1 //===- VPlan.cpp - Vectorizer Plan ----------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This is the LLVM vectorization plan. It represents a candidate for 11 /// vectorization, allowing to plan and optimize how to vectorize a given loop 12 /// before generating LLVM-IR. 13 /// The vectorizer uses vectorization plans to estimate the costs of potential 14 /// candidates and if profitable to execute the desired plan, generating vector 15 /// LLVM-IR code. 16 /// 17 //===----------------------------------------------------------------------===// 18 19 #include "VPlan.h" 20 #include "VPlanCFG.h" 21 #include "VPlanDominatorTree.h" 22 #include "llvm/ADT/DepthFirstIterator.h" 23 #include "llvm/ADT/PostOrderIterator.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/Twine.h" 27 #include "llvm/Analysis/LoopInfo.h" 28 #include "llvm/IR/BasicBlock.h" 29 #include "llvm/IR/CFG.h" 30 #include "llvm/IR/IRBuilder.h" 31 #include "llvm/IR/Instruction.h" 32 #include "llvm/IR/Instructions.h" 33 #include "llvm/IR/Type.h" 34 #include "llvm/IR/Value.h" 35 #include "llvm/Support/Casting.h" 36 #include "llvm/Support/CommandLine.h" 37 #include "llvm/Support/Debug.h" 38 #include "llvm/Support/GenericDomTreeConstruction.h" 39 #include "llvm/Support/GraphWriter.h" 40 #include "llvm/Support/raw_ostream.h" 41 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 42 #include "llvm/Transforms/Utils/LoopVersioning.h" 43 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 44 #include <cassert> 45 #include <string> 46 #include <vector> 47 48 using namespace llvm; 49 extern cl::opt<bool> EnableVPlanNativePath; 50 51 #define DEBUG_TYPE "vplan" 52 53 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 54 raw_ostream &llvm::operator<<(raw_ostream &OS, const VPValue &V) { 55 const VPInstruction *Instr = dyn_cast<VPInstruction>(&V); 56 VPSlotTracker SlotTracker( 57 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr); 58 V.print(OS, SlotTracker); 59 return OS; 60 } 61 #endif 62 63 Value *VPLane::getAsRuntimeExpr(IRBuilderBase &Builder, 64 const ElementCount &VF) const { 65 switch (LaneKind) { 66 case VPLane::Kind::ScalableLast: 67 // Lane = RuntimeVF - VF.getKnownMinValue() + Lane 68 return Builder.CreateSub(getRuntimeVF(Builder, Builder.getInt32Ty(), VF), 69 Builder.getInt32(VF.getKnownMinValue() - Lane)); 70 case VPLane::Kind::First: 71 return Builder.getInt32(Lane); 72 } 73 llvm_unreachable("Unknown lane kind"); 74 } 75 76 VPValue::VPValue(const unsigned char SC, Value *UV, VPDef *Def) 77 : SubclassID(SC), UnderlyingVal(UV), Def(Def) { 78 if (Def) 79 Def->addDefinedValue(this); 80 } 81 82 VPValue::~VPValue() { 83 assert(Users.empty() && "trying to delete a VPValue with remaining users"); 84 if (Def) 85 Def->removeDefinedValue(this); 86 } 87 88 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 89 void VPValue::print(raw_ostream &OS, VPSlotTracker &SlotTracker) const { 90 if (const VPRecipeBase *R = dyn_cast_or_null<VPRecipeBase>(Def)) 91 R->print(OS, "", SlotTracker); 92 else 93 printAsOperand(OS, SlotTracker); 94 } 95 96 void VPValue::dump() const { 97 const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this->Def); 98 VPSlotTracker SlotTracker( 99 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr); 100 print(dbgs(), SlotTracker); 101 dbgs() << "\n"; 102 } 103 104 void VPDef::dump() const { 105 const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this); 106 VPSlotTracker SlotTracker( 107 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr); 108 print(dbgs(), "", SlotTracker); 109 dbgs() << "\n"; 110 } 111 #endif 112 113 VPRecipeBase *VPValue::getDefiningRecipe() { 114 return cast_or_null<VPRecipeBase>(Def); 115 } 116 117 const VPRecipeBase *VPValue::getDefiningRecipe() const { 118 return cast_or_null<VPRecipeBase>(Def); 119 } 120 121 // Get the top-most entry block of \p Start. This is the entry block of the 122 // containing VPlan. This function is templated to support both const and non-const blocks 123 template <typename T> static T *getPlanEntry(T *Start) { 124 T *Next = Start; 125 T *Current = Start; 126 while ((Next = Next->getParent())) 127 Current = Next; 128 129 SmallSetVector<T *, 8> WorkList; 130 WorkList.insert(Current); 131 132 for (unsigned i = 0; i < WorkList.size(); i++) { 133 T *Current = WorkList[i]; 134 if (Current->getNumPredecessors() == 0) 135 return Current; 136 auto &Predecessors = Current->getPredecessors(); 137 WorkList.insert(Predecessors.begin(), Predecessors.end()); 138 } 139 140 llvm_unreachable("VPlan without any entry node without predecessors"); 141 } 142 143 VPlan *VPBlockBase::getPlan() { return getPlanEntry(this)->Plan; } 144 145 const VPlan *VPBlockBase::getPlan() const { return getPlanEntry(this)->Plan; } 146 147 /// \return the VPBasicBlock that is the entry of Block, possibly indirectly. 148 const VPBasicBlock *VPBlockBase::getEntryBasicBlock() const { 149 const VPBlockBase *Block = this; 150 while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 151 Block = Region->getEntry(); 152 return cast<VPBasicBlock>(Block); 153 } 154 155 VPBasicBlock *VPBlockBase::getEntryBasicBlock() { 156 VPBlockBase *Block = this; 157 while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 158 Block = Region->getEntry(); 159 return cast<VPBasicBlock>(Block); 160 } 161 162 void VPBlockBase::setPlan(VPlan *ParentPlan) { 163 assert(ParentPlan->getEntry() == this && 164 "Can only set plan on its entry block."); 165 Plan = ParentPlan; 166 } 167 168 /// \return the VPBasicBlock that is the exit of Block, possibly indirectly. 169 const VPBasicBlock *VPBlockBase::getExitingBasicBlock() const { 170 const VPBlockBase *Block = this; 171 while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 172 Block = Region->getExiting(); 173 return cast<VPBasicBlock>(Block); 174 } 175 176 VPBasicBlock *VPBlockBase::getExitingBasicBlock() { 177 VPBlockBase *Block = this; 178 while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 179 Block = Region->getExiting(); 180 return cast<VPBasicBlock>(Block); 181 } 182 183 VPBlockBase *VPBlockBase::getEnclosingBlockWithSuccessors() { 184 if (!Successors.empty() || !Parent) 185 return this; 186 assert(Parent->getExiting() == this && 187 "Block w/o successors not the exiting block of its parent."); 188 return Parent->getEnclosingBlockWithSuccessors(); 189 } 190 191 VPBlockBase *VPBlockBase::getEnclosingBlockWithPredecessors() { 192 if (!Predecessors.empty() || !Parent) 193 return this; 194 assert(Parent->getEntry() == this && 195 "Block w/o predecessors not the entry of its parent."); 196 return Parent->getEnclosingBlockWithPredecessors(); 197 } 198 199 void VPBlockBase::deleteCFG(VPBlockBase *Entry) { 200 SmallVector<VPBlockBase *, 8> Blocks(depth_first(Entry)); 201 202 for (VPBlockBase *Block : Blocks) 203 delete Block; 204 } 205 206 VPBasicBlock::iterator VPBasicBlock::getFirstNonPhi() { 207 iterator It = begin(); 208 while (It != end() && It->isPhi()) 209 It++; 210 return It; 211 } 212 213 Value *VPTransformState::get(VPValue *Def, const VPIteration &Instance) { 214 if (!Def->hasDefiningRecipe()) 215 return Def->getLiveInIRValue(); 216 217 if (hasScalarValue(Def, Instance)) { 218 return Data 219 .PerPartScalars[Def][Instance.Part][Instance.Lane.mapToCacheIndex(VF)]; 220 } 221 222 assert(hasVectorValue(Def, Instance.Part)); 223 auto *VecPart = Data.PerPartOutput[Def][Instance.Part]; 224 if (!VecPart->getType()->isVectorTy()) { 225 assert(Instance.Lane.isFirstLane() && "cannot get lane > 0 for scalar"); 226 return VecPart; 227 } 228 // TODO: Cache created scalar values. 229 Value *Lane = Instance.Lane.getAsRuntimeExpr(Builder, VF); 230 auto *Extract = Builder.CreateExtractElement(VecPart, Lane); 231 // set(Def, Extract, Instance); 232 return Extract; 233 } 234 BasicBlock *VPTransformState::CFGState::getPreheaderBBFor(VPRecipeBase *R) { 235 VPRegionBlock *LoopRegion = R->getParent()->getEnclosingLoopRegion(); 236 return VPBB2IRBB[LoopRegion->getPreheaderVPBB()]; 237 } 238 239 void VPTransformState::addNewMetadata(Instruction *To, 240 const Instruction *Orig) { 241 // If the loop was versioned with memchecks, add the corresponding no-alias 242 // metadata. 243 if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig))) 244 LVer->annotateInstWithNoAlias(To, Orig); 245 } 246 247 void VPTransformState::addMetadata(Instruction *To, Instruction *From) { 248 propagateMetadata(To, From); 249 addNewMetadata(To, From); 250 } 251 252 void VPTransformState::addMetadata(ArrayRef<Value *> To, Instruction *From) { 253 for (Value *V : To) { 254 if (Instruction *I = dyn_cast<Instruction>(V)) 255 addMetadata(I, From); 256 } 257 } 258 259 void VPTransformState::setDebugLocFromInst(const Value *V) { 260 const Instruction *Inst = dyn_cast<Instruction>(V); 261 if (!Inst) { 262 Builder.SetCurrentDebugLocation(DebugLoc()); 263 return; 264 } 265 266 const DILocation *DIL = Inst->getDebugLoc(); 267 // When a FSDiscriminator is enabled, we don't need to add the multiply 268 // factors to the discriminators. 269 if (DIL && Inst->getFunction()->shouldEmitDebugInfoForProfiling() && 270 !isa<DbgInfoIntrinsic>(Inst) && !EnableFSDiscriminator) { 271 // FIXME: For scalable vectors, assume vscale=1. 272 auto NewDIL = 273 DIL->cloneByMultiplyingDuplicationFactor(UF * VF.getKnownMinValue()); 274 if (NewDIL) 275 Builder.SetCurrentDebugLocation(*NewDIL); 276 else 277 LLVM_DEBUG(dbgs() << "Failed to create new discriminator: " 278 << DIL->getFilename() << " Line: " << DIL->getLine()); 279 } else 280 Builder.SetCurrentDebugLocation(DIL); 281 } 282 283 BasicBlock * 284 VPBasicBlock::createEmptyBasicBlock(VPTransformState::CFGState &CFG) { 285 // BB stands for IR BasicBlocks. VPBB stands for VPlan VPBasicBlocks. 286 // Pred stands for Predessor. Prev stands for Previous - last visited/created. 287 BasicBlock *PrevBB = CFG.PrevBB; 288 BasicBlock *NewBB = BasicBlock::Create(PrevBB->getContext(), getName(), 289 PrevBB->getParent(), CFG.ExitBB); 290 LLVM_DEBUG(dbgs() << "LV: created " << NewBB->getName() << '\n'); 291 292 // Hook up the new basic block to its predecessors. 293 for (VPBlockBase *PredVPBlock : getHierarchicalPredecessors()) { 294 VPBasicBlock *PredVPBB = PredVPBlock->getExitingBasicBlock(); 295 auto &PredVPSuccessors = PredVPBB->getHierarchicalSuccessors(); 296 BasicBlock *PredBB = CFG.VPBB2IRBB[PredVPBB]; 297 298 assert(PredBB && "Predecessor basic-block not found building successor."); 299 auto *PredBBTerminator = PredBB->getTerminator(); 300 LLVM_DEBUG(dbgs() << "LV: draw edge from" << PredBB->getName() << '\n'); 301 302 auto *TermBr = dyn_cast<BranchInst>(PredBBTerminator); 303 if (isa<UnreachableInst>(PredBBTerminator)) { 304 assert(PredVPSuccessors.size() == 1 && 305 "Predecessor ending w/o branch must have single successor."); 306 DebugLoc DL = PredBBTerminator->getDebugLoc(); 307 PredBBTerminator->eraseFromParent(); 308 auto *Br = BranchInst::Create(NewBB, PredBB); 309 Br->setDebugLoc(DL); 310 } else if (TermBr && !TermBr->isConditional()) { 311 TermBr->setSuccessor(0, NewBB); 312 } else { 313 // Set each forward successor here when it is created, excluding 314 // backedges. A backward successor is set when the branch is created. 315 unsigned idx = PredVPSuccessors.front() == this ? 0 : 1; 316 assert(!TermBr->getSuccessor(idx) && 317 "Trying to reset an existing successor block."); 318 TermBr->setSuccessor(idx, NewBB); 319 } 320 } 321 return NewBB; 322 } 323 324 void VPBasicBlock::execute(VPTransformState *State) { 325 bool Replica = State->Instance && !State->Instance->isFirstIteration(); 326 VPBasicBlock *PrevVPBB = State->CFG.PrevVPBB; 327 VPBlockBase *SingleHPred = nullptr; 328 BasicBlock *NewBB = State->CFG.PrevBB; // Reuse it if possible. 329 330 auto IsLoopRegion = [](VPBlockBase *BB) { 331 auto *R = dyn_cast<VPRegionBlock>(BB); 332 return R && !R->isReplicator(); 333 }; 334 335 // 1. Create an IR basic block, or reuse the last one or ExitBB if possible. 336 if (getPlan()->getVectorLoopRegion()->getSingleSuccessor() == this) { 337 // ExitBB can be re-used for the exit block of the Plan. 338 NewBB = State->CFG.ExitBB; 339 State->CFG.PrevBB = NewBB; 340 341 // Update the branch instruction in the predecessor to branch to ExitBB. 342 VPBlockBase *PredVPB = getSingleHierarchicalPredecessor(); 343 VPBasicBlock *ExitingVPBB = PredVPB->getExitingBasicBlock(); 344 assert(PredVPB->getSingleSuccessor() == this && 345 "predecessor must have the current block as only successor"); 346 BasicBlock *ExitingBB = State->CFG.VPBB2IRBB[ExitingVPBB]; 347 // The Exit block of a loop is always set to be successor 0 of the Exiting 348 // block. 349 cast<BranchInst>(ExitingBB->getTerminator())->setSuccessor(0, NewBB); 350 } else if (PrevVPBB && /* A */ 351 !((SingleHPred = getSingleHierarchicalPredecessor()) && 352 SingleHPred->getExitingBasicBlock() == PrevVPBB && 353 PrevVPBB->getSingleHierarchicalSuccessor() && 354 (SingleHPred->getParent() == getEnclosingLoopRegion() && 355 !IsLoopRegion(SingleHPred))) && /* B */ 356 !(Replica && getPredecessors().empty())) { /* C */ 357 // The last IR basic block is reused, as an optimization, in three cases: 358 // A. the first VPBB reuses the loop pre-header BB - when PrevVPBB is null; 359 // B. when the current VPBB has a single (hierarchical) predecessor which 360 // is PrevVPBB and the latter has a single (hierarchical) successor which 361 // both are in the same non-replicator region; and 362 // C. when the current VPBB is an entry of a region replica - where PrevVPBB 363 // is the exiting VPBB of this region from a previous instance, or the 364 // predecessor of this region. 365 366 NewBB = createEmptyBasicBlock(State->CFG); 367 State->Builder.SetInsertPoint(NewBB); 368 // Temporarily terminate with unreachable until CFG is rewired. 369 UnreachableInst *Terminator = State->Builder.CreateUnreachable(); 370 // Register NewBB in its loop. In innermost loops its the same for all 371 // BB's. 372 if (State->CurrentVectorLoop) 373 State->CurrentVectorLoop->addBasicBlockToLoop(NewBB, *State->LI); 374 State->Builder.SetInsertPoint(Terminator); 375 State->CFG.PrevBB = NewBB; 376 } 377 378 // 2. Fill the IR basic block with IR instructions. 379 LLVM_DEBUG(dbgs() << "LV: vectorizing VPBB:" << getName() 380 << " in BB:" << NewBB->getName() << '\n'); 381 382 State->CFG.VPBB2IRBB[this] = NewBB; 383 State->CFG.PrevVPBB = this; 384 385 for (VPRecipeBase &Recipe : Recipes) 386 Recipe.execute(*State); 387 388 LLVM_DEBUG(dbgs() << "LV: filled BB:" << *NewBB); 389 } 390 391 void VPBasicBlock::dropAllReferences(VPValue *NewValue) { 392 for (VPRecipeBase &R : Recipes) { 393 for (auto *Def : R.definedValues()) 394 Def->replaceAllUsesWith(NewValue); 395 396 for (unsigned I = 0, E = R.getNumOperands(); I != E; I++) 397 R.setOperand(I, NewValue); 398 } 399 } 400 401 VPBasicBlock *VPBasicBlock::splitAt(iterator SplitAt) { 402 assert((SplitAt == end() || SplitAt->getParent() == this) && 403 "can only split at a position in the same block"); 404 405 SmallVector<VPBlockBase *, 2> Succs(successors()); 406 // First, disconnect the current block from its successors. 407 for (VPBlockBase *Succ : Succs) 408 VPBlockUtils::disconnectBlocks(this, Succ); 409 410 // Create new empty block after the block to split. 411 auto *SplitBlock = new VPBasicBlock(getName() + ".split"); 412 VPBlockUtils::insertBlockAfter(SplitBlock, this); 413 414 // Add successors for block to split to new block. 415 for (VPBlockBase *Succ : Succs) 416 VPBlockUtils::connectBlocks(SplitBlock, Succ); 417 418 // Finally, move the recipes starting at SplitAt to new block. 419 for (VPRecipeBase &ToMove : 420 make_early_inc_range(make_range(SplitAt, this->end()))) 421 ToMove.moveBefore(*SplitBlock, SplitBlock->end()); 422 423 return SplitBlock; 424 } 425 426 VPRegionBlock *VPBasicBlock::getEnclosingLoopRegion() { 427 VPRegionBlock *P = getParent(); 428 if (P && P->isReplicator()) { 429 P = P->getParent(); 430 assert(!cast<VPRegionBlock>(P)->isReplicator() && 431 "unexpected nested replicate regions"); 432 } 433 return P; 434 } 435 436 static bool hasConditionalTerminator(const VPBasicBlock *VPBB) { 437 if (VPBB->empty()) { 438 assert( 439 VPBB->getNumSuccessors() < 2 && 440 "block with multiple successors doesn't have a recipe as terminator"); 441 return false; 442 } 443 444 const VPRecipeBase *R = &VPBB->back(); 445 auto *VPI = dyn_cast<VPInstruction>(R); 446 bool IsCondBranch = 447 isa<VPBranchOnMaskRecipe>(R) || 448 (VPI && (VPI->getOpcode() == VPInstruction::BranchOnCond || 449 VPI->getOpcode() == VPInstruction::BranchOnCount)); 450 (void)IsCondBranch; 451 452 if (VPBB->getNumSuccessors() >= 2 || VPBB->isExiting()) { 453 assert(IsCondBranch && "block with multiple successors not terminated by " 454 "conditional branch recipe"); 455 456 return true; 457 } 458 459 assert( 460 !IsCondBranch && 461 "block with 0 or 1 successors terminated by conditional branch recipe"); 462 return false; 463 } 464 465 VPRecipeBase *VPBasicBlock::getTerminator() { 466 if (hasConditionalTerminator(this)) 467 return &back(); 468 return nullptr; 469 } 470 471 const VPRecipeBase *VPBasicBlock::getTerminator() const { 472 if (hasConditionalTerminator(this)) 473 return &back(); 474 return nullptr; 475 } 476 477 bool VPBasicBlock::isExiting() const { 478 return getParent()->getExitingBasicBlock() == this; 479 } 480 481 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 482 void VPBlockBase::printSuccessors(raw_ostream &O, const Twine &Indent) const { 483 if (getSuccessors().empty()) { 484 O << Indent << "No successors\n"; 485 } else { 486 O << Indent << "Successor(s): "; 487 ListSeparator LS; 488 for (auto *Succ : getSuccessors()) 489 O << LS << Succ->getName(); 490 O << '\n'; 491 } 492 } 493 494 void VPBasicBlock::print(raw_ostream &O, const Twine &Indent, 495 VPSlotTracker &SlotTracker) const { 496 O << Indent << getName() << ":\n"; 497 498 auto RecipeIndent = Indent + " "; 499 for (const VPRecipeBase &Recipe : *this) { 500 Recipe.print(O, RecipeIndent, SlotTracker); 501 O << '\n'; 502 } 503 504 printSuccessors(O, Indent); 505 } 506 #endif 507 508 void VPRegionBlock::dropAllReferences(VPValue *NewValue) { 509 for (VPBlockBase *Block : depth_first(Entry)) 510 // Drop all references in VPBasicBlocks and replace all uses with 511 // DummyValue. 512 Block->dropAllReferences(NewValue); 513 } 514 515 void VPRegionBlock::execute(VPTransformState *State) { 516 ReversePostOrderTraversal<VPBlockBase *> RPOT(Entry); 517 518 if (!isReplicator()) { 519 // Create and register the new vector loop. 520 Loop *PrevLoop = State->CurrentVectorLoop; 521 State->CurrentVectorLoop = State->LI->AllocateLoop(); 522 BasicBlock *VectorPH = State->CFG.VPBB2IRBB[getPreheaderVPBB()]; 523 Loop *ParentLoop = State->LI->getLoopFor(VectorPH); 524 525 // Insert the new loop into the loop nest and register the new basic blocks 526 // before calling any utilities such as SCEV that require valid LoopInfo. 527 if (ParentLoop) 528 ParentLoop->addChildLoop(State->CurrentVectorLoop); 529 else 530 State->LI->addTopLevelLoop(State->CurrentVectorLoop); 531 532 // Visit the VPBlocks connected to "this", starting from it. 533 for (VPBlockBase *Block : RPOT) { 534 LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n'); 535 Block->execute(State); 536 } 537 538 State->CurrentVectorLoop = PrevLoop; 539 return; 540 } 541 542 assert(!State->Instance && "Replicating a Region with non-null instance."); 543 544 // Enter replicating mode. 545 State->Instance = VPIteration(0, 0); 546 547 for (unsigned Part = 0, UF = State->UF; Part < UF; ++Part) { 548 State->Instance->Part = Part; 549 assert(!State->VF.isScalable() && "VF is assumed to be non scalable."); 550 for (unsigned Lane = 0, VF = State->VF.getKnownMinValue(); Lane < VF; 551 ++Lane) { 552 State->Instance->Lane = VPLane(Lane, VPLane::Kind::First); 553 // Visit the VPBlocks connected to \p this, starting from it. 554 for (VPBlockBase *Block : RPOT) { 555 LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n'); 556 Block->execute(State); 557 } 558 } 559 } 560 561 // Exit replicating mode. 562 State->Instance.reset(); 563 } 564 565 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 566 void VPRegionBlock::print(raw_ostream &O, const Twine &Indent, 567 VPSlotTracker &SlotTracker) const { 568 O << Indent << (isReplicator() ? "<xVFxUF> " : "<x1> ") << getName() << ": {"; 569 auto NewIndent = Indent + " "; 570 for (auto *BlockBase : depth_first(Entry)) { 571 O << '\n'; 572 BlockBase->print(O, NewIndent, SlotTracker); 573 } 574 O << Indent << "}\n"; 575 576 printSuccessors(O, Indent); 577 } 578 #endif 579 580 VPlan::~VPlan() { 581 clearLiveOuts(); 582 583 if (Entry) { 584 VPValue DummyValue; 585 for (VPBlockBase *Block : depth_first(Entry)) 586 Block->dropAllReferences(&DummyValue); 587 588 VPBlockBase::deleteCFG(Entry); 589 } 590 for (VPValue *VPV : VPValuesToFree) 591 delete VPV; 592 if (TripCount) 593 delete TripCount; 594 if (BackedgeTakenCount) 595 delete BackedgeTakenCount; 596 for (auto &P : VPExternalDefs) 597 delete P.second; 598 } 599 600 VPActiveLaneMaskPHIRecipe *VPlan::getActiveLaneMaskPhi() { 601 VPBasicBlock *Header = getVectorLoopRegion()->getEntryBasicBlock(); 602 for (VPRecipeBase &R : Header->phis()) { 603 if (isa<VPActiveLaneMaskPHIRecipe>(&R)) 604 return cast<VPActiveLaneMaskPHIRecipe>(&R); 605 } 606 return nullptr; 607 } 608 609 void VPlan::prepareToExecute(Value *TripCountV, Value *VectorTripCountV, 610 Value *CanonicalIVStartValue, 611 VPTransformState &State, 612 bool IsEpilogueVectorization) { 613 614 // Check if the trip count is needed, and if so build it. 615 if (TripCount && TripCount->getNumUsers()) { 616 for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part) 617 State.set(TripCount, TripCountV, Part); 618 } 619 620 // Check if the backedge taken count is needed, and if so build it. 621 if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) { 622 IRBuilder<> Builder(State.CFG.PrevBB->getTerminator()); 623 auto *TCMO = Builder.CreateSub(TripCountV, 624 ConstantInt::get(TripCountV->getType(), 1), 625 "trip.count.minus.1"); 626 auto VF = State.VF; 627 Value *VTCMO = 628 VF.isScalar() ? TCMO : Builder.CreateVectorSplat(VF, TCMO, "broadcast"); 629 for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part) 630 State.set(BackedgeTakenCount, VTCMO, Part); 631 } 632 633 for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part) 634 State.set(&VectorTripCount, VectorTripCountV, Part); 635 636 // When vectorizing the epilogue loop, the canonical induction start value 637 // needs to be changed from zero to the value after the main vector loop. 638 // FIXME: Improve modeling for canonical IV start values in the epilogue loop. 639 if (CanonicalIVStartValue) { 640 VPValue *VPV = getOrAddExternalDef(CanonicalIVStartValue); 641 auto *IV = getCanonicalIV(); 642 assert(all_of(IV->users(), 643 [](const VPUser *U) { 644 if (isa<VPScalarIVStepsRecipe>(U) || 645 isa<VPDerivedIVRecipe>(U)) 646 return true; 647 auto *VPI = cast<VPInstruction>(U); 648 return VPI->getOpcode() == 649 VPInstruction::CanonicalIVIncrement || 650 VPI->getOpcode() == 651 VPInstruction::CanonicalIVIncrementNUW; 652 }) && 653 "the canonical IV should only be used by its increments or " 654 "ScalarIVSteps when " 655 "resetting the start value"); 656 IV->setOperand(0, VPV); 657 } 658 } 659 660 /// Generate the code inside the preheader and body of the vectorized loop. 661 /// Assumes a single pre-header basic-block was created for this. Introduce 662 /// additional basic-blocks as needed, and fill them all. 663 void VPlan::execute(VPTransformState *State) { 664 // Set the reverse mapping from VPValues to Values for code generation. 665 for (auto &Entry : Value2VPValue) 666 State->VPValue2Value[Entry.second] = Entry.first; 667 668 // Initialize CFG state. 669 State->CFG.PrevVPBB = nullptr; 670 State->CFG.ExitBB = State->CFG.PrevBB->getSingleSuccessor(); 671 BasicBlock *VectorPreHeader = State->CFG.PrevBB; 672 State->Builder.SetInsertPoint(VectorPreHeader->getTerminator()); 673 674 // Generate code in the loop pre-header and body. 675 for (VPBlockBase *Block : depth_first(Entry)) 676 Block->execute(State); 677 678 VPBasicBlock *LatchVPBB = getVectorLoopRegion()->getExitingBasicBlock(); 679 BasicBlock *VectorLatchBB = State->CFG.VPBB2IRBB[LatchVPBB]; 680 681 // Fix the latch value of canonical, reduction and first-order recurrences 682 // phis in the vector loop. 683 VPBasicBlock *Header = getVectorLoopRegion()->getEntryBasicBlock(); 684 for (VPRecipeBase &R : Header->phis()) { 685 // Skip phi-like recipes that generate their backedege values themselves. 686 if (isa<VPWidenPHIRecipe>(&R)) 687 continue; 688 689 if (isa<VPWidenPointerInductionRecipe>(&R) || 690 isa<VPWidenIntOrFpInductionRecipe>(&R)) { 691 PHINode *Phi = nullptr; 692 if (isa<VPWidenIntOrFpInductionRecipe>(&R)) { 693 Phi = cast<PHINode>(State->get(R.getVPSingleValue(), 0)); 694 } else { 695 auto *WidenPhi = cast<VPWidenPointerInductionRecipe>(&R); 696 // TODO: Split off the case that all users of a pointer phi are scalar 697 // from the VPWidenPointerInductionRecipe. 698 if (WidenPhi->onlyScalarsGenerated(State->VF)) 699 continue; 700 701 auto *GEP = cast<GetElementPtrInst>(State->get(WidenPhi, 0)); 702 Phi = cast<PHINode>(GEP->getPointerOperand()); 703 } 704 705 Phi->setIncomingBlock(1, VectorLatchBB); 706 707 // Move the last step to the end of the latch block. This ensures 708 // consistent placement of all induction updates. 709 Instruction *Inc = cast<Instruction>(Phi->getIncomingValue(1)); 710 Inc->moveBefore(VectorLatchBB->getTerminator()->getPrevNode()); 711 continue; 712 } 713 714 auto *PhiR = cast<VPHeaderPHIRecipe>(&R); 715 // For canonical IV, first-order recurrences and in-order reduction phis, 716 // only a single part is generated, which provides the last part from the 717 // previous iteration. For non-ordered reductions all UF parts are 718 // generated. 719 bool SinglePartNeeded = isa<VPCanonicalIVPHIRecipe>(PhiR) || 720 isa<VPFirstOrderRecurrencePHIRecipe>(PhiR) || 721 (isa<VPReductionPHIRecipe>(PhiR) && 722 cast<VPReductionPHIRecipe>(PhiR)->isOrdered()); 723 unsigned LastPartForNewPhi = SinglePartNeeded ? 1 : State->UF; 724 725 for (unsigned Part = 0; Part < LastPartForNewPhi; ++Part) { 726 Value *Phi = State->get(PhiR, Part); 727 Value *Val = State->get(PhiR->getBackedgeValue(), 728 SinglePartNeeded ? State->UF - 1 : Part); 729 cast<PHINode>(Phi)->addIncoming(Val, VectorLatchBB); 730 } 731 } 732 733 // We do not attempt to preserve DT for outer loop vectorization currently. 734 if (!EnableVPlanNativePath) { 735 BasicBlock *VectorHeaderBB = State->CFG.VPBB2IRBB[Header]; 736 State->DT->addNewBlock(VectorHeaderBB, VectorPreHeader); 737 updateDominatorTree(State->DT, VectorHeaderBB, VectorLatchBB, 738 State->CFG.ExitBB); 739 } 740 } 741 742 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 743 LLVM_DUMP_METHOD 744 void VPlan::print(raw_ostream &O) const { 745 VPSlotTracker SlotTracker(this); 746 747 O << "VPlan '" << getName() << "' {"; 748 749 if (VectorTripCount.getNumUsers() > 0) { 750 O << "\nLive-in "; 751 VectorTripCount.printAsOperand(O, SlotTracker); 752 O << " = vector-trip-count\n"; 753 } 754 755 if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) { 756 O << "\nLive-in "; 757 BackedgeTakenCount->printAsOperand(O, SlotTracker); 758 O << " = backedge-taken count\n"; 759 } 760 761 for (const VPBlockBase *Block : depth_first(getEntry())) { 762 O << '\n'; 763 Block->print(O, "", SlotTracker); 764 } 765 766 if (!LiveOuts.empty()) 767 O << "\n"; 768 for (const auto &KV : LiveOuts) { 769 O << "Live-out "; 770 KV.second->getPhi()->printAsOperand(O); 771 O << " = "; 772 KV.second->getOperand(0)->printAsOperand(O, SlotTracker); 773 O << "\n"; 774 } 775 776 O << "}\n"; 777 } 778 779 std::string VPlan::getName() const { 780 std::string Out; 781 raw_string_ostream RSO(Out); 782 RSO << Name << " for "; 783 if (!VFs.empty()) { 784 RSO << "VF={" << VFs[0]; 785 for (ElementCount VF : drop_begin(VFs)) 786 RSO << "," << VF; 787 RSO << "},"; 788 } 789 790 if (UFs.empty()) { 791 RSO << "UF>=1"; 792 } else { 793 RSO << "UF={" << UFs[0]; 794 for (unsigned UF : drop_begin(UFs)) 795 RSO << "," << UF; 796 RSO << "}"; 797 } 798 799 return Out; 800 } 801 802 LLVM_DUMP_METHOD 803 void VPlan::printDOT(raw_ostream &O) const { 804 VPlanPrinter Printer(O, *this); 805 Printer.dump(); 806 } 807 808 LLVM_DUMP_METHOD 809 void VPlan::dump() const { print(dbgs()); } 810 #endif 811 812 void VPlan::addLiveOut(PHINode *PN, VPValue *V) { 813 assert(LiveOuts.count(PN) == 0 && "an exit value for PN already exists"); 814 LiveOuts.insert({PN, new VPLiveOut(PN, V)}); 815 } 816 817 void VPlan::updateDominatorTree(DominatorTree *DT, BasicBlock *LoopHeaderBB, 818 BasicBlock *LoopLatchBB, 819 BasicBlock *LoopExitBB) { 820 // The vector body may be more than a single basic-block by this point. 821 // Update the dominator tree information inside the vector body by propagating 822 // it from header to latch, expecting only triangular control-flow, if any. 823 BasicBlock *PostDomSucc = nullptr; 824 for (auto *BB = LoopHeaderBB; BB != LoopLatchBB; BB = PostDomSucc) { 825 // Get the list of successors of this block. 826 std::vector<BasicBlock *> Succs(succ_begin(BB), succ_end(BB)); 827 assert(Succs.size() <= 2 && 828 "Basic block in vector loop has more than 2 successors."); 829 PostDomSucc = Succs[0]; 830 if (Succs.size() == 1) { 831 assert(PostDomSucc->getSinglePredecessor() && 832 "PostDom successor has more than one predecessor."); 833 DT->addNewBlock(PostDomSucc, BB); 834 continue; 835 } 836 BasicBlock *InterimSucc = Succs[1]; 837 if (PostDomSucc->getSingleSuccessor() == InterimSucc) { 838 PostDomSucc = Succs[1]; 839 InterimSucc = Succs[0]; 840 } 841 assert(InterimSucc->getSingleSuccessor() == PostDomSucc && 842 "One successor of a basic block does not lead to the other."); 843 assert(InterimSucc->getSinglePredecessor() && 844 "Interim successor has more than one predecessor."); 845 assert(PostDomSucc->hasNPredecessors(2) && 846 "PostDom successor has more than two predecessors."); 847 DT->addNewBlock(InterimSucc, BB); 848 DT->addNewBlock(PostDomSucc, BB); 849 } 850 // Latch block is a new dominator for the loop exit. 851 DT->changeImmediateDominator(LoopExitBB, LoopLatchBB); 852 assert(DT->verify(DominatorTree::VerificationLevel::Fast)); 853 } 854 855 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 856 857 Twine VPlanPrinter::getUID(const VPBlockBase *Block) { 858 return (isa<VPRegionBlock>(Block) ? "cluster_N" : "N") + 859 Twine(getOrCreateBID(Block)); 860 } 861 862 Twine VPlanPrinter::getOrCreateName(const VPBlockBase *Block) { 863 const std::string &Name = Block->getName(); 864 if (!Name.empty()) 865 return Name; 866 return "VPB" + Twine(getOrCreateBID(Block)); 867 } 868 869 void VPlanPrinter::dump() { 870 Depth = 1; 871 bumpIndent(0); 872 OS << "digraph VPlan {\n"; 873 OS << "graph [labelloc=t, fontsize=30; label=\"Vectorization Plan"; 874 if (!Plan.getName().empty()) 875 OS << "\\n" << DOT::EscapeString(Plan.getName()); 876 if (Plan.BackedgeTakenCount) { 877 OS << ", where:\\n"; 878 Plan.BackedgeTakenCount->print(OS, SlotTracker); 879 OS << " := BackedgeTakenCount"; 880 } 881 OS << "\"]\n"; 882 OS << "node [shape=rect, fontname=Courier, fontsize=30]\n"; 883 OS << "edge [fontname=Courier, fontsize=30]\n"; 884 OS << "compound=true\n"; 885 886 for (const VPBlockBase *Block : depth_first(Plan.getEntry())) 887 dumpBlock(Block); 888 889 OS << "}\n"; 890 } 891 892 void VPlanPrinter::dumpBlock(const VPBlockBase *Block) { 893 if (const VPBasicBlock *BasicBlock = dyn_cast<VPBasicBlock>(Block)) 894 dumpBasicBlock(BasicBlock); 895 else if (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 896 dumpRegion(Region); 897 else 898 llvm_unreachable("Unsupported kind of VPBlock."); 899 } 900 901 void VPlanPrinter::drawEdge(const VPBlockBase *From, const VPBlockBase *To, 902 bool Hidden, const Twine &Label) { 903 // Due to "dot" we print an edge between two regions as an edge between the 904 // exiting basic block and the entry basic of the respective regions. 905 const VPBlockBase *Tail = From->getExitingBasicBlock(); 906 const VPBlockBase *Head = To->getEntryBasicBlock(); 907 OS << Indent << getUID(Tail) << " -> " << getUID(Head); 908 OS << " [ label=\"" << Label << '\"'; 909 if (Tail != From) 910 OS << " ltail=" << getUID(From); 911 if (Head != To) 912 OS << " lhead=" << getUID(To); 913 if (Hidden) 914 OS << "; splines=none"; 915 OS << "]\n"; 916 } 917 918 void VPlanPrinter::dumpEdges(const VPBlockBase *Block) { 919 auto &Successors = Block->getSuccessors(); 920 if (Successors.size() == 1) 921 drawEdge(Block, Successors.front(), false, ""); 922 else if (Successors.size() == 2) { 923 drawEdge(Block, Successors.front(), false, "T"); 924 drawEdge(Block, Successors.back(), false, "F"); 925 } else { 926 unsigned SuccessorNumber = 0; 927 for (auto *Successor : Successors) 928 drawEdge(Block, Successor, false, Twine(SuccessorNumber++)); 929 } 930 } 931 932 void VPlanPrinter::dumpBasicBlock(const VPBasicBlock *BasicBlock) { 933 // Implement dot-formatted dump by performing plain-text dump into the 934 // temporary storage followed by some post-processing. 935 OS << Indent << getUID(BasicBlock) << " [label =\n"; 936 bumpIndent(1); 937 std::string Str; 938 raw_string_ostream SS(Str); 939 // Use no indentation as we need to wrap the lines into quotes ourselves. 940 BasicBlock->print(SS, "", SlotTracker); 941 942 // We need to process each line of the output separately, so split 943 // single-string plain-text dump. 944 SmallVector<StringRef, 0> Lines; 945 StringRef(Str).rtrim('\n').split(Lines, "\n"); 946 947 auto EmitLine = [&](StringRef Line, StringRef Suffix) { 948 OS << Indent << '"' << DOT::EscapeString(Line.str()) << "\\l\"" << Suffix; 949 }; 950 951 // Don't need the "+" after the last line. 952 for (auto Line : make_range(Lines.begin(), Lines.end() - 1)) 953 EmitLine(Line, " +\n"); 954 EmitLine(Lines.back(), "\n"); 955 956 bumpIndent(-1); 957 OS << Indent << "]\n"; 958 959 dumpEdges(BasicBlock); 960 } 961 962 void VPlanPrinter::dumpRegion(const VPRegionBlock *Region) { 963 OS << Indent << "subgraph " << getUID(Region) << " {\n"; 964 bumpIndent(1); 965 OS << Indent << "fontname=Courier\n" 966 << Indent << "label=\"" 967 << DOT::EscapeString(Region->isReplicator() ? "<xVFxUF> " : "<x1> ") 968 << DOT::EscapeString(Region->getName()) << "\"\n"; 969 // Dump the blocks of the region. 970 assert(Region->getEntry() && "Region contains no inner blocks."); 971 for (const VPBlockBase *Block : depth_first(Region->getEntry())) 972 dumpBlock(Block); 973 bumpIndent(-1); 974 OS << Indent << "}\n"; 975 dumpEdges(Region); 976 } 977 978 void VPlanIngredient::print(raw_ostream &O) const { 979 if (auto *Inst = dyn_cast<Instruction>(V)) { 980 if (!Inst->getType()->isVoidTy()) { 981 Inst->printAsOperand(O, false); 982 O << " = "; 983 } 984 O << Inst->getOpcodeName() << " "; 985 unsigned E = Inst->getNumOperands(); 986 if (E > 0) { 987 Inst->getOperand(0)->printAsOperand(O, false); 988 for (unsigned I = 1; I < E; ++I) 989 Inst->getOperand(I)->printAsOperand(O << ", ", false); 990 } 991 } else // !Inst 992 V->printAsOperand(O, false); 993 } 994 995 #endif 996 997 template void DomTreeBuilder::Calculate<VPDominatorTree>(VPDominatorTree &DT); 998 999 void VPValue::replaceAllUsesWith(VPValue *New) { 1000 for (unsigned J = 0; J < getNumUsers();) { 1001 VPUser *User = Users[J]; 1002 unsigned NumUsers = getNumUsers(); 1003 for (unsigned I = 0, E = User->getNumOperands(); I < E; ++I) 1004 if (User->getOperand(I) == this) 1005 User->setOperand(I, New); 1006 // If a user got removed after updating the current user, the next user to 1007 // update will be moved to the current position, so we only need to 1008 // increment the index if the number of users did not change. 1009 if (NumUsers == getNumUsers()) 1010 J++; 1011 } 1012 } 1013 1014 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1015 void VPValue::printAsOperand(raw_ostream &OS, VPSlotTracker &Tracker) const { 1016 if (const Value *UV = getUnderlyingValue()) { 1017 OS << "ir<"; 1018 UV->printAsOperand(OS, false); 1019 OS << ">"; 1020 return; 1021 } 1022 1023 unsigned Slot = Tracker.getSlot(this); 1024 if (Slot == unsigned(-1)) 1025 OS << "<badref>"; 1026 else 1027 OS << "vp<%" << Tracker.getSlot(this) << ">"; 1028 } 1029 1030 void VPUser::printOperands(raw_ostream &O, VPSlotTracker &SlotTracker) const { 1031 interleaveComma(operands(), O, [&O, &SlotTracker](VPValue *Op) { 1032 Op->printAsOperand(O, SlotTracker); 1033 }); 1034 } 1035 #endif 1036 1037 void VPInterleavedAccessInfo::visitRegion(VPRegionBlock *Region, 1038 Old2NewTy &Old2New, 1039 InterleavedAccessInfo &IAI) { 1040 ReversePostOrderTraversal<VPBlockBase *> RPOT(Region->getEntry()); 1041 for (VPBlockBase *Base : RPOT) { 1042 visitBlock(Base, Old2New, IAI); 1043 } 1044 } 1045 1046 void VPInterleavedAccessInfo::visitBlock(VPBlockBase *Block, Old2NewTy &Old2New, 1047 InterleavedAccessInfo &IAI) { 1048 if (VPBasicBlock *VPBB = dyn_cast<VPBasicBlock>(Block)) { 1049 for (VPRecipeBase &VPI : *VPBB) { 1050 if (isa<VPHeaderPHIRecipe>(&VPI)) 1051 continue; 1052 assert(isa<VPInstruction>(&VPI) && "Can only handle VPInstructions"); 1053 auto *VPInst = cast<VPInstruction>(&VPI); 1054 1055 auto *Inst = dyn_cast_or_null<Instruction>(VPInst->getUnderlyingValue()); 1056 if (!Inst) 1057 continue; 1058 auto *IG = IAI.getInterleaveGroup(Inst); 1059 if (!IG) 1060 continue; 1061 1062 auto NewIGIter = Old2New.find(IG); 1063 if (NewIGIter == Old2New.end()) 1064 Old2New[IG] = new InterleaveGroup<VPInstruction>( 1065 IG->getFactor(), IG->isReverse(), IG->getAlign()); 1066 1067 if (Inst == IG->getInsertPos()) 1068 Old2New[IG]->setInsertPos(VPInst); 1069 1070 InterleaveGroupMap[VPInst] = Old2New[IG]; 1071 InterleaveGroupMap[VPInst]->insertMember( 1072 VPInst, IG->getIndex(Inst), 1073 Align(IG->isReverse() ? (-1) * int(IG->getFactor()) 1074 : IG->getFactor())); 1075 } 1076 } else if (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 1077 visitRegion(Region, Old2New, IAI); 1078 else 1079 llvm_unreachable("Unsupported kind of VPBlock."); 1080 } 1081 1082 VPInterleavedAccessInfo::VPInterleavedAccessInfo(VPlan &Plan, 1083 InterleavedAccessInfo &IAI) { 1084 Old2NewTy Old2New; 1085 visitRegion(Plan.getVectorLoopRegion(), Old2New, IAI); 1086 } 1087 1088 void VPSlotTracker::assignSlot(const VPValue *V) { 1089 assert(Slots.find(V) == Slots.end() && "VPValue already has a slot!"); 1090 Slots[V] = NextSlot++; 1091 } 1092 1093 void VPSlotTracker::assignSlots(const VPlan &Plan) { 1094 1095 for (const auto &P : Plan.VPExternalDefs) 1096 assignSlot(P.second); 1097 1098 assignSlot(&Plan.VectorTripCount); 1099 if (Plan.BackedgeTakenCount) 1100 assignSlot(Plan.BackedgeTakenCount); 1101 1102 ReversePostOrderTraversal< 1103 VPBlockRecursiveTraversalWrapper<const VPBlockBase *>> 1104 RPOT(VPBlockRecursiveTraversalWrapper<const VPBlockBase *>( 1105 Plan.getEntry())); 1106 for (const VPBasicBlock *VPBB : 1107 VPBlockUtils::blocksOnly<const VPBasicBlock>(RPOT)) 1108 for (const VPRecipeBase &Recipe : *VPBB) 1109 for (VPValue *Def : Recipe.definedValues()) 1110 assignSlot(Def); 1111 } 1112 1113 bool vputils::onlyFirstLaneUsed(VPValue *Def) { 1114 return all_of(Def->users(), 1115 [Def](VPUser *U) { return U->onlyFirstLaneUsed(Def); }); 1116 } 1117 1118 VPValue *vputils::getOrCreateVPValueForSCEVExpr(VPlan &Plan, const SCEV *Expr, 1119 ScalarEvolution &SE) { 1120 if (auto *E = dyn_cast<SCEVConstant>(Expr)) 1121 return Plan.getOrAddExternalDef(E->getValue()); 1122 if (auto *E = dyn_cast<SCEVUnknown>(Expr)) 1123 return Plan.getOrAddExternalDef(E->getValue()); 1124 1125 VPBasicBlock *Preheader = Plan.getEntry()->getEntryBasicBlock(); 1126 VPExpandSCEVRecipe *Step = new VPExpandSCEVRecipe(Expr, SE); 1127 Preheader->appendRecipe(Step); 1128 return Step; 1129 } 1130