xref: /llvm-project/llvm/lib/Transforms/Vectorize/VPlan.cpp (revision c7ebe4fd0afadcddd53ec89e6030f9a8f5370e1f)
1 //===- VPlan.cpp - Vectorizer Plan ----------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This is the LLVM vectorization plan. It represents a candidate for
11 /// vectorization, allowing to plan and optimize how to vectorize a given loop
12 /// before generating LLVM-IR.
13 /// The vectorizer uses vectorization plans to estimate the costs of potential
14 /// candidates and if profitable to execute the desired plan, generating vector
15 /// LLVM-IR code.
16 ///
17 //===----------------------------------------------------------------------===//
18 
19 #include "VPlan.h"
20 #include "LoopVectorizationPlanner.h"
21 #include "VPlanCFG.h"
22 #include "VPlanPatternMatch.h"
23 #include "VPlanTransforms.h"
24 #include "VPlanUtils.h"
25 #include "llvm/ADT/PostOrderIterator.h"
26 #include "llvm/ADT/STLExtras.h"
27 #include "llvm/ADT/SmallVector.h"
28 #include "llvm/ADT/StringExtras.h"
29 #include "llvm/ADT/Twine.h"
30 #include "llvm/Analysis/DomTreeUpdater.h"
31 #include "llvm/Analysis/LoopInfo.h"
32 #include "llvm/IR/BasicBlock.h"
33 #include "llvm/IR/CFG.h"
34 #include "llvm/IR/IRBuilder.h"
35 #include "llvm/IR/Instruction.h"
36 #include "llvm/IR/Instructions.h"
37 #include "llvm/IR/Type.h"
38 #include "llvm/IR/Value.h"
39 #include "llvm/Support/Casting.h"
40 #include "llvm/Support/CommandLine.h"
41 #include "llvm/Support/Debug.h"
42 #include "llvm/Support/GraphWriter.h"
43 #include "llvm/Support/raw_ostream.h"
44 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
45 #include "llvm/Transforms/Utils/LoopVersioning.h"
46 #include <cassert>
47 #include <string>
48 
49 using namespace llvm;
50 using namespace llvm::VPlanPatternMatch;
51 
52 namespace llvm {
53 extern cl::opt<bool> EnableVPlanNativePath;
54 }
55 extern cl::opt<unsigned> ForceTargetInstructionCost;
56 
57 static cl::opt<bool> PrintVPlansInDotFormat(
58     "vplan-print-in-dot-format", cl::Hidden,
59     cl::desc("Use dot format instead of plain text when dumping VPlans"));
60 
61 #define DEBUG_TYPE "loop-vectorize"
62 
63 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
64 raw_ostream &llvm::operator<<(raw_ostream &OS, const VPValue &V) {
65   const VPInstruction *Instr = dyn_cast<VPInstruction>(&V);
66   VPSlotTracker SlotTracker(
67       (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr);
68   V.print(OS, SlotTracker);
69   return OS;
70 }
71 #endif
72 
73 Value *VPLane::getAsRuntimeExpr(IRBuilderBase &Builder,
74                                 const ElementCount &VF) const {
75   switch (LaneKind) {
76   case VPLane::Kind::ScalableLast:
77     // Lane = RuntimeVF - VF.getKnownMinValue() + Lane
78     return Builder.CreateSub(getRuntimeVF(Builder, Builder.getInt32Ty(), VF),
79                              Builder.getInt32(VF.getKnownMinValue() - Lane));
80   case VPLane::Kind::First:
81     return Builder.getInt32(Lane);
82   }
83   llvm_unreachable("Unknown lane kind");
84 }
85 
86 VPValue::VPValue(const unsigned char SC, Value *UV, VPDef *Def)
87     : SubclassID(SC), UnderlyingVal(UV), Def(Def) {
88   if (Def)
89     Def->addDefinedValue(this);
90 }
91 
92 VPValue::~VPValue() {
93   assert(Users.empty() && "trying to delete a VPValue with remaining users");
94   if (Def)
95     Def->removeDefinedValue(this);
96 }
97 
98 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
99 void VPValue::print(raw_ostream &OS, VPSlotTracker &SlotTracker) const {
100   if (const VPRecipeBase *R = dyn_cast_or_null<VPRecipeBase>(Def))
101     R->print(OS, "", SlotTracker);
102   else
103     printAsOperand(OS, SlotTracker);
104 }
105 
106 void VPValue::dump() const {
107   const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this->Def);
108   VPSlotTracker SlotTracker(
109       (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr);
110   print(dbgs(), SlotTracker);
111   dbgs() << "\n";
112 }
113 
114 void VPDef::dump() const {
115   const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this);
116   VPSlotTracker SlotTracker(
117       (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr);
118   print(dbgs(), "", SlotTracker);
119   dbgs() << "\n";
120 }
121 #endif
122 
123 VPRecipeBase *VPValue::getDefiningRecipe() {
124   return cast_or_null<VPRecipeBase>(Def);
125 }
126 
127 const VPRecipeBase *VPValue::getDefiningRecipe() const {
128   return cast_or_null<VPRecipeBase>(Def);
129 }
130 
131 // Get the top-most entry block of \p Start. This is the entry block of the
132 // containing VPlan. This function is templated to support both const and non-const blocks
133 template <typename T> static T *getPlanEntry(T *Start) {
134   T *Next = Start;
135   T *Current = Start;
136   while ((Next = Next->getParent()))
137     Current = Next;
138 
139   SmallSetVector<T *, 8> WorkList;
140   WorkList.insert(Current);
141 
142   for (unsigned i = 0; i < WorkList.size(); i++) {
143     T *Current = WorkList[i];
144     if (Current->getNumPredecessors() == 0)
145       return Current;
146     auto &Predecessors = Current->getPredecessors();
147     WorkList.insert(Predecessors.begin(), Predecessors.end());
148   }
149 
150   llvm_unreachable("VPlan without any entry node without predecessors");
151 }
152 
153 VPlan *VPBlockBase::getPlan() { return getPlanEntry(this)->Plan; }
154 
155 const VPlan *VPBlockBase::getPlan() const { return getPlanEntry(this)->Plan; }
156 
157 /// \return the VPBasicBlock that is the entry of Block, possibly indirectly.
158 const VPBasicBlock *VPBlockBase::getEntryBasicBlock() const {
159   const VPBlockBase *Block = this;
160   while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
161     Block = Region->getEntry();
162   return cast<VPBasicBlock>(Block);
163 }
164 
165 VPBasicBlock *VPBlockBase::getEntryBasicBlock() {
166   VPBlockBase *Block = this;
167   while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
168     Block = Region->getEntry();
169   return cast<VPBasicBlock>(Block);
170 }
171 
172 void VPBlockBase::setPlan(VPlan *ParentPlan) {
173   assert(ParentPlan->getEntry() == this && "Can only set plan on its entry.");
174   Plan = ParentPlan;
175 }
176 
177 /// \return the VPBasicBlock that is the exit of Block, possibly indirectly.
178 const VPBasicBlock *VPBlockBase::getExitingBasicBlock() const {
179   const VPBlockBase *Block = this;
180   while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
181     Block = Region->getExiting();
182   return cast<VPBasicBlock>(Block);
183 }
184 
185 VPBasicBlock *VPBlockBase::getExitingBasicBlock() {
186   VPBlockBase *Block = this;
187   while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
188     Block = Region->getExiting();
189   return cast<VPBasicBlock>(Block);
190 }
191 
192 VPBlockBase *VPBlockBase::getEnclosingBlockWithSuccessors() {
193   if (!Successors.empty() || !Parent)
194     return this;
195   assert(Parent->getExiting() == this &&
196          "Block w/o successors not the exiting block of its parent.");
197   return Parent->getEnclosingBlockWithSuccessors();
198 }
199 
200 VPBlockBase *VPBlockBase::getEnclosingBlockWithPredecessors() {
201   if (!Predecessors.empty() || !Parent)
202     return this;
203   assert(Parent->getEntry() == this &&
204          "Block w/o predecessors not the entry of its parent.");
205   return Parent->getEnclosingBlockWithPredecessors();
206 }
207 
208 VPBasicBlock::iterator VPBasicBlock::getFirstNonPhi() {
209   iterator It = begin();
210   while (It != end() && It->isPhi())
211     It++;
212   return It;
213 }
214 
215 VPTransformState::VPTransformState(const TargetTransformInfo *TTI,
216                                    ElementCount VF, unsigned UF, LoopInfo *LI,
217                                    DominatorTree *DT, IRBuilderBase &Builder,
218                                    InnerLoopVectorizer *ILV, VPlan *Plan,
219                                    Loop *CurrentParentLoop, Type *CanonicalIVTy)
220     : TTI(TTI), VF(VF), CFG(DT), LI(LI), Builder(Builder), ILV(ILV), Plan(Plan),
221       CurrentParentLoop(CurrentParentLoop), LVer(nullptr),
222       TypeAnalysis(CanonicalIVTy) {}
223 
224 Value *VPTransformState::get(VPValue *Def, const VPLane &Lane) {
225   if (Def->isLiveIn())
226     return Def->getLiveInIRValue();
227 
228   if (hasScalarValue(Def, Lane))
229     return Data.VPV2Scalars[Def][Lane.mapToCacheIndex(VF)];
230 
231   if (!Lane.isFirstLane() && vputils::isUniformAfterVectorization(Def) &&
232       hasScalarValue(Def, VPLane::getFirstLane())) {
233     return Data.VPV2Scalars[Def][0];
234   }
235 
236   assert(hasVectorValue(Def));
237   auto *VecPart = Data.VPV2Vector[Def];
238   if (!VecPart->getType()->isVectorTy()) {
239     assert(Lane.isFirstLane() && "cannot get lane > 0 for scalar");
240     return VecPart;
241   }
242   // TODO: Cache created scalar values.
243   Value *LaneV = Lane.getAsRuntimeExpr(Builder, VF);
244   auto *Extract = Builder.CreateExtractElement(VecPart, LaneV);
245   // set(Def, Extract, Instance);
246   return Extract;
247 }
248 
249 Value *VPTransformState::get(VPValue *Def, bool NeedsScalar) {
250   if (NeedsScalar) {
251     assert((VF.isScalar() || Def->isLiveIn() || hasVectorValue(Def) ||
252             !vputils::onlyFirstLaneUsed(Def) ||
253             (hasScalarValue(Def, VPLane(0)) &&
254              Data.VPV2Scalars[Def].size() == 1)) &&
255            "Trying to access a single scalar per part but has multiple scalars "
256            "per part.");
257     return get(Def, VPLane(0));
258   }
259 
260   // If Values have been set for this Def return the one relevant for \p Part.
261   if (hasVectorValue(Def))
262     return Data.VPV2Vector[Def];
263 
264   auto GetBroadcastInstrs = [this, Def](Value *V) {
265     bool SafeToHoist = Def->isDefinedOutsideLoopRegions();
266     if (VF.isScalar())
267       return V;
268     // Place the code for broadcasting invariant variables in the new preheader.
269     IRBuilder<>::InsertPointGuard Guard(Builder);
270     if (SafeToHoist) {
271       BasicBlock *LoopVectorPreHeader =
272           CFG.VPBB2IRBB[Plan->getVectorPreheader()];
273       if (LoopVectorPreHeader)
274         Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
275     }
276 
277     // Place the code for broadcasting invariant variables in the new preheader.
278     // Broadcast the scalar into all locations in the vector.
279     Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast");
280 
281     return Shuf;
282   };
283 
284   if (!hasScalarValue(Def, {0})) {
285     assert(Def->isLiveIn() && "expected a live-in");
286     Value *IRV = Def->getLiveInIRValue();
287     Value *B = GetBroadcastInstrs(IRV);
288     set(Def, B);
289     return B;
290   }
291 
292   Value *ScalarValue = get(Def, VPLane(0));
293   // If we aren't vectorizing, we can just copy the scalar map values over
294   // to the vector map.
295   if (VF.isScalar()) {
296     set(Def, ScalarValue);
297     return ScalarValue;
298   }
299 
300   bool IsUniform = vputils::isUniformAfterVectorization(Def);
301 
302   VPLane LastLane(IsUniform ? 0 : VF.getKnownMinValue() - 1);
303   // Check if there is a scalar value for the selected lane.
304   if (!hasScalarValue(Def, LastLane)) {
305     // At the moment, VPWidenIntOrFpInductionRecipes, VPScalarIVStepsRecipes and
306     // VPExpandSCEVRecipes can also be uniform.
307     assert((isa<VPWidenIntOrFpInductionRecipe, VPScalarIVStepsRecipe,
308                 VPExpandSCEVRecipe>(Def->getDefiningRecipe())) &&
309            "unexpected recipe found to be invariant");
310     IsUniform = true;
311     LastLane = 0;
312   }
313 
314   auto *LastInst = cast<Instruction>(get(Def, LastLane));
315   // Set the insert point after the last scalarized instruction or after the
316   // last PHI, if LastInst is a PHI. This ensures the insertelement sequence
317   // will directly follow the scalar definitions.
318   auto OldIP = Builder.saveIP();
319   auto NewIP =
320       isa<PHINode>(LastInst)
321           ? BasicBlock::iterator(LastInst->getParent()->getFirstNonPHI())
322           : std::next(BasicBlock::iterator(LastInst));
323   Builder.SetInsertPoint(&*NewIP);
324 
325   // However, if we are vectorizing, we need to construct the vector values.
326   // If the value is known to be uniform after vectorization, we can just
327   // broadcast the scalar value corresponding to lane zero. Otherwise, we
328   // construct the vector values using insertelement instructions. Since the
329   // resulting vectors are stored in State, we will only generate the
330   // insertelements once.
331   Value *VectorValue = nullptr;
332   if (IsUniform) {
333     VectorValue = GetBroadcastInstrs(ScalarValue);
334     set(Def, VectorValue);
335   } else {
336     // Initialize packing with insertelements to start from undef.
337     assert(!VF.isScalable() && "VF is assumed to be non scalable.");
338     Value *Undef = PoisonValue::get(VectorType::get(LastInst->getType(), VF));
339     set(Def, Undef);
340     for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane)
341       packScalarIntoVectorValue(Def, Lane);
342     VectorValue = get(Def);
343   }
344   Builder.restoreIP(OldIP);
345   return VectorValue;
346 }
347 
348 BasicBlock *VPTransformState::CFGState::getPreheaderBBFor(VPRecipeBase *R) {
349   VPRegionBlock *LoopRegion = R->getParent()->getEnclosingLoopRegion();
350   return VPBB2IRBB[LoopRegion->getPreheaderVPBB()];
351 }
352 
353 void VPTransformState::addNewMetadata(Instruction *To,
354                                       const Instruction *Orig) {
355   // If the loop was versioned with memchecks, add the corresponding no-alias
356   // metadata.
357   if (LVer && isa<LoadInst, StoreInst>(Orig))
358     LVer->annotateInstWithNoAlias(To, Orig);
359 }
360 
361 void VPTransformState::addMetadata(Value *To, Instruction *From) {
362   // No source instruction to transfer metadata from?
363   if (!From)
364     return;
365 
366   if (Instruction *ToI = dyn_cast<Instruction>(To)) {
367     propagateMetadata(ToI, From);
368     addNewMetadata(ToI, From);
369   }
370 }
371 
372 void VPTransformState::setDebugLocFrom(DebugLoc DL) {
373   const DILocation *DIL = DL;
374   // When a FSDiscriminator is enabled, we don't need to add the multiply
375   // factors to the discriminators.
376   if (DIL &&
377       Builder.GetInsertBlock()
378           ->getParent()
379           ->shouldEmitDebugInfoForProfiling() &&
380       !EnableFSDiscriminator) {
381     // FIXME: For scalable vectors, assume vscale=1.
382     unsigned UF = Plan->getUF();
383     auto NewDIL =
384         DIL->cloneByMultiplyingDuplicationFactor(UF * VF.getKnownMinValue());
385     if (NewDIL)
386       Builder.SetCurrentDebugLocation(*NewDIL);
387     else
388       LLVM_DEBUG(dbgs() << "Failed to create new discriminator: "
389                         << DIL->getFilename() << " Line: " << DIL->getLine());
390   } else
391     Builder.SetCurrentDebugLocation(DIL);
392 }
393 
394 void VPTransformState::packScalarIntoVectorValue(VPValue *Def,
395                                                  const VPLane &Lane) {
396   Value *ScalarInst = get(Def, Lane);
397   Value *VectorValue = get(Def);
398   VectorValue = Builder.CreateInsertElement(VectorValue, ScalarInst,
399                                             Lane.getAsRuntimeExpr(Builder, VF));
400   set(Def, VectorValue);
401 }
402 
403 BasicBlock *
404 VPBasicBlock::createEmptyBasicBlock(VPTransformState::CFGState &CFG) {
405   // BB stands for IR BasicBlocks. VPBB stands for VPlan VPBasicBlocks.
406   // Pred stands for Predessor. Prev stands for Previous - last visited/created.
407   BasicBlock *PrevBB = CFG.PrevBB;
408   BasicBlock *NewBB = BasicBlock::Create(PrevBB->getContext(), getName(),
409                                          PrevBB->getParent(), CFG.ExitBB);
410   LLVM_DEBUG(dbgs() << "LV: created " << NewBB->getName() << '\n');
411 
412   return NewBB;
413 }
414 
415 void VPBasicBlock::connectToPredecessors(VPTransformState::CFGState &CFG) {
416   BasicBlock *NewBB = CFG.VPBB2IRBB[this];
417   // Hook up the new basic block to its predecessors.
418   for (VPBlockBase *PredVPBlock : getHierarchicalPredecessors()) {
419     VPBasicBlock *PredVPBB = PredVPBlock->getExitingBasicBlock();
420     auto &PredVPSuccessors = PredVPBB->getHierarchicalSuccessors();
421     BasicBlock *PredBB = CFG.VPBB2IRBB[PredVPBB];
422 
423     assert(PredBB && "Predecessor basic-block not found building successor.");
424     auto *PredBBTerminator = PredBB->getTerminator();
425     LLVM_DEBUG(dbgs() << "LV: draw edge from" << PredBB->getName() << '\n');
426 
427     auto *TermBr = dyn_cast<BranchInst>(PredBBTerminator);
428     if (isa<UnreachableInst>(PredBBTerminator)) {
429       assert(PredVPSuccessors.size() == 1 &&
430              "Predecessor ending w/o branch must have single successor.");
431       DebugLoc DL = PredBBTerminator->getDebugLoc();
432       PredBBTerminator->eraseFromParent();
433       auto *Br = BranchInst::Create(NewBB, PredBB);
434       Br->setDebugLoc(DL);
435     } else if (TermBr && !TermBr->isConditional()) {
436       TermBr->setSuccessor(0, NewBB);
437     } else {
438       // Set each forward successor here when it is created, excluding
439       // backedges. A backward successor is set when the branch is created.
440       unsigned idx = PredVPSuccessors.front() == this ? 0 : 1;
441       assert(
442           (!TermBr->getSuccessor(idx) ||
443            (isa<VPIRBasicBlock>(this) && TermBr->getSuccessor(idx) == NewBB)) &&
444           "Trying to reset an existing successor block.");
445       TermBr->setSuccessor(idx, NewBB);
446     }
447     CFG.DTU.applyUpdates({{DominatorTree::Insert, PredBB, NewBB}});
448   }
449 }
450 
451 void VPIRBasicBlock::execute(VPTransformState *State) {
452   assert(getHierarchicalSuccessors().size() <= 2 &&
453          "VPIRBasicBlock can have at most two successors at the moment!");
454   State->Builder.SetInsertPoint(IRBB->getTerminator());
455   State->CFG.PrevBB = IRBB;
456   State->CFG.VPBB2IRBB[this] = IRBB;
457   executeRecipes(State, IRBB);
458   // Create a branch instruction to terminate IRBB if one was not created yet
459   // and is needed.
460   if (getSingleSuccessor() && isa<UnreachableInst>(IRBB->getTerminator())) {
461     auto *Br = State->Builder.CreateBr(IRBB);
462     Br->setOperand(0, nullptr);
463     IRBB->getTerminator()->eraseFromParent();
464   } else {
465     assert(
466         (getNumSuccessors() == 0 || isa<BranchInst>(IRBB->getTerminator())) &&
467         "other blocks must be terminated by a branch");
468   }
469 
470   connectToPredecessors(State->CFG);
471 }
472 
473 VPIRBasicBlock *VPIRBasicBlock::clone() {
474   auto *NewBlock = getPlan()->createEmptyVPIRBasicBlock(IRBB);
475   for (VPRecipeBase &R : Recipes)
476     NewBlock->appendRecipe(R.clone());
477   return NewBlock;
478 }
479 
480 void VPBasicBlock::execute(VPTransformState *State) {
481   bool Replica = bool(State->Lane);
482   BasicBlock *NewBB = State->CFG.PrevBB; // Reuse it if possible.
483 
484   auto IsReplicateRegion = [](VPBlockBase *BB) {
485     auto *R = dyn_cast_or_null<VPRegionBlock>(BB);
486     return R && R->isReplicator();
487   };
488 
489   // 1. Create an IR basic block.
490   if (this == getPlan()->getVectorPreheader() ||
491       (Replica && this == getParent()->getEntry()) ||
492       IsReplicateRegion(getSingleHierarchicalPredecessor())) {
493     // Reuse the previous basic block if the current VPBB is either
494     //  * the vector preheader,
495     //  * the entry to a replicate region, or
496     //  * the exit of a replicate region.
497     State->CFG.VPBB2IRBB[this] = NewBB;
498   } else {
499     NewBB = createEmptyBasicBlock(State->CFG);
500 
501     State->Builder.SetInsertPoint(NewBB);
502     // Temporarily terminate with unreachable until CFG is rewired.
503     UnreachableInst *Terminator = State->Builder.CreateUnreachable();
504     // Register NewBB in its loop. In innermost loops its the same for all
505     // BB's.
506     if (State->CurrentParentLoop)
507       State->CurrentParentLoop->addBasicBlockToLoop(NewBB, *State->LI);
508     State->Builder.SetInsertPoint(Terminator);
509 
510     State->CFG.PrevBB = NewBB;
511     State->CFG.VPBB2IRBB[this] = NewBB;
512     connectToPredecessors(State->CFG);
513   }
514 
515   // 2. Fill the IR basic block with IR instructions.
516   executeRecipes(State, NewBB);
517 }
518 
519 VPBasicBlock *VPBasicBlock::clone() {
520   auto *NewBlock = getPlan()->createVPBasicBlock(getName());
521   for (VPRecipeBase &R : *this)
522     NewBlock->appendRecipe(R.clone());
523   return NewBlock;
524 }
525 
526 void VPBasicBlock::executeRecipes(VPTransformState *State, BasicBlock *BB) {
527   LLVM_DEBUG(dbgs() << "LV: vectorizing VPBB:" << getName()
528                     << " in BB:" << BB->getName() << '\n');
529 
530   State->CFG.PrevVPBB = this;
531 
532   for (VPRecipeBase &Recipe : Recipes)
533     Recipe.execute(*State);
534 
535   LLVM_DEBUG(dbgs() << "LV: filled BB:" << *BB);
536 }
537 
538 VPBasicBlock *VPBasicBlock::splitAt(iterator SplitAt) {
539   assert((SplitAt == end() || SplitAt->getParent() == this) &&
540          "can only split at a position in the same block");
541 
542   SmallVector<VPBlockBase *, 2> Succs(successors());
543   // Create new empty block after the block to split.
544   auto *SplitBlock = getPlan()->createVPBasicBlock(getName() + ".split");
545   VPBlockUtils::insertBlockAfter(SplitBlock, this);
546 
547   // Finally, move the recipes starting at SplitAt to new block.
548   for (VPRecipeBase &ToMove :
549        make_early_inc_range(make_range(SplitAt, this->end())))
550     ToMove.moveBefore(*SplitBlock, SplitBlock->end());
551 
552   return SplitBlock;
553 }
554 
555 /// Return the enclosing loop region for region \p P. The templated version is
556 /// used to support both const and non-const block arguments.
557 template <typename T> static T *getEnclosingLoopRegionForRegion(T *P) {
558   if (P && P->isReplicator()) {
559     P = P->getParent();
560     assert(!cast<VPRegionBlock>(P)->isReplicator() &&
561            "unexpected nested replicate regions");
562   }
563   return P;
564 }
565 
566 VPRegionBlock *VPBasicBlock::getEnclosingLoopRegion() {
567   return getEnclosingLoopRegionForRegion(getParent());
568 }
569 
570 const VPRegionBlock *VPBasicBlock::getEnclosingLoopRegion() const {
571   return getEnclosingLoopRegionForRegion(getParent());
572 }
573 
574 static bool hasConditionalTerminator(const VPBasicBlock *VPBB) {
575   if (VPBB->empty()) {
576     assert(
577         VPBB->getNumSuccessors() < 2 &&
578         "block with multiple successors doesn't have a recipe as terminator");
579     return false;
580   }
581 
582   const VPRecipeBase *R = &VPBB->back();
583   bool IsCondBranch = isa<VPBranchOnMaskRecipe>(R) ||
584                       match(R, m_BranchOnCond(m_VPValue())) ||
585                       match(R, m_BranchOnCount(m_VPValue(), m_VPValue()));
586   (void)IsCondBranch;
587 
588   if (VPBB->getNumSuccessors() >= 2 ||
589       (VPBB->isExiting() && !VPBB->getParent()->isReplicator())) {
590     assert(IsCondBranch && "block with multiple successors not terminated by "
591                            "conditional branch recipe");
592 
593     return true;
594   }
595 
596   assert(
597       !IsCondBranch &&
598       "block with 0 or 1 successors terminated by conditional branch recipe");
599   return false;
600 }
601 
602 VPRecipeBase *VPBasicBlock::getTerminator() {
603   if (hasConditionalTerminator(this))
604     return &back();
605   return nullptr;
606 }
607 
608 const VPRecipeBase *VPBasicBlock::getTerminator() const {
609   if (hasConditionalTerminator(this))
610     return &back();
611   return nullptr;
612 }
613 
614 bool VPBasicBlock::isExiting() const {
615   return getParent() && getParent()->getExitingBasicBlock() == this;
616 }
617 
618 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
619 void VPBlockBase::printSuccessors(raw_ostream &O, const Twine &Indent) const {
620   if (getSuccessors().empty()) {
621     O << Indent << "No successors\n";
622   } else {
623     O << Indent << "Successor(s): ";
624     ListSeparator LS;
625     for (auto *Succ : getSuccessors())
626       O << LS << Succ->getName();
627     O << '\n';
628   }
629 }
630 
631 void VPBasicBlock::print(raw_ostream &O, const Twine &Indent,
632                          VPSlotTracker &SlotTracker) const {
633   O << Indent << getName() << ":\n";
634 
635   auto RecipeIndent = Indent + "  ";
636   for (const VPRecipeBase &Recipe : *this) {
637     Recipe.print(O, RecipeIndent, SlotTracker);
638     O << '\n';
639   }
640 
641   printSuccessors(O, Indent);
642 }
643 #endif
644 
645 static std::pair<VPBlockBase *, VPBlockBase *> cloneFrom(VPBlockBase *Entry);
646 
647 // Clone the CFG for all nodes reachable from \p Entry, this includes cloning
648 // the blocks and their recipes. Operands of cloned recipes will NOT be updated.
649 // Remapping of operands must be done separately. Returns a pair with the new
650 // entry and exiting blocks of the cloned region. If \p Entry isn't part of a
651 // region, return nullptr for the exiting block.
652 static std::pair<VPBlockBase *, VPBlockBase *> cloneFrom(VPBlockBase *Entry) {
653   DenseMap<VPBlockBase *, VPBlockBase *> Old2NewVPBlocks;
654   VPBlockBase *Exiting = nullptr;
655   bool InRegion = Entry->getParent();
656   // First, clone blocks reachable from Entry.
657   for (VPBlockBase *BB : vp_depth_first_shallow(Entry)) {
658     VPBlockBase *NewBB = BB->clone();
659     Old2NewVPBlocks[BB] = NewBB;
660     if (InRegion && BB->getNumSuccessors() == 0) {
661       assert(!Exiting && "Multiple exiting blocks?");
662       Exiting = BB;
663     }
664   }
665   assert((!InRegion || Exiting) && "regions must have a single exiting block");
666 
667   // Second, update the predecessors & successors of the cloned blocks.
668   for (VPBlockBase *BB : vp_depth_first_shallow(Entry)) {
669     VPBlockBase *NewBB = Old2NewVPBlocks[BB];
670     SmallVector<VPBlockBase *> NewPreds;
671     for (VPBlockBase *Pred : BB->getPredecessors()) {
672       NewPreds.push_back(Old2NewVPBlocks[Pred]);
673     }
674     NewBB->setPredecessors(NewPreds);
675     SmallVector<VPBlockBase *> NewSuccs;
676     for (VPBlockBase *Succ : BB->successors()) {
677       NewSuccs.push_back(Old2NewVPBlocks[Succ]);
678     }
679     NewBB->setSuccessors(NewSuccs);
680   }
681 
682 #if !defined(NDEBUG)
683   // Verify that the order of predecessors and successors matches in the cloned
684   // version.
685   for (const auto &[OldBB, NewBB] :
686        zip(vp_depth_first_shallow(Entry),
687            vp_depth_first_shallow(Old2NewVPBlocks[Entry]))) {
688     for (const auto &[OldPred, NewPred] :
689          zip(OldBB->getPredecessors(), NewBB->getPredecessors()))
690       assert(NewPred == Old2NewVPBlocks[OldPred] && "Different predecessors");
691 
692     for (const auto &[OldSucc, NewSucc] :
693          zip(OldBB->successors(), NewBB->successors()))
694       assert(NewSucc == Old2NewVPBlocks[OldSucc] && "Different successors");
695   }
696 #endif
697 
698   return std::make_pair(Old2NewVPBlocks[Entry],
699                         Exiting ? Old2NewVPBlocks[Exiting] : nullptr);
700 }
701 
702 VPRegionBlock *VPRegionBlock::clone() {
703   const auto &[NewEntry, NewExiting] = cloneFrom(getEntry());
704   auto *NewRegion = getPlan()->createVPRegionBlock(NewEntry, NewExiting,
705                                                    getName(), isReplicator());
706   for (VPBlockBase *Block : vp_depth_first_shallow(NewEntry))
707     Block->setParent(NewRegion);
708   return NewRegion;
709 }
710 
711 void VPRegionBlock::execute(VPTransformState *State) {
712   ReversePostOrderTraversal<VPBlockShallowTraversalWrapper<VPBlockBase *>>
713       RPOT(Entry);
714 
715   if (!isReplicator()) {
716     // Create and register the new vector loop.
717     Loop *PrevLoop = State->CurrentParentLoop;
718     State->CurrentParentLoop = State->LI->AllocateLoop();
719     BasicBlock *VectorPH = State->CFG.VPBB2IRBB[getPreheaderVPBB()];
720     Loop *ParentLoop = State->LI->getLoopFor(VectorPH);
721 
722     // Insert the new loop into the loop nest and register the new basic blocks
723     // before calling any utilities such as SCEV that require valid LoopInfo.
724     if (ParentLoop)
725       ParentLoop->addChildLoop(State->CurrentParentLoop);
726     else
727       State->LI->addTopLevelLoop(State->CurrentParentLoop);
728 
729     // Visit the VPBlocks connected to "this", starting from it.
730     for (VPBlockBase *Block : RPOT) {
731       LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n');
732       Block->execute(State);
733     }
734 
735     State->CurrentParentLoop = PrevLoop;
736     return;
737   }
738 
739   assert(!State->Lane && "Replicating a Region with non-null instance.");
740 
741   // Enter replicating mode.
742   assert(!State->VF.isScalable() && "VF is assumed to be non scalable.");
743   State->Lane = VPLane(0);
744   for (unsigned Lane = 0, VF = State->VF.getKnownMinValue(); Lane < VF;
745        ++Lane) {
746     State->Lane = VPLane(Lane, VPLane::Kind::First);
747     // Visit the VPBlocks connected to \p this, starting from it.
748     for (VPBlockBase *Block : RPOT) {
749       LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n');
750       Block->execute(State);
751     }
752   }
753 
754   // Exit replicating mode.
755   State->Lane.reset();
756 }
757 
758 InstructionCost VPBasicBlock::cost(ElementCount VF, VPCostContext &Ctx) {
759   InstructionCost Cost = 0;
760   for (VPRecipeBase &R : Recipes)
761     Cost += R.cost(VF, Ctx);
762   return Cost;
763 }
764 
765 InstructionCost VPRegionBlock::cost(ElementCount VF, VPCostContext &Ctx) {
766   if (!isReplicator()) {
767     InstructionCost Cost = 0;
768     for (VPBlockBase *Block : vp_depth_first_shallow(getEntry()))
769       Cost += Block->cost(VF, Ctx);
770     InstructionCost BackedgeCost =
771         ForceTargetInstructionCost.getNumOccurrences()
772             ? InstructionCost(ForceTargetInstructionCost.getNumOccurrences())
773             : Ctx.TTI.getCFInstrCost(Instruction::Br, TTI::TCK_RecipThroughput);
774     LLVM_DEBUG(dbgs() << "Cost of " << BackedgeCost << " for VF " << VF
775                       << ": vector loop backedge\n");
776     Cost += BackedgeCost;
777     return Cost;
778   }
779 
780   // Compute the cost of a replicate region. Replicating isn't supported for
781   // scalable vectors, return an invalid cost for them.
782   // TODO: Discard scalable VPlans with replicate recipes earlier after
783   // construction.
784   if (VF.isScalable())
785     return InstructionCost::getInvalid();
786 
787   // First compute the cost of the conditionally executed recipes, followed by
788   // account for the branching cost, except if the mask is a header mask or
789   // uniform condition.
790   using namespace llvm::VPlanPatternMatch;
791   VPBasicBlock *Then = cast<VPBasicBlock>(getEntry()->getSuccessors()[0]);
792   InstructionCost ThenCost = Then->cost(VF, Ctx);
793 
794   // For the scalar case, we may not always execute the original predicated
795   // block, Thus, scale the block's cost by the probability of executing it.
796   if (VF.isScalar())
797     return ThenCost / getReciprocalPredBlockProb();
798 
799   return ThenCost;
800 }
801 
802 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
803 void VPRegionBlock::print(raw_ostream &O, const Twine &Indent,
804                           VPSlotTracker &SlotTracker) const {
805   O << Indent << (isReplicator() ? "<xVFxUF> " : "<x1> ") << getName() << ": {";
806   auto NewIndent = Indent + "  ";
807   for (auto *BlockBase : vp_depth_first_shallow(Entry)) {
808     O << '\n';
809     BlockBase->print(O, NewIndent, SlotTracker);
810   }
811   O << Indent << "}\n";
812 
813   printSuccessors(O, Indent);
814 }
815 #endif
816 
817 VPlan::VPlan(Loop *L) {
818   setEntry(createVPIRBasicBlock(L->getLoopPreheader()));
819   ScalarHeader = createVPIRBasicBlock(L->getHeader());
820 }
821 
822 VPlan::~VPlan() {
823   VPValue DummyValue;
824 
825   for (auto *VPB : CreatedBlocks) {
826     if (auto *VPBB = dyn_cast<VPBasicBlock>(VPB)) {
827       // Replace all operands of recipes and all VPValues defined in VPBB with
828       // DummyValue so the block can be deleted.
829       for (VPRecipeBase &R : *VPBB) {
830         for (auto *Def : R.definedValues())
831           Def->replaceAllUsesWith(&DummyValue);
832 
833         for (unsigned I = 0, E = R.getNumOperands(); I != E; I++)
834           R.setOperand(I, &DummyValue);
835       }
836     }
837     delete VPB;
838   }
839   for (VPValue *VPV : VPLiveInsToFree)
840     delete VPV;
841   if (BackedgeTakenCount)
842     delete BackedgeTakenCount;
843 }
844 
845 VPlanPtr VPlan::createInitialVPlan(Type *InductionTy,
846                                    PredicatedScalarEvolution &PSE,
847                                    bool RequiresScalarEpilogueCheck,
848                                    bool TailFolded, Loop *TheLoop) {
849   auto Plan = std::make_unique<VPlan>(TheLoop);
850   VPBlockBase *ScalarHeader = Plan->getScalarHeader();
851 
852   // Connect entry only to vector preheader initially. Entry will also be
853   // connected to the scalar preheader later, during skeleton creation when
854   // runtime guards are added as needed. Note that when executing the VPlan for
855   // an epilogue vector loop, the original entry block here will be replaced by
856   // a new VPIRBasicBlock wrapping the entry to the epilogue vector loop after
857   // generating code for the main vector loop.
858   VPBasicBlock *VecPreheader = Plan->createVPBasicBlock("vector.ph");
859   VPBlockUtils::connectBlocks(Plan->getEntry(), VecPreheader);
860 
861   // Create SCEV and VPValue for the trip count.
862   // We use the symbolic max backedge-taken-count, which works also when
863   // vectorizing loops with uncountable early exits.
864   const SCEV *BackedgeTakenCountSCEV = PSE.getSymbolicMaxBackedgeTakenCount();
865   assert(!isa<SCEVCouldNotCompute>(BackedgeTakenCountSCEV) &&
866          "Invalid loop count");
867   ScalarEvolution &SE = *PSE.getSE();
868   const SCEV *TripCount = SE.getTripCountFromExitCount(BackedgeTakenCountSCEV,
869                                                        InductionTy, TheLoop);
870   Plan->TripCount =
871       vputils::getOrCreateVPValueForSCEVExpr(*Plan, TripCount, SE);
872 
873   // Create VPRegionBlock, with empty header and latch blocks, to be filled
874   // during processing later.
875   VPBasicBlock *HeaderVPBB = Plan->createVPBasicBlock("vector.body");
876   VPBasicBlock *LatchVPBB = Plan->createVPBasicBlock("vector.latch");
877   VPBlockUtils::insertBlockAfter(LatchVPBB, HeaderVPBB);
878   auto *TopRegion = Plan->createVPRegionBlock(
879       HeaderVPBB, LatchVPBB, "vector loop", false /*isReplicator*/);
880 
881   VPBlockUtils::insertBlockAfter(TopRegion, VecPreheader);
882   VPBasicBlock *MiddleVPBB = Plan->createVPBasicBlock("middle.block");
883   VPBlockUtils::insertBlockAfter(MiddleVPBB, TopRegion);
884 
885   VPBasicBlock *ScalarPH = Plan->createVPBasicBlock("scalar.ph");
886   VPBlockUtils::connectBlocks(ScalarPH, ScalarHeader);
887   if (!RequiresScalarEpilogueCheck) {
888     VPBlockUtils::connectBlocks(MiddleVPBB, ScalarPH);
889     return Plan;
890   }
891 
892   // If needed, add a check in the middle block to see if we have completed
893   // all of the iterations in the first vector loop.  Three cases:
894   // 1) If (N - N%VF) == N, then we *don't* need to run the remainder.
895   //    Thus if tail is to be folded, we know we don't need to run the
896   //    remainder and we can set the condition to true.
897   // 2) If we require a scalar epilogue, there is no conditional branch as
898   //    we unconditionally branch to the scalar preheader.  Do nothing.
899   // 3) Otherwise, construct a runtime check.
900   BasicBlock *IRExitBlock = TheLoop->getUniqueLatchExitBlock();
901   auto *VPExitBlock = Plan->createVPIRBasicBlock(IRExitBlock);
902   // The connection order corresponds to the operands of the conditional branch.
903   VPBlockUtils::insertBlockAfter(VPExitBlock, MiddleVPBB);
904   VPBlockUtils::connectBlocks(MiddleVPBB, ScalarPH);
905 
906   auto *ScalarLatchTerm = TheLoop->getLoopLatch()->getTerminator();
907   // Here we use the same DebugLoc as the scalar loop latch terminator instead
908   // of the corresponding compare because they may have ended up with
909   // different line numbers and we want to avoid awkward line stepping while
910   // debugging. Eg. if the compare has got a line number inside the loop.
911   VPBuilder Builder(MiddleVPBB);
912   VPValue *Cmp =
913       TailFolded
914           ? Plan->getOrAddLiveIn(ConstantInt::getTrue(
915                 IntegerType::getInt1Ty(TripCount->getType()->getContext())))
916           : Builder.createICmp(CmpInst::ICMP_EQ, Plan->getTripCount(),
917                                &Plan->getVectorTripCount(),
918                                ScalarLatchTerm->getDebugLoc(), "cmp.n");
919   Builder.createNaryOp(VPInstruction::BranchOnCond, {Cmp},
920                        ScalarLatchTerm->getDebugLoc());
921   return Plan;
922 }
923 
924 void VPlan::prepareToExecute(Value *TripCountV, Value *VectorTripCountV,
925                              VPTransformState &State) {
926   Type *TCTy = TripCountV->getType();
927   // Check if the backedge taken count is needed, and if so build it.
928   if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) {
929     IRBuilder<> Builder(State.CFG.PrevBB->getTerminator());
930     auto *TCMO = Builder.CreateSub(TripCountV, ConstantInt::get(TCTy, 1),
931                                    "trip.count.minus.1");
932     BackedgeTakenCount->setUnderlyingValue(TCMO);
933   }
934 
935   VectorTripCount.setUnderlyingValue(VectorTripCountV);
936 
937   IRBuilder<> Builder(State.CFG.PrevBB->getTerminator());
938   // FIXME: Model VF * UF computation completely in VPlan.
939   assert(VFxUF.getNumUsers() && "VFxUF expected to always have users");
940   unsigned UF = getUF();
941   if (VF.getNumUsers()) {
942     Value *RuntimeVF = getRuntimeVF(Builder, TCTy, State.VF);
943     VF.setUnderlyingValue(RuntimeVF);
944     VFxUF.setUnderlyingValue(
945         UF > 1 ? Builder.CreateMul(RuntimeVF, ConstantInt::get(TCTy, UF))
946                : RuntimeVF);
947   } else {
948     VFxUF.setUnderlyingValue(createStepForVF(Builder, TCTy, State.VF, UF));
949   }
950 }
951 
952 /// Generate the code inside the preheader and body of the vectorized loop.
953 /// Assumes a single pre-header basic-block was created for this. Introduce
954 /// additional basic-blocks as needed, and fill them all.
955 void VPlan::execute(VPTransformState *State) {
956   // Initialize CFG state.
957   State->CFG.PrevVPBB = nullptr;
958   State->CFG.ExitBB = State->CFG.PrevBB->getSingleSuccessor();
959 
960   // Disconnect VectorPreHeader from ExitBB in both the CFG and DT.
961   BasicBlock *VectorPreHeader = State->CFG.PrevBB;
962   cast<BranchInst>(VectorPreHeader->getTerminator())->setSuccessor(0, nullptr);
963   State->CFG.DTU.applyUpdates(
964       {{DominatorTree::Delete, VectorPreHeader, State->CFG.ExitBB}});
965 
966   LLVM_DEBUG(dbgs() << "Executing best plan with VF=" << State->VF
967                     << ", UF=" << getUF() << '\n');
968   setName("Final VPlan");
969   LLVM_DEBUG(dump());
970 
971   // Disconnect the middle block from its single successor (the scalar loop
972   // header) in both the CFG and DT. The branch will be recreated during VPlan
973   // execution.
974   BasicBlock *MiddleBB = State->CFG.ExitBB;
975   BasicBlock *ScalarPh = MiddleBB->getSingleSuccessor();
976   auto *BrInst = new UnreachableInst(MiddleBB->getContext());
977   BrInst->insertBefore(MiddleBB->getTerminator());
978   MiddleBB->getTerminator()->eraseFromParent();
979   State->CFG.DTU.applyUpdates({{DominatorTree::Delete, MiddleBB, ScalarPh}});
980   // Disconnect scalar preheader and scalar header, as the dominator tree edge
981   // will be updated as part of VPlan execution. This allows keeping the DTU
982   // logic generic during VPlan execution.
983   State->CFG.DTU.applyUpdates(
984       {{DominatorTree::Delete, ScalarPh, ScalarPh->getSingleSuccessor()}});
985 
986   ReversePostOrderTraversal<VPBlockShallowTraversalWrapper<VPBlockBase *>> RPOT(
987       Entry);
988   // Generate code for the VPlan, in parts of the vector skeleton, loop body and
989   // successor blocks including the middle, exit and scalar preheader blocks.
990   for (VPBlockBase *Block : RPOT)
991     Block->execute(State);
992 
993   VPBasicBlock *LatchVPBB = getVectorLoopRegion()->getExitingBasicBlock();
994   BasicBlock *VectorLatchBB = State->CFG.VPBB2IRBB[LatchVPBB];
995 
996   // Fix the latch value of canonical, reduction and first-order recurrences
997   // phis in the vector loop.
998   VPBasicBlock *Header = getVectorLoopRegion()->getEntryBasicBlock();
999   for (VPRecipeBase &R : Header->phis()) {
1000     // Skip phi-like recipes that generate their backedege values themselves.
1001     if (isa<VPWidenPHIRecipe>(&R))
1002       continue;
1003 
1004     if (isa<VPWidenInductionRecipe>(&R)) {
1005       PHINode *Phi = nullptr;
1006       if (isa<VPWidenIntOrFpInductionRecipe>(&R)) {
1007         Phi = cast<PHINode>(State->get(R.getVPSingleValue()));
1008       } else {
1009         auto *WidenPhi = cast<VPWidenPointerInductionRecipe>(&R);
1010         assert(!WidenPhi->onlyScalarsGenerated(State->VF.isScalable()) &&
1011                "recipe generating only scalars should have been replaced");
1012         auto *GEP = cast<GetElementPtrInst>(State->get(WidenPhi));
1013         Phi = cast<PHINode>(GEP->getPointerOperand());
1014       }
1015 
1016       Phi->setIncomingBlock(1, VectorLatchBB);
1017 
1018       // Move the last step to the end of the latch block. This ensures
1019       // consistent placement of all induction updates.
1020       Instruction *Inc = cast<Instruction>(Phi->getIncomingValue(1));
1021       Inc->moveBefore(VectorLatchBB->getTerminator()->getPrevNode());
1022 
1023       // Use the steps for the last part as backedge value for the induction.
1024       if (auto *IV = dyn_cast<VPWidenIntOrFpInductionRecipe>(&R))
1025         Inc->setOperand(0, State->get(IV->getLastUnrolledPartOperand()));
1026       continue;
1027     }
1028 
1029     auto *PhiR = cast<VPHeaderPHIRecipe>(&R);
1030     bool NeedsScalar = isa<VPScalarPHIRecipe>(PhiR) ||
1031                        (isa<VPReductionPHIRecipe>(PhiR) &&
1032                         cast<VPReductionPHIRecipe>(PhiR)->isInLoop());
1033     Value *Phi = State->get(PhiR, NeedsScalar);
1034     Value *Val = State->get(PhiR->getBackedgeValue(), NeedsScalar);
1035     cast<PHINode>(Phi)->addIncoming(Val, VectorLatchBB);
1036   }
1037 
1038   State->CFG.DTU.flush();
1039 }
1040 
1041 InstructionCost VPlan::cost(ElementCount VF, VPCostContext &Ctx) {
1042   // For now only return the cost of the vector loop region, ignoring any other
1043   // blocks, like the preheader or middle blocks.
1044   return getVectorLoopRegion()->cost(VF, Ctx);
1045 }
1046 
1047 VPRegionBlock *VPlan::getVectorLoopRegion() {
1048   // TODO: Cache if possible.
1049   for (VPBlockBase *B : vp_depth_first_shallow(getEntry()))
1050     if (auto *R = dyn_cast<VPRegionBlock>(B))
1051       return R;
1052   return nullptr;
1053 }
1054 
1055 const VPRegionBlock *VPlan::getVectorLoopRegion() const {
1056   for (const VPBlockBase *B : vp_depth_first_shallow(getEntry()))
1057     if (auto *R = dyn_cast<VPRegionBlock>(B))
1058       return R;
1059   return nullptr;
1060 }
1061 
1062 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1063 void VPlan::printLiveIns(raw_ostream &O) const {
1064   VPSlotTracker SlotTracker(this);
1065 
1066   if (VF.getNumUsers() > 0) {
1067     O << "\nLive-in ";
1068     VF.printAsOperand(O, SlotTracker);
1069     O << " = VF";
1070   }
1071 
1072   if (VFxUF.getNumUsers() > 0) {
1073     O << "\nLive-in ";
1074     VFxUF.printAsOperand(O, SlotTracker);
1075     O << " = VF * UF";
1076   }
1077 
1078   if (VectorTripCount.getNumUsers() > 0) {
1079     O << "\nLive-in ";
1080     VectorTripCount.printAsOperand(O, SlotTracker);
1081     O << " = vector-trip-count";
1082   }
1083 
1084   if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) {
1085     O << "\nLive-in ";
1086     BackedgeTakenCount->printAsOperand(O, SlotTracker);
1087     O << " = backedge-taken count";
1088   }
1089 
1090   O << "\n";
1091   if (TripCount->isLiveIn())
1092     O << "Live-in ";
1093   TripCount->printAsOperand(O, SlotTracker);
1094   O << " = original trip-count";
1095   O << "\n";
1096 }
1097 
1098 LLVM_DUMP_METHOD
1099 void VPlan::print(raw_ostream &O) const {
1100   VPSlotTracker SlotTracker(this);
1101 
1102   O << "VPlan '" << getName() << "' {";
1103 
1104   printLiveIns(O);
1105 
1106   ReversePostOrderTraversal<VPBlockShallowTraversalWrapper<const VPBlockBase *>>
1107       RPOT(getEntry());
1108   for (const VPBlockBase *Block : RPOT) {
1109     O << '\n';
1110     Block->print(O, "", SlotTracker);
1111   }
1112 
1113   O << "}\n";
1114 }
1115 
1116 std::string VPlan::getName() const {
1117   std::string Out;
1118   raw_string_ostream RSO(Out);
1119   RSO << Name << " for ";
1120   if (!VFs.empty()) {
1121     RSO << "VF={" << VFs[0];
1122     for (ElementCount VF : drop_begin(VFs))
1123       RSO << "," << VF;
1124     RSO << "},";
1125   }
1126 
1127   if (UFs.empty()) {
1128     RSO << "UF>=1";
1129   } else {
1130     RSO << "UF={" << UFs[0];
1131     for (unsigned UF : drop_begin(UFs))
1132       RSO << "," << UF;
1133     RSO << "}";
1134   }
1135 
1136   return Out;
1137 }
1138 
1139 LLVM_DUMP_METHOD
1140 void VPlan::printDOT(raw_ostream &O) const {
1141   VPlanPrinter Printer(O, *this);
1142   Printer.dump();
1143 }
1144 
1145 LLVM_DUMP_METHOD
1146 void VPlan::dump() const { print(dbgs()); }
1147 #endif
1148 
1149 static void remapOperands(VPBlockBase *Entry, VPBlockBase *NewEntry,
1150                           DenseMap<VPValue *, VPValue *> &Old2NewVPValues) {
1151   // Update the operands of all cloned recipes starting at NewEntry. This
1152   // traverses all reachable blocks. This is done in two steps, to handle cycles
1153   // in PHI recipes.
1154   ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<VPBlockBase *>>
1155       OldDeepRPOT(Entry);
1156   ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<VPBlockBase *>>
1157       NewDeepRPOT(NewEntry);
1158   // First, collect all mappings from old to new VPValues defined by cloned
1159   // recipes.
1160   for (const auto &[OldBB, NewBB] :
1161        zip(VPBlockUtils::blocksOnly<VPBasicBlock>(OldDeepRPOT),
1162            VPBlockUtils::blocksOnly<VPBasicBlock>(NewDeepRPOT))) {
1163     assert(OldBB->getRecipeList().size() == NewBB->getRecipeList().size() &&
1164            "blocks must have the same number of recipes");
1165     for (const auto &[OldR, NewR] : zip(*OldBB, *NewBB)) {
1166       assert(OldR.getNumOperands() == NewR.getNumOperands() &&
1167              "recipes must have the same number of operands");
1168       assert(OldR.getNumDefinedValues() == NewR.getNumDefinedValues() &&
1169              "recipes must define the same number of operands");
1170       for (const auto &[OldV, NewV] :
1171            zip(OldR.definedValues(), NewR.definedValues()))
1172         Old2NewVPValues[OldV] = NewV;
1173     }
1174   }
1175 
1176   // Update all operands to use cloned VPValues.
1177   for (VPBasicBlock *NewBB :
1178        VPBlockUtils::blocksOnly<VPBasicBlock>(NewDeepRPOT)) {
1179     for (VPRecipeBase &NewR : *NewBB)
1180       for (unsigned I = 0, E = NewR.getNumOperands(); I != E; ++I) {
1181         VPValue *NewOp = Old2NewVPValues.lookup(NewR.getOperand(I));
1182         NewR.setOperand(I, NewOp);
1183       }
1184   }
1185 }
1186 
1187 VPlan *VPlan::duplicate() {
1188   unsigned NumBlocksBeforeCloning = CreatedBlocks.size();
1189   // Clone blocks.
1190   const auto &[NewEntry, __] = cloneFrom(Entry);
1191 
1192   BasicBlock *ScalarHeaderIRBB = getScalarHeader()->getIRBasicBlock();
1193   VPIRBasicBlock *NewScalarHeader = cast<VPIRBasicBlock>(*find_if(
1194       vp_depth_first_shallow(NewEntry), [ScalarHeaderIRBB](VPBlockBase *VPB) {
1195         auto *VPIRBB = dyn_cast<VPIRBasicBlock>(VPB);
1196         return VPIRBB && VPIRBB->getIRBasicBlock() == ScalarHeaderIRBB;
1197       }));
1198   // Create VPlan, clone live-ins and remap operands in the cloned blocks.
1199   auto *NewPlan = new VPlan(cast<VPBasicBlock>(NewEntry), NewScalarHeader);
1200   DenseMap<VPValue *, VPValue *> Old2NewVPValues;
1201   for (VPValue *OldLiveIn : VPLiveInsToFree) {
1202     Old2NewVPValues[OldLiveIn] =
1203         NewPlan->getOrAddLiveIn(OldLiveIn->getLiveInIRValue());
1204   }
1205   Old2NewVPValues[&VectorTripCount] = &NewPlan->VectorTripCount;
1206   Old2NewVPValues[&VF] = &NewPlan->VF;
1207   Old2NewVPValues[&VFxUF] = &NewPlan->VFxUF;
1208   if (BackedgeTakenCount) {
1209     NewPlan->BackedgeTakenCount = new VPValue();
1210     Old2NewVPValues[BackedgeTakenCount] = NewPlan->BackedgeTakenCount;
1211   }
1212   assert(TripCount && "trip count must be set");
1213   if (TripCount->isLiveIn())
1214     Old2NewVPValues[TripCount] =
1215         NewPlan->getOrAddLiveIn(TripCount->getLiveInIRValue());
1216   // else NewTripCount will be created and inserted into Old2NewVPValues when
1217   // TripCount is cloned. In any case NewPlan->TripCount is updated below.
1218 
1219   remapOperands(Entry, NewEntry, Old2NewVPValues);
1220 
1221   // Initialize remaining fields of cloned VPlan.
1222   NewPlan->VFs = VFs;
1223   NewPlan->UFs = UFs;
1224   // TODO: Adjust names.
1225   NewPlan->Name = Name;
1226   assert(Old2NewVPValues.contains(TripCount) &&
1227          "TripCount must have been added to Old2NewVPValues");
1228   NewPlan->TripCount = Old2NewVPValues[TripCount];
1229 
1230   // Transfer all cloned blocks (the second half of all current blocks) from
1231   // current to new VPlan.
1232   unsigned NumBlocksAfterCloning = CreatedBlocks.size();
1233   for (unsigned I :
1234        seq<unsigned>(NumBlocksBeforeCloning, NumBlocksAfterCloning))
1235     NewPlan->CreatedBlocks.push_back(this->CreatedBlocks[I]);
1236   CreatedBlocks.truncate(NumBlocksBeforeCloning);
1237 
1238   return NewPlan;
1239 }
1240 
1241 VPIRBasicBlock *VPlan::createEmptyVPIRBasicBlock(BasicBlock *IRBB) {
1242   auto *VPIRBB = new VPIRBasicBlock(IRBB);
1243   CreatedBlocks.push_back(VPIRBB);
1244   return VPIRBB;
1245 }
1246 
1247 VPIRBasicBlock *VPlan::createVPIRBasicBlock(BasicBlock *IRBB) {
1248   auto *VPIRBB = createEmptyVPIRBasicBlock(IRBB);
1249   for (Instruction &I :
1250        make_range(IRBB->begin(), IRBB->getTerminator()->getIterator()))
1251     VPIRBB->appendRecipe(new VPIRInstruction(I));
1252   return VPIRBB;
1253 }
1254 
1255 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1256 
1257 Twine VPlanPrinter::getUID(const VPBlockBase *Block) {
1258   return (isa<VPRegionBlock>(Block) ? "cluster_N" : "N") +
1259          Twine(getOrCreateBID(Block));
1260 }
1261 
1262 Twine VPlanPrinter::getOrCreateName(const VPBlockBase *Block) {
1263   const std::string &Name = Block->getName();
1264   if (!Name.empty())
1265     return Name;
1266   return "VPB" + Twine(getOrCreateBID(Block));
1267 }
1268 
1269 void VPlanPrinter::dump() {
1270   Depth = 1;
1271   bumpIndent(0);
1272   OS << "digraph VPlan {\n";
1273   OS << "graph [labelloc=t, fontsize=30; label=\"Vectorization Plan";
1274   if (!Plan.getName().empty())
1275     OS << "\\n" << DOT::EscapeString(Plan.getName());
1276 
1277   {
1278     // Print live-ins.
1279   std::string Str;
1280   raw_string_ostream SS(Str);
1281   Plan.printLiveIns(SS);
1282   SmallVector<StringRef, 0> Lines;
1283   StringRef(Str).rtrim('\n').split(Lines, "\n");
1284   for (auto Line : Lines)
1285     OS << DOT::EscapeString(Line.str()) << "\\n";
1286   }
1287 
1288   OS << "\"]\n";
1289   OS << "node [shape=rect, fontname=Courier, fontsize=30]\n";
1290   OS << "edge [fontname=Courier, fontsize=30]\n";
1291   OS << "compound=true\n";
1292 
1293   for (const VPBlockBase *Block : vp_depth_first_shallow(Plan.getEntry()))
1294     dumpBlock(Block);
1295 
1296   OS << "}\n";
1297 }
1298 
1299 void VPlanPrinter::dumpBlock(const VPBlockBase *Block) {
1300   if (const VPBasicBlock *BasicBlock = dyn_cast<VPBasicBlock>(Block))
1301     dumpBasicBlock(BasicBlock);
1302   else if (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
1303     dumpRegion(Region);
1304   else
1305     llvm_unreachable("Unsupported kind of VPBlock.");
1306 }
1307 
1308 void VPlanPrinter::drawEdge(const VPBlockBase *From, const VPBlockBase *To,
1309                             bool Hidden, const Twine &Label) {
1310   // Due to "dot" we print an edge between two regions as an edge between the
1311   // exiting basic block and the entry basic of the respective regions.
1312   const VPBlockBase *Tail = From->getExitingBasicBlock();
1313   const VPBlockBase *Head = To->getEntryBasicBlock();
1314   OS << Indent << getUID(Tail) << " -> " << getUID(Head);
1315   OS << " [ label=\"" << Label << '\"';
1316   if (Tail != From)
1317     OS << " ltail=" << getUID(From);
1318   if (Head != To)
1319     OS << " lhead=" << getUID(To);
1320   if (Hidden)
1321     OS << "; splines=none";
1322   OS << "]\n";
1323 }
1324 
1325 void VPlanPrinter::dumpEdges(const VPBlockBase *Block) {
1326   auto &Successors = Block->getSuccessors();
1327   if (Successors.size() == 1)
1328     drawEdge(Block, Successors.front(), false, "");
1329   else if (Successors.size() == 2) {
1330     drawEdge(Block, Successors.front(), false, "T");
1331     drawEdge(Block, Successors.back(), false, "F");
1332   } else {
1333     unsigned SuccessorNumber = 0;
1334     for (auto *Successor : Successors)
1335       drawEdge(Block, Successor, false, Twine(SuccessorNumber++));
1336   }
1337 }
1338 
1339 void VPlanPrinter::dumpBasicBlock(const VPBasicBlock *BasicBlock) {
1340   // Implement dot-formatted dump by performing plain-text dump into the
1341   // temporary storage followed by some post-processing.
1342   OS << Indent << getUID(BasicBlock) << " [label =\n";
1343   bumpIndent(1);
1344   std::string Str;
1345   raw_string_ostream SS(Str);
1346   // Use no indentation as we need to wrap the lines into quotes ourselves.
1347   BasicBlock->print(SS, "", SlotTracker);
1348 
1349   // We need to process each line of the output separately, so split
1350   // single-string plain-text dump.
1351   SmallVector<StringRef, 0> Lines;
1352   StringRef(Str).rtrim('\n').split(Lines, "\n");
1353 
1354   auto EmitLine = [&](StringRef Line, StringRef Suffix) {
1355     OS << Indent << '"' << DOT::EscapeString(Line.str()) << "\\l\"" << Suffix;
1356   };
1357 
1358   // Don't need the "+" after the last line.
1359   for (auto Line : make_range(Lines.begin(), Lines.end() - 1))
1360     EmitLine(Line, " +\n");
1361   EmitLine(Lines.back(), "\n");
1362 
1363   bumpIndent(-1);
1364   OS << Indent << "]\n";
1365 
1366   dumpEdges(BasicBlock);
1367 }
1368 
1369 void VPlanPrinter::dumpRegion(const VPRegionBlock *Region) {
1370   OS << Indent << "subgraph " << getUID(Region) << " {\n";
1371   bumpIndent(1);
1372   OS << Indent << "fontname=Courier\n"
1373      << Indent << "label=\""
1374      << DOT::EscapeString(Region->isReplicator() ? "<xVFxUF> " : "<x1> ")
1375      << DOT::EscapeString(Region->getName()) << "\"\n";
1376   // Dump the blocks of the region.
1377   assert(Region->getEntry() && "Region contains no inner blocks.");
1378   for (const VPBlockBase *Block : vp_depth_first_shallow(Region->getEntry()))
1379     dumpBlock(Block);
1380   bumpIndent(-1);
1381   OS << Indent << "}\n";
1382   dumpEdges(Region);
1383 }
1384 
1385 void VPlanIngredient::print(raw_ostream &O) const {
1386   if (auto *Inst = dyn_cast<Instruction>(V)) {
1387     if (!Inst->getType()->isVoidTy()) {
1388       Inst->printAsOperand(O, false);
1389       O << " = ";
1390     }
1391     O << Inst->getOpcodeName() << " ";
1392     unsigned E = Inst->getNumOperands();
1393     if (E > 0) {
1394       Inst->getOperand(0)->printAsOperand(O, false);
1395       for (unsigned I = 1; I < E; ++I)
1396         Inst->getOperand(I)->printAsOperand(O << ", ", false);
1397     }
1398   } else // !Inst
1399     V->printAsOperand(O, false);
1400 }
1401 
1402 #endif
1403 
1404 bool VPValue::isDefinedOutsideLoopRegions() const {
1405   return !hasDefiningRecipe() ||
1406          !getDefiningRecipe()->getParent()->getEnclosingLoopRegion();
1407 }
1408 
1409 void VPValue::replaceAllUsesWith(VPValue *New) {
1410   replaceUsesWithIf(New, [](VPUser &, unsigned) { return true; });
1411 }
1412 
1413 void VPValue::replaceUsesWithIf(
1414     VPValue *New,
1415     llvm::function_ref<bool(VPUser &U, unsigned Idx)> ShouldReplace) {
1416   // Note that this early exit is required for correctness; the implementation
1417   // below relies on the number of users for this VPValue to decrease, which
1418   // isn't the case if this == New.
1419   if (this == New)
1420     return;
1421 
1422   for (unsigned J = 0; J < getNumUsers();) {
1423     VPUser *User = Users[J];
1424     bool RemovedUser = false;
1425     for (unsigned I = 0, E = User->getNumOperands(); I < E; ++I) {
1426       if (User->getOperand(I) != this || !ShouldReplace(*User, I))
1427         continue;
1428 
1429       RemovedUser = true;
1430       User->setOperand(I, New);
1431     }
1432     // If a user got removed after updating the current user, the next user to
1433     // update will be moved to the current position, so we only need to
1434     // increment the index if the number of users did not change.
1435     if (!RemovedUser)
1436       J++;
1437   }
1438 }
1439 
1440 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1441 void VPValue::printAsOperand(raw_ostream &OS, VPSlotTracker &Tracker) const {
1442   OS << Tracker.getOrCreateName(this);
1443 }
1444 
1445 void VPUser::printOperands(raw_ostream &O, VPSlotTracker &SlotTracker) const {
1446   interleaveComma(operands(), O, [&O, &SlotTracker](VPValue *Op) {
1447     Op->printAsOperand(O, SlotTracker);
1448   });
1449 }
1450 #endif
1451 
1452 void VPInterleavedAccessInfo::visitRegion(VPRegionBlock *Region,
1453                                           Old2NewTy &Old2New,
1454                                           InterleavedAccessInfo &IAI) {
1455   ReversePostOrderTraversal<VPBlockShallowTraversalWrapper<VPBlockBase *>>
1456       RPOT(Region->getEntry());
1457   for (VPBlockBase *Base : RPOT) {
1458     visitBlock(Base, Old2New, IAI);
1459   }
1460 }
1461 
1462 void VPInterleavedAccessInfo::visitBlock(VPBlockBase *Block, Old2NewTy &Old2New,
1463                                          InterleavedAccessInfo &IAI) {
1464   if (VPBasicBlock *VPBB = dyn_cast<VPBasicBlock>(Block)) {
1465     for (VPRecipeBase &VPI : *VPBB) {
1466       if (isa<VPWidenPHIRecipe>(&VPI))
1467         continue;
1468       assert(isa<VPInstruction>(&VPI) && "Can only handle VPInstructions");
1469       auto *VPInst = cast<VPInstruction>(&VPI);
1470 
1471       auto *Inst = dyn_cast_or_null<Instruction>(VPInst->getUnderlyingValue());
1472       if (!Inst)
1473         continue;
1474       auto *IG = IAI.getInterleaveGroup(Inst);
1475       if (!IG)
1476         continue;
1477 
1478       auto NewIGIter = Old2New.find(IG);
1479       if (NewIGIter == Old2New.end())
1480         Old2New[IG] = new InterleaveGroup<VPInstruction>(
1481             IG->getFactor(), IG->isReverse(), IG->getAlign());
1482 
1483       if (Inst == IG->getInsertPos())
1484         Old2New[IG]->setInsertPos(VPInst);
1485 
1486       InterleaveGroupMap[VPInst] = Old2New[IG];
1487       InterleaveGroupMap[VPInst]->insertMember(
1488           VPInst, IG->getIndex(Inst),
1489           Align(IG->isReverse() ? (-1) * int(IG->getFactor())
1490                                 : IG->getFactor()));
1491     }
1492   } else if (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
1493     visitRegion(Region, Old2New, IAI);
1494   else
1495     llvm_unreachable("Unsupported kind of VPBlock.");
1496 }
1497 
1498 VPInterleavedAccessInfo::VPInterleavedAccessInfo(VPlan &Plan,
1499                                                  InterleavedAccessInfo &IAI) {
1500   Old2NewTy Old2New;
1501   visitRegion(Plan.getVectorLoopRegion(), Old2New, IAI);
1502 }
1503 
1504 void VPSlotTracker::assignName(const VPValue *V) {
1505   assert(!VPValue2Name.contains(V) && "VPValue already has a name!");
1506   auto *UV = V->getUnderlyingValue();
1507   auto *VPI = dyn_cast_or_null<VPInstruction>(V->getDefiningRecipe());
1508   if (!UV && !(VPI && !VPI->getName().empty())) {
1509     VPValue2Name[V] = (Twine("vp<%") + Twine(NextSlot) + ">").str();
1510     NextSlot++;
1511     return;
1512   }
1513 
1514   // Use the name of the underlying Value, wrapped in "ir<>", and versioned by
1515   // appending ".Number" to the name if there are multiple uses.
1516   std::string Name;
1517   if (UV) {
1518     raw_string_ostream S(Name);
1519     UV->printAsOperand(S, false);
1520   } else
1521     Name = VPI->getName();
1522 
1523   assert(!Name.empty() && "Name cannot be empty.");
1524   StringRef Prefix = UV ? "ir<" : "vp<%";
1525   std::string BaseName = (Twine(Prefix) + Name + Twine(">")).str();
1526 
1527   // First assign the base name for V.
1528   const auto &[A, _] = VPValue2Name.insert({V, BaseName});
1529   // Integer or FP constants with different types will result in he same string
1530   // due to stripping types.
1531   if (V->isLiveIn() && isa<ConstantInt, ConstantFP>(UV))
1532     return;
1533 
1534   // If it is already used by C > 0 other VPValues, increase the version counter
1535   // C and use it for V.
1536   const auto &[C, UseInserted] = BaseName2Version.insert({BaseName, 0});
1537   if (!UseInserted) {
1538     C->second++;
1539     A->second = (BaseName + Twine(".") + Twine(C->second)).str();
1540   }
1541 }
1542 
1543 void VPSlotTracker::assignNames(const VPlan &Plan) {
1544   if (Plan.VF.getNumUsers() > 0)
1545     assignName(&Plan.VF);
1546   if (Plan.VFxUF.getNumUsers() > 0)
1547     assignName(&Plan.VFxUF);
1548   assignName(&Plan.VectorTripCount);
1549   if (Plan.BackedgeTakenCount)
1550     assignName(Plan.BackedgeTakenCount);
1551   for (VPValue *LI : Plan.VPLiveInsToFree)
1552     assignName(LI);
1553 
1554   ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<const VPBlockBase *>>
1555       RPOT(VPBlockDeepTraversalWrapper<const VPBlockBase *>(Plan.getEntry()));
1556   for (const VPBasicBlock *VPBB :
1557        VPBlockUtils::blocksOnly<const VPBasicBlock>(RPOT))
1558     assignNames(VPBB);
1559 }
1560 
1561 void VPSlotTracker::assignNames(const VPBasicBlock *VPBB) {
1562   for (const VPRecipeBase &Recipe : *VPBB)
1563     for (VPValue *Def : Recipe.definedValues())
1564       assignName(Def);
1565 }
1566 
1567 std::string VPSlotTracker::getOrCreateName(const VPValue *V) const {
1568   std::string Name = VPValue2Name.lookup(V);
1569   if (!Name.empty())
1570     return Name;
1571 
1572   // If no name was assigned, no VPlan was provided when creating the slot
1573   // tracker or it is not reachable from the provided VPlan. This can happen,
1574   // e.g. when trying to print a recipe that has not been inserted into a VPlan
1575   // in a debugger.
1576   // TODO: Update VPSlotTracker constructor to assign names to recipes &
1577   // VPValues not associated with a VPlan, instead of constructing names ad-hoc
1578   // here.
1579   const VPRecipeBase *DefR = V->getDefiningRecipe();
1580   (void)DefR;
1581   assert((!DefR || !DefR->getParent() || !DefR->getParent()->getPlan()) &&
1582          "VPValue defined by a recipe in a VPlan?");
1583 
1584   // Use the underlying value's name, if there is one.
1585   if (auto *UV = V->getUnderlyingValue()) {
1586     std::string Name;
1587     raw_string_ostream S(Name);
1588     UV->printAsOperand(S, false);
1589     return (Twine("ir<") + Name + ">").str();
1590   }
1591 
1592   return "<badref>";
1593 }
1594 
1595 bool LoopVectorizationPlanner::getDecisionAndClampRange(
1596     const std::function<bool(ElementCount)> &Predicate, VFRange &Range) {
1597   assert(!Range.isEmpty() && "Trying to test an empty VF range.");
1598   bool PredicateAtRangeStart = Predicate(Range.Start);
1599 
1600   for (ElementCount TmpVF : VFRange(Range.Start * 2, Range.End))
1601     if (Predicate(TmpVF) != PredicateAtRangeStart) {
1602       Range.End = TmpVF;
1603       break;
1604     }
1605 
1606   return PredicateAtRangeStart;
1607 }
1608 
1609 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF,
1610 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range
1611 /// of VF's starting at a given VF and extending it as much as possible. Each
1612 /// vectorization decision can potentially shorten this sub-range during
1613 /// buildVPlan().
1614 void LoopVectorizationPlanner::buildVPlans(ElementCount MinVF,
1615                                            ElementCount MaxVF) {
1616   auto MaxVFTimes2 = MaxVF * 2;
1617   for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFTimes2);) {
1618     VFRange SubRange = {VF, MaxVFTimes2};
1619     auto Plan = buildVPlan(SubRange);
1620     VPlanTransforms::optimize(*Plan);
1621     VPlans.push_back(std::move(Plan));
1622     VF = SubRange.End;
1623   }
1624 }
1625 
1626 VPlan &LoopVectorizationPlanner::getPlanFor(ElementCount VF) const {
1627   assert(count_if(VPlans,
1628                   [VF](const VPlanPtr &Plan) { return Plan->hasVF(VF); }) ==
1629              1 &&
1630          "Multiple VPlans for VF.");
1631 
1632   for (const VPlanPtr &Plan : VPlans) {
1633     if (Plan->hasVF(VF))
1634       return *Plan.get();
1635   }
1636   llvm_unreachable("No plan found!");
1637 }
1638 
1639 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1640 void LoopVectorizationPlanner::printPlans(raw_ostream &O) {
1641   if (VPlans.empty()) {
1642     O << "LV: No VPlans built.\n";
1643     return;
1644   }
1645   for (const auto &Plan : VPlans)
1646     if (PrintVPlansInDotFormat)
1647       Plan->printDOT(O);
1648     else
1649       Plan->print(O);
1650 }
1651 #endif
1652 
1653 TargetTransformInfo::OperandValueInfo
1654 VPCostContext::getOperandInfo(VPValue *V) const {
1655   if (!V->isLiveIn())
1656     return {};
1657 
1658   return TTI::getOperandInfo(V->getLiveInIRValue());
1659 }
1660