1 //===- VPlan.cpp - Vectorizer Plan ----------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This is the LLVM vectorization plan. It represents a candidate for 11 /// vectorization, allowing to plan and optimize how to vectorize a given loop 12 /// before generating LLVM-IR. 13 /// The vectorizer uses vectorization plans to estimate the costs of potential 14 /// candidates and if profitable to execute the desired plan, generating vector 15 /// LLVM-IR code. 16 /// 17 //===----------------------------------------------------------------------===// 18 19 #include "VPlan.h" 20 #include "VPlanDominatorTree.h" 21 #include "llvm/ADT/DepthFirstIterator.h" 22 #include "llvm/ADT/PostOrderIterator.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/Twine.h" 25 #include "llvm/Analysis/LoopInfo.h" 26 #include "llvm/IR/BasicBlock.h" 27 #include "llvm/IR/CFG.h" 28 #include "llvm/IR/InstrTypes.h" 29 #include "llvm/IR/Instruction.h" 30 #include "llvm/IR/Instructions.h" 31 #include "llvm/IR/Type.h" 32 #include "llvm/IR/Value.h" 33 #include "llvm/Support/Casting.h" 34 #include "llvm/Support/CommandLine.h" 35 #include "llvm/Support/Debug.h" 36 #include "llvm/Support/ErrorHandling.h" 37 #include "llvm/Support/GenericDomTreeConstruction.h" 38 #include "llvm/Support/GraphWriter.h" 39 #include "llvm/Support/raw_ostream.h" 40 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 41 #include <cassert> 42 #include <iterator> 43 #include <string> 44 #include <vector> 45 46 using namespace llvm; 47 extern cl::opt<bool> EnableVPlanNativePath; 48 49 #define DEBUG_TYPE "vplan" 50 51 raw_ostream &llvm::operator<<(raw_ostream &OS, const VPValue &V) { 52 const VPInstruction *Instr = dyn_cast<VPInstruction>(&V); 53 VPSlotTracker SlotTracker( 54 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr); 55 V.print(OS, SlotTracker); 56 return OS; 57 } 58 59 void VPValue::print(raw_ostream &OS, VPSlotTracker &SlotTracker) const { 60 if (const VPInstruction *Instr = dyn_cast<VPInstruction>(this)) 61 Instr->print(OS, SlotTracker); 62 else 63 printAsOperand(OS, SlotTracker); 64 } 65 66 // Get the top-most entry block of \p Start. This is the entry block of the 67 // containing VPlan. This function is templated to support both const and non-const blocks 68 template <typename T> static T *getPlanEntry(T *Start) { 69 T *Next = Start; 70 T *Current = Start; 71 while ((Next = Next->getParent())) 72 Current = Next; 73 74 SmallSetVector<T *, 8> WorkList; 75 WorkList.insert(Current); 76 77 for (unsigned i = 0; i < WorkList.size(); i++) { 78 T *Current = WorkList[i]; 79 if (Current->getNumPredecessors() == 0) 80 return Current; 81 auto &Predecessors = Current->getPredecessors(); 82 WorkList.insert(Predecessors.begin(), Predecessors.end()); 83 } 84 85 llvm_unreachable("VPlan without any entry node without predecessors"); 86 } 87 88 VPlan *VPBlockBase::getPlan() { return getPlanEntry(this)->Plan; } 89 90 const VPlan *VPBlockBase::getPlan() const { return getPlanEntry(this)->Plan; } 91 92 /// \return the VPBasicBlock that is the entry of Block, possibly indirectly. 93 const VPBasicBlock *VPBlockBase::getEntryBasicBlock() const { 94 const VPBlockBase *Block = this; 95 while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 96 Block = Region->getEntry(); 97 return cast<VPBasicBlock>(Block); 98 } 99 100 VPBasicBlock *VPBlockBase::getEntryBasicBlock() { 101 VPBlockBase *Block = this; 102 while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 103 Block = Region->getEntry(); 104 return cast<VPBasicBlock>(Block); 105 } 106 107 void VPBlockBase::setPlan(VPlan *ParentPlan) { 108 assert(ParentPlan->getEntry() == this && 109 "Can only set plan on its entry block."); 110 Plan = ParentPlan; 111 } 112 113 /// \return the VPBasicBlock that is the exit of Block, possibly indirectly. 114 const VPBasicBlock *VPBlockBase::getExitBasicBlock() const { 115 const VPBlockBase *Block = this; 116 while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 117 Block = Region->getExit(); 118 return cast<VPBasicBlock>(Block); 119 } 120 121 VPBasicBlock *VPBlockBase::getExitBasicBlock() { 122 VPBlockBase *Block = this; 123 while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 124 Block = Region->getExit(); 125 return cast<VPBasicBlock>(Block); 126 } 127 128 VPBlockBase *VPBlockBase::getEnclosingBlockWithSuccessors() { 129 if (!Successors.empty() || !Parent) 130 return this; 131 assert(Parent->getExit() == this && 132 "Block w/o successors not the exit of its parent."); 133 return Parent->getEnclosingBlockWithSuccessors(); 134 } 135 136 VPBlockBase *VPBlockBase::getEnclosingBlockWithPredecessors() { 137 if (!Predecessors.empty() || !Parent) 138 return this; 139 assert(Parent->getEntry() == this && 140 "Block w/o predecessors not the entry of its parent."); 141 return Parent->getEnclosingBlockWithPredecessors(); 142 } 143 144 void VPBlockBase::deleteCFG(VPBlockBase *Entry) { 145 SmallVector<VPBlockBase *, 8> Blocks; 146 for (VPBlockBase *Block : depth_first(Entry)) 147 Blocks.push_back(Block); 148 149 for (VPBlockBase *Block : Blocks) 150 delete Block; 151 } 152 153 BasicBlock * 154 VPBasicBlock::createEmptyBasicBlock(VPTransformState::CFGState &CFG) { 155 // BB stands for IR BasicBlocks. VPBB stands for VPlan VPBasicBlocks. 156 // Pred stands for Predessor. Prev stands for Previous - last visited/created. 157 BasicBlock *PrevBB = CFG.PrevBB; 158 BasicBlock *NewBB = BasicBlock::Create(PrevBB->getContext(), getName(), 159 PrevBB->getParent(), CFG.LastBB); 160 LLVM_DEBUG(dbgs() << "LV: created " << NewBB->getName() << '\n'); 161 162 // Hook up the new basic block to its predecessors. 163 for (VPBlockBase *PredVPBlock : getHierarchicalPredecessors()) { 164 VPBasicBlock *PredVPBB = PredVPBlock->getExitBasicBlock(); 165 auto &PredVPSuccessors = PredVPBB->getSuccessors(); 166 BasicBlock *PredBB = CFG.VPBB2IRBB[PredVPBB]; 167 168 // In outer loop vectorization scenario, the predecessor BBlock may not yet 169 // be visited(backedge). Mark the VPBasicBlock for fixup at the end of 170 // vectorization. We do not encounter this case in inner loop vectorization 171 // as we start out by building a loop skeleton with the vector loop header 172 // and latch blocks. As a result, we never enter this function for the 173 // header block in the non VPlan-native path. 174 if (!PredBB) { 175 assert(EnableVPlanNativePath && 176 "Unexpected null predecessor in non VPlan-native path"); 177 CFG.VPBBsToFix.push_back(PredVPBB); 178 continue; 179 } 180 181 assert(PredBB && "Predecessor basic-block not found building successor."); 182 auto *PredBBTerminator = PredBB->getTerminator(); 183 LLVM_DEBUG(dbgs() << "LV: draw edge from" << PredBB->getName() << '\n'); 184 if (isa<UnreachableInst>(PredBBTerminator)) { 185 assert(PredVPSuccessors.size() == 1 && 186 "Predecessor ending w/o branch must have single successor."); 187 PredBBTerminator->eraseFromParent(); 188 BranchInst::Create(NewBB, PredBB); 189 } else { 190 assert(PredVPSuccessors.size() == 2 && 191 "Predecessor ending with branch must have two successors."); 192 unsigned idx = PredVPSuccessors.front() == this ? 0 : 1; 193 assert(!PredBBTerminator->getSuccessor(idx) && 194 "Trying to reset an existing successor block."); 195 PredBBTerminator->setSuccessor(idx, NewBB); 196 } 197 } 198 return NewBB; 199 } 200 201 void VPBasicBlock::execute(VPTransformState *State) { 202 bool Replica = State->Instance && 203 !(State->Instance->Part == 0 && State->Instance->Lane == 0); 204 VPBasicBlock *PrevVPBB = State->CFG.PrevVPBB; 205 VPBlockBase *SingleHPred = nullptr; 206 BasicBlock *NewBB = State->CFG.PrevBB; // Reuse it if possible. 207 208 // 1. Create an IR basic block, or reuse the last one if possible. 209 // The last IR basic block is reused, as an optimization, in three cases: 210 // A. the first VPBB reuses the loop header BB - when PrevVPBB is null; 211 // B. when the current VPBB has a single (hierarchical) predecessor which 212 // is PrevVPBB and the latter has a single (hierarchical) successor; and 213 // C. when the current VPBB is an entry of a region replica - where PrevVPBB 214 // is the exit of this region from a previous instance, or the predecessor 215 // of this region. 216 if (PrevVPBB && /* A */ 217 !((SingleHPred = getSingleHierarchicalPredecessor()) && 218 SingleHPred->getExitBasicBlock() == PrevVPBB && 219 PrevVPBB->getSingleHierarchicalSuccessor()) && /* B */ 220 !(Replica && getPredecessors().empty())) { /* C */ 221 NewBB = createEmptyBasicBlock(State->CFG); 222 State->Builder.SetInsertPoint(NewBB); 223 // Temporarily terminate with unreachable until CFG is rewired. 224 UnreachableInst *Terminator = State->Builder.CreateUnreachable(); 225 State->Builder.SetInsertPoint(Terminator); 226 // Register NewBB in its loop. In innermost loops its the same for all BB's. 227 Loop *L = State->LI->getLoopFor(State->CFG.LastBB); 228 L->addBasicBlockToLoop(NewBB, *State->LI); 229 State->CFG.PrevBB = NewBB; 230 } 231 232 // 2. Fill the IR basic block with IR instructions. 233 LLVM_DEBUG(dbgs() << "LV: vectorizing VPBB:" << getName() 234 << " in BB:" << NewBB->getName() << '\n'); 235 236 State->CFG.VPBB2IRBB[this] = NewBB; 237 State->CFG.PrevVPBB = this; 238 239 for (VPRecipeBase &Recipe : Recipes) 240 Recipe.execute(*State); 241 242 VPValue *CBV; 243 if (EnableVPlanNativePath && (CBV = getCondBit())) { 244 Value *IRCBV = CBV->getUnderlyingValue(); 245 assert(IRCBV && "Unexpected null underlying value for condition bit"); 246 247 // Condition bit value in a VPBasicBlock is used as the branch selector. In 248 // the VPlan-native path case, since all branches are uniform we generate a 249 // branch instruction using the condition value from vector lane 0 and dummy 250 // successors. The successors are fixed later when the successor blocks are 251 // visited. 252 Value *NewCond = State->Callback.getOrCreateVectorValues(IRCBV, 0); 253 NewCond = State->Builder.CreateExtractElement(NewCond, 254 State->Builder.getInt32(0)); 255 256 // Replace the temporary unreachable terminator with the new conditional 257 // branch. 258 auto *CurrentTerminator = NewBB->getTerminator(); 259 assert(isa<UnreachableInst>(CurrentTerminator) && 260 "Expected to replace unreachable terminator with conditional " 261 "branch."); 262 auto *CondBr = BranchInst::Create(NewBB, nullptr, NewCond); 263 CondBr->setSuccessor(0, nullptr); 264 ReplaceInstWithInst(CurrentTerminator, CondBr); 265 } 266 267 LLVM_DEBUG(dbgs() << "LV: filled BB:" << *NewBB); 268 } 269 270 void VPRegionBlock::execute(VPTransformState *State) { 271 ReversePostOrderTraversal<VPBlockBase *> RPOT(Entry); 272 273 if (!isReplicator()) { 274 // Visit the VPBlocks connected to "this", starting from it. 275 for (VPBlockBase *Block : RPOT) { 276 if (EnableVPlanNativePath) { 277 // The inner loop vectorization path does not represent loop preheader 278 // and exit blocks as part of the VPlan. In the VPlan-native path, skip 279 // vectorizing loop preheader block. In future, we may replace this 280 // check with the check for loop preheader. 281 if (Block->getNumPredecessors() == 0) 282 continue; 283 284 // Skip vectorizing loop exit block. In future, we may replace this 285 // check with the check for loop exit. 286 if (Block->getNumSuccessors() == 0) 287 continue; 288 } 289 290 LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n'); 291 Block->execute(State); 292 } 293 return; 294 } 295 296 assert(!State->Instance && "Replicating a Region with non-null instance."); 297 298 // Enter replicating mode. 299 State->Instance = {0, 0}; 300 301 for (unsigned Part = 0, UF = State->UF; Part < UF; ++Part) { 302 State->Instance->Part = Part; 303 assert(!State->VF.Scalable && "VF is assumed to be non scalable."); 304 for (unsigned Lane = 0, VF = State->VF.Min; Lane < VF; ++Lane) { 305 State->Instance->Lane = Lane; 306 // Visit the VPBlocks connected to \p this, starting from it. 307 for (VPBlockBase *Block : RPOT) { 308 LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n'); 309 Block->execute(State); 310 } 311 } 312 } 313 314 // Exit replicating mode. 315 State->Instance.reset(); 316 } 317 318 void VPRecipeBase::insertBefore(VPRecipeBase *InsertPos) { 319 assert(!Parent && "Recipe already in some VPBasicBlock"); 320 assert(InsertPos->getParent() && 321 "Insertion position not in any VPBasicBlock"); 322 Parent = InsertPos->getParent(); 323 Parent->getRecipeList().insert(InsertPos->getIterator(), this); 324 } 325 326 void VPRecipeBase::insertAfter(VPRecipeBase *InsertPos) { 327 assert(!Parent && "Recipe already in some VPBasicBlock"); 328 assert(InsertPos->getParent() && 329 "Insertion position not in any VPBasicBlock"); 330 Parent = InsertPos->getParent(); 331 Parent->getRecipeList().insertAfter(InsertPos->getIterator(), this); 332 } 333 334 void VPRecipeBase::removeFromParent() { 335 assert(getParent() && "Recipe not in any VPBasicBlock"); 336 getParent()->getRecipeList().remove(getIterator()); 337 Parent = nullptr; 338 } 339 340 iplist<VPRecipeBase>::iterator VPRecipeBase::eraseFromParent() { 341 assert(getParent() && "Recipe not in any VPBasicBlock"); 342 return getParent()->getRecipeList().erase(getIterator()); 343 } 344 345 void VPRecipeBase::moveAfter(VPRecipeBase *InsertPos) { 346 removeFromParent(); 347 insertAfter(InsertPos); 348 } 349 350 void VPInstruction::generateInstruction(VPTransformState &State, 351 unsigned Part) { 352 IRBuilder<> &Builder = State.Builder; 353 354 if (Instruction::isBinaryOp(getOpcode())) { 355 Value *A = State.get(getOperand(0), Part); 356 Value *B = State.get(getOperand(1), Part); 357 Value *V = Builder.CreateBinOp((Instruction::BinaryOps)getOpcode(), A, B); 358 State.set(this, V, Part); 359 return; 360 } 361 362 switch (getOpcode()) { 363 case VPInstruction::Not: { 364 Value *A = State.get(getOperand(0), Part); 365 Value *V = Builder.CreateNot(A); 366 State.set(this, V, Part); 367 break; 368 } 369 case VPInstruction::ICmpULE: { 370 Value *IV = State.get(getOperand(0), Part); 371 Value *TC = State.get(getOperand(1), Part); 372 Value *V = Builder.CreateICmpULE(IV, TC); 373 State.set(this, V, Part); 374 break; 375 } 376 case Instruction::Select: { 377 Value *Cond = State.get(getOperand(0), Part); 378 Value *Op1 = State.get(getOperand(1), Part); 379 Value *Op2 = State.get(getOperand(2), Part); 380 Value *V = Builder.CreateSelect(Cond, Op1, Op2); 381 State.set(this, V, Part); 382 break; 383 } 384 case VPInstruction::ActiveLaneMask: { 385 // Get first lane of vector induction variable. 386 Value *VIVElem0 = State.get(getOperand(0), {Part, 0}); 387 // Get first lane of backedge-taken-count. 388 Value *ScalarBTC = State.get(getOperand(1), {Part, 0}); 389 390 auto *Int1Ty = Type::getInt1Ty(Builder.getContext()); 391 auto *PredTy = FixedVectorType::get(Int1Ty, State.VF.Min); 392 Instruction *Call = Builder.CreateIntrinsic( 393 Intrinsic::get_active_lane_mask, {PredTy, ScalarBTC->getType()}, 394 {VIVElem0, ScalarBTC}, nullptr, "active.lane.mask"); 395 State.set(this, Call, Part); 396 break; 397 } 398 default: 399 llvm_unreachable("Unsupported opcode for instruction"); 400 } 401 } 402 403 void VPInstruction::execute(VPTransformState &State) { 404 assert(!State.Instance && "VPInstruction executing an Instance"); 405 for (unsigned Part = 0; Part < State.UF; ++Part) 406 generateInstruction(State, Part); 407 } 408 409 void VPInstruction::print(raw_ostream &O, const Twine &Indent, 410 VPSlotTracker &SlotTracker) const { 411 O << "\"EMIT "; 412 print(O, SlotTracker); 413 } 414 415 void VPInstruction::print(raw_ostream &O) const { 416 VPSlotTracker SlotTracker(getParent()->getPlan()); 417 print(O, SlotTracker); 418 } 419 420 void VPInstruction::print(raw_ostream &O, VPSlotTracker &SlotTracker) const { 421 if (hasResult()) { 422 printAsOperand(O, SlotTracker); 423 O << " = "; 424 } 425 426 switch (getOpcode()) { 427 case VPInstruction::Not: 428 O << "not"; 429 break; 430 case VPInstruction::ICmpULE: 431 O << "icmp ule"; 432 break; 433 case VPInstruction::SLPLoad: 434 O << "combined load"; 435 break; 436 case VPInstruction::SLPStore: 437 O << "combined store"; 438 break; 439 case VPInstruction::ActiveLaneMask: 440 O << "active lane mask"; 441 break; 442 443 default: 444 O << Instruction::getOpcodeName(getOpcode()); 445 } 446 447 for (const VPValue *Operand : operands()) { 448 O << " "; 449 Operand->printAsOperand(O, SlotTracker); 450 } 451 } 452 453 /// Generate the code inside the body of the vectorized loop. Assumes a single 454 /// LoopVectorBody basic-block was created for this. Introduce additional 455 /// basic-blocks as needed, and fill them all. 456 void VPlan::execute(VPTransformState *State) { 457 // -1. Check if the backedge taken count is needed, and if so build it. 458 if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) { 459 Value *TC = State->TripCount; 460 IRBuilder<> Builder(State->CFG.PrevBB->getTerminator()); 461 auto *TCMO = Builder.CreateSub(TC, ConstantInt::get(TC->getType(), 1), 462 "trip.count.minus.1"); 463 auto VF = State->VF; 464 Value *VTCMO = 465 VF == 1 ? TCMO : Builder.CreateVectorSplat(VF, TCMO, "broadcast"); 466 for (unsigned Part = 0, UF = State->UF; Part < UF; ++Part) 467 State->set(BackedgeTakenCount, VTCMO, Part); 468 } 469 470 // 0. Set the reverse mapping from VPValues to Values for code generation. 471 for (auto &Entry : Value2VPValue) 472 State->VPValue2Value[Entry.second] = Entry.first; 473 474 BasicBlock *VectorPreHeaderBB = State->CFG.PrevBB; 475 BasicBlock *VectorHeaderBB = VectorPreHeaderBB->getSingleSuccessor(); 476 assert(VectorHeaderBB && "Loop preheader does not have a single successor."); 477 478 // 1. Make room to generate basic-blocks inside loop body if needed. 479 BasicBlock *VectorLatchBB = VectorHeaderBB->splitBasicBlock( 480 VectorHeaderBB->getFirstInsertionPt(), "vector.body.latch"); 481 Loop *L = State->LI->getLoopFor(VectorHeaderBB); 482 L->addBasicBlockToLoop(VectorLatchBB, *State->LI); 483 // Remove the edge between Header and Latch to allow other connections. 484 // Temporarily terminate with unreachable until CFG is rewired. 485 // Note: this asserts the generated code's assumption that 486 // getFirstInsertionPt() can be dereferenced into an Instruction. 487 VectorHeaderBB->getTerminator()->eraseFromParent(); 488 State->Builder.SetInsertPoint(VectorHeaderBB); 489 UnreachableInst *Terminator = State->Builder.CreateUnreachable(); 490 State->Builder.SetInsertPoint(Terminator); 491 492 // 2. Generate code in loop body. 493 State->CFG.PrevVPBB = nullptr; 494 State->CFG.PrevBB = VectorHeaderBB; 495 State->CFG.LastBB = VectorLatchBB; 496 497 for (VPBlockBase *Block : depth_first(Entry)) 498 Block->execute(State); 499 500 // Setup branch terminator successors for VPBBs in VPBBsToFix based on 501 // VPBB's successors. 502 for (auto VPBB : State->CFG.VPBBsToFix) { 503 assert(EnableVPlanNativePath && 504 "Unexpected VPBBsToFix in non VPlan-native path"); 505 BasicBlock *BB = State->CFG.VPBB2IRBB[VPBB]; 506 assert(BB && "Unexpected null basic block for VPBB"); 507 508 unsigned Idx = 0; 509 auto *BBTerminator = BB->getTerminator(); 510 511 for (VPBlockBase *SuccVPBlock : VPBB->getHierarchicalSuccessors()) { 512 VPBasicBlock *SuccVPBB = SuccVPBlock->getEntryBasicBlock(); 513 BBTerminator->setSuccessor(Idx, State->CFG.VPBB2IRBB[SuccVPBB]); 514 ++Idx; 515 } 516 } 517 518 // 3. Merge the temporary latch created with the last basic-block filled. 519 BasicBlock *LastBB = State->CFG.PrevBB; 520 // Connect LastBB to VectorLatchBB to facilitate their merge. 521 assert((EnableVPlanNativePath || 522 isa<UnreachableInst>(LastBB->getTerminator())) && 523 "Expected InnerLoop VPlan CFG to terminate with unreachable"); 524 assert((!EnableVPlanNativePath || isa<BranchInst>(LastBB->getTerminator())) && 525 "Expected VPlan CFG to terminate with branch in NativePath"); 526 LastBB->getTerminator()->eraseFromParent(); 527 BranchInst::Create(VectorLatchBB, LastBB); 528 529 // Merge LastBB with Latch. 530 bool Merged = MergeBlockIntoPredecessor(VectorLatchBB, nullptr, State->LI); 531 (void)Merged; 532 assert(Merged && "Could not merge last basic block with latch."); 533 VectorLatchBB = LastBB; 534 535 // We do not attempt to preserve DT for outer loop vectorization currently. 536 if (!EnableVPlanNativePath) 537 updateDominatorTree(State->DT, VectorPreHeaderBB, VectorLatchBB, 538 L->getExitBlock()); 539 } 540 541 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 542 LLVM_DUMP_METHOD 543 void VPlan::dump() const { dbgs() << *this << '\n'; } 544 #endif 545 546 void VPlan::updateDominatorTree(DominatorTree *DT, BasicBlock *LoopPreHeaderBB, 547 BasicBlock *LoopLatchBB, 548 BasicBlock *LoopExitBB) { 549 BasicBlock *LoopHeaderBB = LoopPreHeaderBB->getSingleSuccessor(); 550 assert(LoopHeaderBB && "Loop preheader does not have a single successor."); 551 // The vector body may be more than a single basic-block by this point. 552 // Update the dominator tree information inside the vector body by propagating 553 // it from header to latch, expecting only triangular control-flow, if any. 554 BasicBlock *PostDomSucc = nullptr; 555 for (auto *BB = LoopHeaderBB; BB != LoopLatchBB; BB = PostDomSucc) { 556 // Get the list of successors of this block. 557 std::vector<BasicBlock *> Succs(succ_begin(BB), succ_end(BB)); 558 assert(Succs.size() <= 2 && 559 "Basic block in vector loop has more than 2 successors."); 560 PostDomSucc = Succs[0]; 561 if (Succs.size() == 1) { 562 assert(PostDomSucc->getSinglePredecessor() && 563 "PostDom successor has more than one predecessor."); 564 DT->addNewBlock(PostDomSucc, BB); 565 continue; 566 } 567 BasicBlock *InterimSucc = Succs[1]; 568 if (PostDomSucc->getSingleSuccessor() == InterimSucc) { 569 PostDomSucc = Succs[1]; 570 InterimSucc = Succs[0]; 571 } 572 assert(InterimSucc->getSingleSuccessor() == PostDomSucc && 573 "One successor of a basic block does not lead to the other."); 574 assert(InterimSucc->getSinglePredecessor() && 575 "Interim successor has more than one predecessor."); 576 assert(PostDomSucc->hasNPredecessors(2) && 577 "PostDom successor has more than two predecessors."); 578 DT->addNewBlock(InterimSucc, BB); 579 DT->addNewBlock(PostDomSucc, BB); 580 } 581 // Latch block is a new dominator for the loop exit. 582 DT->changeImmediateDominator(LoopExitBB, LoopLatchBB); 583 assert(DT->verify(DominatorTree::VerificationLevel::Fast)); 584 } 585 586 const Twine VPlanPrinter::getUID(const VPBlockBase *Block) { 587 return (isa<VPRegionBlock>(Block) ? "cluster_N" : "N") + 588 Twine(getOrCreateBID(Block)); 589 } 590 591 const Twine VPlanPrinter::getOrCreateName(const VPBlockBase *Block) { 592 const std::string &Name = Block->getName(); 593 if (!Name.empty()) 594 return Name; 595 return "VPB" + Twine(getOrCreateBID(Block)); 596 } 597 598 void VPlanPrinter::dump() { 599 Depth = 1; 600 bumpIndent(0); 601 OS << "digraph VPlan {\n"; 602 OS << "graph [labelloc=t, fontsize=30; label=\"Vectorization Plan"; 603 if (!Plan.getName().empty()) 604 OS << "\\n" << DOT::EscapeString(Plan.getName()); 605 if (Plan.BackedgeTakenCount) { 606 OS << ", where:\\n"; 607 Plan.BackedgeTakenCount->print(OS, SlotTracker); 608 OS << " := BackedgeTakenCount"; 609 } 610 OS << "\"]\n"; 611 OS << "node [shape=rect, fontname=Courier, fontsize=30]\n"; 612 OS << "edge [fontname=Courier, fontsize=30]\n"; 613 OS << "compound=true\n"; 614 615 for (const VPBlockBase *Block : depth_first(Plan.getEntry())) 616 dumpBlock(Block); 617 618 OS << "}\n"; 619 } 620 621 void VPlanPrinter::dumpBlock(const VPBlockBase *Block) { 622 if (const VPBasicBlock *BasicBlock = dyn_cast<VPBasicBlock>(Block)) 623 dumpBasicBlock(BasicBlock); 624 else if (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 625 dumpRegion(Region); 626 else 627 llvm_unreachable("Unsupported kind of VPBlock."); 628 } 629 630 void VPlanPrinter::drawEdge(const VPBlockBase *From, const VPBlockBase *To, 631 bool Hidden, const Twine &Label) { 632 // Due to "dot" we print an edge between two regions as an edge between the 633 // exit basic block and the entry basic of the respective regions. 634 const VPBlockBase *Tail = From->getExitBasicBlock(); 635 const VPBlockBase *Head = To->getEntryBasicBlock(); 636 OS << Indent << getUID(Tail) << " -> " << getUID(Head); 637 OS << " [ label=\"" << Label << '\"'; 638 if (Tail != From) 639 OS << " ltail=" << getUID(From); 640 if (Head != To) 641 OS << " lhead=" << getUID(To); 642 if (Hidden) 643 OS << "; splines=none"; 644 OS << "]\n"; 645 } 646 647 void VPlanPrinter::dumpEdges(const VPBlockBase *Block) { 648 auto &Successors = Block->getSuccessors(); 649 if (Successors.size() == 1) 650 drawEdge(Block, Successors.front(), false, ""); 651 else if (Successors.size() == 2) { 652 drawEdge(Block, Successors.front(), false, "T"); 653 drawEdge(Block, Successors.back(), false, "F"); 654 } else { 655 unsigned SuccessorNumber = 0; 656 for (auto *Successor : Successors) 657 drawEdge(Block, Successor, false, Twine(SuccessorNumber++)); 658 } 659 } 660 661 void VPlanPrinter::dumpBasicBlock(const VPBasicBlock *BasicBlock) { 662 OS << Indent << getUID(BasicBlock) << " [label =\n"; 663 bumpIndent(1); 664 OS << Indent << "\"" << DOT::EscapeString(BasicBlock->getName()) << ":\\n\""; 665 bumpIndent(1); 666 667 // Dump the block predicate. 668 const VPValue *Pred = BasicBlock->getPredicate(); 669 if (Pred) { 670 OS << " +\n" << Indent << " \"BlockPredicate: "; 671 if (const VPInstruction *PredI = dyn_cast<VPInstruction>(Pred)) { 672 PredI->printAsOperand(OS, SlotTracker); 673 OS << " (" << DOT::EscapeString(PredI->getParent()->getName()) 674 << ")\\l\""; 675 } else 676 Pred->printAsOperand(OS, SlotTracker); 677 } 678 679 for (const VPRecipeBase &Recipe : *BasicBlock) { 680 OS << " +\n" << Indent; 681 Recipe.print(OS, Indent, SlotTracker); 682 OS << "\\l\""; 683 } 684 685 // Dump the condition bit. 686 const VPValue *CBV = BasicBlock->getCondBit(); 687 if (CBV) { 688 OS << " +\n" << Indent << " \"CondBit: "; 689 if (const VPInstruction *CBI = dyn_cast<VPInstruction>(CBV)) { 690 CBI->printAsOperand(OS, SlotTracker); 691 OS << " (" << DOT::EscapeString(CBI->getParent()->getName()) << ")\\l\""; 692 } else { 693 CBV->printAsOperand(OS, SlotTracker); 694 OS << "\""; 695 } 696 } 697 698 bumpIndent(-2); 699 OS << "\n" << Indent << "]\n"; 700 dumpEdges(BasicBlock); 701 } 702 703 void VPlanPrinter::dumpRegion(const VPRegionBlock *Region) { 704 OS << Indent << "subgraph " << getUID(Region) << " {\n"; 705 bumpIndent(1); 706 OS << Indent << "fontname=Courier\n" 707 << Indent << "label=\"" 708 << DOT::EscapeString(Region->isReplicator() ? "<xVFxUF> " : "<x1> ") 709 << DOT::EscapeString(Region->getName()) << "\"\n"; 710 // Dump the blocks of the region. 711 assert(Region->getEntry() && "Region contains no inner blocks."); 712 for (const VPBlockBase *Block : depth_first(Region->getEntry())) 713 dumpBlock(Block); 714 bumpIndent(-1); 715 OS << Indent << "}\n"; 716 dumpEdges(Region); 717 } 718 719 void VPlanPrinter::printAsIngredient(raw_ostream &O, Value *V) { 720 std::string IngredientString; 721 raw_string_ostream RSO(IngredientString); 722 if (auto *Inst = dyn_cast<Instruction>(V)) { 723 if (!Inst->getType()->isVoidTy()) { 724 Inst->printAsOperand(RSO, false); 725 RSO << " = "; 726 } 727 RSO << Inst->getOpcodeName() << " "; 728 unsigned E = Inst->getNumOperands(); 729 if (E > 0) { 730 Inst->getOperand(0)->printAsOperand(RSO, false); 731 for (unsigned I = 1; I < E; ++I) 732 Inst->getOperand(I)->printAsOperand(RSO << ", ", false); 733 } 734 } else // !Inst 735 V->printAsOperand(RSO, false); 736 RSO.flush(); 737 O << DOT::EscapeString(IngredientString); 738 } 739 740 void VPWidenCallRecipe::print(raw_ostream &O, const Twine &Indent, 741 VPSlotTracker &SlotTracker) const { 742 O << "\"WIDEN-CALL " << VPlanIngredient(&Ingredient); 743 } 744 745 void VPWidenSelectRecipe::print(raw_ostream &O, const Twine &Indent, 746 VPSlotTracker &SlotTracker) const { 747 O << "\"WIDEN-SELECT" << VPlanIngredient(&Ingredient) 748 << (InvariantCond ? " (condition is loop invariant)" : ""); 749 } 750 751 void VPWidenRecipe::print(raw_ostream &O, const Twine &Indent, 752 VPSlotTracker &SlotTracker) const { 753 O << "\"WIDEN\\l\""; 754 O << "\" " << VPlanIngredient(&Ingredient); 755 } 756 757 void VPWidenIntOrFpInductionRecipe::print(raw_ostream &O, const Twine &Indent, 758 VPSlotTracker &SlotTracker) const { 759 O << "\"WIDEN-INDUCTION"; 760 if (Trunc) { 761 O << "\\l\""; 762 O << " +\n" << Indent << "\" " << VPlanIngredient(IV) << "\\l\""; 763 O << " +\n" << Indent << "\" " << VPlanIngredient(Trunc); 764 } else 765 O << " " << VPlanIngredient(IV); 766 } 767 768 void VPWidenGEPRecipe::print(raw_ostream &O, const Twine &Indent, 769 VPSlotTracker &SlotTracker) const { 770 O << "\"WIDEN-GEP "; 771 O << (IsPtrLoopInvariant ? "Inv" : "Var"); 772 size_t IndicesNumber = IsIndexLoopInvariant.size(); 773 for (size_t I = 0; I < IndicesNumber; ++I) 774 O << "[" << (IsIndexLoopInvariant[I] ? "Inv" : "Var") << "]"; 775 O << "\\l\""; 776 O << " +\n" << Indent << "\" " << VPlanIngredient(GEP); 777 } 778 779 void VPWidenPHIRecipe::print(raw_ostream &O, const Twine &Indent, 780 VPSlotTracker &SlotTracker) const { 781 O << "\"WIDEN-PHI " << VPlanIngredient(Phi); 782 } 783 784 void VPBlendRecipe::print(raw_ostream &O, const Twine &Indent, 785 VPSlotTracker &SlotTracker) const { 786 O << "\"BLEND "; 787 Phi->printAsOperand(O, false); 788 O << " ="; 789 if (getNumIncomingValues() == 1) { 790 // Not a User of any mask: not really blending, this is a 791 // single-predecessor phi. 792 O << " "; 793 getIncomingValue(0)->printAsOperand(O, SlotTracker); 794 } else { 795 for (unsigned I = 0, E = getNumIncomingValues(); I < E; ++I) { 796 O << " "; 797 getIncomingValue(I)->printAsOperand(O, SlotTracker); 798 O << "/"; 799 getMask(I)->printAsOperand(O, SlotTracker); 800 } 801 } 802 } 803 804 void VPReductionRecipe::print(raw_ostream &O, const Twine &Indent, 805 VPSlotTracker &SlotTracker) const { 806 O << "\"REDUCE of" << *I << " as "; 807 ChainOp->printAsOperand(O, SlotTracker); 808 O << " + reduce("; 809 VecOp->printAsOperand(O, SlotTracker); 810 O << ")"; 811 } 812 813 void VPReplicateRecipe::print(raw_ostream &O, const Twine &Indent, 814 VPSlotTracker &SlotTracker) const { 815 O << "\"" << (IsUniform ? "CLONE " : "REPLICATE ") 816 << VPlanIngredient(Ingredient); 817 if (AlsoPack) 818 O << " (S->V)"; 819 } 820 821 void VPPredInstPHIRecipe::print(raw_ostream &O, const Twine &Indent, 822 VPSlotTracker &SlotTracker) const { 823 O << "\"PHI-PREDICATED-INSTRUCTION " << VPlanIngredient(PredInst); 824 } 825 826 void VPWidenMemoryInstructionRecipe::print(raw_ostream &O, const Twine &Indent, 827 VPSlotTracker &SlotTracker) const { 828 O << "\"WIDEN " << VPlanIngredient(&Instr); 829 O << ", "; 830 getAddr()->printAsOperand(O, SlotTracker); 831 VPValue *Mask = getMask(); 832 if (Mask) { 833 O << ", "; 834 Mask->printAsOperand(O, SlotTracker); 835 } 836 } 837 838 void VPWidenCanonicalIVRecipe::execute(VPTransformState &State) { 839 Value *CanonicalIV = State.CanonicalIV; 840 Type *STy = CanonicalIV->getType(); 841 IRBuilder<> Builder(State.CFG.PrevBB->getTerminator()); 842 ElementCount VF = State.VF; 843 assert(!VF.Scalable && "the code following assumes non scalables ECs"); 844 Value *VStart = VF.isScalar() ? CanonicalIV 845 : Builder.CreateVectorSplat(VF.Min, CanonicalIV, 846 "broadcast"); 847 for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part) { 848 SmallVector<Constant *, 8> Indices; 849 for (unsigned Lane = 0; Lane < VF.Min; ++Lane) 850 Indices.push_back(ConstantInt::get(STy, Part * VF.Min + Lane)); 851 // If VF == 1, there is only one iteration in the loop above, thus the 852 // element pushed back into Indices is ConstantInt::get(STy, Part) 853 Constant *VStep = VF == 1 ? Indices.back() : ConstantVector::get(Indices); 854 // Add the consecutive indices to the vector value. 855 Value *CanonicalVectorIV = Builder.CreateAdd(VStart, VStep, "vec.iv"); 856 State.set(getVPValue(), CanonicalVectorIV, Part); 857 } 858 } 859 860 void VPWidenCanonicalIVRecipe::print(raw_ostream &O, const Twine &Indent, 861 VPSlotTracker &SlotTracker) const { 862 O << "\"EMIT "; 863 getVPValue()->printAsOperand(O, SlotTracker); 864 O << " = WIDEN-CANONICAL-INDUCTION"; 865 } 866 867 template void DomTreeBuilder::Calculate<VPDominatorTree>(VPDominatorTree &DT); 868 869 void VPValue::replaceAllUsesWith(VPValue *New) { 870 for (VPUser *User : users()) 871 for (unsigned I = 0, E = User->getNumOperands(); I < E; ++I) 872 if (User->getOperand(I) == this) 873 User->setOperand(I, New); 874 } 875 876 void VPValue::printAsOperand(raw_ostream &OS, VPSlotTracker &Tracker) const { 877 if (const Value *UV = getUnderlyingValue()) { 878 OS << "ir<"; 879 UV->printAsOperand(OS, false); 880 OS << ">"; 881 return; 882 } 883 884 unsigned Slot = Tracker.getSlot(this); 885 if (Slot == unsigned(-1)) 886 OS << "<badref>"; 887 else 888 OS << "vp<%" << Tracker.getSlot(this) << ">"; 889 } 890 891 void VPInterleavedAccessInfo::visitRegion(VPRegionBlock *Region, 892 Old2NewTy &Old2New, 893 InterleavedAccessInfo &IAI) { 894 ReversePostOrderTraversal<VPBlockBase *> RPOT(Region->getEntry()); 895 for (VPBlockBase *Base : RPOT) { 896 visitBlock(Base, Old2New, IAI); 897 } 898 } 899 900 void VPInterleavedAccessInfo::visitBlock(VPBlockBase *Block, Old2NewTy &Old2New, 901 InterleavedAccessInfo &IAI) { 902 if (VPBasicBlock *VPBB = dyn_cast<VPBasicBlock>(Block)) { 903 for (VPRecipeBase &VPI : *VPBB) { 904 assert(isa<VPInstruction>(&VPI) && "Can only handle VPInstructions"); 905 auto *VPInst = cast<VPInstruction>(&VPI); 906 auto *Inst = cast<Instruction>(VPInst->getUnderlyingValue()); 907 auto *IG = IAI.getInterleaveGroup(Inst); 908 if (!IG) 909 continue; 910 911 auto NewIGIter = Old2New.find(IG); 912 if (NewIGIter == Old2New.end()) 913 Old2New[IG] = new InterleaveGroup<VPInstruction>( 914 IG->getFactor(), IG->isReverse(), IG->getAlign()); 915 916 if (Inst == IG->getInsertPos()) 917 Old2New[IG]->setInsertPos(VPInst); 918 919 InterleaveGroupMap[VPInst] = Old2New[IG]; 920 InterleaveGroupMap[VPInst]->insertMember( 921 VPInst, IG->getIndex(Inst), 922 Align(IG->isReverse() ? (-1) * int(IG->getFactor()) 923 : IG->getFactor())); 924 } 925 } else if (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 926 visitRegion(Region, Old2New, IAI); 927 else 928 llvm_unreachable("Unsupported kind of VPBlock."); 929 } 930 931 VPInterleavedAccessInfo::VPInterleavedAccessInfo(VPlan &Plan, 932 InterleavedAccessInfo &IAI) { 933 Old2NewTy Old2New; 934 visitRegion(cast<VPRegionBlock>(Plan.getEntry()), Old2New, IAI); 935 } 936 937 void VPSlotTracker::assignSlot(const VPValue *V) { 938 assert(Slots.find(V) == Slots.end() && "VPValue already has a slot!"); 939 const Value *UV = V->getUnderlyingValue(); 940 if (UV) 941 return; 942 const auto *VPI = dyn_cast<VPInstruction>(V); 943 if (VPI && !VPI->hasResult()) 944 return; 945 946 Slots[V] = NextSlot++; 947 } 948 949 void VPSlotTracker::assignSlots(const VPBlockBase *VPBB) { 950 if (auto *Region = dyn_cast<VPRegionBlock>(VPBB)) 951 assignSlots(Region); 952 else 953 assignSlots(cast<VPBasicBlock>(VPBB)); 954 } 955 956 void VPSlotTracker::assignSlots(const VPRegionBlock *Region) { 957 ReversePostOrderTraversal<const VPBlockBase *> RPOT(Region->getEntry()); 958 for (const VPBlockBase *Block : RPOT) 959 assignSlots(Block); 960 } 961 962 void VPSlotTracker::assignSlots(const VPBasicBlock *VPBB) { 963 for (const VPRecipeBase &Recipe : *VPBB) { 964 if (const auto *VPI = dyn_cast<VPInstruction>(&Recipe)) 965 assignSlot(VPI); 966 else if (const auto *VPIV = dyn_cast<VPWidenCanonicalIVRecipe>(&Recipe)) 967 assignSlot(VPIV->getVPValue()); 968 } 969 } 970 971 void VPSlotTracker::assignSlots(const VPlan &Plan) { 972 973 for (const VPValue *V : Plan.VPExternalDefs) 974 assignSlot(V); 975 976 for (auto &E : Plan.Value2VPValue) 977 if (!isa<VPInstruction>(E.second)) 978 assignSlot(E.second); 979 980 for (const VPValue *V : Plan.VPCBVs) 981 assignSlot(V); 982 983 if (Plan.BackedgeTakenCount) 984 assignSlot(Plan.BackedgeTakenCount); 985 986 ReversePostOrderTraversal<const VPBlockBase *> RPOT(Plan.getEntry()); 987 for (const VPBlockBase *Block : RPOT) 988 assignSlots(Block); 989 } 990