xref: /llvm-project/llvm/lib/Transforms/Vectorize/VPlan.cpp (revision c95af0844d64f15b99fab37c25efb01a8d783847)
1 //===- VPlan.cpp - Vectorizer Plan ----------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This is the LLVM vectorization plan. It represents a candidate for
11 /// vectorization, allowing to plan and optimize how to vectorize a given loop
12 /// before generating LLVM-IR.
13 /// The vectorizer uses vectorization plans to estimate the costs of potential
14 /// candidates and if profitable to execute the desired plan, generating vector
15 /// LLVM-IR code.
16 ///
17 //===----------------------------------------------------------------------===//
18 
19 #include "VPlan.h"
20 #include "LoopVectorizationPlanner.h"
21 #include "VPlanCFG.h"
22 #include "VPlanPatternMatch.h"
23 #include "VPlanTransforms.h"
24 #include "VPlanUtils.h"
25 #include "llvm/ADT/PostOrderIterator.h"
26 #include "llvm/ADT/STLExtras.h"
27 #include "llvm/ADT/SmallVector.h"
28 #include "llvm/ADT/StringExtras.h"
29 #include "llvm/ADT/Twine.h"
30 #include "llvm/Analysis/DomTreeUpdater.h"
31 #include "llvm/Analysis/LoopInfo.h"
32 #include "llvm/IR/BasicBlock.h"
33 #include "llvm/IR/CFG.h"
34 #include "llvm/IR/IRBuilder.h"
35 #include "llvm/IR/Instruction.h"
36 #include "llvm/IR/Instructions.h"
37 #include "llvm/IR/Type.h"
38 #include "llvm/IR/Value.h"
39 #include "llvm/Support/Casting.h"
40 #include "llvm/Support/CommandLine.h"
41 #include "llvm/Support/Debug.h"
42 #include "llvm/Support/GraphWriter.h"
43 #include "llvm/Support/raw_ostream.h"
44 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
45 #include "llvm/Transforms/Utils/LoopVersioning.h"
46 #include <cassert>
47 #include <string>
48 
49 using namespace llvm;
50 using namespace llvm::VPlanPatternMatch;
51 
52 namespace llvm {
53 extern cl::opt<bool> EnableVPlanNativePath;
54 }
55 extern cl::opt<unsigned> ForceTargetInstructionCost;
56 
57 static cl::opt<bool> PrintVPlansInDotFormat(
58     "vplan-print-in-dot-format", cl::Hidden,
59     cl::desc("Use dot format instead of plain text when dumping VPlans"));
60 
61 #define DEBUG_TYPE "loop-vectorize"
62 
63 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
64 raw_ostream &llvm::operator<<(raw_ostream &OS, const VPValue &V) {
65   const VPInstruction *Instr = dyn_cast<VPInstruction>(&V);
66   VPSlotTracker SlotTracker(
67       (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr);
68   V.print(OS, SlotTracker);
69   return OS;
70 }
71 #endif
72 
73 Value *VPLane::getAsRuntimeExpr(IRBuilderBase &Builder,
74                                 const ElementCount &VF) const {
75   switch (LaneKind) {
76   case VPLane::Kind::ScalableLast:
77     // Lane = RuntimeVF - VF.getKnownMinValue() + Lane
78     return Builder.CreateSub(getRuntimeVF(Builder, Builder.getInt32Ty(), VF),
79                              Builder.getInt32(VF.getKnownMinValue() - Lane));
80   case VPLane::Kind::First:
81     return Builder.getInt32(Lane);
82   }
83   llvm_unreachable("Unknown lane kind");
84 }
85 
86 VPValue::VPValue(const unsigned char SC, Value *UV, VPDef *Def)
87     : SubclassID(SC), UnderlyingVal(UV), Def(Def) {
88   if (Def)
89     Def->addDefinedValue(this);
90 }
91 
92 VPValue::~VPValue() {
93   assert(Users.empty() && "trying to delete a VPValue with remaining users");
94   if (Def)
95     Def->removeDefinedValue(this);
96 }
97 
98 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
99 void VPValue::print(raw_ostream &OS, VPSlotTracker &SlotTracker) const {
100   if (const VPRecipeBase *R = dyn_cast_or_null<VPRecipeBase>(Def))
101     R->print(OS, "", SlotTracker);
102   else
103     printAsOperand(OS, SlotTracker);
104 }
105 
106 void VPValue::dump() const {
107   const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this->Def);
108   VPSlotTracker SlotTracker(
109       (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr);
110   print(dbgs(), SlotTracker);
111   dbgs() << "\n";
112 }
113 
114 void VPDef::dump() const {
115   const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this);
116   VPSlotTracker SlotTracker(
117       (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr);
118   print(dbgs(), "", SlotTracker);
119   dbgs() << "\n";
120 }
121 #endif
122 
123 VPRecipeBase *VPValue::getDefiningRecipe() {
124   return cast_or_null<VPRecipeBase>(Def);
125 }
126 
127 const VPRecipeBase *VPValue::getDefiningRecipe() const {
128   return cast_or_null<VPRecipeBase>(Def);
129 }
130 
131 // Get the top-most entry block of \p Start. This is the entry block of the
132 // containing VPlan. This function is templated to support both const and non-const blocks
133 template <typename T> static T *getPlanEntry(T *Start) {
134   T *Next = Start;
135   T *Current = Start;
136   while ((Next = Next->getParent()))
137     Current = Next;
138 
139   SmallSetVector<T *, 8> WorkList;
140   WorkList.insert(Current);
141 
142   for (unsigned i = 0; i < WorkList.size(); i++) {
143     T *Current = WorkList[i];
144     if (Current->getNumPredecessors() == 0)
145       return Current;
146     auto &Predecessors = Current->getPredecessors();
147     WorkList.insert(Predecessors.begin(), Predecessors.end());
148   }
149 
150   llvm_unreachable("VPlan without any entry node without predecessors");
151 }
152 
153 VPlan *VPBlockBase::getPlan() { return getPlanEntry(this)->Plan; }
154 
155 const VPlan *VPBlockBase::getPlan() const { return getPlanEntry(this)->Plan; }
156 
157 /// \return the VPBasicBlock that is the entry of Block, possibly indirectly.
158 const VPBasicBlock *VPBlockBase::getEntryBasicBlock() const {
159   const VPBlockBase *Block = this;
160   while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
161     Block = Region->getEntry();
162   return cast<VPBasicBlock>(Block);
163 }
164 
165 VPBasicBlock *VPBlockBase::getEntryBasicBlock() {
166   VPBlockBase *Block = this;
167   while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
168     Block = Region->getEntry();
169   return cast<VPBasicBlock>(Block);
170 }
171 
172 void VPBlockBase::setPlan(VPlan *ParentPlan) {
173   assert(ParentPlan->getEntry() == this && "Can only set plan on its entry.");
174   Plan = ParentPlan;
175 }
176 
177 /// \return the VPBasicBlock that is the exit of Block, possibly indirectly.
178 const VPBasicBlock *VPBlockBase::getExitingBasicBlock() const {
179   const VPBlockBase *Block = this;
180   while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
181     Block = Region->getExiting();
182   return cast<VPBasicBlock>(Block);
183 }
184 
185 VPBasicBlock *VPBlockBase::getExitingBasicBlock() {
186   VPBlockBase *Block = this;
187   while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
188     Block = Region->getExiting();
189   return cast<VPBasicBlock>(Block);
190 }
191 
192 VPBlockBase *VPBlockBase::getEnclosingBlockWithSuccessors() {
193   if (!Successors.empty() || !Parent)
194     return this;
195   assert(Parent->getExiting() == this &&
196          "Block w/o successors not the exiting block of its parent.");
197   return Parent->getEnclosingBlockWithSuccessors();
198 }
199 
200 VPBlockBase *VPBlockBase::getEnclosingBlockWithPredecessors() {
201   if (!Predecessors.empty() || !Parent)
202     return this;
203   assert(Parent->getEntry() == this &&
204          "Block w/o predecessors not the entry of its parent.");
205   return Parent->getEnclosingBlockWithPredecessors();
206 }
207 
208 void VPBlockBase::deleteCFG(VPBlockBase *Entry) {
209   for (VPBlockBase *Block : to_vector(vp_depth_first_shallow(Entry)))
210     delete Block;
211 }
212 
213 VPBasicBlock::iterator VPBasicBlock::getFirstNonPhi() {
214   iterator It = begin();
215   while (It != end() && It->isPhi())
216     It++;
217   return It;
218 }
219 
220 VPTransformState::VPTransformState(const TargetTransformInfo *TTI,
221                                    ElementCount VF, unsigned UF, LoopInfo *LI,
222                                    DominatorTree *DT, IRBuilderBase &Builder,
223                                    InnerLoopVectorizer *ILV, VPlan *Plan,
224                                    Type *CanonicalIVTy)
225     : TTI(TTI), VF(VF), CFG(DT), LI(LI), Builder(Builder), ILV(ILV), Plan(Plan),
226       LVer(nullptr), TypeAnalysis(CanonicalIVTy) {}
227 
228 Value *VPTransformState::get(VPValue *Def, const VPLane &Lane) {
229   if (Def->isLiveIn())
230     return Def->getLiveInIRValue();
231 
232   if (hasScalarValue(Def, Lane))
233     return Data.VPV2Scalars[Def][Lane.mapToCacheIndex(VF)];
234 
235   if (!Lane.isFirstLane() && vputils::isUniformAfterVectorization(Def) &&
236       hasScalarValue(Def, VPLane::getFirstLane())) {
237     return Data.VPV2Scalars[Def][0];
238   }
239 
240   assert(hasVectorValue(Def));
241   auto *VecPart = Data.VPV2Vector[Def];
242   if (!VecPart->getType()->isVectorTy()) {
243     assert(Lane.isFirstLane() && "cannot get lane > 0 for scalar");
244     return VecPart;
245   }
246   // TODO: Cache created scalar values.
247   Value *LaneV = Lane.getAsRuntimeExpr(Builder, VF);
248   auto *Extract = Builder.CreateExtractElement(VecPart, LaneV);
249   // set(Def, Extract, Instance);
250   return Extract;
251 }
252 
253 Value *VPTransformState::get(VPValue *Def, bool NeedsScalar) {
254   if (NeedsScalar) {
255     assert((VF.isScalar() || Def->isLiveIn() || hasVectorValue(Def) ||
256             !vputils::onlyFirstLaneUsed(Def) ||
257             (hasScalarValue(Def, VPLane(0)) &&
258              Data.VPV2Scalars[Def].size() == 1)) &&
259            "Trying to access a single scalar per part but has multiple scalars "
260            "per part.");
261     return get(Def, VPLane(0));
262   }
263 
264   // If Values have been set for this Def return the one relevant for \p Part.
265   if (hasVectorValue(Def))
266     return Data.VPV2Vector[Def];
267 
268   auto GetBroadcastInstrs = [this, Def](Value *V) {
269     bool SafeToHoist = Def->isDefinedOutsideLoopRegions();
270     if (VF.isScalar())
271       return V;
272     // Place the code for broadcasting invariant variables in the new preheader.
273     IRBuilder<>::InsertPointGuard Guard(Builder);
274     if (SafeToHoist) {
275       BasicBlock *LoopVectorPreHeader =
276           CFG.VPBB2IRBB[Plan->getVectorPreheader()];
277       if (LoopVectorPreHeader)
278         Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
279     }
280 
281     // Place the code for broadcasting invariant variables in the new preheader.
282     // Broadcast the scalar into all locations in the vector.
283     Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast");
284 
285     return Shuf;
286   };
287 
288   if (!hasScalarValue(Def, {0})) {
289     assert(Def->isLiveIn() && "expected a live-in");
290     Value *IRV = Def->getLiveInIRValue();
291     Value *B = GetBroadcastInstrs(IRV);
292     set(Def, B);
293     return B;
294   }
295 
296   Value *ScalarValue = get(Def, VPLane(0));
297   // If we aren't vectorizing, we can just copy the scalar map values over
298   // to the vector map.
299   if (VF.isScalar()) {
300     set(Def, ScalarValue);
301     return ScalarValue;
302   }
303 
304   bool IsUniform = vputils::isUniformAfterVectorization(Def);
305 
306   VPLane LastLane(IsUniform ? 0 : VF.getKnownMinValue() - 1);
307   // Check if there is a scalar value for the selected lane.
308   if (!hasScalarValue(Def, LastLane)) {
309     // At the moment, VPWidenIntOrFpInductionRecipes, VPScalarIVStepsRecipes and
310     // VPExpandSCEVRecipes can also be uniform.
311     assert((isa<VPWidenIntOrFpInductionRecipe, VPScalarIVStepsRecipe,
312                 VPExpandSCEVRecipe>(Def->getDefiningRecipe())) &&
313            "unexpected recipe found to be invariant");
314     IsUniform = true;
315     LastLane = 0;
316   }
317 
318   auto *LastInst = cast<Instruction>(get(Def, LastLane));
319   // Set the insert point after the last scalarized instruction or after the
320   // last PHI, if LastInst is a PHI. This ensures the insertelement sequence
321   // will directly follow the scalar definitions.
322   auto OldIP = Builder.saveIP();
323   auto NewIP =
324       isa<PHINode>(LastInst)
325           ? BasicBlock::iterator(LastInst->getParent()->getFirstNonPHI())
326           : std::next(BasicBlock::iterator(LastInst));
327   Builder.SetInsertPoint(&*NewIP);
328 
329   // However, if we are vectorizing, we need to construct the vector values.
330   // If the value is known to be uniform after vectorization, we can just
331   // broadcast the scalar value corresponding to lane zero. Otherwise, we
332   // construct the vector values using insertelement instructions. Since the
333   // resulting vectors are stored in State, we will only generate the
334   // insertelements once.
335   Value *VectorValue = nullptr;
336   if (IsUniform) {
337     VectorValue = GetBroadcastInstrs(ScalarValue);
338     set(Def, VectorValue);
339   } else {
340     // Initialize packing with insertelements to start from undef.
341     assert(!VF.isScalable() && "VF is assumed to be non scalable.");
342     Value *Undef = PoisonValue::get(VectorType::get(LastInst->getType(), VF));
343     set(Def, Undef);
344     for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane)
345       packScalarIntoVectorValue(Def, Lane);
346     VectorValue = get(Def);
347   }
348   Builder.restoreIP(OldIP);
349   return VectorValue;
350 }
351 
352 BasicBlock *VPTransformState::CFGState::getPreheaderBBFor(VPRecipeBase *R) {
353   VPRegionBlock *LoopRegion = R->getParent()->getEnclosingLoopRegion();
354   return VPBB2IRBB[LoopRegion->getPreheaderVPBB()];
355 }
356 
357 void VPTransformState::addNewMetadata(Instruction *To,
358                                       const Instruction *Orig) {
359   // If the loop was versioned with memchecks, add the corresponding no-alias
360   // metadata.
361   if (LVer && isa<LoadInst, StoreInst>(Orig))
362     LVer->annotateInstWithNoAlias(To, Orig);
363 }
364 
365 void VPTransformState::addMetadata(Value *To, Instruction *From) {
366   // No source instruction to transfer metadata from?
367   if (!From)
368     return;
369 
370   if (Instruction *ToI = dyn_cast<Instruction>(To)) {
371     propagateMetadata(ToI, From);
372     addNewMetadata(ToI, From);
373   }
374 }
375 
376 void VPTransformState::setDebugLocFrom(DebugLoc DL) {
377   const DILocation *DIL = DL;
378   // When a FSDiscriminator is enabled, we don't need to add the multiply
379   // factors to the discriminators.
380   if (DIL &&
381       Builder.GetInsertBlock()
382           ->getParent()
383           ->shouldEmitDebugInfoForProfiling() &&
384       !EnableFSDiscriminator) {
385     // FIXME: For scalable vectors, assume vscale=1.
386     unsigned UF = Plan->getUF();
387     auto NewDIL =
388         DIL->cloneByMultiplyingDuplicationFactor(UF * VF.getKnownMinValue());
389     if (NewDIL)
390       Builder.SetCurrentDebugLocation(*NewDIL);
391     else
392       LLVM_DEBUG(dbgs() << "Failed to create new discriminator: "
393                         << DIL->getFilename() << " Line: " << DIL->getLine());
394   } else
395     Builder.SetCurrentDebugLocation(DIL);
396 }
397 
398 void VPTransformState::packScalarIntoVectorValue(VPValue *Def,
399                                                  const VPLane &Lane) {
400   Value *ScalarInst = get(Def, Lane);
401   Value *VectorValue = get(Def);
402   VectorValue = Builder.CreateInsertElement(VectorValue, ScalarInst,
403                                             Lane.getAsRuntimeExpr(Builder, VF));
404   set(Def, VectorValue);
405 }
406 
407 BasicBlock *
408 VPBasicBlock::createEmptyBasicBlock(VPTransformState::CFGState &CFG) {
409   // BB stands for IR BasicBlocks. VPBB stands for VPlan VPBasicBlocks.
410   // Pred stands for Predessor. Prev stands for Previous - last visited/created.
411   BasicBlock *PrevBB = CFG.PrevBB;
412   BasicBlock *NewBB = BasicBlock::Create(PrevBB->getContext(), getName(),
413                                          PrevBB->getParent(), CFG.ExitBB);
414   LLVM_DEBUG(dbgs() << "LV: created " << NewBB->getName() << '\n');
415 
416   return NewBB;
417 }
418 
419 void VPBasicBlock::connectToPredecessors(VPTransformState::CFGState &CFG) {
420   BasicBlock *NewBB = CFG.VPBB2IRBB[this];
421   // Hook up the new basic block to its predecessors.
422   for (VPBlockBase *PredVPBlock : getHierarchicalPredecessors()) {
423     VPBasicBlock *PredVPBB = PredVPBlock->getExitingBasicBlock();
424     auto &PredVPSuccessors = PredVPBB->getHierarchicalSuccessors();
425     BasicBlock *PredBB = CFG.VPBB2IRBB[PredVPBB];
426 
427     assert(PredBB && "Predecessor basic-block not found building successor.");
428     auto *PredBBTerminator = PredBB->getTerminator();
429     LLVM_DEBUG(dbgs() << "LV: draw edge from" << PredBB->getName() << '\n');
430 
431     auto *TermBr = dyn_cast<BranchInst>(PredBBTerminator);
432     if (isa<UnreachableInst>(PredBBTerminator)) {
433       assert(PredVPSuccessors.size() == 1 &&
434              "Predecessor ending w/o branch must have single successor.");
435       DebugLoc DL = PredBBTerminator->getDebugLoc();
436       PredBBTerminator->eraseFromParent();
437       auto *Br = BranchInst::Create(NewBB, PredBB);
438       Br->setDebugLoc(DL);
439     } else if (TermBr && !TermBr->isConditional()) {
440       TermBr->setSuccessor(0, NewBB);
441     } else {
442       // Set each forward successor here when it is created, excluding
443       // backedges. A backward successor is set when the branch is created.
444       unsigned idx = PredVPSuccessors.front() == this ? 0 : 1;
445       assert(
446           (!TermBr->getSuccessor(idx) ||
447            (isa<VPIRBasicBlock>(this) && TermBr->getSuccessor(idx) == NewBB)) &&
448           "Trying to reset an existing successor block.");
449       TermBr->setSuccessor(idx, NewBB);
450     }
451     CFG.DTU.applyUpdates({{DominatorTree::Insert, PredBB, NewBB}});
452   }
453 }
454 
455 void VPIRBasicBlock::execute(VPTransformState *State) {
456   assert(getHierarchicalSuccessors().size() <= 2 &&
457          "VPIRBasicBlock can have at most two successors at the moment!");
458   State->Builder.SetInsertPoint(IRBB->getTerminator());
459   State->CFG.PrevBB = IRBB;
460   State->CFG.VPBB2IRBB[this] = IRBB;
461   executeRecipes(State, IRBB);
462   // Create a branch instruction to terminate IRBB if one was not created yet
463   // and is needed.
464   if (getSingleSuccessor() && isa<UnreachableInst>(IRBB->getTerminator())) {
465     auto *Br = State->Builder.CreateBr(IRBB);
466     Br->setOperand(0, nullptr);
467     IRBB->getTerminator()->eraseFromParent();
468   } else {
469     assert(
470         (getNumSuccessors() == 0 || isa<BranchInst>(IRBB->getTerminator())) &&
471         "other blocks must be terminated by a branch");
472   }
473 
474   connectToPredecessors(State->CFG);
475 }
476 
477 void VPBasicBlock::execute(VPTransformState *State) {
478   bool Replica = bool(State->Lane);
479   BasicBlock *NewBB = State->CFG.PrevBB; // Reuse it if possible.
480 
481   auto IsReplicateRegion = [](VPBlockBase *BB) {
482     auto *R = dyn_cast_or_null<VPRegionBlock>(BB);
483     return R && R->isReplicator();
484   };
485 
486   // 1. Create an IR basic block.
487   if (this == getPlan()->getVectorPreheader() ||
488       (Replica && this == getParent()->getEntry()) ||
489       IsReplicateRegion(getSingleHierarchicalPredecessor())) {
490     // Reuse the previous basic block if the current VPBB is either
491     //  * the vector preheader,
492     //  * the entry to a replicate region, or
493     //  * the exit of a replicate region.
494     State->CFG.VPBB2IRBB[this] = NewBB;
495   } else {
496     NewBB = createEmptyBasicBlock(State->CFG);
497 
498     State->Builder.SetInsertPoint(NewBB);
499     // Temporarily terminate with unreachable until CFG is rewired.
500     UnreachableInst *Terminator = State->Builder.CreateUnreachable();
501     // Register NewBB in its loop. In innermost loops its the same for all
502     // BB's.
503     if (State->CurrentVectorLoop)
504       State->CurrentVectorLoop->addBasicBlockToLoop(NewBB, *State->LI);
505     State->Builder.SetInsertPoint(Terminator);
506 
507     State->CFG.PrevBB = NewBB;
508     State->CFG.VPBB2IRBB[this] = NewBB;
509     connectToPredecessors(State->CFG);
510   }
511 
512   // 2. Fill the IR basic block with IR instructions.
513   executeRecipes(State, NewBB);
514 }
515 
516 void VPBasicBlock::dropAllReferences(VPValue *NewValue) {
517   for (VPRecipeBase &R : Recipes) {
518     for (auto *Def : R.definedValues())
519       Def->replaceAllUsesWith(NewValue);
520 
521     for (unsigned I = 0, E = R.getNumOperands(); I != E; I++)
522       R.setOperand(I, NewValue);
523   }
524 }
525 
526 void VPBasicBlock::executeRecipes(VPTransformState *State, BasicBlock *BB) {
527   LLVM_DEBUG(dbgs() << "LV: vectorizing VPBB:" << getName()
528                     << " in BB:" << BB->getName() << '\n');
529 
530   State->CFG.PrevVPBB = this;
531 
532   for (VPRecipeBase &Recipe : Recipes)
533     Recipe.execute(*State);
534 
535   LLVM_DEBUG(dbgs() << "LV: filled BB:" << *BB);
536 }
537 
538 VPBasicBlock *VPBasicBlock::splitAt(iterator SplitAt) {
539   assert((SplitAt == end() || SplitAt->getParent() == this) &&
540          "can only split at a position in the same block");
541 
542   SmallVector<VPBlockBase *, 2> Succs(successors());
543   // Create new empty block after the block to split.
544   auto *SplitBlock = new VPBasicBlock(getName() + ".split");
545   VPBlockUtils::insertBlockAfter(SplitBlock, this);
546 
547   // Finally, move the recipes starting at SplitAt to new block.
548   for (VPRecipeBase &ToMove :
549        make_early_inc_range(make_range(SplitAt, this->end())))
550     ToMove.moveBefore(*SplitBlock, SplitBlock->end());
551 
552   return SplitBlock;
553 }
554 
555 /// Return the enclosing loop region for region \p P. The templated version is
556 /// used to support both const and non-const block arguments.
557 template <typename T> static T *getEnclosingLoopRegionForRegion(T *P) {
558   if (P && P->isReplicator()) {
559     P = P->getParent();
560     assert(!cast<VPRegionBlock>(P)->isReplicator() &&
561            "unexpected nested replicate regions");
562   }
563   return P;
564 }
565 
566 VPRegionBlock *VPBasicBlock::getEnclosingLoopRegion() {
567   return getEnclosingLoopRegionForRegion(getParent());
568 }
569 
570 const VPRegionBlock *VPBasicBlock::getEnclosingLoopRegion() const {
571   return getEnclosingLoopRegionForRegion(getParent());
572 }
573 
574 static bool hasConditionalTerminator(const VPBasicBlock *VPBB) {
575   if (VPBB->empty()) {
576     assert(
577         VPBB->getNumSuccessors() < 2 &&
578         "block with multiple successors doesn't have a recipe as terminator");
579     return false;
580   }
581 
582   const VPRecipeBase *R = &VPBB->back();
583   bool IsCondBranch = isa<VPBranchOnMaskRecipe>(R) ||
584                       match(R, m_BranchOnCond(m_VPValue())) ||
585                       match(R, m_BranchOnCount(m_VPValue(), m_VPValue()));
586   (void)IsCondBranch;
587 
588   if (VPBB->getNumSuccessors() >= 2 ||
589       (VPBB->isExiting() && !VPBB->getParent()->isReplicator())) {
590     assert(IsCondBranch && "block with multiple successors not terminated by "
591                            "conditional branch recipe");
592 
593     return true;
594   }
595 
596   assert(
597       !IsCondBranch &&
598       "block with 0 or 1 successors terminated by conditional branch recipe");
599   return false;
600 }
601 
602 VPRecipeBase *VPBasicBlock::getTerminator() {
603   if (hasConditionalTerminator(this))
604     return &back();
605   return nullptr;
606 }
607 
608 const VPRecipeBase *VPBasicBlock::getTerminator() const {
609   if (hasConditionalTerminator(this))
610     return &back();
611   return nullptr;
612 }
613 
614 bool VPBasicBlock::isExiting() const {
615   return getParent() && getParent()->getExitingBasicBlock() == this;
616 }
617 
618 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
619 void VPBlockBase::printSuccessors(raw_ostream &O, const Twine &Indent) const {
620   if (getSuccessors().empty()) {
621     O << Indent << "No successors\n";
622   } else {
623     O << Indent << "Successor(s): ";
624     ListSeparator LS;
625     for (auto *Succ : getSuccessors())
626       O << LS << Succ->getName();
627     O << '\n';
628   }
629 }
630 
631 void VPBasicBlock::print(raw_ostream &O, const Twine &Indent,
632                          VPSlotTracker &SlotTracker) const {
633   O << Indent << getName() << ":\n";
634 
635   auto RecipeIndent = Indent + "  ";
636   for (const VPRecipeBase &Recipe : *this) {
637     Recipe.print(O, RecipeIndent, SlotTracker);
638     O << '\n';
639   }
640 
641   printSuccessors(O, Indent);
642 }
643 #endif
644 
645 static std::pair<VPBlockBase *, VPBlockBase *> cloneFrom(VPBlockBase *Entry);
646 
647 // Clone the CFG for all nodes reachable from \p Entry, this includes cloning
648 // the blocks and their recipes. Operands of cloned recipes will NOT be updated.
649 // Remapping of operands must be done separately. Returns a pair with the new
650 // entry and exiting blocks of the cloned region. If \p Entry isn't part of a
651 // region, return nullptr for the exiting block.
652 static std::pair<VPBlockBase *, VPBlockBase *> cloneFrom(VPBlockBase *Entry) {
653   DenseMap<VPBlockBase *, VPBlockBase *> Old2NewVPBlocks;
654   VPBlockBase *Exiting = nullptr;
655   bool InRegion = Entry->getParent();
656   // First, clone blocks reachable from Entry.
657   for (VPBlockBase *BB : vp_depth_first_shallow(Entry)) {
658     VPBlockBase *NewBB = BB->clone();
659     Old2NewVPBlocks[BB] = NewBB;
660     if (InRegion && BB->getNumSuccessors() == 0) {
661       assert(!Exiting && "Multiple exiting blocks?");
662       Exiting = BB;
663     }
664   }
665   assert((!InRegion || Exiting) && "regions must have a single exiting block");
666 
667   // Second, update the predecessors & successors of the cloned blocks.
668   for (VPBlockBase *BB : vp_depth_first_shallow(Entry)) {
669     VPBlockBase *NewBB = Old2NewVPBlocks[BB];
670     SmallVector<VPBlockBase *> NewPreds;
671     for (VPBlockBase *Pred : BB->getPredecessors()) {
672       NewPreds.push_back(Old2NewVPBlocks[Pred]);
673     }
674     NewBB->setPredecessors(NewPreds);
675     SmallVector<VPBlockBase *> NewSuccs;
676     for (VPBlockBase *Succ : BB->successors()) {
677       NewSuccs.push_back(Old2NewVPBlocks[Succ]);
678     }
679     NewBB->setSuccessors(NewSuccs);
680   }
681 
682 #if !defined(NDEBUG)
683   // Verify that the order of predecessors and successors matches in the cloned
684   // version.
685   for (const auto &[OldBB, NewBB] :
686        zip(vp_depth_first_shallow(Entry),
687            vp_depth_first_shallow(Old2NewVPBlocks[Entry]))) {
688     for (const auto &[OldPred, NewPred] :
689          zip(OldBB->getPredecessors(), NewBB->getPredecessors()))
690       assert(NewPred == Old2NewVPBlocks[OldPred] && "Different predecessors");
691 
692     for (const auto &[OldSucc, NewSucc] :
693          zip(OldBB->successors(), NewBB->successors()))
694       assert(NewSucc == Old2NewVPBlocks[OldSucc] && "Different successors");
695   }
696 #endif
697 
698   return std::make_pair(Old2NewVPBlocks[Entry],
699                         Exiting ? Old2NewVPBlocks[Exiting] : nullptr);
700 }
701 
702 VPRegionBlock *VPRegionBlock::clone() {
703   const auto &[NewEntry, NewExiting] = cloneFrom(getEntry());
704   auto *NewRegion =
705       new VPRegionBlock(NewEntry, NewExiting, getName(), isReplicator());
706   for (VPBlockBase *Block : vp_depth_first_shallow(NewEntry))
707     Block->setParent(NewRegion);
708   return NewRegion;
709 }
710 
711 void VPRegionBlock::dropAllReferences(VPValue *NewValue) {
712   for (VPBlockBase *Block : vp_depth_first_shallow(Entry))
713     // Drop all references in VPBasicBlocks and replace all uses with
714     // DummyValue.
715     Block->dropAllReferences(NewValue);
716 }
717 
718 void VPRegionBlock::execute(VPTransformState *State) {
719   ReversePostOrderTraversal<VPBlockShallowTraversalWrapper<VPBlockBase *>>
720       RPOT(Entry);
721 
722   if (!isReplicator()) {
723     // Create and register the new vector loop.
724     Loop *PrevLoop = State->CurrentVectorLoop;
725     State->CurrentVectorLoop = State->LI->AllocateLoop();
726     BasicBlock *VectorPH = State->CFG.VPBB2IRBB[getPreheaderVPBB()];
727     Loop *ParentLoop = State->LI->getLoopFor(VectorPH);
728 
729     // Insert the new loop into the loop nest and register the new basic blocks
730     // before calling any utilities such as SCEV that require valid LoopInfo.
731     if (ParentLoop)
732       ParentLoop->addChildLoop(State->CurrentVectorLoop);
733     else
734       State->LI->addTopLevelLoop(State->CurrentVectorLoop);
735 
736     // Visit the VPBlocks connected to "this", starting from it.
737     for (VPBlockBase *Block : RPOT) {
738       LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n');
739       Block->execute(State);
740     }
741 
742     State->CurrentVectorLoop = PrevLoop;
743     return;
744   }
745 
746   assert(!State->Lane && "Replicating a Region with non-null instance.");
747 
748   // Enter replicating mode.
749   assert(!State->VF.isScalable() && "VF is assumed to be non scalable.");
750   State->Lane = VPLane(0);
751   for (unsigned Lane = 0, VF = State->VF.getKnownMinValue(); Lane < VF;
752        ++Lane) {
753     State->Lane = VPLane(Lane, VPLane::Kind::First);
754     // Visit the VPBlocks connected to \p this, starting from it.
755     for (VPBlockBase *Block : RPOT) {
756       LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n');
757       Block->execute(State);
758     }
759   }
760 
761   // Exit replicating mode.
762   State->Lane.reset();
763 }
764 
765 InstructionCost VPBasicBlock::cost(ElementCount VF, VPCostContext &Ctx) {
766   InstructionCost Cost = 0;
767   for (VPRecipeBase &R : Recipes)
768     Cost += R.cost(VF, Ctx);
769   return Cost;
770 }
771 
772 InstructionCost VPRegionBlock::cost(ElementCount VF, VPCostContext &Ctx) {
773   if (!isReplicator()) {
774     InstructionCost Cost = 0;
775     for (VPBlockBase *Block : vp_depth_first_shallow(getEntry()))
776       Cost += Block->cost(VF, Ctx);
777     InstructionCost BackedgeCost =
778         ForceTargetInstructionCost.getNumOccurrences()
779             ? InstructionCost(ForceTargetInstructionCost.getNumOccurrences())
780             : Ctx.TTI.getCFInstrCost(Instruction::Br, TTI::TCK_RecipThroughput);
781     LLVM_DEBUG(dbgs() << "Cost of " << BackedgeCost << " for VF " << VF
782                       << ": vector loop backedge\n");
783     Cost += BackedgeCost;
784     return Cost;
785   }
786 
787   // Compute the cost of a replicate region. Replicating isn't supported for
788   // scalable vectors, return an invalid cost for them.
789   // TODO: Discard scalable VPlans with replicate recipes earlier after
790   // construction.
791   if (VF.isScalable())
792     return InstructionCost::getInvalid();
793 
794   // First compute the cost of the conditionally executed recipes, followed by
795   // account for the branching cost, except if the mask is a header mask or
796   // uniform condition.
797   using namespace llvm::VPlanPatternMatch;
798   VPBasicBlock *Then = cast<VPBasicBlock>(getEntry()->getSuccessors()[0]);
799   InstructionCost ThenCost = Then->cost(VF, Ctx);
800 
801   // For the scalar case, we may not always execute the original predicated
802   // block, Thus, scale the block's cost by the probability of executing it.
803   if (VF.isScalar())
804     return ThenCost / getReciprocalPredBlockProb();
805 
806   return ThenCost;
807 }
808 
809 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
810 void VPRegionBlock::print(raw_ostream &O, const Twine &Indent,
811                           VPSlotTracker &SlotTracker) const {
812   O << Indent << (isReplicator() ? "<xVFxUF> " : "<x1> ") << getName() << ": {";
813   auto NewIndent = Indent + "  ";
814   for (auto *BlockBase : vp_depth_first_shallow(Entry)) {
815     O << '\n';
816     BlockBase->print(O, NewIndent, SlotTracker);
817   }
818   O << Indent << "}\n";
819 
820   printSuccessors(O, Indent);
821 }
822 #endif
823 
824 VPlan::VPlan(VPBasicBlock *OriginalPreheader, VPValue *TC,
825              VPBasicBlock *EntryVectorPreHeader, VPIRBasicBlock *ScalarHeader)
826     : VPlan(OriginalPreheader, TC, ScalarHeader) {
827   VPBlockUtils::connectBlocks(OriginalPreheader, EntryVectorPreHeader);
828 }
829 
830 VPlan::VPlan(VPBasicBlock *OriginalPreheader,
831              VPBasicBlock *EntryVectorPreHeader, VPIRBasicBlock *ScalarHeader)
832     : VPlan(OriginalPreheader, ScalarHeader) {
833   VPBlockUtils::connectBlocks(OriginalPreheader, EntryVectorPreHeader);
834 }
835 
836 VPlan::~VPlan() {
837   if (Entry) {
838     VPValue DummyValue;
839     for (VPBlockBase *Block : vp_depth_first_shallow(Entry))
840       Block->dropAllReferences(&DummyValue);
841 
842     VPBlockBase::deleteCFG(Entry);
843   }
844   for (VPValue *VPV : VPLiveInsToFree)
845     delete VPV;
846   if (BackedgeTakenCount)
847     delete BackedgeTakenCount;
848 }
849 
850 VPIRBasicBlock *VPIRBasicBlock::fromBasicBlock(BasicBlock *IRBB) {
851   auto *VPIRBB = new VPIRBasicBlock(IRBB);
852   for (Instruction &I :
853        make_range(IRBB->begin(), IRBB->getTerminator()->getIterator()))
854     VPIRBB->appendRecipe(new VPIRInstruction(I));
855   return VPIRBB;
856 }
857 
858 VPlanPtr VPlan::createInitialVPlan(Type *InductionTy,
859                                    PredicatedScalarEvolution &PSE,
860                                    bool RequiresScalarEpilogueCheck,
861                                    bool TailFolded, Loop *TheLoop) {
862   VPIRBasicBlock *Entry =
863       VPIRBasicBlock::fromBasicBlock(TheLoop->getLoopPreheader());
864   VPBasicBlock *VecPreheader = new VPBasicBlock("vector.ph");
865   // Connect entry only to vector preheader initially. Entry will also be
866   // connected to the scalar preheader later, during skeleton creation when
867   // runtime guards are added as needed. Note that when executing the VPlan for
868   // an epilogue vector loop, the original entry block here will be replaced by
869   // a new VPIRBasicBlock wrapping the entry to the epilogue vector loop after
870   // generating code for the main vector loop.
871   VPBlockUtils::connectBlocks(Entry, VecPreheader);
872   VPIRBasicBlock *ScalarHeader =
873       VPIRBasicBlock::fromBasicBlock(TheLoop->getHeader());
874   auto Plan = std::make_unique<VPlan>(Entry, ScalarHeader);
875 
876   // Create SCEV and VPValue for the trip count.
877   // We use the symbolic max backedge-taken-count, which works also when
878   // vectorizing loops with uncountable early exits.
879   const SCEV *BackedgeTakenCountSCEV = PSE.getSymbolicMaxBackedgeTakenCount();
880   assert(!isa<SCEVCouldNotCompute>(BackedgeTakenCountSCEV) &&
881          "Invalid loop count");
882   ScalarEvolution &SE = *PSE.getSE();
883   const SCEV *TripCount = SE.getTripCountFromExitCount(BackedgeTakenCountSCEV,
884                                                        InductionTy, TheLoop);
885   Plan->TripCount =
886       vputils::getOrCreateVPValueForSCEVExpr(*Plan, TripCount, SE);
887 
888   // Create VPRegionBlock, with empty header and latch blocks, to be filled
889   // during processing later.
890   VPBasicBlock *HeaderVPBB = new VPBasicBlock("vector.body");
891   VPBasicBlock *LatchVPBB = new VPBasicBlock("vector.latch");
892   VPBlockUtils::insertBlockAfter(LatchVPBB, HeaderVPBB);
893   auto *TopRegion = new VPRegionBlock(HeaderVPBB, LatchVPBB, "vector loop",
894                                       false /*isReplicator*/);
895 
896   VPBlockUtils::insertBlockAfter(TopRegion, VecPreheader);
897   VPBasicBlock *MiddleVPBB = new VPBasicBlock("middle.block");
898   VPBlockUtils::insertBlockAfter(MiddleVPBB, TopRegion);
899 
900   VPBasicBlock *ScalarPH = new VPBasicBlock("scalar.ph");
901   VPBlockUtils::connectBlocks(ScalarPH, ScalarHeader);
902   if (!RequiresScalarEpilogueCheck) {
903     VPBlockUtils::connectBlocks(MiddleVPBB, ScalarPH);
904     return Plan;
905   }
906 
907   // If needed, add a check in the middle block to see if we have completed
908   // all of the iterations in the first vector loop.  Three cases:
909   // 1) If (N - N%VF) == N, then we *don't* need to run the remainder.
910   //    Thus if tail is to be folded, we know we don't need to run the
911   //    remainder and we can set the condition to true.
912   // 2) If we require a scalar epilogue, there is no conditional branch as
913   //    we unconditionally branch to the scalar preheader.  Do nothing.
914   // 3) Otherwise, construct a runtime check.
915   BasicBlock *IRExitBlock = TheLoop->getUniqueLatchExitBlock();
916   auto *VPExitBlock = VPIRBasicBlock::fromBasicBlock(IRExitBlock);
917   // The connection order corresponds to the operands of the conditional branch.
918   VPBlockUtils::insertBlockAfter(VPExitBlock, MiddleVPBB);
919   VPBlockUtils::connectBlocks(MiddleVPBB, ScalarPH);
920 
921   auto *ScalarLatchTerm = TheLoop->getLoopLatch()->getTerminator();
922   // Here we use the same DebugLoc as the scalar loop latch terminator instead
923   // of the corresponding compare because they may have ended up with
924   // different line numbers and we want to avoid awkward line stepping while
925   // debugging. Eg. if the compare has got a line number inside the loop.
926   VPBuilder Builder(MiddleVPBB);
927   VPValue *Cmp =
928       TailFolded
929           ? Plan->getOrAddLiveIn(ConstantInt::getTrue(
930                 IntegerType::getInt1Ty(TripCount->getType()->getContext())))
931           : Builder.createICmp(CmpInst::ICMP_EQ, Plan->getTripCount(),
932                                &Plan->getVectorTripCount(),
933                                ScalarLatchTerm->getDebugLoc(), "cmp.n");
934   Builder.createNaryOp(VPInstruction::BranchOnCond, {Cmp},
935                        ScalarLatchTerm->getDebugLoc());
936   return Plan;
937 }
938 
939 void VPlan::prepareToExecute(Value *TripCountV, Value *VectorTripCountV,
940                              VPTransformState &State) {
941   Type *TCTy = TripCountV->getType();
942   // Check if the backedge taken count is needed, and if so build it.
943   if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) {
944     IRBuilder<> Builder(State.CFG.PrevBB->getTerminator());
945     auto *TCMO = Builder.CreateSub(TripCountV, ConstantInt::get(TCTy, 1),
946                                    "trip.count.minus.1");
947     BackedgeTakenCount->setUnderlyingValue(TCMO);
948   }
949 
950   VectorTripCount.setUnderlyingValue(VectorTripCountV);
951 
952   IRBuilder<> Builder(State.CFG.PrevBB->getTerminator());
953   // FIXME: Model VF * UF computation completely in VPlan.
954   assert(VFxUF.getNumUsers() && "VFxUF expected to always have users");
955   unsigned UF = getUF();
956   if (VF.getNumUsers()) {
957     Value *RuntimeVF = getRuntimeVF(Builder, TCTy, State.VF);
958     VF.setUnderlyingValue(RuntimeVF);
959     VFxUF.setUnderlyingValue(
960         UF > 1 ? Builder.CreateMul(RuntimeVF, ConstantInt::get(TCTy, UF))
961                : RuntimeVF);
962   } else {
963     VFxUF.setUnderlyingValue(createStepForVF(Builder, TCTy, State.VF, UF));
964   }
965 }
966 
967 /// Replace \p VPBB with a VPIRBasicBlock wrapping \p IRBB. All recipes from \p
968 /// VPBB are moved to the end of the newly created VPIRBasicBlock. VPBB must
969 /// have a single predecessor, which is rewired to the new VPIRBasicBlock. All
970 /// successors of VPBB, if any, are rewired to the new VPIRBasicBlock.
971 static void replaceVPBBWithIRVPBB(VPBasicBlock *VPBB, BasicBlock *IRBB) {
972   VPIRBasicBlock *IRVPBB = VPIRBasicBlock::fromBasicBlock(IRBB);
973   for (auto &R : make_early_inc_range(*VPBB)) {
974     assert(!R.isPhi() && "Tried to move phi recipe to end of block");
975     R.moveBefore(*IRVPBB, IRVPBB->end());
976   }
977 
978   VPBlockUtils::reassociateBlocks(VPBB, IRVPBB);
979 
980   delete VPBB;
981 }
982 
983 /// Generate the code inside the preheader and body of the vectorized loop.
984 /// Assumes a single pre-header basic-block was created for this. Introduce
985 /// additional basic-blocks as needed, and fill them all.
986 void VPlan::execute(VPTransformState *State) {
987   // Initialize CFG state.
988   State->CFG.PrevVPBB = nullptr;
989   State->CFG.ExitBB = State->CFG.PrevBB->getSingleSuccessor();
990   BasicBlock *VectorPreHeader = State->CFG.PrevBB;
991   State->Builder.SetInsertPoint(VectorPreHeader->getTerminator());
992 
993   // Disconnect VectorPreHeader from ExitBB in both the CFG and DT.
994   cast<BranchInst>(VectorPreHeader->getTerminator())->setSuccessor(0, nullptr);
995   State->CFG.DTU.applyUpdates(
996       {{DominatorTree::Delete, VectorPreHeader, State->CFG.ExitBB}});
997 
998   // Replace regular VPBB's for the vector preheader, middle and scalar
999   // preheader blocks with VPIRBasicBlocks wrapping their IR blocks. The IR
1000   // blocks are created during skeleton creation, so we can only create the
1001   // VPIRBasicBlocks now during VPlan execution rather than earlier during VPlan
1002   // construction.
1003   BasicBlock *MiddleBB = State->CFG.ExitBB;
1004   BasicBlock *ScalarPh = MiddleBB->getSingleSuccessor();
1005   replaceVPBBWithIRVPBB(getVectorPreheader(), VectorPreHeader);
1006   replaceVPBBWithIRVPBB(getMiddleBlock(), MiddleBB);
1007   replaceVPBBWithIRVPBB(getScalarPreheader(), ScalarPh);
1008 
1009   LLVM_DEBUG(dbgs() << "Executing best plan with VF=" << State->VF
1010                     << ", UF=" << getUF() << '\n');
1011   setName("Final VPlan");
1012   LLVM_DEBUG(dump());
1013 
1014   LLVM_DEBUG(dbgs() << "Executing best plan with VF=" << State->VF
1015                     << ", UF=" << getUF() << '\n');
1016   setName("Final VPlan");
1017   LLVM_DEBUG(dump());
1018 
1019   // Disconnect the middle block from its single successor (the scalar loop
1020   // header) in both the CFG and DT. The branch will be recreated during VPlan
1021   // execution.
1022   auto *BrInst = new UnreachableInst(MiddleBB->getContext());
1023   BrInst->insertBefore(MiddleBB->getTerminator());
1024   MiddleBB->getTerminator()->eraseFromParent();
1025   State->CFG.DTU.applyUpdates({{DominatorTree::Delete, MiddleBB, ScalarPh}});
1026   // Disconnect scalar preheader and scalar header, as the dominator tree edge
1027   // will be updated as part of VPlan execution. This allows keeping the DTU
1028   // logic generic during VPlan execution.
1029   State->CFG.DTU.applyUpdates(
1030       {{DominatorTree::Delete, ScalarPh, ScalarPh->getSingleSuccessor()}});
1031 
1032   ReversePostOrderTraversal<VPBlockShallowTraversalWrapper<VPBlockBase *>> RPOT(
1033       Entry);
1034   // Generate code for the VPlan, in parts of the vector skeleton, loop body and
1035   // successor blocks including the middle, exit and scalar preheader blocks.
1036   for (VPBlockBase *Block : RPOT)
1037     Block->execute(State);
1038 
1039   VPBasicBlock *LatchVPBB = getVectorLoopRegion()->getExitingBasicBlock();
1040   BasicBlock *VectorLatchBB = State->CFG.VPBB2IRBB[LatchVPBB];
1041 
1042   // Fix the latch value of canonical, reduction and first-order recurrences
1043   // phis in the vector loop.
1044   VPBasicBlock *Header = getVectorLoopRegion()->getEntryBasicBlock();
1045   for (VPRecipeBase &R : Header->phis()) {
1046     // Skip phi-like recipes that generate their backedege values themselves.
1047     if (isa<VPWidenPHIRecipe>(&R))
1048       continue;
1049 
1050     if (isa<VPWidenPointerInductionRecipe, VPWidenIntOrFpInductionRecipe>(&R)) {
1051       PHINode *Phi = nullptr;
1052       if (isa<VPWidenIntOrFpInductionRecipe>(&R)) {
1053         Phi = cast<PHINode>(State->get(R.getVPSingleValue()));
1054       } else {
1055         auto *WidenPhi = cast<VPWidenPointerInductionRecipe>(&R);
1056         assert(!WidenPhi->onlyScalarsGenerated(State->VF.isScalable()) &&
1057                "recipe generating only scalars should have been replaced");
1058         auto *GEP = cast<GetElementPtrInst>(State->get(WidenPhi));
1059         Phi = cast<PHINode>(GEP->getPointerOperand());
1060       }
1061 
1062       Phi->setIncomingBlock(1, VectorLatchBB);
1063 
1064       // Move the last step to the end of the latch block. This ensures
1065       // consistent placement of all induction updates.
1066       Instruction *Inc = cast<Instruction>(Phi->getIncomingValue(1));
1067       Inc->moveBefore(VectorLatchBB->getTerminator()->getPrevNode());
1068 
1069       // Use the steps for the last part as backedge value for the induction.
1070       if (auto *IV = dyn_cast<VPWidenIntOrFpInductionRecipe>(&R))
1071         Inc->setOperand(0, State->get(IV->getLastUnrolledPartOperand()));
1072       continue;
1073     }
1074 
1075     auto *PhiR = cast<VPHeaderPHIRecipe>(&R);
1076     bool NeedsScalar = isa<VPScalarPHIRecipe>(PhiR) ||
1077                        (isa<VPReductionPHIRecipe>(PhiR) &&
1078                         cast<VPReductionPHIRecipe>(PhiR)->isInLoop());
1079     Value *Phi = State->get(PhiR, NeedsScalar);
1080     Value *Val = State->get(PhiR->getBackedgeValue(), NeedsScalar);
1081     cast<PHINode>(Phi)->addIncoming(Val, VectorLatchBB);
1082   }
1083 
1084   State->CFG.DTU.flush();
1085 }
1086 
1087 InstructionCost VPlan::cost(ElementCount VF, VPCostContext &Ctx) {
1088   // For now only return the cost of the vector loop region, ignoring any other
1089   // blocks, like the preheader or middle blocks.
1090   return getVectorLoopRegion()->cost(VF, Ctx);
1091 }
1092 
1093 VPRegionBlock *VPlan::getVectorLoopRegion() {
1094   // TODO: Cache if possible.
1095   for (VPBlockBase *B : vp_depth_first_shallow(getEntry()))
1096     if (auto *R = dyn_cast<VPRegionBlock>(B))
1097       return R;
1098   return nullptr;
1099 }
1100 
1101 const VPRegionBlock *VPlan::getVectorLoopRegion() const {
1102   for (const VPBlockBase *B : vp_depth_first_shallow(getEntry()))
1103     if (auto *R = dyn_cast<VPRegionBlock>(B))
1104       return R;
1105   return nullptr;
1106 }
1107 
1108 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1109 void VPlan::printLiveIns(raw_ostream &O) const {
1110   VPSlotTracker SlotTracker(this);
1111 
1112   if (VF.getNumUsers() > 0) {
1113     O << "\nLive-in ";
1114     VF.printAsOperand(O, SlotTracker);
1115     O << " = VF";
1116   }
1117 
1118   if (VFxUF.getNumUsers() > 0) {
1119     O << "\nLive-in ";
1120     VFxUF.printAsOperand(O, SlotTracker);
1121     O << " = VF * UF";
1122   }
1123 
1124   if (VectorTripCount.getNumUsers() > 0) {
1125     O << "\nLive-in ";
1126     VectorTripCount.printAsOperand(O, SlotTracker);
1127     O << " = vector-trip-count";
1128   }
1129 
1130   if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) {
1131     O << "\nLive-in ";
1132     BackedgeTakenCount->printAsOperand(O, SlotTracker);
1133     O << " = backedge-taken count";
1134   }
1135 
1136   O << "\n";
1137   if (TripCount->isLiveIn())
1138     O << "Live-in ";
1139   TripCount->printAsOperand(O, SlotTracker);
1140   O << " = original trip-count";
1141   O << "\n";
1142 }
1143 
1144 LLVM_DUMP_METHOD
1145 void VPlan::print(raw_ostream &O) const {
1146   VPSlotTracker SlotTracker(this);
1147 
1148   O << "VPlan '" << getName() << "' {";
1149 
1150   printLiveIns(O);
1151 
1152   ReversePostOrderTraversal<VPBlockShallowTraversalWrapper<const VPBlockBase *>>
1153       RPOT(getEntry());
1154   for (const VPBlockBase *Block : RPOT) {
1155     O << '\n';
1156     Block->print(O, "", SlotTracker);
1157   }
1158 
1159   O << "}\n";
1160 }
1161 
1162 std::string VPlan::getName() const {
1163   std::string Out;
1164   raw_string_ostream RSO(Out);
1165   RSO << Name << " for ";
1166   if (!VFs.empty()) {
1167     RSO << "VF={" << VFs[0];
1168     for (ElementCount VF : drop_begin(VFs))
1169       RSO << "," << VF;
1170     RSO << "},";
1171   }
1172 
1173   if (UFs.empty()) {
1174     RSO << "UF>=1";
1175   } else {
1176     RSO << "UF={" << UFs[0];
1177     for (unsigned UF : drop_begin(UFs))
1178       RSO << "," << UF;
1179     RSO << "}";
1180   }
1181 
1182   return Out;
1183 }
1184 
1185 LLVM_DUMP_METHOD
1186 void VPlan::printDOT(raw_ostream &O) const {
1187   VPlanPrinter Printer(O, *this);
1188   Printer.dump();
1189 }
1190 
1191 LLVM_DUMP_METHOD
1192 void VPlan::dump() const { print(dbgs()); }
1193 #endif
1194 
1195 static void remapOperands(VPBlockBase *Entry, VPBlockBase *NewEntry,
1196                           DenseMap<VPValue *, VPValue *> &Old2NewVPValues) {
1197   // Update the operands of all cloned recipes starting at NewEntry. This
1198   // traverses all reachable blocks. This is done in two steps, to handle cycles
1199   // in PHI recipes.
1200   ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<VPBlockBase *>>
1201       OldDeepRPOT(Entry);
1202   ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<VPBlockBase *>>
1203       NewDeepRPOT(NewEntry);
1204   // First, collect all mappings from old to new VPValues defined by cloned
1205   // recipes.
1206   for (const auto &[OldBB, NewBB] :
1207        zip(VPBlockUtils::blocksOnly<VPBasicBlock>(OldDeepRPOT),
1208            VPBlockUtils::blocksOnly<VPBasicBlock>(NewDeepRPOT))) {
1209     assert(OldBB->getRecipeList().size() == NewBB->getRecipeList().size() &&
1210            "blocks must have the same number of recipes");
1211     for (const auto &[OldR, NewR] : zip(*OldBB, *NewBB)) {
1212       assert(OldR.getNumOperands() == NewR.getNumOperands() &&
1213              "recipes must have the same number of operands");
1214       assert(OldR.getNumDefinedValues() == NewR.getNumDefinedValues() &&
1215              "recipes must define the same number of operands");
1216       for (const auto &[OldV, NewV] :
1217            zip(OldR.definedValues(), NewR.definedValues()))
1218         Old2NewVPValues[OldV] = NewV;
1219     }
1220   }
1221 
1222   // Update all operands to use cloned VPValues.
1223   for (VPBasicBlock *NewBB :
1224        VPBlockUtils::blocksOnly<VPBasicBlock>(NewDeepRPOT)) {
1225     for (VPRecipeBase &NewR : *NewBB)
1226       for (unsigned I = 0, E = NewR.getNumOperands(); I != E; ++I) {
1227         VPValue *NewOp = Old2NewVPValues.lookup(NewR.getOperand(I));
1228         NewR.setOperand(I, NewOp);
1229       }
1230   }
1231 }
1232 
1233 VPlan *VPlan::duplicate() {
1234   // Clone blocks.
1235   const auto &[NewEntry, __] = cloneFrom(Entry);
1236 
1237   BasicBlock *ScalarHeaderIRBB = getScalarHeader()->getIRBasicBlock();
1238   VPIRBasicBlock *NewScalarHeader = cast<VPIRBasicBlock>(*find_if(
1239       vp_depth_first_shallow(NewEntry), [ScalarHeaderIRBB](VPBlockBase *VPB) {
1240         auto *VPIRBB = dyn_cast<VPIRBasicBlock>(VPB);
1241         return VPIRBB && VPIRBB->getIRBasicBlock() == ScalarHeaderIRBB;
1242       }));
1243   // Create VPlan, clone live-ins and remap operands in the cloned blocks.
1244   auto *NewPlan = new VPlan(cast<VPBasicBlock>(NewEntry), NewScalarHeader);
1245   DenseMap<VPValue *, VPValue *> Old2NewVPValues;
1246   for (VPValue *OldLiveIn : VPLiveInsToFree) {
1247     Old2NewVPValues[OldLiveIn] =
1248         NewPlan->getOrAddLiveIn(OldLiveIn->getLiveInIRValue());
1249   }
1250   Old2NewVPValues[&VectorTripCount] = &NewPlan->VectorTripCount;
1251   Old2NewVPValues[&VF] = &NewPlan->VF;
1252   Old2NewVPValues[&VFxUF] = &NewPlan->VFxUF;
1253   if (BackedgeTakenCount) {
1254     NewPlan->BackedgeTakenCount = new VPValue();
1255     Old2NewVPValues[BackedgeTakenCount] = NewPlan->BackedgeTakenCount;
1256   }
1257   assert(TripCount && "trip count must be set");
1258   if (TripCount->isLiveIn())
1259     Old2NewVPValues[TripCount] =
1260         NewPlan->getOrAddLiveIn(TripCount->getLiveInIRValue());
1261   // else NewTripCount will be created and inserted into Old2NewVPValues when
1262   // TripCount is cloned. In any case NewPlan->TripCount is updated below.
1263 
1264   remapOperands(Entry, NewEntry, Old2NewVPValues);
1265 
1266   // Initialize remaining fields of cloned VPlan.
1267   NewPlan->VFs = VFs;
1268   NewPlan->UFs = UFs;
1269   // TODO: Adjust names.
1270   NewPlan->Name = Name;
1271   assert(Old2NewVPValues.contains(TripCount) &&
1272          "TripCount must have been added to Old2NewVPValues");
1273   NewPlan->TripCount = Old2NewVPValues[TripCount];
1274   return NewPlan;
1275 }
1276 
1277 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1278 
1279 Twine VPlanPrinter::getUID(const VPBlockBase *Block) {
1280   return (isa<VPRegionBlock>(Block) ? "cluster_N" : "N") +
1281          Twine(getOrCreateBID(Block));
1282 }
1283 
1284 Twine VPlanPrinter::getOrCreateName(const VPBlockBase *Block) {
1285   const std::string &Name = Block->getName();
1286   if (!Name.empty())
1287     return Name;
1288   return "VPB" + Twine(getOrCreateBID(Block));
1289 }
1290 
1291 void VPlanPrinter::dump() {
1292   Depth = 1;
1293   bumpIndent(0);
1294   OS << "digraph VPlan {\n";
1295   OS << "graph [labelloc=t, fontsize=30; label=\"Vectorization Plan";
1296   if (!Plan.getName().empty())
1297     OS << "\\n" << DOT::EscapeString(Plan.getName());
1298 
1299   {
1300     // Print live-ins.
1301   std::string Str;
1302   raw_string_ostream SS(Str);
1303   Plan.printLiveIns(SS);
1304   SmallVector<StringRef, 0> Lines;
1305   StringRef(Str).rtrim('\n').split(Lines, "\n");
1306   for (auto Line : Lines)
1307     OS << DOT::EscapeString(Line.str()) << "\\n";
1308   }
1309 
1310   OS << "\"]\n";
1311   OS << "node [shape=rect, fontname=Courier, fontsize=30]\n";
1312   OS << "edge [fontname=Courier, fontsize=30]\n";
1313   OS << "compound=true\n";
1314 
1315   for (const VPBlockBase *Block : vp_depth_first_shallow(Plan.getEntry()))
1316     dumpBlock(Block);
1317 
1318   OS << "}\n";
1319 }
1320 
1321 void VPlanPrinter::dumpBlock(const VPBlockBase *Block) {
1322   if (const VPBasicBlock *BasicBlock = dyn_cast<VPBasicBlock>(Block))
1323     dumpBasicBlock(BasicBlock);
1324   else if (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
1325     dumpRegion(Region);
1326   else
1327     llvm_unreachable("Unsupported kind of VPBlock.");
1328 }
1329 
1330 void VPlanPrinter::drawEdge(const VPBlockBase *From, const VPBlockBase *To,
1331                             bool Hidden, const Twine &Label) {
1332   // Due to "dot" we print an edge between two regions as an edge between the
1333   // exiting basic block and the entry basic of the respective regions.
1334   const VPBlockBase *Tail = From->getExitingBasicBlock();
1335   const VPBlockBase *Head = To->getEntryBasicBlock();
1336   OS << Indent << getUID(Tail) << " -> " << getUID(Head);
1337   OS << " [ label=\"" << Label << '\"';
1338   if (Tail != From)
1339     OS << " ltail=" << getUID(From);
1340   if (Head != To)
1341     OS << " lhead=" << getUID(To);
1342   if (Hidden)
1343     OS << "; splines=none";
1344   OS << "]\n";
1345 }
1346 
1347 void VPlanPrinter::dumpEdges(const VPBlockBase *Block) {
1348   auto &Successors = Block->getSuccessors();
1349   if (Successors.size() == 1)
1350     drawEdge(Block, Successors.front(), false, "");
1351   else if (Successors.size() == 2) {
1352     drawEdge(Block, Successors.front(), false, "T");
1353     drawEdge(Block, Successors.back(), false, "F");
1354   } else {
1355     unsigned SuccessorNumber = 0;
1356     for (auto *Successor : Successors)
1357       drawEdge(Block, Successor, false, Twine(SuccessorNumber++));
1358   }
1359 }
1360 
1361 void VPlanPrinter::dumpBasicBlock(const VPBasicBlock *BasicBlock) {
1362   // Implement dot-formatted dump by performing plain-text dump into the
1363   // temporary storage followed by some post-processing.
1364   OS << Indent << getUID(BasicBlock) << " [label =\n";
1365   bumpIndent(1);
1366   std::string Str;
1367   raw_string_ostream SS(Str);
1368   // Use no indentation as we need to wrap the lines into quotes ourselves.
1369   BasicBlock->print(SS, "", SlotTracker);
1370 
1371   // We need to process each line of the output separately, so split
1372   // single-string plain-text dump.
1373   SmallVector<StringRef, 0> Lines;
1374   StringRef(Str).rtrim('\n').split(Lines, "\n");
1375 
1376   auto EmitLine = [&](StringRef Line, StringRef Suffix) {
1377     OS << Indent << '"' << DOT::EscapeString(Line.str()) << "\\l\"" << Suffix;
1378   };
1379 
1380   // Don't need the "+" after the last line.
1381   for (auto Line : make_range(Lines.begin(), Lines.end() - 1))
1382     EmitLine(Line, " +\n");
1383   EmitLine(Lines.back(), "\n");
1384 
1385   bumpIndent(-1);
1386   OS << Indent << "]\n";
1387 
1388   dumpEdges(BasicBlock);
1389 }
1390 
1391 void VPlanPrinter::dumpRegion(const VPRegionBlock *Region) {
1392   OS << Indent << "subgraph " << getUID(Region) << " {\n";
1393   bumpIndent(1);
1394   OS << Indent << "fontname=Courier\n"
1395      << Indent << "label=\""
1396      << DOT::EscapeString(Region->isReplicator() ? "<xVFxUF> " : "<x1> ")
1397      << DOT::EscapeString(Region->getName()) << "\"\n";
1398   // Dump the blocks of the region.
1399   assert(Region->getEntry() && "Region contains no inner blocks.");
1400   for (const VPBlockBase *Block : vp_depth_first_shallow(Region->getEntry()))
1401     dumpBlock(Block);
1402   bumpIndent(-1);
1403   OS << Indent << "}\n";
1404   dumpEdges(Region);
1405 }
1406 
1407 void VPlanIngredient::print(raw_ostream &O) const {
1408   if (auto *Inst = dyn_cast<Instruction>(V)) {
1409     if (!Inst->getType()->isVoidTy()) {
1410       Inst->printAsOperand(O, false);
1411       O << " = ";
1412     }
1413     O << Inst->getOpcodeName() << " ";
1414     unsigned E = Inst->getNumOperands();
1415     if (E > 0) {
1416       Inst->getOperand(0)->printAsOperand(O, false);
1417       for (unsigned I = 1; I < E; ++I)
1418         Inst->getOperand(I)->printAsOperand(O << ", ", false);
1419     }
1420   } else // !Inst
1421     V->printAsOperand(O, false);
1422 }
1423 
1424 #endif
1425 
1426 bool VPValue::isDefinedOutsideLoopRegions() const {
1427   return !hasDefiningRecipe() ||
1428          !getDefiningRecipe()->getParent()->getEnclosingLoopRegion();
1429 }
1430 
1431 void VPValue::replaceAllUsesWith(VPValue *New) {
1432   replaceUsesWithIf(New, [](VPUser &, unsigned) { return true; });
1433 }
1434 
1435 void VPValue::replaceUsesWithIf(
1436     VPValue *New,
1437     llvm::function_ref<bool(VPUser &U, unsigned Idx)> ShouldReplace) {
1438   // Note that this early exit is required for correctness; the implementation
1439   // below relies on the number of users for this VPValue to decrease, which
1440   // isn't the case if this == New.
1441   if (this == New)
1442     return;
1443 
1444   for (unsigned J = 0; J < getNumUsers();) {
1445     VPUser *User = Users[J];
1446     bool RemovedUser = false;
1447     for (unsigned I = 0, E = User->getNumOperands(); I < E; ++I) {
1448       if (User->getOperand(I) != this || !ShouldReplace(*User, I))
1449         continue;
1450 
1451       RemovedUser = true;
1452       User->setOperand(I, New);
1453     }
1454     // If a user got removed after updating the current user, the next user to
1455     // update will be moved to the current position, so we only need to
1456     // increment the index if the number of users did not change.
1457     if (!RemovedUser)
1458       J++;
1459   }
1460 }
1461 
1462 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1463 void VPValue::printAsOperand(raw_ostream &OS, VPSlotTracker &Tracker) const {
1464   OS << Tracker.getOrCreateName(this);
1465 }
1466 
1467 void VPUser::printOperands(raw_ostream &O, VPSlotTracker &SlotTracker) const {
1468   interleaveComma(operands(), O, [&O, &SlotTracker](VPValue *Op) {
1469     Op->printAsOperand(O, SlotTracker);
1470   });
1471 }
1472 #endif
1473 
1474 void VPInterleavedAccessInfo::visitRegion(VPRegionBlock *Region,
1475                                           Old2NewTy &Old2New,
1476                                           InterleavedAccessInfo &IAI) {
1477   ReversePostOrderTraversal<VPBlockShallowTraversalWrapper<VPBlockBase *>>
1478       RPOT(Region->getEntry());
1479   for (VPBlockBase *Base : RPOT) {
1480     visitBlock(Base, Old2New, IAI);
1481   }
1482 }
1483 
1484 void VPInterleavedAccessInfo::visitBlock(VPBlockBase *Block, Old2NewTy &Old2New,
1485                                          InterleavedAccessInfo &IAI) {
1486   if (VPBasicBlock *VPBB = dyn_cast<VPBasicBlock>(Block)) {
1487     for (VPRecipeBase &VPI : *VPBB) {
1488       if (isa<VPWidenPHIRecipe>(&VPI))
1489         continue;
1490       assert(isa<VPInstruction>(&VPI) && "Can only handle VPInstructions");
1491       auto *VPInst = cast<VPInstruction>(&VPI);
1492 
1493       auto *Inst = dyn_cast_or_null<Instruction>(VPInst->getUnderlyingValue());
1494       if (!Inst)
1495         continue;
1496       auto *IG = IAI.getInterleaveGroup(Inst);
1497       if (!IG)
1498         continue;
1499 
1500       auto NewIGIter = Old2New.find(IG);
1501       if (NewIGIter == Old2New.end())
1502         Old2New[IG] = new InterleaveGroup<VPInstruction>(
1503             IG->getFactor(), IG->isReverse(), IG->getAlign());
1504 
1505       if (Inst == IG->getInsertPos())
1506         Old2New[IG]->setInsertPos(VPInst);
1507 
1508       InterleaveGroupMap[VPInst] = Old2New[IG];
1509       InterleaveGroupMap[VPInst]->insertMember(
1510           VPInst, IG->getIndex(Inst),
1511           Align(IG->isReverse() ? (-1) * int(IG->getFactor())
1512                                 : IG->getFactor()));
1513     }
1514   } else if (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
1515     visitRegion(Region, Old2New, IAI);
1516   else
1517     llvm_unreachable("Unsupported kind of VPBlock.");
1518 }
1519 
1520 VPInterleavedAccessInfo::VPInterleavedAccessInfo(VPlan &Plan,
1521                                                  InterleavedAccessInfo &IAI) {
1522   Old2NewTy Old2New;
1523   visitRegion(Plan.getVectorLoopRegion(), Old2New, IAI);
1524 }
1525 
1526 void VPSlotTracker::assignName(const VPValue *V) {
1527   assert(!VPValue2Name.contains(V) && "VPValue already has a name!");
1528   auto *UV = V->getUnderlyingValue();
1529   auto *VPI = dyn_cast_or_null<VPInstruction>(V->getDefiningRecipe());
1530   if (!UV && !(VPI && !VPI->getName().empty())) {
1531     VPValue2Name[V] = (Twine("vp<%") + Twine(NextSlot) + ">").str();
1532     NextSlot++;
1533     return;
1534   }
1535 
1536   // Use the name of the underlying Value, wrapped in "ir<>", and versioned by
1537   // appending ".Number" to the name if there are multiple uses.
1538   std::string Name;
1539   if (UV) {
1540     raw_string_ostream S(Name);
1541     UV->printAsOperand(S, false);
1542   } else
1543     Name = VPI->getName();
1544 
1545   assert(!Name.empty() && "Name cannot be empty.");
1546   StringRef Prefix = UV ? "ir<" : "vp<%";
1547   std::string BaseName = (Twine(Prefix) + Name + Twine(">")).str();
1548 
1549   // First assign the base name for V.
1550   const auto &[A, _] = VPValue2Name.insert({V, BaseName});
1551   // Integer or FP constants with different types will result in he same string
1552   // due to stripping types.
1553   if (V->isLiveIn() && isa<ConstantInt, ConstantFP>(UV))
1554     return;
1555 
1556   // If it is already used by C > 0 other VPValues, increase the version counter
1557   // C and use it for V.
1558   const auto &[C, UseInserted] = BaseName2Version.insert({BaseName, 0});
1559   if (!UseInserted) {
1560     C->second++;
1561     A->second = (BaseName + Twine(".") + Twine(C->second)).str();
1562   }
1563 }
1564 
1565 void VPSlotTracker::assignNames(const VPlan &Plan) {
1566   if (Plan.VF.getNumUsers() > 0)
1567     assignName(&Plan.VF);
1568   if (Plan.VFxUF.getNumUsers() > 0)
1569     assignName(&Plan.VFxUF);
1570   assignName(&Plan.VectorTripCount);
1571   if (Plan.BackedgeTakenCount)
1572     assignName(Plan.BackedgeTakenCount);
1573   for (VPValue *LI : Plan.VPLiveInsToFree)
1574     assignName(LI);
1575 
1576   ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<const VPBlockBase *>>
1577       RPOT(VPBlockDeepTraversalWrapper<const VPBlockBase *>(Plan.getEntry()));
1578   for (const VPBasicBlock *VPBB :
1579        VPBlockUtils::blocksOnly<const VPBasicBlock>(RPOT))
1580     assignNames(VPBB);
1581 }
1582 
1583 void VPSlotTracker::assignNames(const VPBasicBlock *VPBB) {
1584   for (const VPRecipeBase &Recipe : *VPBB)
1585     for (VPValue *Def : Recipe.definedValues())
1586       assignName(Def);
1587 }
1588 
1589 std::string VPSlotTracker::getOrCreateName(const VPValue *V) const {
1590   std::string Name = VPValue2Name.lookup(V);
1591   if (!Name.empty())
1592     return Name;
1593 
1594   // If no name was assigned, no VPlan was provided when creating the slot
1595   // tracker or it is not reachable from the provided VPlan. This can happen,
1596   // e.g. when trying to print a recipe that has not been inserted into a VPlan
1597   // in a debugger.
1598   // TODO: Update VPSlotTracker constructor to assign names to recipes &
1599   // VPValues not associated with a VPlan, instead of constructing names ad-hoc
1600   // here.
1601   const VPRecipeBase *DefR = V->getDefiningRecipe();
1602   (void)DefR;
1603   assert((!DefR || !DefR->getParent() || !DefR->getParent()->getPlan()) &&
1604          "VPValue defined by a recipe in a VPlan?");
1605 
1606   // Use the underlying value's name, if there is one.
1607   if (auto *UV = V->getUnderlyingValue()) {
1608     std::string Name;
1609     raw_string_ostream S(Name);
1610     UV->printAsOperand(S, false);
1611     return (Twine("ir<") + Name + ">").str();
1612   }
1613 
1614   return "<badref>";
1615 }
1616 
1617 bool LoopVectorizationPlanner::getDecisionAndClampRange(
1618     const std::function<bool(ElementCount)> &Predicate, VFRange &Range) {
1619   assert(!Range.isEmpty() && "Trying to test an empty VF range.");
1620   bool PredicateAtRangeStart = Predicate(Range.Start);
1621 
1622   for (ElementCount TmpVF : VFRange(Range.Start * 2, Range.End))
1623     if (Predicate(TmpVF) != PredicateAtRangeStart) {
1624       Range.End = TmpVF;
1625       break;
1626     }
1627 
1628   return PredicateAtRangeStart;
1629 }
1630 
1631 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF,
1632 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range
1633 /// of VF's starting at a given VF and extending it as much as possible. Each
1634 /// vectorization decision can potentially shorten this sub-range during
1635 /// buildVPlan().
1636 void LoopVectorizationPlanner::buildVPlans(ElementCount MinVF,
1637                                            ElementCount MaxVF) {
1638   auto MaxVFTimes2 = MaxVF * 2;
1639   for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFTimes2);) {
1640     VFRange SubRange = {VF, MaxVFTimes2};
1641     auto Plan = buildVPlan(SubRange);
1642     VPlanTransforms::optimize(*Plan);
1643     VPlans.push_back(std::move(Plan));
1644     VF = SubRange.End;
1645   }
1646 }
1647 
1648 VPlan &LoopVectorizationPlanner::getPlanFor(ElementCount VF) const {
1649   assert(count_if(VPlans,
1650                   [VF](const VPlanPtr &Plan) { return Plan->hasVF(VF); }) ==
1651              1 &&
1652          "Multiple VPlans for VF.");
1653 
1654   for (const VPlanPtr &Plan : VPlans) {
1655     if (Plan->hasVF(VF))
1656       return *Plan.get();
1657   }
1658   llvm_unreachable("No plan found!");
1659 }
1660 
1661 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1662 void LoopVectorizationPlanner::printPlans(raw_ostream &O) {
1663   if (VPlans.empty()) {
1664     O << "LV: No VPlans built.\n";
1665     return;
1666   }
1667   for (const auto &Plan : VPlans)
1668     if (PrintVPlansInDotFormat)
1669       Plan->printDOT(O);
1670     else
1671       Plan->print(O);
1672 }
1673 #endif
1674 
1675 TargetTransformInfo::OperandValueInfo
1676 VPCostContext::getOperandInfo(VPValue *V) const {
1677   if (!V->isLiveIn())
1678     return {};
1679 
1680   return TTI::getOperandInfo(V->getLiveInIRValue());
1681 }
1682