1 //===- VPlan.cpp - Vectorizer Plan ----------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This is the LLVM vectorization plan. It represents a candidate for 11 /// vectorization, allowing to plan and optimize how to vectorize a given loop 12 /// before generating LLVM-IR. 13 /// The vectorizer uses vectorization plans to estimate the costs of potential 14 /// candidates and if profitable to execute the desired plan, generating vector 15 /// LLVM-IR code. 16 /// 17 //===----------------------------------------------------------------------===// 18 19 #include "VPlan.h" 20 #include "LoopVectorizationPlanner.h" 21 #include "VPlanCFG.h" 22 #include "VPlanPatternMatch.h" 23 #include "VPlanTransforms.h" 24 #include "VPlanUtils.h" 25 #include "llvm/ADT/PostOrderIterator.h" 26 #include "llvm/ADT/STLExtras.h" 27 #include "llvm/ADT/SmallVector.h" 28 #include "llvm/ADT/StringExtras.h" 29 #include "llvm/ADT/Twine.h" 30 #include "llvm/Analysis/DomTreeUpdater.h" 31 #include "llvm/Analysis/LoopInfo.h" 32 #include "llvm/IR/BasicBlock.h" 33 #include "llvm/IR/CFG.h" 34 #include "llvm/IR/IRBuilder.h" 35 #include "llvm/IR/Instruction.h" 36 #include "llvm/IR/Instructions.h" 37 #include "llvm/IR/Type.h" 38 #include "llvm/IR/Value.h" 39 #include "llvm/Support/Casting.h" 40 #include "llvm/Support/CommandLine.h" 41 #include "llvm/Support/Debug.h" 42 #include "llvm/Support/GraphWriter.h" 43 #include "llvm/Support/raw_ostream.h" 44 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 45 #include "llvm/Transforms/Utils/LoopVersioning.h" 46 #include <cassert> 47 #include <string> 48 49 using namespace llvm; 50 using namespace llvm::VPlanPatternMatch; 51 52 namespace llvm { 53 extern cl::opt<bool> EnableVPlanNativePath; 54 } 55 extern cl::opt<unsigned> ForceTargetInstructionCost; 56 57 static cl::opt<bool> PrintVPlansInDotFormat( 58 "vplan-print-in-dot-format", cl::Hidden, 59 cl::desc("Use dot format instead of plain text when dumping VPlans")); 60 61 #define DEBUG_TYPE "loop-vectorize" 62 63 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 64 raw_ostream &llvm::operator<<(raw_ostream &OS, const VPValue &V) { 65 const VPInstruction *Instr = dyn_cast<VPInstruction>(&V); 66 VPSlotTracker SlotTracker( 67 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr); 68 V.print(OS, SlotTracker); 69 return OS; 70 } 71 #endif 72 73 Value *VPLane::getAsRuntimeExpr(IRBuilderBase &Builder, 74 const ElementCount &VF) const { 75 switch (LaneKind) { 76 case VPLane::Kind::ScalableLast: 77 // Lane = RuntimeVF - VF.getKnownMinValue() + Lane 78 return Builder.CreateSub(getRuntimeVF(Builder, Builder.getInt32Ty(), VF), 79 Builder.getInt32(VF.getKnownMinValue() - Lane)); 80 case VPLane::Kind::First: 81 return Builder.getInt32(Lane); 82 } 83 llvm_unreachable("Unknown lane kind"); 84 } 85 86 VPValue::VPValue(const unsigned char SC, Value *UV, VPDef *Def) 87 : SubclassID(SC), UnderlyingVal(UV), Def(Def) { 88 if (Def) 89 Def->addDefinedValue(this); 90 } 91 92 VPValue::~VPValue() { 93 assert(Users.empty() && "trying to delete a VPValue with remaining users"); 94 if (Def) 95 Def->removeDefinedValue(this); 96 } 97 98 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 99 void VPValue::print(raw_ostream &OS, VPSlotTracker &SlotTracker) const { 100 if (const VPRecipeBase *R = dyn_cast_or_null<VPRecipeBase>(Def)) 101 R->print(OS, "", SlotTracker); 102 else 103 printAsOperand(OS, SlotTracker); 104 } 105 106 void VPValue::dump() const { 107 const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this->Def); 108 VPSlotTracker SlotTracker( 109 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr); 110 print(dbgs(), SlotTracker); 111 dbgs() << "\n"; 112 } 113 114 void VPDef::dump() const { 115 const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this); 116 VPSlotTracker SlotTracker( 117 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr); 118 print(dbgs(), "", SlotTracker); 119 dbgs() << "\n"; 120 } 121 #endif 122 123 VPRecipeBase *VPValue::getDefiningRecipe() { 124 return cast_or_null<VPRecipeBase>(Def); 125 } 126 127 const VPRecipeBase *VPValue::getDefiningRecipe() const { 128 return cast_or_null<VPRecipeBase>(Def); 129 } 130 131 // Get the top-most entry block of \p Start. This is the entry block of the 132 // containing VPlan. This function is templated to support both const and non-const blocks 133 template <typename T> static T *getPlanEntry(T *Start) { 134 T *Next = Start; 135 T *Current = Start; 136 while ((Next = Next->getParent())) 137 Current = Next; 138 139 SmallSetVector<T *, 8> WorkList; 140 WorkList.insert(Current); 141 142 for (unsigned i = 0; i < WorkList.size(); i++) { 143 T *Current = WorkList[i]; 144 if (Current->getNumPredecessors() == 0) 145 return Current; 146 auto &Predecessors = Current->getPredecessors(); 147 WorkList.insert(Predecessors.begin(), Predecessors.end()); 148 } 149 150 llvm_unreachable("VPlan without any entry node without predecessors"); 151 } 152 153 VPlan *VPBlockBase::getPlan() { return getPlanEntry(this)->Plan; } 154 155 const VPlan *VPBlockBase::getPlan() const { return getPlanEntry(this)->Plan; } 156 157 /// \return the VPBasicBlock that is the entry of Block, possibly indirectly. 158 const VPBasicBlock *VPBlockBase::getEntryBasicBlock() const { 159 const VPBlockBase *Block = this; 160 while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 161 Block = Region->getEntry(); 162 return cast<VPBasicBlock>(Block); 163 } 164 165 VPBasicBlock *VPBlockBase::getEntryBasicBlock() { 166 VPBlockBase *Block = this; 167 while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 168 Block = Region->getEntry(); 169 return cast<VPBasicBlock>(Block); 170 } 171 172 void VPBlockBase::setPlan(VPlan *ParentPlan) { 173 assert(ParentPlan->getEntry() == this && "Can only set plan on its entry."); 174 Plan = ParentPlan; 175 } 176 177 /// \return the VPBasicBlock that is the exit of Block, possibly indirectly. 178 const VPBasicBlock *VPBlockBase::getExitingBasicBlock() const { 179 const VPBlockBase *Block = this; 180 while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 181 Block = Region->getExiting(); 182 return cast<VPBasicBlock>(Block); 183 } 184 185 VPBasicBlock *VPBlockBase::getExitingBasicBlock() { 186 VPBlockBase *Block = this; 187 while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 188 Block = Region->getExiting(); 189 return cast<VPBasicBlock>(Block); 190 } 191 192 VPBlockBase *VPBlockBase::getEnclosingBlockWithSuccessors() { 193 if (!Successors.empty() || !Parent) 194 return this; 195 assert(Parent->getExiting() == this && 196 "Block w/o successors not the exiting block of its parent."); 197 return Parent->getEnclosingBlockWithSuccessors(); 198 } 199 200 VPBlockBase *VPBlockBase::getEnclosingBlockWithPredecessors() { 201 if (!Predecessors.empty() || !Parent) 202 return this; 203 assert(Parent->getEntry() == this && 204 "Block w/o predecessors not the entry of its parent."); 205 return Parent->getEnclosingBlockWithPredecessors(); 206 } 207 208 void VPBlockBase::deleteCFG(VPBlockBase *Entry) { 209 for (VPBlockBase *Block : to_vector(vp_depth_first_shallow(Entry))) 210 delete Block; 211 } 212 213 VPBasicBlock::iterator VPBasicBlock::getFirstNonPhi() { 214 iterator It = begin(); 215 while (It != end() && It->isPhi()) 216 It++; 217 return It; 218 } 219 220 VPTransformState::VPTransformState(const TargetTransformInfo *TTI, 221 ElementCount VF, unsigned UF, LoopInfo *LI, 222 DominatorTree *DT, IRBuilderBase &Builder, 223 InnerLoopVectorizer *ILV, VPlan *Plan, 224 Type *CanonicalIVTy) 225 : TTI(TTI), VF(VF), CFG(DT), LI(LI), Builder(Builder), ILV(ILV), Plan(Plan), 226 LVer(nullptr), TypeAnalysis(CanonicalIVTy) {} 227 228 Value *VPTransformState::get(VPValue *Def, const VPLane &Lane) { 229 if (Def->isLiveIn()) 230 return Def->getLiveInIRValue(); 231 232 if (hasScalarValue(Def, Lane)) 233 return Data.VPV2Scalars[Def][Lane.mapToCacheIndex(VF)]; 234 235 if (!Lane.isFirstLane() && vputils::isUniformAfterVectorization(Def) && 236 hasScalarValue(Def, VPLane::getFirstLane())) { 237 return Data.VPV2Scalars[Def][0]; 238 } 239 240 assert(hasVectorValue(Def)); 241 auto *VecPart = Data.VPV2Vector[Def]; 242 if (!VecPart->getType()->isVectorTy()) { 243 assert(Lane.isFirstLane() && "cannot get lane > 0 for scalar"); 244 return VecPart; 245 } 246 // TODO: Cache created scalar values. 247 Value *LaneV = Lane.getAsRuntimeExpr(Builder, VF); 248 auto *Extract = Builder.CreateExtractElement(VecPart, LaneV); 249 // set(Def, Extract, Instance); 250 return Extract; 251 } 252 253 Value *VPTransformState::get(VPValue *Def, bool NeedsScalar) { 254 if (NeedsScalar) { 255 assert((VF.isScalar() || Def->isLiveIn() || hasVectorValue(Def) || 256 !vputils::onlyFirstLaneUsed(Def) || 257 (hasScalarValue(Def, VPLane(0)) && 258 Data.VPV2Scalars[Def].size() == 1)) && 259 "Trying to access a single scalar per part but has multiple scalars " 260 "per part."); 261 return get(Def, VPLane(0)); 262 } 263 264 // If Values have been set for this Def return the one relevant for \p Part. 265 if (hasVectorValue(Def)) 266 return Data.VPV2Vector[Def]; 267 268 auto GetBroadcastInstrs = [this, Def](Value *V) { 269 bool SafeToHoist = Def->isDefinedOutsideLoopRegions(); 270 if (VF.isScalar()) 271 return V; 272 // Place the code for broadcasting invariant variables in the new preheader. 273 IRBuilder<>::InsertPointGuard Guard(Builder); 274 if (SafeToHoist) { 275 BasicBlock *LoopVectorPreHeader = 276 CFG.VPBB2IRBB[Plan->getVectorPreheader()]; 277 if (LoopVectorPreHeader) 278 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 279 } 280 281 // Place the code for broadcasting invariant variables in the new preheader. 282 // Broadcast the scalar into all locations in the vector. 283 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 284 285 return Shuf; 286 }; 287 288 if (!hasScalarValue(Def, {0})) { 289 assert(Def->isLiveIn() && "expected a live-in"); 290 Value *IRV = Def->getLiveInIRValue(); 291 Value *B = GetBroadcastInstrs(IRV); 292 set(Def, B); 293 return B; 294 } 295 296 Value *ScalarValue = get(Def, VPLane(0)); 297 // If we aren't vectorizing, we can just copy the scalar map values over 298 // to the vector map. 299 if (VF.isScalar()) { 300 set(Def, ScalarValue); 301 return ScalarValue; 302 } 303 304 bool IsUniform = vputils::isUniformAfterVectorization(Def); 305 306 VPLane LastLane(IsUniform ? 0 : VF.getKnownMinValue() - 1); 307 // Check if there is a scalar value for the selected lane. 308 if (!hasScalarValue(Def, LastLane)) { 309 // At the moment, VPWidenIntOrFpInductionRecipes, VPScalarIVStepsRecipes and 310 // VPExpandSCEVRecipes can also be uniform. 311 assert((isa<VPWidenIntOrFpInductionRecipe, VPScalarIVStepsRecipe, 312 VPExpandSCEVRecipe>(Def->getDefiningRecipe())) && 313 "unexpected recipe found to be invariant"); 314 IsUniform = true; 315 LastLane = 0; 316 } 317 318 auto *LastInst = cast<Instruction>(get(Def, LastLane)); 319 // Set the insert point after the last scalarized instruction or after the 320 // last PHI, if LastInst is a PHI. This ensures the insertelement sequence 321 // will directly follow the scalar definitions. 322 auto OldIP = Builder.saveIP(); 323 auto NewIP = 324 isa<PHINode>(LastInst) 325 ? BasicBlock::iterator(LastInst->getParent()->getFirstNonPHI()) 326 : std::next(BasicBlock::iterator(LastInst)); 327 Builder.SetInsertPoint(&*NewIP); 328 329 // However, if we are vectorizing, we need to construct the vector values. 330 // If the value is known to be uniform after vectorization, we can just 331 // broadcast the scalar value corresponding to lane zero. Otherwise, we 332 // construct the vector values using insertelement instructions. Since the 333 // resulting vectors are stored in State, we will only generate the 334 // insertelements once. 335 Value *VectorValue = nullptr; 336 if (IsUniform) { 337 VectorValue = GetBroadcastInstrs(ScalarValue); 338 set(Def, VectorValue); 339 } else { 340 // Initialize packing with insertelements to start from undef. 341 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 342 Value *Undef = PoisonValue::get(VectorType::get(LastInst->getType(), VF)); 343 set(Def, Undef); 344 for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane) 345 packScalarIntoVectorValue(Def, Lane); 346 VectorValue = get(Def); 347 } 348 Builder.restoreIP(OldIP); 349 return VectorValue; 350 } 351 352 BasicBlock *VPTransformState::CFGState::getPreheaderBBFor(VPRecipeBase *R) { 353 VPRegionBlock *LoopRegion = R->getParent()->getEnclosingLoopRegion(); 354 return VPBB2IRBB[LoopRegion->getPreheaderVPBB()]; 355 } 356 357 void VPTransformState::addNewMetadata(Instruction *To, 358 const Instruction *Orig) { 359 // If the loop was versioned with memchecks, add the corresponding no-alias 360 // metadata. 361 if (LVer && isa<LoadInst, StoreInst>(Orig)) 362 LVer->annotateInstWithNoAlias(To, Orig); 363 } 364 365 void VPTransformState::addMetadata(Value *To, Instruction *From) { 366 // No source instruction to transfer metadata from? 367 if (!From) 368 return; 369 370 if (Instruction *ToI = dyn_cast<Instruction>(To)) { 371 propagateMetadata(ToI, From); 372 addNewMetadata(ToI, From); 373 } 374 } 375 376 void VPTransformState::setDebugLocFrom(DebugLoc DL) { 377 const DILocation *DIL = DL; 378 // When a FSDiscriminator is enabled, we don't need to add the multiply 379 // factors to the discriminators. 380 if (DIL && 381 Builder.GetInsertBlock() 382 ->getParent() 383 ->shouldEmitDebugInfoForProfiling() && 384 !EnableFSDiscriminator) { 385 // FIXME: For scalable vectors, assume vscale=1. 386 unsigned UF = Plan->getUF(); 387 auto NewDIL = 388 DIL->cloneByMultiplyingDuplicationFactor(UF * VF.getKnownMinValue()); 389 if (NewDIL) 390 Builder.SetCurrentDebugLocation(*NewDIL); 391 else 392 LLVM_DEBUG(dbgs() << "Failed to create new discriminator: " 393 << DIL->getFilename() << " Line: " << DIL->getLine()); 394 } else 395 Builder.SetCurrentDebugLocation(DIL); 396 } 397 398 void VPTransformState::packScalarIntoVectorValue(VPValue *Def, 399 const VPLane &Lane) { 400 Value *ScalarInst = get(Def, Lane); 401 Value *VectorValue = get(Def); 402 VectorValue = Builder.CreateInsertElement(VectorValue, ScalarInst, 403 Lane.getAsRuntimeExpr(Builder, VF)); 404 set(Def, VectorValue); 405 } 406 407 BasicBlock * 408 VPBasicBlock::createEmptyBasicBlock(VPTransformState::CFGState &CFG) { 409 // BB stands for IR BasicBlocks. VPBB stands for VPlan VPBasicBlocks. 410 // Pred stands for Predessor. Prev stands for Previous - last visited/created. 411 BasicBlock *PrevBB = CFG.PrevBB; 412 BasicBlock *NewBB = BasicBlock::Create(PrevBB->getContext(), getName(), 413 PrevBB->getParent(), CFG.ExitBB); 414 LLVM_DEBUG(dbgs() << "LV: created " << NewBB->getName() << '\n'); 415 416 return NewBB; 417 } 418 419 void VPBasicBlock::connectToPredecessors(VPTransformState::CFGState &CFG) { 420 BasicBlock *NewBB = CFG.VPBB2IRBB[this]; 421 // Hook up the new basic block to its predecessors. 422 for (VPBlockBase *PredVPBlock : getHierarchicalPredecessors()) { 423 VPBasicBlock *PredVPBB = PredVPBlock->getExitingBasicBlock(); 424 auto &PredVPSuccessors = PredVPBB->getHierarchicalSuccessors(); 425 BasicBlock *PredBB = CFG.VPBB2IRBB[PredVPBB]; 426 427 assert(PredBB && "Predecessor basic-block not found building successor."); 428 auto *PredBBTerminator = PredBB->getTerminator(); 429 LLVM_DEBUG(dbgs() << "LV: draw edge from" << PredBB->getName() << '\n'); 430 431 auto *TermBr = dyn_cast<BranchInst>(PredBBTerminator); 432 if (isa<UnreachableInst>(PredBBTerminator)) { 433 assert(PredVPSuccessors.size() == 1 && 434 "Predecessor ending w/o branch must have single successor."); 435 DebugLoc DL = PredBBTerminator->getDebugLoc(); 436 PredBBTerminator->eraseFromParent(); 437 auto *Br = BranchInst::Create(NewBB, PredBB); 438 Br->setDebugLoc(DL); 439 } else if (TermBr && !TermBr->isConditional()) { 440 TermBr->setSuccessor(0, NewBB); 441 } else { 442 // Set each forward successor here when it is created, excluding 443 // backedges. A backward successor is set when the branch is created. 444 unsigned idx = PredVPSuccessors.front() == this ? 0 : 1; 445 assert( 446 (!TermBr->getSuccessor(idx) || 447 (isa<VPIRBasicBlock>(this) && TermBr->getSuccessor(idx) == NewBB)) && 448 "Trying to reset an existing successor block."); 449 TermBr->setSuccessor(idx, NewBB); 450 } 451 CFG.DTU.applyUpdates({{DominatorTree::Insert, PredBB, NewBB}}); 452 } 453 } 454 455 void VPIRBasicBlock::execute(VPTransformState *State) { 456 assert(getHierarchicalSuccessors().size() <= 2 && 457 "VPIRBasicBlock can have at most two successors at the moment!"); 458 State->Builder.SetInsertPoint(IRBB->getTerminator()); 459 State->CFG.PrevBB = IRBB; 460 State->CFG.VPBB2IRBB[this] = IRBB; 461 executeRecipes(State, IRBB); 462 // Create a branch instruction to terminate IRBB if one was not created yet 463 // and is needed. 464 if (getSingleSuccessor() && isa<UnreachableInst>(IRBB->getTerminator())) { 465 auto *Br = State->Builder.CreateBr(IRBB); 466 Br->setOperand(0, nullptr); 467 IRBB->getTerminator()->eraseFromParent(); 468 } else { 469 assert( 470 (getNumSuccessors() == 0 || isa<BranchInst>(IRBB->getTerminator())) && 471 "other blocks must be terminated by a branch"); 472 } 473 474 connectToPredecessors(State->CFG); 475 } 476 477 void VPBasicBlock::execute(VPTransformState *State) { 478 bool Replica = bool(State->Lane); 479 BasicBlock *NewBB = State->CFG.PrevBB; // Reuse it if possible. 480 481 auto IsReplicateRegion = [](VPBlockBase *BB) { 482 auto *R = dyn_cast_or_null<VPRegionBlock>(BB); 483 return R && R->isReplicator(); 484 }; 485 486 // 1. Create an IR basic block. 487 if (this == getPlan()->getVectorPreheader() || 488 (Replica && this == getParent()->getEntry()) || 489 IsReplicateRegion(getSingleHierarchicalPredecessor())) { 490 // Reuse the previous basic block if the current VPBB is either 491 // * the vector preheader, 492 // * the entry to a replicate region, or 493 // * the exit of a replicate region. 494 State->CFG.VPBB2IRBB[this] = NewBB; 495 } else { 496 NewBB = createEmptyBasicBlock(State->CFG); 497 498 State->Builder.SetInsertPoint(NewBB); 499 // Temporarily terminate with unreachable until CFG is rewired. 500 UnreachableInst *Terminator = State->Builder.CreateUnreachable(); 501 // Register NewBB in its loop. In innermost loops its the same for all 502 // BB's. 503 if (State->CurrentVectorLoop) 504 State->CurrentVectorLoop->addBasicBlockToLoop(NewBB, *State->LI); 505 State->Builder.SetInsertPoint(Terminator); 506 507 State->CFG.PrevBB = NewBB; 508 State->CFG.VPBB2IRBB[this] = NewBB; 509 connectToPredecessors(State->CFG); 510 } 511 512 // 2. Fill the IR basic block with IR instructions. 513 executeRecipes(State, NewBB); 514 } 515 516 void VPBasicBlock::dropAllReferences(VPValue *NewValue) { 517 for (VPRecipeBase &R : Recipes) { 518 for (auto *Def : R.definedValues()) 519 Def->replaceAllUsesWith(NewValue); 520 521 for (unsigned I = 0, E = R.getNumOperands(); I != E; I++) 522 R.setOperand(I, NewValue); 523 } 524 } 525 526 void VPBasicBlock::executeRecipes(VPTransformState *State, BasicBlock *BB) { 527 LLVM_DEBUG(dbgs() << "LV: vectorizing VPBB:" << getName() 528 << " in BB:" << BB->getName() << '\n'); 529 530 State->CFG.PrevVPBB = this; 531 532 for (VPRecipeBase &Recipe : Recipes) 533 Recipe.execute(*State); 534 535 LLVM_DEBUG(dbgs() << "LV: filled BB:" << *BB); 536 } 537 538 VPBasicBlock *VPBasicBlock::splitAt(iterator SplitAt) { 539 assert((SplitAt == end() || SplitAt->getParent() == this) && 540 "can only split at a position in the same block"); 541 542 SmallVector<VPBlockBase *, 2> Succs(successors()); 543 // Create new empty block after the block to split. 544 auto *SplitBlock = new VPBasicBlock(getName() + ".split"); 545 VPBlockUtils::insertBlockAfter(SplitBlock, this); 546 547 // Finally, move the recipes starting at SplitAt to new block. 548 for (VPRecipeBase &ToMove : 549 make_early_inc_range(make_range(SplitAt, this->end()))) 550 ToMove.moveBefore(*SplitBlock, SplitBlock->end()); 551 552 return SplitBlock; 553 } 554 555 /// Return the enclosing loop region for region \p P. The templated version is 556 /// used to support both const and non-const block arguments. 557 template <typename T> static T *getEnclosingLoopRegionForRegion(T *P) { 558 if (P && P->isReplicator()) { 559 P = P->getParent(); 560 assert(!cast<VPRegionBlock>(P)->isReplicator() && 561 "unexpected nested replicate regions"); 562 } 563 return P; 564 } 565 566 VPRegionBlock *VPBasicBlock::getEnclosingLoopRegion() { 567 return getEnclosingLoopRegionForRegion(getParent()); 568 } 569 570 const VPRegionBlock *VPBasicBlock::getEnclosingLoopRegion() const { 571 return getEnclosingLoopRegionForRegion(getParent()); 572 } 573 574 static bool hasConditionalTerminator(const VPBasicBlock *VPBB) { 575 if (VPBB->empty()) { 576 assert( 577 VPBB->getNumSuccessors() < 2 && 578 "block with multiple successors doesn't have a recipe as terminator"); 579 return false; 580 } 581 582 const VPRecipeBase *R = &VPBB->back(); 583 bool IsCondBranch = isa<VPBranchOnMaskRecipe>(R) || 584 match(R, m_BranchOnCond(m_VPValue())) || 585 match(R, m_BranchOnCount(m_VPValue(), m_VPValue())); 586 (void)IsCondBranch; 587 588 if (VPBB->getNumSuccessors() >= 2 || 589 (VPBB->isExiting() && !VPBB->getParent()->isReplicator())) { 590 assert(IsCondBranch && "block with multiple successors not terminated by " 591 "conditional branch recipe"); 592 593 return true; 594 } 595 596 assert( 597 !IsCondBranch && 598 "block with 0 or 1 successors terminated by conditional branch recipe"); 599 return false; 600 } 601 602 VPRecipeBase *VPBasicBlock::getTerminator() { 603 if (hasConditionalTerminator(this)) 604 return &back(); 605 return nullptr; 606 } 607 608 const VPRecipeBase *VPBasicBlock::getTerminator() const { 609 if (hasConditionalTerminator(this)) 610 return &back(); 611 return nullptr; 612 } 613 614 bool VPBasicBlock::isExiting() const { 615 return getParent() && getParent()->getExitingBasicBlock() == this; 616 } 617 618 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 619 void VPBlockBase::printSuccessors(raw_ostream &O, const Twine &Indent) const { 620 if (getSuccessors().empty()) { 621 O << Indent << "No successors\n"; 622 } else { 623 O << Indent << "Successor(s): "; 624 ListSeparator LS; 625 for (auto *Succ : getSuccessors()) 626 O << LS << Succ->getName(); 627 O << '\n'; 628 } 629 } 630 631 void VPBasicBlock::print(raw_ostream &O, const Twine &Indent, 632 VPSlotTracker &SlotTracker) const { 633 O << Indent << getName() << ":\n"; 634 635 auto RecipeIndent = Indent + " "; 636 for (const VPRecipeBase &Recipe : *this) { 637 Recipe.print(O, RecipeIndent, SlotTracker); 638 O << '\n'; 639 } 640 641 printSuccessors(O, Indent); 642 } 643 #endif 644 645 static std::pair<VPBlockBase *, VPBlockBase *> cloneFrom(VPBlockBase *Entry); 646 647 // Clone the CFG for all nodes reachable from \p Entry, this includes cloning 648 // the blocks and their recipes. Operands of cloned recipes will NOT be updated. 649 // Remapping of operands must be done separately. Returns a pair with the new 650 // entry and exiting blocks of the cloned region. If \p Entry isn't part of a 651 // region, return nullptr for the exiting block. 652 static std::pair<VPBlockBase *, VPBlockBase *> cloneFrom(VPBlockBase *Entry) { 653 DenseMap<VPBlockBase *, VPBlockBase *> Old2NewVPBlocks; 654 VPBlockBase *Exiting = nullptr; 655 bool InRegion = Entry->getParent(); 656 // First, clone blocks reachable from Entry. 657 for (VPBlockBase *BB : vp_depth_first_shallow(Entry)) { 658 VPBlockBase *NewBB = BB->clone(); 659 Old2NewVPBlocks[BB] = NewBB; 660 if (InRegion && BB->getNumSuccessors() == 0) { 661 assert(!Exiting && "Multiple exiting blocks?"); 662 Exiting = BB; 663 } 664 } 665 assert((!InRegion || Exiting) && "regions must have a single exiting block"); 666 667 // Second, update the predecessors & successors of the cloned blocks. 668 for (VPBlockBase *BB : vp_depth_first_shallow(Entry)) { 669 VPBlockBase *NewBB = Old2NewVPBlocks[BB]; 670 SmallVector<VPBlockBase *> NewPreds; 671 for (VPBlockBase *Pred : BB->getPredecessors()) { 672 NewPreds.push_back(Old2NewVPBlocks[Pred]); 673 } 674 NewBB->setPredecessors(NewPreds); 675 SmallVector<VPBlockBase *> NewSuccs; 676 for (VPBlockBase *Succ : BB->successors()) { 677 NewSuccs.push_back(Old2NewVPBlocks[Succ]); 678 } 679 NewBB->setSuccessors(NewSuccs); 680 } 681 682 #if !defined(NDEBUG) 683 // Verify that the order of predecessors and successors matches in the cloned 684 // version. 685 for (const auto &[OldBB, NewBB] : 686 zip(vp_depth_first_shallow(Entry), 687 vp_depth_first_shallow(Old2NewVPBlocks[Entry]))) { 688 for (const auto &[OldPred, NewPred] : 689 zip(OldBB->getPredecessors(), NewBB->getPredecessors())) 690 assert(NewPred == Old2NewVPBlocks[OldPred] && "Different predecessors"); 691 692 for (const auto &[OldSucc, NewSucc] : 693 zip(OldBB->successors(), NewBB->successors())) 694 assert(NewSucc == Old2NewVPBlocks[OldSucc] && "Different successors"); 695 } 696 #endif 697 698 return std::make_pair(Old2NewVPBlocks[Entry], 699 Exiting ? Old2NewVPBlocks[Exiting] : nullptr); 700 } 701 702 VPRegionBlock *VPRegionBlock::clone() { 703 const auto &[NewEntry, NewExiting] = cloneFrom(getEntry()); 704 auto *NewRegion = 705 new VPRegionBlock(NewEntry, NewExiting, getName(), isReplicator()); 706 for (VPBlockBase *Block : vp_depth_first_shallow(NewEntry)) 707 Block->setParent(NewRegion); 708 return NewRegion; 709 } 710 711 void VPRegionBlock::dropAllReferences(VPValue *NewValue) { 712 for (VPBlockBase *Block : vp_depth_first_shallow(Entry)) 713 // Drop all references in VPBasicBlocks and replace all uses with 714 // DummyValue. 715 Block->dropAllReferences(NewValue); 716 } 717 718 void VPRegionBlock::execute(VPTransformState *State) { 719 ReversePostOrderTraversal<VPBlockShallowTraversalWrapper<VPBlockBase *>> 720 RPOT(Entry); 721 722 if (!isReplicator()) { 723 // Create and register the new vector loop. 724 Loop *PrevLoop = State->CurrentVectorLoop; 725 State->CurrentVectorLoop = State->LI->AllocateLoop(); 726 BasicBlock *VectorPH = State->CFG.VPBB2IRBB[getPreheaderVPBB()]; 727 Loop *ParentLoop = State->LI->getLoopFor(VectorPH); 728 729 // Insert the new loop into the loop nest and register the new basic blocks 730 // before calling any utilities such as SCEV that require valid LoopInfo. 731 if (ParentLoop) 732 ParentLoop->addChildLoop(State->CurrentVectorLoop); 733 else 734 State->LI->addTopLevelLoop(State->CurrentVectorLoop); 735 736 // Visit the VPBlocks connected to "this", starting from it. 737 for (VPBlockBase *Block : RPOT) { 738 LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n'); 739 Block->execute(State); 740 } 741 742 State->CurrentVectorLoop = PrevLoop; 743 return; 744 } 745 746 assert(!State->Lane && "Replicating a Region with non-null instance."); 747 748 // Enter replicating mode. 749 assert(!State->VF.isScalable() && "VF is assumed to be non scalable."); 750 State->Lane = VPLane(0); 751 for (unsigned Lane = 0, VF = State->VF.getKnownMinValue(); Lane < VF; 752 ++Lane) { 753 State->Lane = VPLane(Lane, VPLane::Kind::First); 754 // Visit the VPBlocks connected to \p this, starting from it. 755 for (VPBlockBase *Block : RPOT) { 756 LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n'); 757 Block->execute(State); 758 } 759 } 760 761 // Exit replicating mode. 762 State->Lane.reset(); 763 } 764 765 InstructionCost VPBasicBlock::cost(ElementCount VF, VPCostContext &Ctx) { 766 InstructionCost Cost = 0; 767 for (VPRecipeBase &R : Recipes) 768 Cost += R.cost(VF, Ctx); 769 return Cost; 770 } 771 772 InstructionCost VPRegionBlock::cost(ElementCount VF, VPCostContext &Ctx) { 773 if (!isReplicator()) { 774 InstructionCost Cost = 0; 775 for (VPBlockBase *Block : vp_depth_first_shallow(getEntry())) 776 Cost += Block->cost(VF, Ctx); 777 InstructionCost BackedgeCost = 778 ForceTargetInstructionCost.getNumOccurrences() 779 ? InstructionCost(ForceTargetInstructionCost.getNumOccurrences()) 780 : Ctx.TTI.getCFInstrCost(Instruction::Br, TTI::TCK_RecipThroughput); 781 LLVM_DEBUG(dbgs() << "Cost of " << BackedgeCost << " for VF " << VF 782 << ": vector loop backedge\n"); 783 Cost += BackedgeCost; 784 return Cost; 785 } 786 787 // Compute the cost of a replicate region. Replicating isn't supported for 788 // scalable vectors, return an invalid cost for them. 789 // TODO: Discard scalable VPlans with replicate recipes earlier after 790 // construction. 791 if (VF.isScalable()) 792 return InstructionCost::getInvalid(); 793 794 // First compute the cost of the conditionally executed recipes, followed by 795 // account for the branching cost, except if the mask is a header mask or 796 // uniform condition. 797 using namespace llvm::VPlanPatternMatch; 798 VPBasicBlock *Then = cast<VPBasicBlock>(getEntry()->getSuccessors()[0]); 799 InstructionCost ThenCost = Then->cost(VF, Ctx); 800 801 // For the scalar case, we may not always execute the original predicated 802 // block, Thus, scale the block's cost by the probability of executing it. 803 if (VF.isScalar()) 804 return ThenCost / getReciprocalPredBlockProb(); 805 806 return ThenCost; 807 } 808 809 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 810 void VPRegionBlock::print(raw_ostream &O, const Twine &Indent, 811 VPSlotTracker &SlotTracker) const { 812 O << Indent << (isReplicator() ? "<xVFxUF> " : "<x1> ") << getName() << ": {"; 813 auto NewIndent = Indent + " "; 814 for (auto *BlockBase : vp_depth_first_shallow(Entry)) { 815 O << '\n'; 816 BlockBase->print(O, NewIndent, SlotTracker); 817 } 818 O << Indent << "}\n"; 819 820 printSuccessors(O, Indent); 821 } 822 #endif 823 824 VPlan::VPlan(VPBasicBlock *OriginalPreheader, VPValue *TC, 825 VPBasicBlock *EntryVectorPreHeader, VPIRBasicBlock *ScalarHeader) 826 : VPlan(OriginalPreheader, TC, ScalarHeader) { 827 VPBlockUtils::connectBlocks(OriginalPreheader, EntryVectorPreHeader); 828 } 829 830 VPlan::VPlan(VPBasicBlock *OriginalPreheader, 831 VPBasicBlock *EntryVectorPreHeader, VPIRBasicBlock *ScalarHeader) 832 : VPlan(OriginalPreheader, ScalarHeader) { 833 VPBlockUtils::connectBlocks(OriginalPreheader, EntryVectorPreHeader); 834 } 835 836 VPlan::~VPlan() { 837 if (Entry) { 838 VPValue DummyValue; 839 for (VPBlockBase *Block : vp_depth_first_shallow(Entry)) 840 Block->dropAllReferences(&DummyValue); 841 842 VPBlockBase::deleteCFG(Entry); 843 } 844 for (VPValue *VPV : VPLiveInsToFree) 845 delete VPV; 846 if (BackedgeTakenCount) 847 delete BackedgeTakenCount; 848 } 849 850 VPIRBasicBlock *VPIRBasicBlock::fromBasicBlock(BasicBlock *IRBB) { 851 auto *VPIRBB = new VPIRBasicBlock(IRBB); 852 for (Instruction &I : 853 make_range(IRBB->begin(), IRBB->getTerminator()->getIterator())) 854 VPIRBB->appendRecipe(new VPIRInstruction(I)); 855 return VPIRBB; 856 } 857 858 VPlanPtr VPlan::createInitialVPlan(Type *InductionTy, 859 PredicatedScalarEvolution &PSE, 860 bool RequiresScalarEpilogueCheck, 861 bool TailFolded, Loop *TheLoop) { 862 VPIRBasicBlock *Entry = 863 VPIRBasicBlock::fromBasicBlock(TheLoop->getLoopPreheader()); 864 VPBasicBlock *VecPreheader = new VPBasicBlock("vector.ph"); 865 // Connect entry only to vector preheader initially. Entry will also be 866 // connected to the scalar preheader later, during skeleton creation when 867 // runtime guards are added as needed. Note that when executing the VPlan for 868 // an epilogue vector loop, the original entry block here will be replaced by 869 // a new VPIRBasicBlock wrapping the entry to the epilogue vector loop after 870 // generating code for the main vector loop. 871 VPBlockUtils::connectBlocks(Entry, VecPreheader); 872 VPIRBasicBlock *ScalarHeader = 873 VPIRBasicBlock::fromBasicBlock(TheLoop->getHeader()); 874 auto Plan = std::make_unique<VPlan>(Entry, ScalarHeader); 875 876 // Create SCEV and VPValue for the trip count. 877 // We use the symbolic max backedge-taken-count, which works also when 878 // vectorizing loops with uncountable early exits. 879 const SCEV *BackedgeTakenCountSCEV = PSE.getSymbolicMaxBackedgeTakenCount(); 880 assert(!isa<SCEVCouldNotCompute>(BackedgeTakenCountSCEV) && 881 "Invalid loop count"); 882 ScalarEvolution &SE = *PSE.getSE(); 883 const SCEV *TripCount = SE.getTripCountFromExitCount(BackedgeTakenCountSCEV, 884 InductionTy, TheLoop); 885 Plan->TripCount = 886 vputils::getOrCreateVPValueForSCEVExpr(*Plan, TripCount, SE); 887 888 // Create VPRegionBlock, with empty header and latch blocks, to be filled 889 // during processing later. 890 VPBasicBlock *HeaderVPBB = new VPBasicBlock("vector.body"); 891 VPBasicBlock *LatchVPBB = new VPBasicBlock("vector.latch"); 892 VPBlockUtils::insertBlockAfter(LatchVPBB, HeaderVPBB); 893 auto *TopRegion = new VPRegionBlock(HeaderVPBB, LatchVPBB, "vector loop", 894 false /*isReplicator*/); 895 896 VPBlockUtils::insertBlockAfter(TopRegion, VecPreheader); 897 VPBasicBlock *MiddleVPBB = new VPBasicBlock("middle.block"); 898 VPBlockUtils::insertBlockAfter(MiddleVPBB, TopRegion); 899 900 VPBasicBlock *ScalarPH = new VPBasicBlock("scalar.ph"); 901 VPBlockUtils::connectBlocks(ScalarPH, ScalarHeader); 902 if (!RequiresScalarEpilogueCheck) { 903 VPBlockUtils::connectBlocks(MiddleVPBB, ScalarPH); 904 return Plan; 905 } 906 907 // If needed, add a check in the middle block to see if we have completed 908 // all of the iterations in the first vector loop. Three cases: 909 // 1) If (N - N%VF) == N, then we *don't* need to run the remainder. 910 // Thus if tail is to be folded, we know we don't need to run the 911 // remainder and we can set the condition to true. 912 // 2) If we require a scalar epilogue, there is no conditional branch as 913 // we unconditionally branch to the scalar preheader. Do nothing. 914 // 3) Otherwise, construct a runtime check. 915 BasicBlock *IRExitBlock = TheLoop->getUniqueLatchExitBlock(); 916 auto *VPExitBlock = VPIRBasicBlock::fromBasicBlock(IRExitBlock); 917 // The connection order corresponds to the operands of the conditional branch. 918 VPBlockUtils::insertBlockAfter(VPExitBlock, MiddleVPBB); 919 VPBlockUtils::connectBlocks(MiddleVPBB, ScalarPH); 920 921 auto *ScalarLatchTerm = TheLoop->getLoopLatch()->getTerminator(); 922 // Here we use the same DebugLoc as the scalar loop latch terminator instead 923 // of the corresponding compare because they may have ended up with 924 // different line numbers and we want to avoid awkward line stepping while 925 // debugging. Eg. if the compare has got a line number inside the loop. 926 VPBuilder Builder(MiddleVPBB); 927 VPValue *Cmp = 928 TailFolded 929 ? Plan->getOrAddLiveIn(ConstantInt::getTrue( 930 IntegerType::getInt1Ty(TripCount->getType()->getContext()))) 931 : Builder.createICmp(CmpInst::ICMP_EQ, Plan->getTripCount(), 932 &Plan->getVectorTripCount(), 933 ScalarLatchTerm->getDebugLoc(), "cmp.n"); 934 Builder.createNaryOp(VPInstruction::BranchOnCond, {Cmp}, 935 ScalarLatchTerm->getDebugLoc()); 936 return Plan; 937 } 938 939 void VPlan::prepareToExecute(Value *TripCountV, Value *VectorTripCountV, 940 VPTransformState &State) { 941 Type *TCTy = TripCountV->getType(); 942 // Check if the backedge taken count is needed, and if so build it. 943 if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) { 944 IRBuilder<> Builder(State.CFG.PrevBB->getTerminator()); 945 auto *TCMO = Builder.CreateSub(TripCountV, ConstantInt::get(TCTy, 1), 946 "trip.count.minus.1"); 947 BackedgeTakenCount->setUnderlyingValue(TCMO); 948 } 949 950 VectorTripCount.setUnderlyingValue(VectorTripCountV); 951 952 IRBuilder<> Builder(State.CFG.PrevBB->getTerminator()); 953 // FIXME: Model VF * UF computation completely in VPlan. 954 assert(VFxUF.getNumUsers() && "VFxUF expected to always have users"); 955 unsigned UF = getUF(); 956 if (VF.getNumUsers()) { 957 Value *RuntimeVF = getRuntimeVF(Builder, TCTy, State.VF); 958 VF.setUnderlyingValue(RuntimeVF); 959 VFxUF.setUnderlyingValue( 960 UF > 1 ? Builder.CreateMul(RuntimeVF, ConstantInt::get(TCTy, UF)) 961 : RuntimeVF); 962 } else { 963 VFxUF.setUnderlyingValue(createStepForVF(Builder, TCTy, State.VF, UF)); 964 } 965 } 966 967 /// Replace \p VPBB with a VPIRBasicBlock wrapping \p IRBB. All recipes from \p 968 /// VPBB are moved to the end of the newly created VPIRBasicBlock. VPBB must 969 /// have a single predecessor, which is rewired to the new VPIRBasicBlock. All 970 /// successors of VPBB, if any, are rewired to the new VPIRBasicBlock. 971 static void replaceVPBBWithIRVPBB(VPBasicBlock *VPBB, BasicBlock *IRBB) { 972 VPIRBasicBlock *IRVPBB = VPIRBasicBlock::fromBasicBlock(IRBB); 973 for (auto &R : make_early_inc_range(*VPBB)) { 974 assert(!R.isPhi() && "Tried to move phi recipe to end of block"); 975 R.moveBefore(*IRVPBB, IRVPBB->end()); 976 } 977 978 VPBlockUtils::reassociateBlocks(VPBB, IRVPBB); 979 980 delete VPBB; 981 } 982 983 /// Generate the code inside the preheader and body of the vectorized loop. 984 /// Assumes a single pre-header basic-block was created for this. Introduce 985 /// additional basic-blocks as needed, and fill them all. 986 void VPlan::execute(VPTransformState *State) { 987 // Initialize CFG state. 988 State->CFG.PrevVPBB = nullptr; 989 State->CFG.ExitBB = State->CFG.PrevBB->getSingleSuccessor(); 990 BasicBlock *VectorPreHeader = State->CFG.PrevBB; 991 State->Builder.SetInsertPoint(VectorPreHeader->getTerminator()); 992 993 // Disconnect VectorPreHeader from ExitBB in both the CFG and DT. 994 cast<BranchInst>(VectorPreHeader->getTerminator())->setSuccessor(0, nullptr); 995 State->CFG.DTU.applyUpdates( 996 {{DominatorTree::Delete, VectorPreHeader, State->CFG.ExitBB}}); 997 998 // Replace regular VPBB's for the vector preheader, middle and scalar 999 // preheader blocks with VPIRBasicBlocks wrapping their IR blocks. The IR 1000 // blocks are created during skeleton creation, so we can only create the 1001 // VPIRBasicBlocks now during VPlan execution rather than earlier during VPlan 1002 // construction. 1003 BasicBlock *MiddleBB = State->CFG.ExitBB; 1004 BasicBlock *ScalarPh = MiddleBB->getSingleSuccessor(); 1005 replaceVPBBWithIRVPBB(getVectorPreheader(), VectorPreHeader); 1006 replaceVPBBWithIRVPBB(getMiddleBlock(), MiddleBB); 1007 replaceVPBBWithIRVPBB(getScalarPreheader(), ScalarPh); 1008 1009 LLVM_DEBUG(dbgs() << "Executing best plan with VF=" << State->VF 1010 << ", UF=" << getUF() << '\n'); 1011 setName("Final VPlan"); 1012 LLVM_DEBUG(dump()); 1013 1014 LLVM_DEBUG(dbgs() << "Executing best plan with VF=" << State->VF 1015 << ", UF=" << getUF() << '\n'); 1016 setName("Final VPlan"); 1017 LLVM_DEBUG(dump()); 1018 1019 // Disconnect the middle block from its single successor (the scalar loop 1020 // header) in both the CFG and DT. The branch will be recreated during VPlan 1021 // execution. 1022 auto *BrInst = new UnreachableInst(MiddleBB->getContext()); 1023 BrInst->insertBefore(MiddleBB->getTerminator()); 1024 MiddleBB->getTerminator()->eraseFromParent(); 1025 State->CFG.DTU.applyUpdates({{DominatorTree::Delete, MiddleBB, ScalarPh}}); 1026 // Disconnect scalar preheader and scalar header, as the dominator tree edge 1027 // will be updated as part of VPlan execution. This allows keeping the DTU 1028 // logic generic during VPlan execution. 1029 State->CFG.DTU.applyUpdates( 1030 {{DominatorTree::Delete, ScalarPh, ScalarPh->getSingleSuccessor()}}); 1031 1032 ReversePostOrderTraversal<VPBlockShallowTraversalWrapper<VPBlockBase *>> RPOT( 1033 Entry); 1034 // Generate code for the VPlan, in parts of the vector skeleton, loop body and 1035 // successor blocks including the middle, exit and scalar preheader blocks. 1036 for (VPBlockBase *Block : RPOT) 1037 Block->execute(State); 1038 1039 VPBasicBlock *LatchVPBB = getVectorLoopRegion()->getExitingBasicBlock(); 1040 BasicBlock *VectorLatchBB = State->CFG.VPBB2IRBB[LatchVPBB]; 1041 1042 // Fix the latch value of canonical, reduction and first-order recurrences 1043 // phis in the vector loop. 1044 VPBasicBlock *Header = getVectorLoopRegion()->getEntryBasicBlock(); 1045 for (VPRecipeBase &R : Header->phis()) { 1046 // Skip phi-like recipes that generate their backedege values themselves. 1047 if (isa<VPWidenPHIRecipe>(&R)) 1048 continue; 1049 1050 if (isa<VPWidenPointerInductionRecipe, VPWidenIntOrFpInductionRecipe>(&R)) { 1051 PHINode *Phi = nullptr; 1052 if (isa<VPWidenIntOrFpInductionRecipe>(&R)) { 1053 Phi = cast<PHINode>(State->get(R.getVPSingleValue())); 1054 } else { 1055 auto *WidenPhi = cast<VPWidenPointerInductionRecipe>(&R); 1056 assert(!WidenPhi->onlyScalarsGenerated(State->VF.isScalable()) && 1057 "recipe generating only scalars should have been replaced"); 1058 auto *GEP = cast<GetElementPtrInst>(State->get(WidenPhi)); 1059 Phi = cast<PHINode>(GEP->getPointerOperand()); 1060 } 1061 1062 Phi->setIncomingBlock(1, VectorLatchBB); 1063 1064 // Move the last step to the end of the latch block. This ensures 1065 // consistent placement of all induction updates. 1066 Instruction *Inc = cast<Instruction>(Phi->getIncomingValue(1)); 1067 Inc->moveBefore(VectorLatchBB->getTerminator()->getPrevNode()); 1068 1069 // Use the steps for the last part as backedge value for the induction. 1070 if (auto *IV = dyn_cast<VPWidenIntOrFpInductionRecipe>(&R)) 1071 Inc->setOperand(0, State->get(IV->getLastUnrolledPartOperand())); 1072 continue; 1073 } 1074 1075 auto *PhiR = cast<VPHeaderPHIRecipe>(&R); 1076 bool NeedsScalar = isa<VPScalarPHIRecipe>(PhiR) || 1077 (isa<VPReductionPHIRecipe>(PhiR) && 1078 cast<VPReductionPHIRecipe>(PhiR)->isInLoop()); 1079 Value *Phi = State->get(PhiR, NeedsScalar); 1080 Value *Val = State->get(PhiR->getBackedgeValue(), NeedsScalar); 1081 cast<PHINode>(Phi)->addIncoming(Val, VectorLatchBB); 1082 } 1083 1084 State->CFG.DTU.flush(); 1085 } 1086 1087 InstructionCost VPlan::cost(ElementCount VF, VPCostContext &Ctx) { 1088 // For now only return the cost of the vector loop region, ignoring any other 1089 // blocks, like the preheader or middle blocks. 1090 return getVectorLoopRegion()->cost(VF, Ctx); 1091 } 1092 1093 VPRegionBlock *VPlan::getVectorLoopRegion() { 1094 // TODO: Cache if possible. 1095 for (VPBlockBase *B : vp_depth_first_shallow(getEntry())) 1096 if (auto *R = dyn_cast<VPRegionBlock>(B)) 1097 return R; 1098 return nullptr; 1099 } 1100 1101 const VPRegionBlock *VPlan::getVectorLoopRegion() const { 1102 for (const VPBlockBase *B : vp_depth_first_shallow(getEntry())) 1103 if (auto *R = dyn_cast<VPRegionBlock>(B)) 1104 return R; 1105 return nullptr; 1106 } 1107 1108 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1109 void VPlan::printLiveIns(raw_ostream &O) const { 1110 VPSlotTracker SlotTracker(this); 1111 1112 if (VF.getNumUsers() > 0) { 1113 O << "\nLive-in "; 1114 VF.printAsOperand(O, SlotTracker); 1115 O << " = VF"; 1116 } 1117 1118 if (VFxUF.getNumUsers() > 0) { 1119 O << "\nLive-in "; 1120 VFxUF.printAsOperand(O, SlotTracker); 1121 O << " = VF * UF"; 1122 } 1123 1124 if (VectorTripCount.getNumUsers() > 0) { 1125 O << "\nLive-in "; 1126 VectorTripCount.printAsOperand(O, SlotTracker); 1127 O << " = vector-trip-count"; 1128 } 1129 1130 if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) { 1131 O << "\nLive-in "; 1132 BackedgeTakenCount->printAsOperand(O, SlotTracker); 1133 O << " = backedge-taken count"; 1134 } 1135 1136 O << "\n"; 1137 if (TripCount->isLiveIn()) 1138 O << "Live-in "; 1139 TripCount->printAsOperand(O, SlotTracker); 1140 O << " = original trip-count"; 1141 O << "\n"; 1142 } 1143 1144 LLVM_DUMP_METHOD 1145 void VPlan::print(raw_ostream &O) const { 1146 VPSlotTracker SlotTracker(this); 1147 1148 O << "VPlan '" << getName() << "' {"; 1149 1150 printLiveIns(O); 1151 1152 ReversePostOrderTraversal<VPBlockShallowTraversalWrapper<const VPBlockBase *>> 1153 RPOT(getEntry()); 1154 for (const VPBlockBase *Block : RPOT) { 1155 O << '\n'; 1156 Block->print(O, "", SlotTracker); 1157 } 1158 1159 O << "}\n"; 1160 } 1161 1162 std::string VPlan::getName() const { 1163 std::string Out; 1164 raw_string_ostream RSO(Out); 1165 RSO << Name << " for "; 1166 if (!VFs.empty()) { 1167 RSO << "VF={" << VFs[0]; 1168 for (ElementCount VF : drop_begin(VFs)) 1169 RSO << "," << VF; 1170 RSO << "},"; 1171 } 1172 1173 if (UFs.empty()) { 1174 RSO << "UF>=1"; 1175 } else { 1176 RSO << "UF={" << UFs[0]; 1177 for (unsigned UF : drop_begin(UFs)) 1178 RSO << "," << UF; 1179 RSO << "}"; 1180 } 1181 1182 return Out; 1183 } 1184 1185 LLVM_DUMP_METHOD 1186 void VPlan::printDOT(raw_ostream &O) const { 1187 VPlanPrinter Printer(O, *this); 1188 Printer.dump(); 1189 } 1190 1191 LLVM_DUMP_METHOD 1192 void VPlan::dump() const { print(dbgs()); } 1193 #endif 1194 1195 static void remapOperands(VPBlockBase *Entry, VPBlockBase *NewEntry, 1196 DenseMap<VPValue *, VPValue *> &Old2NewVPValues) { 1197 // Update the operands of all cloned recipes starting at NewEntry. This 1198 // traverses all reachable blocks. This is done in two steps, to handle cycles 1199 // in PHI recipes. 1200 ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<VPBlockBase *>> 1201 OldDeepRPOT(Entry); 1202 ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<VPBlockBase *>> 1203 NewDeepRPOT(NewEntry); 1204 // First, collect all mappings from old to new VPValues defined by cloned 1205 // recipes. 1206 for (const auto &[OldBB, NewBB] : 1207 zip(VPBlockUtils::blocksOnly<VPBasicBlock>(OldDeepRPOT), 1208 VPBlockUtils::blocksOnly<VPBasicBlock>(NewDeepRPOT))) { 1209 assert(OldBB->getRecipeList().size() == NewBB->getRecipeList().size() && 1210 "blocks must have the same number of recipes"); 1211 for (const auto &[OldR, NewR] : zip(*OldBB, *NewBB)) { 1212 assert(OldR.getNumOperands() == NewR.getNumOperands() && 1213 "recipes must have the same number of operands"); 1214 assert(OldR.getNumDefinedValues() == NewR.getNumDefinedValues() && 1215 "recipes must define the same number of operands"); 1216 for (const auto &[OldV, NewV] : 1217 zip(OldR.definedValues(), NewR.definedValues())) 1218 Old2NewVPValues[OldV] = NewV; 1219 } 1220 } 1221 1222 // Update all operands to use cloned VPValues. 1223 for (VPBasicBlock *NewBB : 1224 VPBlockUtils::blocksOnly<VPBasicBlock>(NewDeepRPOT)) { 1225 for (VPRecipeBase &NewR : *NewBB) 1226 for (unsigned I = 0, E = NewR.getNumOperands(); I != E; ++I) { 1227 VPValue *NewOp = Old2NewVPValues.lookup(NewR.getOperand(I)); 1228 NewR.setOperand(I, NewOp); 1229 } 1230 } 1231 } 1232 1233 VPlan *VPlan::duplicate() { 1234 // Clone blocks. 1235 const auto &[NewEntry, __] = cloneFrom(Entry); 1236 1237 BasicBlock *ScalarHeaderIRBB = getScalarHeader()->getIRBasicBlock(); 1238 VPIRBasicBlock *NewScalarHeader = cast<VPIRBasicBlock>(*find_if( 1239 vp_depth_first_shallow(NewEntry), [ScalarHeaderIRBB](VPBlockBase *VPB) { 1240 auto *VPIRBB = dyn_cast<VPIRBasicBlock>(VPB); 1241 return VPIRBB && VPIRBB->getIRBasicBlock() == ScalarHeaderIRBB; 1242 })); 1243 // Create VPlan, clone live-ins and remap operands in the cloned blocks. 1244 auto *NewPlan = new VPlan(cast<VPBasicBlock>(NewEntry), NewScalarHeader); 1245 DenseMap<VPValue *, VPValue *> Old2NewVPValues; 1246 for (VPValue *OldLiveIn : VPLiveInsToFree) { 1247 Old2NewVPValues[OldLiveIn] = 1248 NewPlan->getOrAddLiveIn(OldLiveIn->getLiveInIRValue()); 1249 } 1250 Old2NewVPValues[&VectorTripCount] = &NewPlan->VectorTripCount; 1251 Old2NewVPValues[&VF] = &NewPlan->VF; 1252 Old2NewVPValues[&VFxUF] = &NewPlan->VFxUF; 1253 if (BackedgeTakenCount) { 1254 NewPlan->BackedgeTakenCount = new VPValue(); 1255 Old2NewVPValues[BackedgeTakenCount] = NewPlan->BackedgeTakenCount; 1256 } 1257 assert(TripCount && "trip count must be set"); 1258 if (TripCount->isLiveIn()) 1259 Old2NewVPValues[TripCount] = 1260 NewPlan->getOrAddLiveIn(TripCount->getLiveInIRValue()); 1261 // else NewTripCount will be created and inserted into Old2NewVPValues when 1262 // TripCount is cloned. In any case NewPlan->TripCount is updated below. 1263 1264 remapOperands(Entry, NewEntry, Old2NewVPValues); 1265 1266 // Initialize remaining fields of cloned VPlan. 1267 NewPlan->VFs = VFs; 1268 NewPlan->UFs = UFs; 1269 // TODO: Adjust names. 1270 NewPlan->Name = Name; 1271 assert(Old2NewVPValues.contains(TripCount) && 1272 "TripCount must have been added to Old2NewVPValues"); 1273 NewPlan->TripCount = Old2NewVPValues[TripCount]; 1274 return NewPlan; 1275 } 1276 1277 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1278 1279 Twine VPlanPrinter::getUID(const VPBlockBase *Block) { 1280 return (isa<VPRegionBlock>(Block) ? "cluster_N" : "N") + 1281 Twine(getOrCreateBID(Block)); 1282 } 1283 1284 Twine VPlanPrinter::getOrCreateName(const VPBlockBase *Block) { 1285 const std::string &Name = Block->getName(); 1286 if (!Name.empty()) 1287 return Name; 1288 return "VPB" + Twine(getOrCreateBID(Block)); 1289 } 1290 1291 void VPlanPrinter::dump() { 1292 Depth = 1; 1293 bumpIndent(0); 1294 OS << "digraph VPlan {\n"; 1295 OS << "graph [labelloc=t, fontsize=30; label=\"Vectorization Plan"; 1296 if (!Plan.getName().empty()) 1297 OS << "\\n" << DOT::EscapeString(Plan.getName()); 1298 1299 { 1300 // Print live-ins. 1301 std::string Str; 1302 raw_string_ostream SS(Str); 1303 Plan.printLiveIns(SS); 1304 SmallVector<StringRef, 0> Lines; 1305 StringRef(Str).rtrim('\n').split(Lines, "\n"); 1306 for (auto Line : Lines) 1307 OS << DOT::EscapeString(Line.str()) << "\\n"; 1308 } 1309 1310 OS << "\"]\n"; 1311 OS << "node [shape=rect, fontname=Courier, fontsize=30]\n"; 1312 OS << "edge [fontname=Courier, fontsize=30]\n"; 1313 OS << "compound=true\n"; 1314 1315 for (const VPBlockBase *Block : vp_depth_first_shallow(Plan.getEntry())) 1316 dumpBlock(Block); 1317 1318 OS << "}\n"; 1319 } 1320 1321 void VPlanPrinter::dumpBlock(const VPBlockBase *Block) { 1322 if (const VPBasicBlock *BasicBlock = dyn_cast<VPBasicBlock>(Block)) 1323 dumpBasicBlock(BasicBlock); 1324 else if (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 1325 dumpRegion(Region); 1326 else 1327 llvm_unreachable("Unsupported kind of VPBlock."); 1328 } 1329 1330 void VPlanPrinter::drawEdge(const VPBlockBase *From, const VPBlockBase *To, 1331 bool Hidden, const Twine &Label) { 1332 // Due to "dot" we print an edge between two regions as an edge between the 1333 // exiting basic block and the entry basic of the respective regions. 1334 const VPBlockBase *Tail = From->getExitingBasicBlock(); 1335 const VPBlockBase *Head = To->getEntryBasicBlock(); 1336 OS << Indent << getUID(Tail) << " -> " << getUID(Head); 1337 OS << " [ label=\"" << Label << '\"'; 1338 if (Tail != From) 1339 OS << " ltail=" << getUID(From); 1340 if (Head != To) 1341 OS << " lhead=" << getUID(To); 1342 if (Hidden) 1343 OS << "; splines=none"; 1344 OS << "]\n"; 1345 } 1346 1347 void VPlanPrinter::dumpEdges(const VPBlockBase *Block) { 1348 auto &Successors = Block->getSuccessors(); 1349 if (Successors.size() == 1) 1350 drawEdge(Block, Successors.front(), false, ""); 1351 else if (Successors.size() == 2) { 1352 drawEdge(Block, Successors.front(), false, "T"); 1353 drawEdge(Block, Successors.back(), false, "F"); 1354 } else { 1355 unsigned SuccessorNumber = 0; 1356 for (auto *Successor : Successors) 1357 drawEdge(Block, Successor, false, Twine(SuccessorNumber++)); 1358 } 1359 } 1360 1361 void VPlanPrinter::dumpBasicBlock(const VPBasicBlock *BasicBlock) { 1362 // Implement dot-formatted dump by performing plain-text dump into the 1363 // temporary storage followed by some post-processing. 1364 OS << Indent << getUID(BasicBlock) << " [label =\n"; 1365 bumpIndent(1); 1366 std::string Str; 1367 raw_string_ostream SS(Str); 1368 // Use no indentation as we need to wrap the lines into quotes ourselves. 1369 BasicBlock->print(SS, "", SlotTracker); 1370 1371 // We need to process each line of the output separately, so split 1372 // single-string plain-text dump. 1373 SmallVector<StringRef, 0> Lines; 1374 StringRef(Str).rtrim('\n').split(Lines, "\n"); 1375 1376 auto EmitLine = [&](StringRef Line, StringRef Suffix) { 1377 OS << Indent << '"' << DOT::EscapeString(Line.str()) << "\\l\"" << Suffix; 1378 }; 1379 1380 // Don't need the "+" after the last line. 1381 for (auto Line : make_range(Lines.begin(), Lines.end() - 1)) 1382 EmitLine(Line, " +\n"); 1383 EmitLine(Lines.back(), "\n"); 1384 1385 bumpIndent(-1); 1386 OS << Indent << "]\n"; 1387 1388 dumpEdges(BasicBlock); 1389 } 1390 1391 void VPlanPrinter::dumpRegion(const VPRegionBlock *Region) { 1392 OS << Indent << "subgraph " << getUID(Region) << " {\n"; 1393 bumpIndent(1); 1394 OS << Indent << "fontname=Courier\n" 1395 << Indent << "label=\"" 1396 << DOT::EscapeString(Region->isReplicator() ? "<xVFxUF> " : "<x1> ") 1397 << DOT::EscapeString(Region->getName()) << "\"\n"; 1398 // Dump the blocks of the region. 1399 assert(Region->getEntry() && "Region contains no inner blocks."); 1400 for (const VPBlockBase *Block : vp_depth_first_shallow(Region->getEntry())) 1401 dumpBlock(Block); 1402 bumpIndent(-1); 1403 OS << Indent << "}\n"; 1404 dumpEdges(Region); 1405 } 1406 1407 void VPlanIngredient::print(raw_ostream &O) const { 1408 if (auto *Inst = dyn_cast<Instruction>(V)) { 1409 if (!Inst->getType()->isVoidTy()) { 1410 Inst->printAsOperand(O, false); 1411 O << " = "; 1412 } 1413 O << Inst->getOpcodeName() << " "; 1414 unsigned E = Inst->getNumOperands(); 1415 if (E > 0) { 1416 Inst->getOperand(0)->printAsOperand(O, false); 1417 for (unsigned I = 1; I < E; ++I) 1418 Inst->getOperand(I)->printAsOperand(O << ", ", false); 1419 } 1420 } else // !Inst 1421 V->printAsOperand(O, false); 1422 } 1423 1424 #endif 1425 1426 bool VPValue::isDefinedOutsideLoopRegions() const { 1427 return !hasDefiningRecipe() || 1428 !getDefiningRecipe()->getParent()->getEnclosingLoopRegion(); 1429 } 1430 1431 void VPValue::replaceAllUsesWith(VPValue *New) { 1432 replaceUsesWithIf(New, [](VPUser &, unsigned) { return true; }); 1433 } 1434 1435 void VPValue::replaceUsesWithIf( 1436 VPValue *New, 1437 llvm::function_ref<bool(VPUser &U, unsigned Idx)> ShouldReplace) { 1438 // Note that this early exit is required for correctness; the implementation 1439 // below relies on the number of users for this VPValue to decrease, which 1440 // isn't the case if this == New. 1441 if (this == New) 1442 return; 1443 1444 for (unsigned J = 0; J < getNumUsers();) { 1445 VPUser *User = Users[J]; 1446 bool RemovedUser = false; 1447 for (unsigned I = 0, E = User->getNumOperands(); I < E; ++I) { 1448 if (User->getOperand(I) != this || !ShouldReplace(*User, I)) 1449 continue; 1450 1451 RemovedUser = true; 1452 User->setOperand(I, New); 1453 } 1454 // If a user got removed after updating the current user, the next user to 1455 // update will be moved to the current position, so we only need to 1456 // increment the index if the number of users did not change. 1457 if (!RemovedUser) 1458 J++; 1459 } 1460 } 1461 1462 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1463 void VPValue::printAsOperand(raw_ostream &OS, VPSlotTracker &Tracker) const { 1464 OS << Tracker.getOrCreateName(this); 1465 } 1466 1467 void VPUser::printOperands(raw_ostream &O, VPSlotTracker &SlotTracker) const { 1468 interleaveComma(operands(), O, [&O, &SlotTracker](VPValue *Op) { 1469 Op->printAsOperand(O, SlotTracker); 1470 }); 1471 } 1472 #endif 1473 1474 void VPInterleavedAccessInfo::visitRegion(VPRegionBlock *Region, 1475 Old2NewTy &Old2New, 1476 InterleavedAccessInfo &IAI) { 1477 ReversePostOrderTraversal<VPBlockShallowTraversalWrapper<VPBlockBase *>> 1478 RPOT(Region->getEntry()); 1479 for (VPBlockBase *Base : RPOT) { 1480 visitBlock(Base, Old2New, IAI); 1481 } 1482 } 1483 1484 void VPInterleavedAccessInfo::visitBlock(VPBlockBase *Block, Old2NewTy &Old2New, 1485 InterleavedAccessInfo &IAI) { 1486 if (VPBasicBlock *VPBB = dyn_cast<VPBasicBlock>(Block)) { 1487 for (VPRecipeBase &VPI : *VPBB) { 1488 if (isa<VPWidenPHIRecipe>(&VPI)) 1489 continue; 1490 assert(isa<VPInstruction>(&VPI) && "Can only handle VPInstructions"); 1491 auto *VPInst = cast<VPInstruction>(&VPI); 1492 1493 auto *Inst = dyn_cast_or_null<Instruction>(VPInst->getUnderlyingValue()); 1494 if (!Inst) 1495 continue; 1496 auto *IG = IAI.getInterleaveGroup(Inst); 1497 if (!IG) 1498 continue; 1499 1500 auto NewIGIter = Old2New.find(IG); 1501 if (NewIGIter == Old2New.end()) 1502 Old2New[IG] = new InterleaveGroup<VPInstruction>( 1503 IG->getFactor(), IG->isReverse(), IG->getAlign()); 1504 1505 if (Inst == IG->getInsertPos()) 1506 Old2New[IG]->setInsertPos(VPInst); 1507 1508 InterleaveGroupMap[VPInst] = Old2New[IG]; 1509 InterleaveGroupMap[VPInst]->insertMember( 1510 VPInst, IG->getIndex(Inst), 1511 Align(IG->isReverse() ? (-1) * int(IG->getFactor()) 1512 : IG->getFactor())); 1513 } 1514 } else if (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 1515 visitRegion(Region, Old2New, IAI); 1516 else 1517 llvm_unreachable("Unsupported kind of VPBlock."); 1518 } 1519 1520 VPInterleavedAccessInfo::VPInterleavedAccessInfo(VPlan &Plan, 1521 InterleavedAccessInfo &IAI) { 1522 Old2NewTy Old2New; 1523 visitRegion(Plan.getVectorLoopRegion(), Old2New, IAI); 1524 } 1525 1526 void VPSlotTracker::assignName(const VPValue *V) { 1527 assert(!VPValue2Name.contains(V) && "VPValue already has a name!"); 1528 auto *UV = V->getUnderlyingValue(); 1529 auto *VPI = dyn_cast_or_null<VPInstruction>(V->getDefiningRecipe()); 1530 if (!UV && !(VPI && !VPI->getName().empty())) { 1531 VPValue2Name[V] = (Twine("vp<%") + Twine(NextSlot) + ">").str(); 1532 NextSlot++; 1533 return; 1534 } 1535 1536 // Use the name of the underlying Value, wrapped in "ir<>", and versioned by 1537 // appending ".Number" to the name if there are multiple uses. 1538 std::string Name; 1539 if (UV) { 1540 raw_string_ostream S(Name); 1541 UV->printAsOperand(S, false); 1542 } else 1543 Name = VPI->getName(); 1544 1545 assert(!Name.empty() && "Name cannot be empty."); 1546 StringRef Prefix = UV ? "ir<" : "vp<%"; 1547 std::string BaseName = (Twine(Prefix) + Name + Twine(">")).str(); 1548 1549 // First assign the base name for V. 1550 const auto &[A, _] = VPValue2Name.insert({V, BaseName}); 1551 // Integer or FP constants with different types will result in he same string 1552 // due to stripping types. 1553 if (V->isLiveIn() && isa<ConstantInt, ConstantFP>(UV)) 1554 return; 1555 1556 // If it is already used by C > 0 other VPValues, increase the version counter 1557 // C and use it for V. 1558 const auto &[C, UseInserted] = BaseName2Version.insert({BaseName, 0}); 1559 if (!UseInserted) { 1560 C->second++; 1561 A->second = (BaseName + Twine(".") + Twine(C->second)).str(); 1562 } 1563 } 1564 1565 void VPSlotTracker::assignNames(const VPlan &Plan) { 1566 if (Plan.VF.getNumUsers() > 0) 1567 assignName(&Plan.VF); 1568 if (Plan.VFxUF.getNumUsers() > 0) 1569 assignName(&Plan.VFxUF); 1570 assignName(&Plan.VectorTripCount); 1571 if (Plan.BackedgeTakenCount) 1572 assignName(Plan.BackedgeTakenCount); 1573 for (VPValue *LI : Plan.VPLiveInsToFree) 1574 assignName(LI); 1575 1576 ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<const VPBlockBase *>> 1577 RPOT(VPBlockDeepTraversalWrapper<const VPBlockBase *>(Plan.getEntry())); 1578 for (const VPBasicBlock *VPBB : 1579 VPBlockUtils::blocksOnly<const VPBasicBlock>(RPOT)) 1580 assignNames(VPBB); 1581 } 1582 1583 void VPSlotTracker::assignNames(const VPBasicBlock *VPBB) { 1584 for (const VPRecipeBase &Recipe : *VPBB) 1585 for (VPValue *Def : Recipe.definedValues()) 1586 assignName(Def); 1587 } 1588 1589 std::string VPSlotTracker::getOrCreateName(const VPValue *V) const { 1590 std::string Name = VPValue2Name.lookup(V); 1591 if (!Name.empty()) 1592 return Name; 1593 1594 // If no name was assigned, no VPlan was provided when creating the slot 1595 // tracker or it is not reachable from the provided VPlan. This can happen, 1596 // e.g. when trying to print a recipe that has not been inserted into a VPlan 1597 // in a debugger. 1598 // TODO: Update VPSlotTracker constructor to assign names to recipes & 1599 // VPValues not associated with a VPlan, instead of constructing names ad-hoc 1600 // here. 1601 const VPRecipeBase *DefR = V->getDefiningRecipe(); 1602 (void)DefR; 1603 assert((!DefR || !DefR->getParent() || !DefR->getParent()->getPlan()) && 1604 "VPValue defined by a recipe in a VPlan?"); 1605 1606 // Use the underlying value's name, if there is one. 1607 if (auto *UV = V->getUnderlyingValue()) { 1608 std::string Name; 1609 raw_string_ostream S(Name); 1610 UV->printAsOperand(S, false); 1611 return (Twine("ir<") + Name + ">").str(); 1612 } 1613 1614 return "<badref>"; 1615 } 1616 1617 bool LoopVectorizationPlanner::getDecisionAndClampRange( 1618 const std::function<bool(ElementCount)> &Predicate, VFRange &Range) { 1619 assert(!Range.isEmpty() && "Trying to test an empty VF range."); 1620 bool PredicateAtRangeStart = Predicate(Range.Start); 1621 1622 for (ElementCount TmpVF : VFRange(Range.Start * 2, Range.End)) 1623 if (Predicate(TmpVF) != PredicateAtRangeStart) { 1624 Range.End = TmpVF; 1625 break; 1626 } 1627 1628 return PredicateAtRangeStart; 1629 } 1630 1631 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF, 1632 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range 1633 /// of VF's starting at a given VF and extending it as much as possible. Each 1634 /// vectorization decision can potentially shorten this sub-range during 1635 /// buildVPlan(). 1636 void LoopVectorizationPlanner::buildVPlans(ElementCount MinVF, 1637 ElementCount MaxVF) { 1638 auto MaxVFTimes2 = MaxVF * 2; 1639 for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFTimes2);) { 1640 VFRange SubRange = {VF, MaxVFTimes2}; 1641 auto Plan = buildVPlan(SubRange); 1642 VPlanTransforms::optimize(*Plan); 1643 VPlans.push_back(std::move(Plan)); 1644 VF = SubRange.End; 1645 } 1646 } 1647 1648 VPlan &LoopVectorizationPlanner::getPlanFor(ElementCount VF) const { 1649 assert(count_if(VPlans, 1650 [VF](const VPlanPtr &Plan) { return Plan->hasVF(VF); }) == 1651 1 && 1652 "Multiple VPlans for VF."); 1653 1654 for (const VPlanPtr &Plan : VPlans) { 1655 if (Plan->hasVF(VF)) 1656 return *Plan.get(); 1657 } 1658 llvm_unreachable("No plan found!"); 1659 } 1660 1661 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1662 void LoopVectorizationPlanner::printPlans(raw_ostream &O) { 1663 if (VPlans.empty()) { 1664 O << "LV: No VPlans built.\n"; 1665 return; 1666 } 1667 for (const auto &Plan : VPlans) 1668 if (PrintVPlansInDotFormat) 1669 Plan->printDOT(O); 1670 else 1671 Plan->print(O); 1672 } 1673 #endif 1674 1675 TargetTransformInfo::OperandValueInfo 1676 VPCostContext::getOperandInfo(VPValue *V) const { 1677 if (!V->isLiveIn()) 1678 return {}; 1679 1680 return TTI::getOperandInfo(V->getLiveInIRValue()); 1681 } 1682