertion position not in any VPBasicBlock");
468   Parent = InsertPos->getParent();
469   Parent->getRecipeList().insertAfter(InsertPos->getIterator(), this);
470 }
471 
472 void VPRecipeBase::removeFromParent() {
473   assert(getParent() && "Recipe not in any VPBasicBlock");
474   getParent()->getRecipeList().remove(getIterator());
475   Parent = nullptr;
476 }
477 
478 iplist<VPRecipeBase>::iterator VPRecipeBase::eraseFromParent() {
479   assert(getParent() && "Recipe not in any VPBasicBlock");
480   return getParent()->getRecipeList().erase(getIterator());
481 }
482 
483 void VPRecipeBase::moveAfter(VPRecipeBase *InsertPos) {
484   removeFromParent();
485   insertAfter(InsertPos);
486 }
487 
488 void VPInstruction::generateInstruction(VPTransformState &State,
489                                         unsigned Part) {
490   IRBuilder<> &Builder = State.Builder;
491 
492   if (Instruction::isBinaryOp(getOpcode())) {
493     Value *A = State.get(getOperand(0), Part);
494     Value *B = State.get(getOperand(1), Part);
495     Value *V = Builder.CreateBinOp((Instruction::BinaryOps)getOpcode(), A, B);
496     State.set(this, V, Part);
497     return;
498   }
499 
500   switch (getOpcode()) {
501   case VPInstruction::Not: {
502     Value *A = State.get(getOperand(0), Part);
503     Value *V = Builder.CreateNot(A);
504     State.set(this, V, Part);
505     break;
506   }
507   case VPInstruction::ICmpULE: {
508     Value *IV = State.get(getOperand(0), Part);
509     Value *TC = State.get(getOperand(1), Part);
510     Value *V = Builder.CreateICmpULE(IV, TC);
511     State.set(this, V, Part);
512     break;
513   }
514   case Instruction::Select: {
515     Value *Cond = State.get(getOperand(0), Part);
516     Value *Op1 = State.get(getOperand(1), Part);
517     Value *Op2 = State.get(getOperand(2), Part);
518     Value *V = Builder.CreateSelect(Cond, Op1, Op2);
519     State.set(this, V, Part);
520     break;
521   }
522   case VPInstruction::ActiveLaneMask: {
523     // Get first lane of vector induction variable.
524     Value *VIVElem0 = State.get(getOperand(0), {Part, 0});
525     // Get the original loop tripcount.
526     Value *ScalarTC = State.TripCount;
527 
528     auto *Int1Ty = Type::getInt1Ty(Builder.getContext());
529     auto *PredTy = FixedVectorType::get(Int1Ty, State.VF.getKnownMinValue());
530     Instruction *Call = Builder.CreateIntrinsic(
531         Intrinsic::get_active_lane_mask, {PredTy, ScalarTC->getType()},
532         {VIVElem0, ScalarTC}, nullptr, "active.lane.mask");
533     State.set(this, Call, Part);
534     break;
535   }
536   default:
537     llvm_unreachable("Unsupported opcode for instruction");
538   }
539 }
540 
541 void VPInstruction::execute(VPTransformState &State) {
542   assert(!State.Instance && "VPInstruction executing an Instance");
543   for (unsigned Part = 0; Part < State.UF; ++Part)
544     generateInstruction(State, Part);
545 }
546 
547 void VPInstruction::print(raw_ostream &O, const Twine &Indent,
548                           VPSlotTracker &SlotTracker) const {
549   O << "\"EMIT ";
550   print(O, SlotTracker);
551 }
552 
553 void VPInstruction::print(raw_ostream &O) const {
554   VPSlotTracker SlotTracker(getParent()->getPlan());
555   print(O, SlotTracker);
556 }
557 
558 void VPInstruction::print(raw_ostream &O, VPSlotTracker &SlotTracker) const {
559   if (hasResult()) {
560     printAsOperand(O, SlotTracker);
561     O << " = ";
562   }
563 
564   switch (getOpcode()) {
565   case VPInstruction::Not:
566     O << "not";
567     break;
568   case VPInstruction::ICmpULE:
569     O << "icmp ule";
570     break;
571   case VPInstruction::SLPLoad:
572     O << "combined load";
573     break;
574   case VPInstruction::SLPStore:
575     O << "combined store";
576     break;
577   case VPInstruction::ActiveLaneMask:
578     O << "active lane mask";
579     break;
580 
581   default:
582     O << Instruction::getOpcodeName(getOpcode());
583   }
584 
585   for (const VPValue *Operand : operands()) {
586     O << " ";
587     Operand->printAsOperand(O, SlotTracker);
588   }
589 }
590 
591 /// Generate the code inside the body of the vectorized loop. Assumes a single
592 /// LoopVectorBody basic-block was created for this. Introduce additional
593 /// basic-blocks as needed, and fill them all.
594 void VPlan::execute(VPTransformState *State) {
595   // -1. Check if the backedge taken count is needed, and if so build it.
596   if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) {
597     Value *TC = State->TripCount;
598     IRBuilder<> Builder(State->CFG.PrevBB->getTerminator());
599     auto *TCMO = Builder.CreateSub(TC, ConstantInt::get(TC->getType(), 1),
600                                    "trip.count.minus.1");
601     auto VF = State->VF;
602     Value *VTCMO =
603         VF.isScalar() ? TCMO : Builder.CreateVectorSplat(VF, TCMO, "broadcast");
604     for (unsigned Part = 0, UF = State->UF; Part < UF; ++Part)
605       State->set(BackedgeTakenCount, VTCMO, Part);
606   }
607 
608   // 0. Set the reverse mapping from VPValues to Values for code generation.
609   for (auto &Entry : Value2VPValue)
610     State->VPValue2Value[Entry.second] = Entry.first;
611 
612   BasicBlock *VectorPreHeaderBB = State->CFG.PrevBB;
613   BasicBlock *VectorHeaderBB = VectorPreHeaderBB->getSingleSuccessor();
614   assert(VectorHeaderBB && "Loop preheader does not have a single successor.");
615 
616   // 1. Make room to generate basic-blocks inside loop body if needed.
617   BasicBlock *VectorLatchBB = VectorHeaderBB->splitBasicBlock(
618       VectorHeaderBB->getFirstInsertionPt(), "vector.body.latch");
619   Loop *L = State->LI->getLoopFor(VectorHeaderBB);
620   L->addBasicBlockToLoop(VectorLatchBB, *State->LI);
621   // Remove the edge between Header and Latch to allow other connections.
622   // Temporarily terminate with unreachable until CFG is rewired.
623   // Note: this asserts the generated code's assumption that
624   // getFirstInsertionPt() can be dereferenced into an Instruction.
625   VectorHeaderBB->getTerminator()->eraseFromParent();
626   State->Builder.SetInsertPoint(VectorHeaderBB);
627   UnreachableInst *Terminator = State->Builder.CreateUnreachable();
628   State->Builder.SetInsertPoint(Terminator);
629 
630   // 2. Generate code in loop body.
631   State->CFG.PrevVPBB = nullptr;
632   State->CFG.PrevBB = VectorHeaderBB;
633   State->CFG.LastBB = VectorLatchBB;
634 
635   for (VPBlockBase *Block : depth_first(Entry))
636     Block->execute(State);
637 
638   // Setup branch terminator successors for VPBBs in VPBBsToFix based on
639   // VPBB's successors.
640   for (auto VPBB : State->CFG.VPBBsToFix) {
641     assert(EnableVPlanNativePath &&
642            "Unexpected VPBBsToFix in non VPlan-native path");
643     BasicBlock *BB = State->CFG.VPBB2IRBB[VPBB];
644     assert(BB && "Unexpected null basic block for VPBB");
645 
646     unsigned Idx = 0;
647     auto *BBTerminator = BB->getTerminator();
648 
649     for (VPBlockBase *SuccVPBlock : VPBB->getHierarchicalSuccessors()) {
650       VPBasicBlock *SuccVPBB = SuccVPBlock->getEntryBasicBlock();
651       BBTerminator->setSuccessor(Idx, State->CFG.VPBB2IRBB[SuccVPBB]);
652       ++Idx;
653     }
654   }
655 
656   // 3. Merge the temporary latch created with the last basic-block filled.
657   BasicBlock *LastBB = State->CFG.PrevBB;
658   // Connect LastBB to VectorLatchBB to facilitate their merge.
659   assert((EnableVPlanNativePath ||
660           isa<UnreachableInst>(LastBB->getTerminator())) &&
661          "Expected InnerLoop VPlan CFG to terminate with unreachable");
662   assert((!EnableVPlanNativePath || isa<BranchInst>(LastBB->getTerminator())) &&
663          "Expected VPlan CFG to terminate with branch in NativePath");
664   LastBB->getTerminator()->eraseFromParent();
665   BranchInst::Create(VectorLatchBB, LastBB);
666 
667   // Merge LastBB with Latch.
668   bool Merged = MergeBlockIntoPredecessor(VectorLatchBB, nullptr, State->LI);
669   (void)Merged;
670   assert(Merged && "Could not merge last basic block with latch.");
671   VectorLatchBB = LastBB;
672 
673   // We do not attempt to preserve DT for outer loop vectorization currently.
674   if (!EnableVPlanNativePath)
675     updateDominatorTree(State->DT, VectorPreHeaderBB, VectorLatchBB,
676                         L->getExitBlock());
677 }
678 
679 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
680 LLVM_DUMP_METHOD
681 void VPlan::dump() const { dbgs() << *this << '\n'; }
682 #endif
683 
684 void VPlan::updateDominatorTree(DominatorTree *DT, BasicBlock *LoopPreHeaderBB,
685                                 BasicBlock *LoopLatchBB,
686                                 BasicBlock *LoopExitBB) {
687   BasicBlock *LoopHeaderBB = LoopPreHeaderBB->getSingleSuccessor();
688   assert(LoopHeaderBB && "Loop preheader does not have a single successor.");
689   // The vector body may be more than a single basic-block by this point.
690   // Update the dominator tree information inside the vector body by propagating
691   // it from header to latch, expecting only triangular control-flow, if any.
692   BasicBlock *PostDomSucc = nullptr;
693   for (auto *BB = LoopHeaderBB; BB != LoopLatchBB; BB = PostDomSucc) {
694     // Get the list of successors of this block.
695     std::vector<BasicBlock *> Succs(succ_begin(BB), succ_end(BB));
696     assert(Succs.size() <= 2 &&
697            "Basic block in vector loop has more than 2 successors.");
698     PostDomSucc = Succs[0];
699     if (Succs.size() == 1) {
700       assert(PostDomSucc->getSinglePredecessor() &&
701              "PostDom successor has more than one predecessor.");
702       DT->addNewBlock(PostDomSucc, BB);
703       continue;
704     }
705     BasicBlock *InterimSucc = Succs[1];
706     if (PostDomSucc->getSingleSuccessor() == InterimSucc) {
707       PostDomSucc = Succs[1];
708       InterimSucc = Succs[0];
709     }
710     assert(InterimSucc->getSingleSuccessor() == PostDomSucc &&
711            "One successor of a basic block does not lead to the other.");
712     assert(InterimSucc->getSinglePredecessor() &&
713            "Interim successor has more than one predecessor.");
714     assert(PostDomSucc->hasNPredecessors(2) &&
715            "PostDom successor has more than two predecessors.");
716     DT->addNewBlock(InterimSucc, BB);
717     DT->addNewBlock(PostDomSucc, BB);
718   }
719   // Latch block is a new dominator for the loop exit.
720   DT->changeImmediateDominator(LoopExitBB, LoopLatchBB);
721   assert(DT->verify(DominatorTree::VerificationLevel::Fast));
722 }
723 
724 const Twine VPlanPrinter::getUID(const VPBlockBase *Block) {
725   return (isa<VPRegionBlock>(Block) ? "cluster_N" : "N") +
726          Twine(getOrCreateBID(Block));
727 }
728 
729 const Twine VPlanPrinter::getOrCreateName(const VPBlockBase *Block) {
730   const std::string &Name = Block->getName();
731   if (!Name.empty())
732     return Name;
733   return "VPB" + Twine(getOrCreateBID(Block));
734 }
735 
736 void VPlanPrinter::dump() {
737   Depth = 1;
738   bumpIndent(0);
739   OS << "digraph VPlan {\n";
740   OS << "graph [labelloc=t, fontsize=30; label=\"Vectorization Plan";
741   if (!Plan.getName().empty())
742     OS << "\\n" << DOT::EscapeString(Plan.getName());
743   if (Plan.BackedgeTakenCount) {
744     OS << ", where:\\n";
745     Plan.BackedgeTakenCount->print(OS, SlotTracker);
746     OS << " := BackedgeTakenCount";
747   }
748   OS << "\"]\n";
749   OS << "node [shape=rect, fontname=Courier, fontsize=30]\n";
750   OS << "edge [fontname=Courier, fontsize=30]\n";
751   OS << "compound=true\n";
752 
753   for (const VPBlockBase *Block : depth_first(Plan.getEntry()))
754     dumpBlock(Block);
755 
756   OS << "}\n";
757 }
758 
759 void VPlanPrinter::dumpBlock(const VPBlockBase *Block) {
760   if (const VPBasicBlock *BasicBlock = dyn_cast<VPBasicBlock>(Block))
761     dumpBasicBlock(BasicBlock);
762   else if (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
763     dumpRegion(Region);
764   else
765     llvm_unreachable("Unsupported kind of VPBlock.");
766 }
767 
768 void VPlanPrinter::drawEdge(const VPBlockBase *From, const VPBlockBase *To,
769                             bool Hidden, const Twine &Label) {
770   // Due to "dot" we print an edge between two regions as an edge between the
771   // exit basic block and the entry basic of the respective regions.
772   const VPBlockBase *Tail = From->getExitBasicBlock();
773   const VPBlockBase *Head = To->getEntryBasicBlock();
774   OS << Indent << getUID(Tail) << " -> " << getUID(Head);
775   OS << " [ label=\"" << Label << '\"';
776   if (Tail != From)
777     OS << " ltail=" << getUID(From);
778   if (Head != To)
779     OS << " lhead=" << getUID(To);
780   if (Hidden)
781     OS << "; splines=none";
782   OS << "]\n";
783 }
784 
785 void VPlanPrinter::dumpEdges(const VPBlockBase *Block) {
786   auto &Successors = Block->getSuccessors();
787   if (Successors.size() == 1)
788     drawEdge(Block, Successors.front(), false, "");
789   else if (Successors.size() == 2) {
790     drawEdge(Block, Successors.front(), false, "T");
791     drawEdge(Block, Successors.back(), false, "F");
792   } else {
793     unsigned SuccessorNumber = 0;
794     for (auto *Successor : Successors)
795       drawEdge(Block, Successor, false, Twine(SuccessorNumber++));
796   }
797 }
798 
799 void VPlanPrinter::dumpBasicBlock(const VPBasicBlock *BasicBlock) {
800   OS << Indent << getUID(BasicBlock) << " [label =\n";
801   bumpIndent(1);
802   OS << Indent << "\"" << DOT::EscapeString(BasicBlock->getName()) << ":\\n\"";
803   bumpIndent(1);
804 
805   // Dump the block predicate.
806   const VPValue *Pred = BasicBlock->getPredicate();
807   if (Pred) {
808     OS << " +\n" << Indent << " \"BlockPredicate: ";
809     if (const VPInstruction *PredI = dyn_cast<VPInstruction>(Pred)) {
810       PredI->printAsOperand(OS, SlotTracker);
811       OS << " (" << DOT::EscapeString(PredI->getParent()->getName())
812          << ")\\l\"";
813     } else
814       Pred->printAsOperand(OS, SlotTracker);
815   }
816 
817   for (const VPRecipeBase &Recipe : *BasicBlock) {
818     OS << " +\n" << Indent;
819     Recipe.print(OS, Indent, SlotTracker);
820     OS << "\\l\"";
821   }
822 
823   // Dump the condition bit.
824   const VPValue *CBV = BasicBlock->getCondBit();
825   if (CBV) {
826     OS << " +\n" << Indent << " \"CondBit: ";
827     if (const VPInstruction *CBI = dyn_cast<VPInstruction>(CBV)) {
828       CBI->printAsOperand(OS, SlotTracker);
829       OS << " (" << DOT::EscapeString(CBI->getParent()->getName()) << ")\\l\"";
830     } else {
831       CBV->printAsOperand(OS, SlotTracker);
832       OS << "\"";
833     }
834   }
835 
836   bumpIndent(-2);
837   OS << "\n" << Indent << "]\n";
838   dumpEdges(BasicBlock);
839 }
840 
841 void VPlanPrinter::dumpRegion(const VPRegionBlock *Region) {
842   OS << Indent << "subgraph " << getUID(Region) << " {\n";
843   bumpIndent(1);
844   OS << Indent << "fontname=Courier\n"
845      << Indent << "label=\""
846      << DOT::EscapeString(Region->isReplicator() ? "<xVFxUF> " : "<x1> ")
847      << DOT::EscapeString(Region->getName()) << "\"\n";
848   // Dump the blocks of the region.
849   assert(Region->getEntry() && "Region contains no inner blocks.");
850   for (const VPBlockBase *Block : depth_first(Region->getEntry()))
851     dumpBlock(Block);
852   bumpIndent(-1);
853   OS << Indent << "}\n";
854   dumpEdges(Region);
855 }
856 
857 void VPlanPrinter::printAsIngredient(raw_ostream &O, const Value *V) {
858   std::string IngredientString;
859   raw_string_ostream RSO(IngredientString);
860   if (auto *Inst = dyn_cast<Instruction>(V)) {
861     if (!Inst->getType()->isVoidTy()) {
862       Inst->printAsOperand(RSO, false);
863       RSO << " = ";
864     }
865     RSO << Inst->getOpcodeName() << " ";
866     unsigned E = Inst->getNumOperands();
867     if (E > 0) {
868       Inst->getOperand(0)->printAsOperand(RSO, false);
869       for (unsigned I = 1; I < E; ++I)
870         Inst->getOperand(I)->printAsOperand(RSO << ", ", false);
871     }
872   } else // !Inst
873     V->printAsOperand(RSO, false);
874   RSO.flush();
875   O << DOT::EscapeString(IngredientString);
876 }
877 
878 void VPWidenCallRecipe::print(raw_ostream &O, const Twine &Indent,
879                               VPSlotTracker &SlotTracker) const {
880   O << "\"WIDEN-CALL ";
881 
882   auto *CI = cast<CallInst>(getUnderlyingInstr());
883   if (CI->getType()->isVoidTy())
884     O << "void ";
885   else {
886     printAsOperand(O, SlotTracker);
887     O << " = ";
888   }
889 
890   O << "call @" << CI->getCalledFunction()->getName() << "(";
891   printOperands(O, SlotTracker);
892   O << ")";
893 }
894 
895 void VPWidenSelectRecipe::print(raw_ostream &O, const Twine &Indent,
896                                 VPSlotTracker &SlotTracker) const {
897   O << "\"WIDEN-SELECT ";
898   printAsOperand(O, SlotTracker);
899   O << " = select ";
900   getOperand(0)->printAsOperand(O, SlotTracker);
901   O << ", ";
902   getOperand(1)->printAsOperand(O, SlotTracker);
903   O << ", ";
904   getOperand(2)->printAsOperand(O, SlotTracker);
905   O << (InvariantCond ? " (condition is loop invariant)" : "");
906 }
907 
908 void VPWidenRecipe::print(raw_ostream &O, const Twine &Indent,
909                           VPSlotTracker &SlotTracker) const {
910   O << "\"WIDEN ";
911   printAsOperand(O, SlotTracker);
912   O << " = " << getUnderlyingInstr()->getOpcodeName() << " ";
913   printOperands(O, SlotTracker);
914 }
915 
916 void VPWidenIntOrFpInductionRecipe::print(raw_ostream &O, const Twine &Indent,
917                                           VPSlotTracker &SlotTracker) const {
918   O << "\"WIDEN-INDUCTION";
919   if (Trunc) {
920     O << "\\l\"";
921     O << " +\n" << Indent << "\"  " << VPlanIngredient(IV) << "\\l\"";
922     O << " +\n" << Indent << "\"  " << VPlanIngredient(Trunc);
923   } else
924     O << " " << VPlanIngredient(IV);
925 }
926 
927 void VPWidenGEPRecipe::print(raw_ostream &O, const Twine &Indent,
928                              VPSlotTracker &SlotTracker) const {
929   O << "\"WIDEN-GEP ";
930   O << (IsPtrLoopInvariant ? "Inv" : "Var");
931   size_t IndicesNumber = IsIndexLoopInvariant.size();
932   for (size_t I = 0; I < IndicesNumber; ++I)
933     O << "[" << (IsIndexLoopInvariant[I] ? "Inv" : "Var") << "]";
934 
935   O << " ";
936   printAsOperand(O, SlotTracker);
937   O << " = getelementptr ";
938   printOperands(O, SlotTracker);
939 }
940 
941 void VPWidenPHIRecipe::print(raw_ostream &O, const Twine &Indent,
942                              VPSlotTracker &SlotTracker) const {
943   O << "\"WIDEN-PHI " << VPlanIngredient(Phi);
944 }
945 
946 void VPBlendRecipe::print(raw_ostream &O, const Twine &Indent,
947                           VPSlotTracker &SlotTracker) const {
948   O << "\"BLEND ";
949   Phi->printAsOperand(O, false);
950   O << " =";
951   if (getNumIncomingValues() == 1) {
952     // Not a User of any mask: not really blending, this is a
953     // single-predecessor phi.
954     O << " ";
955     getIncomingValue(0)->printAsOperand(O, SlotTracker);
956   } else {
957     for (unsigned I = 0, E = getNumIncomingValues(); I < E; ++I) {
958       O << " ";
959       getIncomingValue(I)->printAsOperand(O, SlotTracker);
960       O << "/";
961       getMask(I)->printAsOperand(O, SlotTracker);
962     }
963   }
964 }
965 
966 void VPReductionRecipe::print(raw_ostream &O, const Twine &Indent,
967                               VPSlotTracker &SlotTracker) const {
968   O << "\"REDUCE ";
969   printAsOperand(O, SlotTracker);
970   O << " = ";
971   getChainOp()->printAsOperand(O, SlotTracker);
972   O << " + reduce." << Instruction::getOpcodeName(RdxDesc->getRecurrenceBinOp())
973     << " (";
974   getVecOp()->printAsOperand(O, SlotTracker);
975   if (getCondOp()) {
976     O << ", ";
977     getCondOp()->printAsOperand(O, SlotTracker);
978   }
979   O << ")";
980 }
981 
982 void VPReplicateRecipe::print(raw_ostream &O, const Twine &Indent,
983                               VPSlotTracker &SlotTracker) const {
984   O << "\"" << (IsUniform ? "CLONE " : "REPLICATE ");
985 
986   if (!getUnderlyingInstr()->getType()->isVoidTy()) {
987     printAsOperand(O, SlotTracker);
988     O << " = ";
989   }
990   O << Instruction::getOpcodeName(getUnderlyingInstr()->getOpcode()) << " ";
991   printOperands(O, SlotTracker);
992 
993   if (AlsoPack)
994     O << " (S->V)";
995 }
996 
997 void VPPredInstPHIRecipe::print(raw_ostream &O, const Twine &Indent,
998                                 VPSlotTracker &SlotTracker) const {
999   O << "\"PHI-PREDICATED-INSTRUCTION ";
1000   printOperands(O, SlotTracker);
1001 }
1002 
1003 void VPWidenMemoryInstructionRecipe::print(raw_ostream &O, const Twine &Indent,
1004                                            VPSlotTracker &SlotTracker) const {
1005   O << "\"WIDEN ";
1006 
1007   if (!isStore()) {
1008     getVPValue()->printAsOperand(O, SlotTracker);
1009     O << " = ";
1010   }
1011   O << Instruction::getOpcodeName(Ingredient.getOpcode()) << " ";
1012 
1013   printOperands(O, SlotTracker);
1014 }
1015 
1016 void VPWidenCanonicalIVRecipe::execute(VPTransformState &State) {
1017   Value *CanonicalIV = State.CanonicalIV;
1018   Type *STy = CanonicalIV->getType();
1019   IRBuilder<> Builder(State.CFG.PrevBB->getTerminator());
1020   ElementCount VF = State.VF;
1021   assert(!VF.isScalable() && "the code following assumes non scalables ECs");
1022   Value *VStart = VF.isScalar()
1023                       ? CanonicalIV
1024                       : Builder.CreateVectorSplat(VF.getKnownMinValue(),
1025                                                   CanonicalIV, "broadcast");
1026   for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part) {
1027     SmallVector<Constant *, 8> Indices;
1028     for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane)
1029       Indices.push_back(
1030           ConstantInt::get(STy, Part * VF.getKnownMinValue() + Lane));
1031     // If VF == 1, there is only one iteration in the loop above, thus the
1032     // element pushed back into Indices is ConstantInt::get(STy, Part)
1033     Constant *VStep =
1034         VF.isScalar() ? Indices.back() : ConstantVector::get(Indices);
1035     // Add the consecutive indices to the vector value.
1036     Value *CanonicalVectorIV = Builder.CreateAdd(VStart, VStep, "vec.iv");
1037     State.set(getVPValue(), CanonicalVectorIV, Part);
1038   }
1039 }
1040 
1041 void VPWidenCanonicalIVRecipe::print(raw_ostream &O, const Twine &Indent,
1042                                      VPSlotTracker &SlotTracker) const {
1043   O << "\"EMIT ";
1044   getVPValue()->printAsOperand(O, SlotTracker);
1045   O << " = WIDEN-CANONICAL-INDUCTION";
1046 }
1047 
1048 template void DomTreeBuilder::Calculate<VPDominatorTree>(VPDominatorTree &DT);
1049 
1050 void VPValue::replaceAllUsesWith(VPValue *New) {
1051   for (unsigned J = 0; J < getNumUsers();) {
1052     VPUser *User = Users[J];
1053     unsigned NumUsers = getNumUsers();
1054     for (unsigned I = 0, E = User->getNumOperands(); I < E; ++I)
1055       if (User->getOperand(I) == this)
1056         User->setOperand(I, New);
1057     // If a user got removed after updating the current user, the next user to
1058     // update will be moved to the current position, so we only need to
1059     // increment the index if the number of users did not change.
1060     if (NumUsers == getNumUsers())
1061       J++;
1062   }
1063 }
1064 
1065 void VPValue::printAsOperand(raw_ostream &OS, VPSlotTracker &Tracker) const {
1066   if (const Value *UV = getUnderlyingValue()) {
1067     OS << "ir<";
1068     UV->printAsOperand(OS, false);
1069     OS << ">";
1070     return;
1071   }
1072 
1073   unsigned Slot = Tracker.getSlot(this);
1074   if (Slot == unsigned(-1))
1075     OS << "<badref>";
1076   else
1077     OS << "vp<%" << Tracker.getSlot(this) << ">";
1078 }
1079 
1080 void VPUser::printOperands(raw_ostream &O, VPSlotTracker &SlotTracker) const {
1081   interleaveComma(operands(), O, [&O, &SlotTracker](VPValue *Op) {
1082     Op->printAsOperand(O, SlotTracker);
1083   });
1084 }
1085 
1086 void VPInterleavedAccessInfo::visitRegion(VPRegionBlock *Region,
1087                                           Old2NewTy &Old2New,
1088                                           InterleavedAccessInfo &IAI) {
1089   ReversePostOrderTraversal<VPBlockBase *> RPOT(Region->getEntry());
1090   for (VPBlockBase *Base : RPOT) {
1091     visitBlock(Base, Old2New, IAI);
1092   }
1093 }
1094 
1095 void VPInterleavedAccessInfo::visitBlock(VPBlockBase *Block, Old2NewTy &Old2New,
1096                                          InterleavedAccessInfo &IAI) {
1097   if (VPBasicBlock *VPBB = dyn_cast<VPBasicBlock>(Block)) {
1098     for (VPRecipeBase &VPI : *VPBB) {
1099       assert(isa<VPInstruction>(&VPI) && "Can only handle VPInstructions");
1100       auto *VPInst = cast<VPInstruction>(&VPI);
1101       auto *Inst = cast<Instruction>(VPInst->getUnderlyingValue());
1102       auto *IG = IAI.getInterleaveGroup(Inst);
1103       if (!IG)
1104         continue;
1105 
1106       auto NewIGIter = Old2New.find(IG);
1107       if (NewIGIter == Old2New.end())
1108         Old2New[IG] = new InterleaveGroup<VPInstruction>(
1109             IG->getFactor(), IG->isReverse(), IG->getAlign());
1110 
1111       if (Inst == IG->getInsertPos())
1112         Old2New[IG]->setInsertPos(VPInst);
1113 
1114       InterleaveGroupMap[VPInst] = Old2New[IG];
1115       InterleaveGroupMap[VPInst]->insertMember(
1116           VPInst, IG->getIndex(Inst),
1117           Align(IG->isReverse() ? (-1) * int(IG->getFactor())
1118                                 : IG->getFactor()));
1119     }
1120   } else if (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
1121     visitRegion(Region, Old2New, IAI);
1122   else
1123     llvm_unreachable("Unsupported kind of VPBlock.");
1124 }
1125 
1126 VPInterleavedAccessInfo::VPInterleavedAccessInfo(VPlan &Plan,
1127                                                  InterleavedAccessInfo &IAI) {
1128   Old2NewTy Old2New;
1129   visitRegion(cast<VPRegionBlock>(Plan.getEntry()), Old2New, IAI);
1130 }
1131 
1132 void VPSlotTracker::assignSlot(const VPValue *V) {
1133   assert(Slots.find(V) == Slots.end() && "VPValue already has a slot!");
1134   const Value *UV = V->getUnderlyingValue();
1135   if (UV)
1136     return;
1137   const auto *VPI = dyn_cast<VPInstruction>(V);
1138   if (VPI && !VPI->hasResult())
1139     return;
1140 
1141   Slots[V] = NextSlot++;
1142 }
1143 
1144 void VPSlotTracker::assignSlots(const VPBlockBase *VPBB) {
1145   if (auto *Region = dyn_cast<VPRegionBlock>(VPBB))
1146     assignSlots(Region);
1147   else
1148     assignSlots(cast<VPBasicBlock>(VPBB));
1149 }
1150 
1151 void VPSlotTracker::assignSlots(const VPRegionBlock *Region) {
1152   ReversePostOrderTraversal<const VPBlockBase *> RPOT(Region->getEntry());
1153   for (const VPBlockBase *Block : RPOT)
1154     assignSlots(Block);
1155 }
1156 
1157 void VPSlotTracker::assignSlots(const VPBasicBlock *VPBB) {
1158   for (const VPRecipeBase &Recipe : *VPBB) {
1159     if (const auto *VPI = dyn_cast<VPInstruction>(&Recipe))
1160       assignSlot(VPI);
1161     else if (const auto *VPIV = dyn_cast<VPWidenCanonicalIVRecipe>(&Recipe))
1162       assignSlot(VPIV->getVPValue());
1163   }
1164 }
1165 
1166 void VPSlotTracker::assignSlots(const VPlan &Plan) {
1167 
1168   for (const VPValue *V : Plan.VPExternalDefs)
1169     assignSlot(V);
1170 
1171   for (auto &E : Plan.Value2VPValue)
1172     if (!isa<VPInstruction>(E.second))
1173       assignSlot(E.second);
1174 
1175   for (const VPValue *V : Plan.VPCBVs)
1176     assignSlot(V);
1177 
1178   if (Plan.BackedgeTakenCount)
1179     assignSlot(Plan.BackedgeTakenCount);
1180 
1181   ReversePostOrderTraversal<const VPBlockBase *> RPOT(Plan.getEntry());
1182   for (const VPBlockBase *Block : RPOT)
1183     assignSlots(Block);
1184 }
1185