1 //===- VPlan.cpp - Vectorizer Plan ----------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This is the LLVM vectorization plan. It represents a candidate for 11 /// vectorization, allowing to plan and optimize how to vectorize a given loop 12 /// before generating LLVM-IR. 13 /// The vectorizer uses vectorization plans to estimate the costs of potential 14 /// candidates and if profitable to execute the desired plan, generating vector 15 /// LLVM-IR code. 16 /// 17 //===----------------------------------------------------------------------===// 18 19 #include "VPlan.h" 20 #include "VPlanDominatorTree.h" 21 #include "llvm/ADT/DepthFirstIterator.h" 22 #include "llvm/ADT/PostOrderIterator.h" 23 #include "llvm/ADT/STLExtras.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/Twine.h" 26 #include "llvm/Analysis/IVDescriptors.h" 27 #include "llvm/Analysis/LoopInfo.h" 28 #include "llvm/IR/BasicBlock.h" 29 #include "llvm/IR/CFG.h" 30 #include "llvm/IR/InstrTypes.h" 31 #include "llvm/IR/Instruction.h" 32 #include "llvm/IR/Instructions.h" 33 #include "llvm/IR/Type.h" 34 #include "llvm/IR/Value.h" 35 #include "llvm/Support/Casting.h" 36 #include "llvm/Support/CommandLine.h" 37 #include "llvm/Support/Debug.h" 38 #include "llvm/Support/ErrorHandling.h" 39 #include "llvm/Support/GenericDomTreeConstruction.h" 40 #include "llvm/Support/GraphWriter.h" 41 #include "llvm/Support/raw_ostream.h" 42 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 43 #include <cassert> 44 #include <iterator> 45 #include <string> 46 #include <vector> 47 48 using namespace llvm; 49 extern cl::opt<bool> EnableVPlanNativePath; 50 51 #define DEBUG_TYPE "vplan" 52 53 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 54 raw_ostream &llvm::operator<<(raw_ostream &OS, const VPValue &V) { 55 const VPInstruction *Instr = dyn_cast<VPInstruction>(&V); 56 VPSlotTracker SlotTracker( 57 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr); 58 V.print(OS, SlotTracker); 59 return OS; 60 } 61 #endif 62 63 Value *VPLane::getAsRuntimeExpr(IRBuilder<> &Builder, 64 const ElementCount &VF) const { 65 switch (LaneKind) { 66 case VPLane::Kind::ScalableLast: 67 // Lane = RuntimeVF - VF.getKnownMinValue() + Lane 68 return Builder.CreateSub(getRuntimeVF(Builder, Builder.getInt32Ty(), VF), 69 Builder.getInt32(VF.getKnownMinValue() - Lane)); 70 case VPLane::Kind::First: 71 return Builder.getInt32(Lane); 72 } 73 llvm_unreachable("Unknown lane kind"); 74 } 75 76 VPValue::VPValue(const unsigned char SC, Value *UV, VPDef *Def) 77 : SubclassID(SC), UnderlyingVal(UV), Def(Def) { 78 if (Def) 79 Def->addDefinedValue(this); 80 } 81 82 VPValue::~VPValue() { 83 assert(Users.empty() && "trying to delete a VPValue with remaining users"); 84 if (Def) 85 Def->removeDefinedValue(this); 86 } 87 88 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 89 void VPValue::print(raw_ostream &OS, VPSlotTracker &SlotTracker) const { 90 if (const VPRecipeBase *R = dyn_cast_or_null<VPRecipeBase>(Def)) 91 R->print(OS, "", SlotTracker); 92 else 93 printAsOperand(OS, SlotTracker); 94 } 95 96 void VPValue::dump() const { 97 const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this->Def); 98 VPSlotTracker SlotTracker( 99 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr); 100 print(dbgs(), SlotTracker); 101 dbgs() << "\n"; 102 } 103 104 void VPDef::dump() const { 105 const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this); 106 VPSlotTracker SlotTracker( 107 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr); 108 print(dbgs(), "", SlotTracker); 109 dbgs() << "\n"; 110 } 111 #endif 112 113 // Get the top-most entry block of \p Start. This is the entry block of the 114 // containing VPlan. This function is templated to support both const and non-const blocks 115 template <typename T> static T *getPlanEntry(T *Start) { 116 T *Next = Start; 117 T *Current = Start; 118 while ((Next = Next->getParent())) 119 Current = Next; 120 121 SmallSetVector<T *, 8> WorkList; 122 WorkList.insert(Current); 123 124 for (unsigned i = 0; i < WorkList.size(); i++) { 125 T *Current = WorkList[i]; 126 if (Current->getNumPredecessors() == 0) 127 return Current; 128 auto &Predecessors = Current->getPredecessors(); 129 WorkList.insert(Predecessors.begin(), Predecessors.end()); 130 } 131 132 llvm_unreachable("VPlan without any entry node without predecessors"); 133 } 134 135 VPlan *VPBlockBase::getPlan() { return getPlanEntry(this)->Plan; } 136 137 const VPlan *VPBlockBase::getPlan() const { return getPlanEntry(this)->Plan; } 138 139 /// \return the VPBasicBlock that is the entry of Block, possibly indirectly. 140 const VPBasicBlock *VPBlockBase::getEntryBasicBlock() const { 141 const VPBlockBase *Block = this; 142 while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 143 Block = Region->getEntry(); 144 return cast<VPBasicBlock>(Block); 145 } 146 147 VPBasicBlock *VPBlockBase::getEntryBasicBlock() { 148 VPBlockBase *Block = this; 149 while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 150 Block = Region->getEntry(); 151 return cast<VPBasicBlock>(Block); 152 } 153 154 void VPBlockBase::setPlan(VPlan *ParentPlan) { 155 assert(ParentPlan->getEntry() == this && 156 "Can only set plan on its entry block."); 157 Plan = ParentPlan; 158 } 159 160 /// \return the VPBasicBlock that is the exit of Block, possibly indirectly. 161 const VPBasicBlock *VPBlockBase::getExitBasicBlock() const { 162 const VPBlockBase *Block = this; 163 while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 164 Block = Region->getExit(); 165 return cast<VPBasicBlock>(Block); 166 } 167 168 VPBasicBlock *VPBlockBase::getExitBasicBlock() { 169 VPBlockBase *Block = this; 170 while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 171 Block = Region->getExit(); 172 return cast<VPBasicBlock>(Block); 173 } 174 175 VPBlockBase *VPBlockBase::getEnclosingBlockWithSuccessors() { 176 if (!Successors.empty() || !Parent) 177 return this; 178 assert(Parent->getExit() == this && 179 "Block w/o successors not the exit of its parent."); 180 return Parent->getEnclosingBlockWithSuccessors(); 181 } 182 183 VPBlockBase *VPBlockBase::getEnclosingBlockWithPredecessors() { 184 if (!Predecessors.empty() || !Parent) 185 return this; 186 assert(Parent->getEntry() == this && 187 "Block w/o predecessors not the entry of its parent."); 188 return Parent->getEnclosingBlockWithPredecessors(); 189 } 190 191 VPValue *VPBlockBase::getCondBit() { 192 return CondBitUser.getSingleOperandOrNull(); 193 } 194 195 const VPValue *VPBlockBase::getCondBit() const { 196 return CondBitUser.getSingleOperandOrNull(); 197 } 198 199 void VPBlockBase::setCondBit(VPValue *CV) { CondBitUser.resetSingleOpUser(CV); } 200 201 VPValue *VPBlockBase::getPredicate() { 202 return PredicateUser.getSingleOperandOrNull(); 203 } 204 205 const VPValue *VPBlockBase::getPredicate() const { 206 return PredicateUser.getSingleOperandOrNull(); 207 } 208 209 void VPBlockBase::setPredicate(VPValue *CV) { 210 PredicateUser.resetSingleOpUser(CV); 211 } 212 213 void VPBlockBase::deleteCFG(VPBlockBase *Entry) { 214 SmallVector<VPBlockBase *, 8> Blocks(depth_first(Entry)); 215 216 for (VPBlockBase *Block : Blocks) 217 delete Block; 218 } 219 220 VPBasicBlock::iterator VPBasicBlock::getFirstNonPhi() { 221 iterator It = begin(); 222 while (It != end() && It->isPhi()) 223 It++; 224 return It; 225 } 226 227 Value *VPTransformState::get(VPValue *Def, const VPIteration &Instance) { 228 if (!Def->getDef()) 229 return Def->getLiveInIRValue(); 230 231 if (hasScalarValue(Def, Instance)) { 232 return Data 233 .PerPartScalars[Def][Instance.Part][Instance.Lane.mapToCacheIndex(VF)]; 234 } 235 236 assert(hasVectorValue(Def, Instance.Part)); 237 auto *VecPart = Data.PerPartOutput[Def][Instance.Part]; 238 if (!VecPart->getType()->isVectorTy()) { 239 assert(Instance.Lane.isFirstLane() && "cannot get lane > 0 for scalar"); 240 return VecPart; 241 } 242 // TODO: Cache created scalar values. 243 Value *Lane = Instance.Lane.getAsRuntimeExpr(Builder, VF); 244 auto *Extract = Builder.CreateExtractElement(VecPart, Lane); 245 // set(Def, Extract, Instance); 246 return Extract; 247 } 248 249 BasicBlock * 250 VPBasicBlock::createEmptyBasicBlock(VPTransformState::CFGState &CFG) { 251 // BB stands for IR BasicBlocks. VPBB stands for VPlan VPBasicBlocks. 252 // Pred stands for Predessor. Prev stands for Previous - last visited/created. 253 BasicBlock *PrevBB = CFG.PrevBB; 254 BasicBlock *NewBB = BasicBlock::Create(PrevBB->getContext(), getName(), 255 PrevBB->getParent(), CFG.LastBB); 256 LLVM_DEBUG(dbgs() << "LV: created " << NewBB->getName() << '\n'); 257 258 // Hook up the new basic block to its predecessors. 259 for (VPBlockBase *PredVPBlock : getHierarchicalPredecessors()) { 260 VPBasicBlock *PredVPBB = PredVPBlock->getExitBasicBlock(); 261 auto &PredVPSuccessors = PredVPBB->getSuccessors(); 262 BasicBlock *PredBB = CFG.VPBB2IRBB[PredVPBB]; 263 264 // In outer loop vectorization scenario, the predecessor BBlock may not yet 265 // be visited(backedge). Mark the VPBasicBlock for fixup at the end of 266 // vectorization. We do not encounter this case in inner loop vectorization 267 // as we start out by building a loop skeleton with the vector loop header 268 // and latch blocks. As a result, we never enter this function for the 269 // header block in the non VPlan-native path. 270 if (!PredBB) { 271 assert(EnableVPlanNativePath && 272 "Unexpected null predecessor in non VPlan-native path"); 273 CFG.VPBBsToFix.push_back(PredVPBB); 274 continue; 275 } 276 277 assert(PredBB && "Predecessor basic-block not found building successor."); 278 auto *PredBBTerminator = PredBB->getTerminator(); 279 LLVM_DEBUG(dbgs() << "LV: draw edge from" << PredBB->getName() << '\n'); 280 if (isa<UnreachableInst>(PredBBTerminator)) { 281 assert(PredVPSuccessors.size() == 1 && 282 "Predecessor ending w/o branch must have single successor."); 283 PredBBTerminator->eraseFromParent(); 284 BranchInst::Create(NewBB, PredBB); 285 } else { 286 assert(PredVPSuccessors.size() == 2 && 287 "Predecessor ending with branch must have two successors."); 288 unsigned idx = PredVPSuccessors.front() == this ? 0 : 1; 289 assert(!PredBBTerminator->getSuccessor(idx) && 290 "Trying to reset an existing successor block."); 291 PredBBTerminator->setSuccessor(idx, NewBB); 292 } 293 } 294 return NewBB; 295 } 296 297 void VPBasicBlock::execute(VPTransformState *State) { 298 bool Replica = State->Instance && !State->Instance->isFirstIteration(); 299 VPBasicBlock *PrevVPBB = State->CFG.PrevVPBB; 300 VPBlockBase *SingleHPred = nullptr; 301 BasicBlock *NewBB = State->CFG.PrevBB; // Reuse it if possible. 302 303 // 1. Create an IR basic block, or reuse the last one if possible. 304 // The last IR basic block is reused, as an optimization, in three cases: 305 // A. the first VPBB reuses the loop header BB - when PrevVPBB is null; 306 // B. when the current VPBB has a single (hierarchical) predecessor which 307 // is PrevVPBB and the latter has a single (hierarchical) successor; and 308 // C. when the current VPBB is an entry of a region replica - where PrevVPBB 309 // is the exit of this region from a previous instance, or the predecessor 310 // of this region. 311 if (PrevVPBB && /* A */ 312 !((SingleHPred = getSingleHierarchicalPredecessor()) && 313 SingleHPred->getExitBasicBlock() == PrevVPBB && 314 PrevVPBB->getSingleHierarchicalSuccessor()) && /* B */ 315 !(Replica && getPredecessors().empty())) { /* C */ 316 NewBB = createEmptyBasicBlock(State->CFG); 317 State->Builder.SetInsertPoint(NewBB); 318 // Temporarily terminate with unreachable until CFG is rewired. 319 UnreachableInst *Terminator = State->Builder.CreateUnreachable(); 320 State->Builder.SetInsertPoint(Terminator); 321 // Register NewBB in its loop. In innermost loops its the same for all BB's. 322 Loop *L = State->LI->getLoopFor(State->CFG.LastBB); 323 L->addBasicBlockToLoop(NewBB, *State->LI); 324 State->CFG.PrevBB = NewBB; 325 } 326 327 // 2. Fill the IR basic block with IR instructions. 328 LLVM_DEBUG(dbgs() << "LV: vectorizing VPBB:" << getName() 329 << " in BB:" << NewBB->getName() << '\n'); 330 331 State->CFG.VPBB2IRBB[this] = NewBB; 332 State->CFG.PrevVPBB = this; 333 334 for (VPRecipeBase &Recipe : Recipes) 335 Recipe.execute(*State); 336 337 VPValue *CBV; 338 if (EnableVPlanNativePath && (CBV = getCondBit())) { 339 assert(CBV->getUnderlyingValue() && 340 "Unexpected null underlying value for condition bit"); 341 342 // Condition bit value in a VPBasicBlock is used as the branch selector. In 343 // the VPlan-native path case, since all branches are uniform we generate a 344 // branch instruction using the condition value from vector lane 0 and dummy 345 // successors. The successors are fixed later when the successor blocks are 346 // visited. 347 Value *NewCond = State->get(CBV, {0, 0}); 348 349 // Replace the temporary unreachable terminator with the new conditional 350 // branch. 351 auto *CurrentTerminator = NewBB->getTerminator(); 352 assert(isa<UnreachableInst>(CurrentTerminator) && 353 "Expected to replace unreachable terminator with conditional " 354 "branch."); 355 auto *CondBr = BranchInst::Create(NewBB, nullptr, NewCond); 356 CondBr->setSuccessor(0, nullptr); 357 ReplaceInstWithInst(CurrentTerminator, CondBr); 358 } 359 360 LLVM_DEBUG(dbgs() << "LV: filled BB:" << *NewBB); 361 } 362 363 void VPBasicBlock::dropAllReferences(VPValue *NewValue) { 364 for (VPRecipeBase &R : Recipes) { 365 for (auto *Def : R.definedValues()) 366 Def->replaceAllUsesWith(NewValue); 367 368 for (unsigned I = 0, E = R.getNumOperands(); I != E; I++) 369 R.setOperand(I, NewValue); 370 } 371 } 372 373 VPBasicBlock *VPBasicBlock::splitAt(iterator SplitAt) { 374 assert((SplitAt == end() || SplitAt->getParent() == this) && 375 "can only split at a position in the same block"); 376 377 SmallVector<VPBlockBase *, 2> Succs(getSuccessors().begin(), 378 getSuccessors().end()); 379 // First, disconnect the current block from its successors. 380 for (VPBlockBase *Succ : Succs) 381 VPBlockUtils::disconnectBlocks(this, Succ); 382 383 // Create new empty block after the block to split. 384 auto *SplitBlock = new VPBasicBlock(getName() + ".split"); 385 VPBlockUtils::insertBlockAfter(SplitBlock, this); 386 387 // Add successors for block to split to new block. 388 for (VPBlockBase *Succ : Succs) 389 VPBlockUtils::connectBlocks(SplitBlock, Succ); 390 391 // Finally, move the recipes starting at SplitAt to new block. 392 for (VPRecipeBase &ToMove : 393 make_early_inc_range(make_range(SplitAt, this->end()))) 394 ToMove.moveBefore(*SplitBlock, SplitBlock->end()); 395 396 return SplitBlock; 397 } 398 399 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 400 void VPBasicBlock::print(raw_ostream &O, const Twine &Indent, 401 VPSlotTracker &SlotTracker) const { 402 O << Indent << getName() << ":\n"; 403 if (const VPValue *Pred = getPredicate()) { 404 O << Indent << "BlockPredicate:"; 405 Pred->printAsOperand(O, SlotTracker); 406 if (const auto *PredInst = dyn_cast<VPInstruction>(Pred)) 407 O << " (" << PredInst->getParent()->getName() << ")"; 408 O << '\n'; 409 } 410 411 auto RecipeIndent = Indent + " "; 412 for (const VPRecipeBase &Recipe : *this) { 413 Recipe.print(O, RecipeIndent, SlotTracker); 414 O << '\n'; 415 } 416 417 if (getSuccessors().empty()) { 418 O << Indent << "No successors\n"; 419 } else { 420 O << Indent << "Successor(s): "; 421 ListSeparator LS; 422 for (auto *Succ : getSuccessors()) 423 O << LS << Succ->getName(); 424 O << '\n'; 425 } 426 427 if (const VPValue *CBV = getCondBit()) { 428 O << Indent << "CondBit: "; 429 CBV->printAsOperand(O, SlotTracker); 430 if (const auto *CBI = dyn_cast<VPInstruction>(CBV)) 431 O << " (" << CBI->getParent()->getName() << ")"; 432 O << '\n'; 433 } 434 } 435 #endif 436 437 void VPRegionBlock::dropAllReferences(VPValue *NewValue) { 438 for (VPBlockBase *Block : depth_first(Entry)) 439 // Drop all references in VPBasicBlocks and replace all uses with 440 // DummyValue. 441 Block->dropAllReferences(NewValue); 442 } 443 444 void VPRegionBlock::execute(VPTransformState *State) { 445 ReversePostOrderTraversal<VPBlockBase *> RPOT(Entry); 446 447 if (!isReplicator()) { 448 // Visit the VPBlocks connected to "this", starting from it. 449 for (VPBlockBase *Block : RPOT) { 450 if (EnableVPlanNativePath) { 451 // The inner loop vectorization path does not represent loop preheader 452 // and exit blocks as part of the VPlan. In the VPlan-native path, skip 453 // vectorizing loop preheader block. In future, we may replace this 454 // check with the check for loop preheader. 455 if (Block->getNumPredecessors() == 0) 456 continue; 457 458 // Skip vectorizing loop exit block. In future, we may replace this 459 // check with the check for loop exit. 460 if (Block->getNumSuccessors() == 0) 461 continue; 462 } 463 464 LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n'); 465 Block->execute(State); 466 } 467 return; 468 } 469 470 assert(!State->Instance && "Replicating a Region with non-null instance."); 471 472 // Enter replicating mode. 473 State->Instance = VPIteration(0, 0); 474 475 for (unsigned Part = 0, UF = State->UF; Part < UF; ++Part) { 476 State->Instance->Part = Part; 477 assert(!State->VF.isScalable() && "VF is assumed to be non scalable."); 478 for (unsigned Lane = 0, VF = State->VF.getKnownMinValue(); Lane < VF; 479 ++Lane) { 480 State->Instance->Lane = VPLane(Lane, VPLane::Kind::First); 481 // Visit the VPBlocks connected to \p this, starting from it. 482 for (VPBlockBase *Block : RPOT) { 483 LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n'); 484 Block->execute(State); 485 } 486 } 487 } 488 489 // Exit replicating mode. 490 State->Instance.reset(); 491 } 492 493 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 494 void VPRegionBlock::print(raw_ostream &O, const Twine &Indent, 495 VPSlotTracker &SlotTracker) const { 496 O << Indent << (isReplicator() ? "<xVFxUF> " : "<x1> ") << getName() << ": {"; 497 auto NewIndent = Indent + " "; 498 for (auto *BlockBase : depth_first(Entry)) { 499 O << '\n'; 500 BlockBase->print(O, NewIndent, SlotTracker); 501 } 502 O << Indent << "}\n"; 503 } 504 #endif 505 506 bool VPRecipeBase::mayHaveSideEffects() const { 507 switch (getVPDefID()) { 508 case VPBranchOnMaskSC: 509 return false; 510 case VPBlendSC: 511 case VPWidenSC: 512 case VPWidenGEPSC: 513 case VPReductionSC: 514 case VPWidenSelectSC: { 515 const Instruction *I = 516 dyn_cast_or_null<Instruction>(getVPValue()->getUnderlyingValue()); 517 (void)I; 518 assert((!I || !I->mayHaveSideEffects()) && 519 "underlying instruction has side-effects"); 520 return false; 521 } 522 case VPReplicateSC: { 523 auto *R = cast<VPReplicateRecipe>(this); 524 return R->getUnderlyingInstr()->mayHaveSideEffects(); 525 } 526 default: 527 return true; 528 } 529 } 530 531 void VPRecipeBase::insertBefore(VPRecipeBase *InsertPos) { 532 assert(!Parent && "Recipe already in some VPBasicBlock"); 533 assert(InsertPos->getParent() && 534 "Insertion position not in any VPBasicBlock"); 535 Parent = InsertPos->getParent(); 536 Parent->getRecipeList().insert(InsertPos->getIterator(), this); 537 } 538 539 void VPRecipeBase::insertAfter(VPRecipeBase *InsertPos) { 540 assert(!Parent && "Recipe already in some VPBasicBlock"); 541 assert(InsertPos->getParent() && 542 "Insertion position not in any VPBasicBlock"); 543 Parent = InsertPos->getParent(); 544 Parent->getRecipeList().insertAfter(InsertPos->getIterator(), this); 545 } 546 547 void VPRecipeBase::removeFromParent() { 548 assert(getParent() && "Recipe not in any VPBasicBlock"); 549 getParent()->getRecipeList().remove(getIterator()); 550 Parent = nullptr; 551 } 552 553 iplist<VPRecipeBase>::iterator VPRecipeBase::eraseFromParent() { 554 assert(getParent() && "Recipe not in any VPBasicBlock"); 555 return getParent()->getRecipeList().erase(getIterator()); 556 } 557 558 void VPRecipeBase::moveAfter(VPRecipeBase *InsertPos) { 559 removeFromParent(); 560 insertAfter(InsertPos); 561 } 562 563 void VPRecipeBase::moveBefore(VPBasicBlock &BB, 564 iplist<VPRecipeBase>::iterator I) { 565 assert(I == BB.end() || I->getParent() == &BB); 566 removeFromParent(); 567 Parent = &BB; 568 BB.getRecipeList().insert(I, this); 569 } 570 571 void VPInstruction::generateInstruction(VPTransformState &State, 572 unsigned Part) { 573 IRBuilder<> &Builder = State.Builder; 574 575 if (Instruction::isBinaryOp(getOpcode())) { 576 Value *A = State.get(getOperand(0), Part); 577 Value *B = State.get(getOperand(1), Part); 578 Value *V = Builder.CreateBinOp((Instruction::BinaryOps)getOpcode(), A, B); 579 State.set(this, V, Part); 580 return; 581 } 582 583 switch (getOpcode()) { 584 case VPInstruction::Not: { 585 Value *A = State.get(getOperand(0), Part); 586 Value *V = Builder.CreateNot(A); 587 State.set(this, V, Part); 588 break; 589 } 590 case VPInstruction::ICmpULE: { 591 Value *IV = State.get(getOperand(0), Part); 592 Value *TC = State.get(getOperand(1), Part); 593 Value *V = Builder.CreateICmpULE(IV, TC); 594 State.set(this, V, Part); 595 break; 596 } 597 case Instruction::Select: { 598 Value *Cond = State.get(getOperand(0), Part); 599 Value *Op1 = State.get(getOperand(1), Part); 600 Value *Op2 = State.get(getOperand(2), Part); 601 Value *V = Builder.CreateSelect(Cond, Op1, Op2); 602 State.set(this, V, Part); 603 break; 604 } 605 case VPInstruction::ActiveLaneMask: { 606 // Get first lane of vector induction variable. 607 Value *VIVElem0 = State.get(getOperand(0), VPIteration(Part, 0)); 608 // Get the original loop tripcount. 609 Value *ScalarTC = State.TripCount; 610 611 auto *Int1Ty = Type::getInt1Ty(Builder.getContext()); 612 auto *PredTy = FixedVectorType::get(Int1Ty, State.VF.getKnownMinValue()); 613 Instruction *Call = Builder.CreateIntrinsic( 614 Intrinsic::get_active_lane_mask, {PredTy, ScalarTC->getType()}, 615 {VIVElem0, ScalarTC}, nullptr, "active.lane.mask"); 616 State.set(this, Call, Part); 617 break; 618 } 619 default: 620 llvm_unreachable("Unsupported opcode for instruction"); 621 } 622 } 623 624 void VPInstruction::execute(VPTransformState &State) { 625 assert(!State.Instance && "VPInstruction executing an Instance"); 626 for (unsigned Part = 0; Part < State.UF; ++Part) 627 generateInstruction(State, Part); 628 } 629 630 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 631 void VPInstruction::dump() const { 632 VPSlotTracker SlotTracker(getParent()->getPlan()); 633 print(dbgs(), "", SlotTracker); 634 } 635 636 void VPInstruction::print(raw_ostream &O, const Twine &Indent, 637 VPSlotTracker &SlotTracker) const { 638 O << Indent << "EMIT "; 639 640 if (hasResult()) { 641 printAsOperand(O, SlotTracker); 642 O << " = "; 643 } 644 645 switch (getOpcode()) { 646 case VPInstruction::Not: 647 O << "not"; 648 break; 649 case VPInstruction::ICmpULE: 650 O << "icmp ule"; 651 break; 652 case VPInstruction::SLPLoad: 653 O << "combined load"; 654 break; 655 case VPInstruction::SLPStore: 656 O << "combined store"; 657 break; 658 case VPInstruction::ActiveLaneMask: 659 O << "active lane mask"; 660 break; 661 662 default: 663 O << Instruction::getOpcodeName(getOpcode()); 664 } 665 666 for (const VPValue *Operand : operands()) { 667 O << " "; 668 Operand->printAsOperand(O, SlotTracker); 669 } 670 } 671 #endif 672 673 /// Generate the code inside the body of the vectorized loop. Assumes a single 674 /// LoopVectorBody basic-block was created for this. Introduce additional 675 /// basic-blocks as needed, and fill them all. 676 void VPlan::execute(VPTransformState *State) { 677 // -1. Check if the backedge taken count is needed, and if so build it. 678 if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) { 679 Value *TC = State->TripCount; 680 IRBuilder<> Builder(State->CFG.PrevBB->getTerminator()); 681 auto *TCMO = Builder.CreateSub(TC, ConstantInt::get(TC->getType(), 1), 682 "trip.count.minus.1"); 683 auto VF = State->VF; 684 Value *VTCMO = 685 VF.isScalar() ? TCMO : Builder.CreateVectorSplat(VF, TCMO, "broadcast"); 686 for (unsigned Part = 0, UF = State->UF; Part < UF; ++Part) 687 State->set(BackedgeTakenCount, VTCMO, Part); 688 } 689 690 // 0. Set the reverse mapping from VPValues to Values for code generation. 691 for (auto &Entry : Value2VPValue) 692 State->VPValue2Value[Entry.second] = Entry.first; 693 694 BasicBlock *VectorPreHeaderBB = State->CFG.PrevBB; 695 BasicBlock *VectorHeaderBB = VectorPreHeaderBB->getSingleSuccessor(); 696 assert(VectorHeaderBB && "Loop preheader does not have a single successor."); 697 698 // 1. Make room to generate basic-blocks inside loop body if needed. 699 BasicBlock *VectorLatchBB = VectorHeaderBB->splitBasicBlock( 700 VectorHeaderBB->getFirstInsertionPt(), "vector.body.latch"); 701 Loop *L = State->LI->getLoopFor(VectorHeaderBB); 702 L->addBasicBlockToLoop(VectorLatchBB, *State->LI); 703 // Remove the edge between Header and Latch to allow other connections. 704 // Temporarily terminate with unreachable until CFG is rewired. 705 // Note: this asserts the generated code's assumption that 706 // getFirstInsertionPt() can be dereferenced into an Instruction. 707 VectorHeaderBB->getTerminator()->eraseFromParent(); 708 State->Builder.SetInsertPoint(VectorHeaderBB); 709 UnreachableInst *Terminator = State->Builder.CreateUnreachable(); 710 State->Builder.SetInsertPoint(Terminator); 711 712 // 2. Generate code in loop body. 713 State->CFG.PrevVPBB = nullptr; 714 State->CFG.PrevBB = VectorHeaderBB; 715 State->CFG.LastBB = VectorLatchBB; 716 717 for (VPBlockBase *Block : depth_first(Entry)) 718 Block->execute(State); 719 720 // Setup branch terminator successors for VPBBs in VPBBsToFix based on 721 // VPBB's successors. 722 for (auto VPBB : State->CFG.VPBBsToFix) { 723 assert(EnableVPlanNativePath && 724 "Unexpected VPBBsToFix in non VPlan-native path"); 725 BasicBlock *BB = State->CFG.VPBB2IRBB[VPBB]; 726 assert(BB && "Unexpected null basic block for VPBB"); 727 728 unsigned Idx = 0; 729 auto *BBTerminator = BB->getTerminator(); 730 731 for (VPBlockBase *SuccVPBlock : VPBB->getHierarchicalSuccessors()) { 732 VPBasicBlock *SuccVPBB = SuccVPBlock->getEntryBasicBlock(); 733 BBTerminator->setSuccessor(Idx, State->CFG.VPBB2IRBB[SuccVPBB]); 734 ++Idx; 735 } 736 } 737 738 // 3. Merge the temporary latch created with the last basic-block filled. 739 BasicBlock *LastBB = State->CFG.PrevBB; 740 // Connect LastBB to VectorLatchBB to facilitate their merge. 741 assert((EnableVPlanNativePath || 742 isa<UnreachableInst>(LastBB->getTerminator())) && 743 "Expected InnerLoop VPlan CFG to terminate with unreachable"); 744 assert((!EnableVPlanNativePath || isa<BranchInst>(LastBB->getTerminator())) && 745 "Expected VPlan CFG to terminate with branch in NativePath"); 746 LastBB->getTerminator()->eraseFromParent(); 747 BranchInst::Create(VectorLatchBB, LastBB); 748 749 // Merge LastBB with Latch. 750 bool Merged = MergeBlockIntoPredecessor(VectorLatchBB, nullptr, State->LI); 751 (void)Merged; 752 assert(Merged && "Could not merge last basic block with latch."); 753 VectorLatchBB = LastBB; 754 755 // We do not attempt to preserve DT for outer loop vectorization currently. 756 if (!EnableVPlanNativePath) 757 updateDominatorTree(State->DT, VectorPreHeaderBB, VectorLatchBB, 758 L->getExitBlock()); 759 } 760 761 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 762 LLVM_DUMP_METHOD 763 void VPlan::print(raw_ostream &O) const { 764 VPSlotTracker SlotTracker(this); 765 766 O << "VPlan '" << Name << "' {"; 767 for (const VPBlockBase *Block : depth_first(getEntry())) { 768 O << '\n'; 769 Block->print(O, "", SlotTracker); 770 } 771 O << "}\n"; 772 } 773 774 LLVM_DUMP_METHOD 775 void VPlan::printDOT(raw_ostream &O) const { 776 VPlanPrinter Printer(O, *this); 777 Printer.dump(); 778 } 779 780 LLVM_DUMP_METHOD 781 void VPlan::dump() const { print(dbgs()); } 782 #endif 783 784 void VPlan::updateDominatorTree(DominatorTree *DT, BasicBlock *LoopPreHeaderBB, 785 BasicBlock *LoopLatchBB, 786 BasicBlock *LoopExitBB) { 787 BasicBlock *LoopHeaderBB = LoopPreHeaderBB->getSingleSuccessor(); 788 assert(LoopHeaderBB && "Loop preheader does not have a single successor."); 789 // The vector body may be more than a single basic-block by this point. 790 // Update the dominator tree information inside the vector body by propagating 791 // it from header to latch, expecting only triangular control-flow, if any. 792 BasicBlock *PostDomSucc = nullptr; 793 for (auto *BB = LoopHeaderBB; BB != LoopLatchBB; BB = PostDomSucc) { 794 // Get the list of successors of this block. 795 std::vector<BasicBlock *> Succs(succ_begin(BB), succ_end(BB)); 796 assert(Succs.size() <= 2 && 797 "Basic block in vector loop has more than 2 successors."); 798 PostDomSucc = Succs[0]; 799 if (Succs.size() == 1) { 800 assert(PostDomSucc->getSinglePredecessor() && 801 "PostDom successor has more than one predecessor."); 802 DT->addNewBlock(PostDomSucc, BB); 803 continue; 804 } 805 BasicBlock *InterimSucc = Succs[1]; 806 if (PostDomSucc->getSingleSuccessor() == InterimSucc) { 807 PostDomSucc = Succs[1]; 808 InterimSucc = Succs[0]; 809 } 810 assert(InterimSucc->getSingleSuccessor() == PostDomSucc && 811 "One successor of a basic block does not lead to the other."); 812 assert(InterimSucc->getSinglePredecessor() && 813 "Interim successor has more than one predecessor."); 814 assert(PostDomSucc->hasNPredecessors(2) && 815 "PostDom successor has more than two predecessors."); 816 DT->addNewBlock(InterimSucc, BB); 817 DT->addNewBlock(PostDomSucc, BB); 818 } 819 // Latch block is a new dominator for the loop exit. 820 DT->changeImmediateDominator(LoopExitBB, LoopLatchBB); 821 assert(DT->verify(DominatorTree::VerificationLevel::Fast)); 822 } 823 824 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 825 const Twine VPlanPrinter::getUID(const VPBlockBase *Block) { 826 return (isa<VPRegionBlock>(Block) ? "cluster_N" : "N") + 827 Twine(getOrCreateBID(Block)); 828 } 829 830 const Twine VPlanPrinter::getOrCreateName(const VPBlockBase *Block) { 831 const std::string &Name = Block->getName(); 832 if (!Name.empty()) 833 return Name; 834 return "VPB" + Twine(getOrCreateBID(Block)); 835 } 836 837 void VPlanPrinter::dump() { 838 Depth = 1; 839 bumpIndent(0); 840 OS << "digraph VPlan {\n"; 841 OS << "graph [labelloc=t, fontsize=30; label=\"Vectorization Plan"; 842 if (!Plan.getName().empty()) 843 OS << "\\n" << DOT::EscapeString(Plan.getName()); 844 if (Plan.BackedgeTakenCount) { 845 OS << ", where:\\n"; 846 Plan.BackedgeTakenCount->print(OS, SlotTracker); 847 OS << " := BackedgeTakenCount"; 848 } 849 OS << "\"]\n"; 850 OS << "node [shape=rect, fontname=Courier, fontsize=30]\n"; 851 OS << "edge [fontname=Courier, fontsize=30]\n"; 852 OS << "compound=true\n"; 853 854 for (const VPBlockBase *Block : depth_first(Plan.getEntry())) 855 dumpBlock(Block); 856 857 OS << "}\n"; 858 } 859 860 void VPlanPrinter::dumpBlock(const VPBlockBase *Block) { 861 if (const VPBasicBlock *BasicBlock = dyn_cast<VPBasicBlock>(Block)) 862 dumpBasicBlock(BasicBlock); 863 else if (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 864 dumpRegion(Region); 865 else 866 llvm_unreachable("Unsupported kind of VPBlock."); 867 } 868 869 void VPlanPrinter::drawEdge(const VPBlockBase *From, const VPBlockBase *To, 870 bool Hidden, const Twine &Label) { 871 // Due to "dot" we print an edge between two regions as an edge between the 872 // exit basic block and the entry basic of the respective regions. 873 const VPBlockBase *Tail = From->getExitBasicBlock(); 874 const VPBlockBase *Head = To->getEntryBasicBlock(); 875 OS << Indent << getUID(Tail) << " -> " << getUID(Head); 876 OS << " [ label=\"" << Label << '\"'; 877 if (Tail != From) 878 OS << " ltail=" << getUID(From); 879 if (Head != To) 880 OS << " lhead=" << getUID(To); 881 if (Hidden) 882 OS << "; splines=none"; 883 OS << "]\n"; 884 } 885 886 void VPlanPrinter::dumpEdges(const VPBlockBase *Block) { 887 auto &Successors = Block->getSuccessors(); 888 if (Successors.size() == 1) 889 drawEdge(Block, Successors.front(), false, ""); 890 else if (Successors.size() == 2) { 891 drawEdge(Block, Successors.front(), false, "T"); 892 drawEdge(Block, Successors.back(), false, "F"); 893 } else { 894 unsigned SuccessorNumber = 0; 895 for (auto *Successor : Successors) 896 drawEdge(Block, Successor, false, Twine(SuccessorNumber++)); 897 } 898 } 899 900 void VPlanPrinter::dumpBasicBlock(const VPBasicBlock *BasicBlock) { 901 // Implement dot-formatted dump by performing plain-text dump into the 902 // temporary storage followed by some post-processing. 903 OS << Indent << getUID(BasicBlock) << " [label =\n"; 904 bumpIndent(1); 905 std::string Str; 906 raw_string_ostream SS(Str); 907 // Use no indentation as we need to wrap the lines into quotes ourselves. 908 BasicBlock->print(SS, "", SlotTracker); 909 910 // We need to process each line of the output separately, so split 911 // single-string plain-text dump. 912 SmallVector<StringRef, 0> Lines; 913 StringRef(Str).rtrim('\n').split(Lines, "\n"); 914 915 auto EmitLine = [&](StringRef Line, StringRef Suffix) { 916 OS << Indent << '"' << DOT::EscapeString(Line.str()) << "\\l\"" << Suffix; 917 }; 918 919 // Don't need the "+" after the last line. 920 for (auto Line : make_range(Lines.begin(), Lines.end() - 1)) 921 EmitLine(Line, " +\n"); 922 EmitLine(Lines.back(), "\n"); 923 924 bumpIndent(-1); 925 OS << Indent << "]\n"; 926 927 dumpEdges(BasicBlock); 928 } 929 930 void VPlanPrinter::dumpRegion(const VPRegionBlock *Region) { 931 OS << Indent << "subgraph " << getUID(Region) << " {\n"; 932 bumpIndent(1); 933 OS << Indent << "fontname=Courier\n" 934 << Indent << "label=\"" 935 << DOT::EscapeString(Region->isReplicator() ? "<xVFxUF> " : "<x1> ") 936 << DOT::EscapeString(Region->getName()) << "\"\n"; 937 // Dump the blocks of the region. 938 assert(Region->getEntry() && "Region contains no inner blocks."); 939 for (const VPBlockBase *Block : depth_first(Region->getEntry())) 940 dumpBlock(Block); 941 bumpIndent(-1); 942 OS << Indent << "}\n"; 943 dumpEdges(Region); 944 } 945 946 void VPlanIngredient::print(raw_ostream &O) const { 947 if (auto *Inst = dyn_cast<Instruction>(V)) { 948 if (!Inst->getType()->isVoidTy()) { 949 Inst->printAsOperand(O, false); 950 O << " = "; 951 } 952 O << Inst->getOpcodeName() << " "; 953 unsigned E = Inst->getNumOperands(); 954 if (E > 0) { 955 Inst->getOperand(0)->printAsOperand(O, false); 956 for (unsigned I = 1; I < E; ++I) 957 Inst->getOperand(I)->printAsOperand(O << ", ", false); 958 } 959 } else // !Inst 960 V->printAsOperand(O, false); 961 } 962 963 void VPWidenCallRecipe::print(raw_ostream &O, const Twine &Indent, 964 VPSlotTracker &SlotTracker) const { 965 O << Indent << "WIDEN-CALL "; 966 967 auto *CI = cast<CallInst>(getUnderlyingInstr()); 968 if (CI->getType()->isVoidTy()) 969 O << "void "; 970 else { 971 printAsOperand(O, SlotTracker); 972 O << " = "; 973 } 974 975 O << "call @" << CI->getCalledFunction()->getName() << "("; 976 printOperands(O, SlotTracker); 977 O << ")"; 978 } 979 980 void VPWidenSelectRecipe::print(raw_ostream &O, const Twine &Indent, 981 VPSlotTracker &SlotTracker) const { 982 O << Indent << "WIDEN-SELECT "; 983 printAsOperand(O, SlotTracker); 984 O << " = select "; 985 getOperand(0)->printAsOperand(O, SlotTracker); 986 O << ", "; 987 getOperand(1)->printAsOperand(O, SlotTracker); 988 O << ", "; 989 getOperand(2)->printAsOperand(O, SlotTracker); 990 O << (InvariantCond ? " (condition is loop invariant)" : ""); 991 } 992 993 void VPWidenRecipe::print(raw_ostream &O, const Twine &Indent, 994 VPSlotTracker &SlotTracker) const { 995 O << Indent << "WIDEN "; 996 printAsOperand(O, SlotTracker); 997 O << " = " << getUnderlyingInstr()->getOpcodeName() << " "; 998 printOperands(O, SlotTracker); 999 } 1000 1001 void VPWidenIntOrFpInductionRecipe::print(raw_ostream &O, const Twine &Indent, 1002 VPSlotTracker &SlotTracker) const { 1003 O << Indent << "WIDEN-INDUCTION"; 1004 if (getTruncInst()) { 1005 O << "\\l\""; 1006 O << " +\n" << Indent << "\" " << VPlanIngredient(IV) << "\\l\""; 1007 O << " +\n" << Indent << "\" "; 1008 getVPValue(0)->printAsOperand(O, SlotTracker); 1009 } else 1010 O << " " << VPlanIngredient(IV); 1011 } 1012 1013 void VPWidenGEPRecipe::print(raw_ostream &O, const Twine &Indent, 1014 VPSlotTracker &SlotTracker) const { 1015 O << Indent << "WIDEN-GEP "; 1016 O << (IsPtrLoopInvariant ? "Inv" : "Var"); 1017 size_t IndicesNumber = IsIndexLoopInvariant.size(); 1018 for (size_t I = 0; I < IndicesNumber; ++I) 1019 O << "[" << (IsIndexLoopInvariant[I] ? "Inv" : "Var") << "]"; 1020 1021 O << " "; 1022 printAsOperand(O, SlotTracker); 1023 O << " = getelementptr "; 1024 printOperands(O, SlotTracker); 1025 } 1026 1027 void VPWidenPHIRecipe::print(raw_ostream &O, const Twine &Indent, 1028 VPSlotTracker &SlotTracker) const { 1029 O << Indent << "WIDEN-PHI "; 1030 1031 auto *OriginalPhi = cast<PHINode>(getUnderlyingValue()); 1032 // Unless all incoming values are modeled in VPlan print the original PHI 1033 // directly. 1034 // TODO: Remove once all VPWidenPHIRecipe instances keep all relevant incoming 1035 // values as VPValues. 1036 if (getNumOperands() != OriginalPhi->getNumOperands()) { 1037 O << VPlanIngredient(OriginalPhi); 1038 return; 1039 } 1040 1041 printAsOperand(O, SlotTracker); 1042 O << " = phi "; 1043 printOperands(O, SlotTracker); 1044 } 1045 1046 void VPBlendRecipe::print(raw_ostream &O, const Twine &Indent, 1047 VPSlotTracker &SlotTracker) const { 1048 O << Indent << "BLEND "; 1049 Phi->printAsOperand(O, false); 1050 O << " ="; 1051 if (getNumIncomingValues() == 1) { 1052 // Not a User of any mask: not really blending, this is a 1053 // single-predecessor phi. 1054 O << " "; 1055 getIncomingValue(0)->printAsOperand(O, SlotTracker); 1056 } else { 1057 for (unsigned I = 0, E = getNumIncomingValues(); I < E; ++I) { 1058 O << " "; 1059 getIncomingValue(I)->printAsOperand(O, SlotTracker); 1060 O << "/"; 1061 getMask(I)->printAsOperand(O, SlotTracker); 1062 } 1063 } 1064 } 1065 1066 void VPReductionRecipe::print(raw_ostream &O, const Twine &Indent, 1067 VPSlotTracker &SlotTracker) const { 1068 O << Indent << "REDUCE "; 1069 printAsOperand(O, SlotTracker); 1070 O << " = "; 1071 getChainOp()->printAsOperand(O, SlotTracker); 1072 O << " + reduce." << Instruction::getOpcodeName(RdxDesc->getOpcode()) 1073 << " ("; 1074 getVecOp()->printAsOperand(O, SlotTracker); 1075 if (getCondOp()) { 1076 O << ", "; 1077 getCondOp()->printAsOperand(O, SlotTracker); 1078 } 1079 O << ")"; 1080 } 1081 1082 void VPReplicateRecipe::print(raw_ostream &O, const Twine &Indent, 1083 VPSlotTracker &SlotTracker) const { 1084 O << Indent << (IsUniform ? "CLONE " : "REPLICATE "); 1085 1086 if (!getUnderlyingInstr()->getType()->isVoidTy()) { 1087 printAsOperand(O, SlotTracker); 1088 O << " = "; 1089 } 1090 O << Instruction::getOpcodeName(getUnderlyingInstr()->getOpcode()) << " "; 1091 printOperands(O, SlotTracker); 1092 1093 if (AlsoPack) 1094 O << " (S->V)"; 1095 } 1096 1097 void VPPredInstPHIRecipe::print(raw_ostream &O, const Twine &Indent, 1098 VPSlotTracker &SlotTracker) const { 1099 O << Indent << "PHI-PREDICATED-INSTRUCTION "; 1100 printAsOperand(O, SlotTracker); 1101 O << " = "; 1102 printOperands(O, SlotTracker); 1103 } 1104 1105 void VPWidenMemoryInstructionRecipe::print(raw_ostream &O, const Twine &Indent, 1106 VPSlotTracker &SlotTracker) const { 1107 O << Indent << "WIDEN "; 1108 1109 if (!isStore()) { 1110 getVPValue()->printAsOperand(O, SlotTracker); 1111 O << " = "; 1112 } 1113 O << Instruction::getOpcodeName(Ingredient.getOpcode()) << " "; 1114 1115 printOperands(O, SlotTracker); 1116 } 1117 #endif 1118 1119 void VPWidenCanonicalIVRecipe::execute(VPTransformState &State) { 1120 Value *CanonicalIV = State.CanonicalIV; 1121 Type *STy = CanonicalIV->getType(); 1122 IRBuilder<> Builder(State.CFG.PrevBB->getTerminator()); 1123 ElementCount VF = State.VF; 1124 assert(!VF.isScalable() && "the code following assumes non scalables ECs"); 1125 Value *VStart = VF.isScalar() 1126 ? CanonicalIV 1127 : Builder.CreateVectorSplat(VF.getKnownMinValue(), 1128 CanonicalIV, "broadcast"); 1129 for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part) { 1130 SmallVector<Constant *, 8> Indices; 1131 for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane) 1132 Indices.push_back( 1133 ConstantInt::get(STy, Part * VF.getKnownMinValue() + Lane)); 1134 // If VF == 1, there is only one iteration in the loop above, thus the 1135 // element pushed back into Indices is ConstantInt::get(STy, Part) 1136 Constant *VStep = 1137 VF.isScalar() ? Indices.back() : ConstantVector::get(Indices); 1138 // Add the consecutive indices to the vector value. 1139 Value *CanonicalVectorIV = Builder.CreateAdd(VStart, VStep, "vec.iv"); 1140 State.set(getVPSingleValue(), CanonicalVectorIV, Part); 1141 } 1142 } 1143 1144 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1145 void VPWidenCanonicalIVRecipe::print(raw_ostream &O, const Twine &Indent, 1146 VPSlotTracker &SlotTracker) const { 1147 O << Indent << "EMIT "; 1148 getVPValue()->printAsOperand(O, SlotTracker); 1149 O << " = WIDEN-CANONICAL-INDUCTION"; 1150 } 1151 #endif 1152 1153 template void DomTreeBuilder::Calculate<VPDominatorTree>(VPDominatorTree &DT); 1154 1155 void VPValue::replaceAllUsesWith(VPValue *New) { 1156 for (unsigned J = 0; J < getNumUsers();) { 1157 VPUser *User = Users[J]; 1158 unsigned NumUsers = getNumUsers(); 1159 for (unsigned I = 0, E = User->getNumOperands(); I < E; ++I) 1160 if (User->getOperand(I) == this) 1161 User->setOperand(I, New); 1162 // If a user got removed after updating the current user, the next user to 1163 // update will be moved to the current position, so we only need to 1164 // increment the index if the number of users did not change. 1165 if (NumUsers == getNumUsers()) 1166 J++; 1167 } 1168 } 1169 1170 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1171 void VPValue::printAsOperand(raw_ostream &OS, VPSlotTracker &Tracker) const { 1172 if (const Value *UV = getUnderlyingValue()) { 1173 OS << "ir<"; 1174 UV->printAsOperand(OS, false); 1175 OS << ">"; 1176 return; 1177 } 1178 1179 unsigned Slot = Tracker.getSlot(this); 1180 if (Slot == unsigned(-1)) 1181 OS << "<badref>"; 1182 else 1183 OS << "vp<%" << Tracker.getSlot(this) << ">"; 1184 } 1185 1186 void VPUser::printOperands(raw_ostream &O, VPSlotTracker &SlotTracker) const { 1187 interleaveComma(operands(), O, [&O, &SlotTracker](VPValue *Op) { 1188 Op->printAsOperand(O, SlotTracker); 1189 }); 1190 } 1191 #endif 1192 1193 void VPInterleavedAccessInfo::visitRegion(VPRegionBlock *Region, 1194 Old2NewTy &Old2New, 1195 InterleavedAccessInfo &IAI) { 1196 ReversePostOrderTraversal<VPBlockBase *> RPOT(Region->getEntry()); 1197 for (VPBlockBase *Base : RPOT) { 1198 visitBlock(Base, Old2New, IAI); 1199 } 1200 } 1201 1202 void VPInterleavedAccessInfo::visitBlock(VPBlockBase *Block, Old2NewTy &Old2New, 1203 InterleavedAccessInfo &IAI) { 1204 if (VPBasicBlock *VPBB = dyn_cast<VPBasicBlock>(Block)) { 1205 for (VPRecipeBase &VPI : *VPBB) { 1206 if (isa<VPWidenPHIRecipe>(&VPI)) 1207 continue; 1208 assert(isa<VPInstruction>(&VPI) && "Can only handle VPInstructions"); 1209 auto *VPInst = cast<VPInstruction>(&VPI); 1210 auto *Inst = cast<Instruction>(VPInst->getUnderlyingValue()); 1211 auto *IG = IAI.getInterleaveGroup(Inst); 1212 if (!IG) 1213 continue; 1214 1215 auto NewIGIter = Old2New.find(IG); 1216 if (NewIGIter == Old2New.end()) 1217 Old2New[IG] = new InterleaveGroup<VPInstruction>( 1218 IG->getFactor(), IG->isReverse(), IG->getAlign()); 1219 1220 if (Inst == IG->getInsertPos()) 1221 Old2New[IG]->setInsertPos(VPInst); 1222 1223 InterleaveGroupMap[VPInst] = Old2New[IG]; 1224 InterleaveGroupMap[VPInst]->insertMember( 1225 VPInst, IG->getIndex(Inst), 1226 Align(IG->isReverse() ? (-1) * int(IG->getFactor()) 1227 : IG->getFactor())); 1228 } 1229 } else if (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 1230 visitRegion(Region, Old2New, IAI); 1231 else 1232 llvm_unreachable("Unsupported kind of VPBlock."); 1233 } 1234 1235 VPInterleavedAccessInfo::VPInterleavedAccessInfo(VPlan &Plan, 1236 InterleavedAccessInfo &IAI) { 1237 Old2NewTy Old2New; 1238 visitRegion(cast<VPRegionBlock>(Plan.getEntry()), Old2New, IAI); 1239 } 1240 1241 void VPSlotTracker::assignSlot(const VPValue *V) { 1242 assert(Slots.find(V) == Slots.end() && "VPValue already has a slot!"); 1243 Slots[V] = NextSlot++; 1244 } 1245 1246 void VPSlotTracker::assignSlots(const VPlan &Plan) { 1247 1248 for (const VPValue *V : Plan.VPExternalDefs) 1249 assignSlot(V); 1250 1251 if (Plan.BackedgeTakenCount) 1252 assignSlot(Plan.BackedgeTakenCount); 1253 1254 ReversePostOrderTraversal< 1255 VPBlockRecursiveTraversalWrapper<const VPBlockBase *>> 1256 RPOT(VPBlockRecursiveTraversalWrapper<const VPBlockBase *>( 1257 Plan.getEntry())); 1258 for (const VPBasicBlock *VPBB : 1259 VPBlockUtils::blocksOnly<const VPBasicBlock>(RPOT)) 1260 for (const VPRecipeBase &Recipe : *VPBB) 1261 for (VPValue *Def : Recipe.definedValues()) 1262 assignSlot(Def); 1263 } 1264