1 //===- VPlan.cpp - Vectorizer Plan ----------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This is the LLVM vectorization plan. It represents a candidate for 11 /// vectorization, allowing to plan and optimize how to vectorize a given loop 12 /// before generating LLVM-IR. 13 /// The vectorizer uses vectorization plans to estimate the costs of potential 14 /// candidates and if profitable to execute the desired plan, generating vector 15 /// LLVM-IR code. 16 /// 17 //===----------------------------------------------------------------------===// 18 19 #include "VPlan.h" 20 #include "VPlanDominatorTree.h" 21 #include "llvm/ADT/DepthFirstIterator.h" 22 #include "llvm/ADT/PostOrderIterator.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/Twine.h" 25 #include "llvm/Analysis/LoopInfo.h" 26 #include "llvm/IR/BasicBlock.h" 27 #include "llvm/IR/CFG.h" 28 #include "llvm/IR/InstrTypes.h" 29 #include "llvm/IR/Instruction.h" 30 #include "llvm/IR/Instructions.h" 31 #include "llvm/IR/Type.h" 32 #include "llvm/IR/Value.h" 33 #include "llvm/Support/Casting.h" 34 #include "llvm/Support/CommandLine.h" 35 #include "llvm/Support/Debug.h" 36 #include "llvm/Support/ErrorHandling.h" 37 #include "llvm/Support/GenericDomTreeConstruction.h" 38 #include "llvm/Support/GraphWriter.h" 39 #include "llvm/Support/raw_ostream.h" 40 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 41 #include <cassert> 42 #include <iterator> 43 #include <string> 44 #include <vector> 45 46 using namespace llvm; 47 extern cl::opt<bool> EnableVPlanNativePath; 48 49 #define DEBUG_TYPE "vplan" 50 51 raw_ostream &llvm::operator<<(raw_ostream &OS, const VPValue &V) { 52 const VPInstruction *Instr = dyn_cast<VPInstruction>(&V); 53 VPSlotTracker SlotTracker( 54 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr); 55 V.print(OS, SlotTracker); 56 return OS; 57 } 58 59 void VPValue::print(raw_ostream &OS, VPSlotTracker &SlotTracker) const { 60 if (const VPInstruction *Instr = dyn_cast<VPInstruction>(this)) 61 Instr->print(OS, SlotTracker); 62 else 63 printAsOperand(OS, SlotTracker); 64 } 65 66 void VPValue::dump() const { 67 const VPInstruction *Instr = dyn_cast<VPInstruction>(this); 68 VPSlotTracker SlotTracker( 69 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr); 70 print(dbgs(), SlotTracker); 71 dbgs() << "\n"; 72 } 73 74 void VPRecipeBase::dump() const { 75 VPSlotTracker SlotTracker(nullptr); 76 print(dbgs(), "", SlotTracker); 77 dbgs() << "\n"; 78 } 79 80 // Get the top-most entry block of \p Start. This is the entry block of the 81 // containing VPlan. This function is templated to support both const and non-const blocks 82 template <typename T> static T *getPlanEntry(T *Start) { 83 T *Next = Start; 84 T *Current = Start; 85 while ((Next = Next->getParent())) 86 Current = Next; 87 88 SmallSetVector<T *, 8> WorkList; 89 WorkList.insert(Current); 90 91 for (unsigned i = 0; i < WorkList.size(); i++) { 92 T *Current = WorkList[i]; 93 if (Current->getNumPredecessors() == 0) 94 return Current; 95 auto &Predecessors = Current->getPredecessors(); 96 WorkList.insert(Predecessors.begin(), Predecessors.end()); 97 } 98 99 llvm_unreachable("VPlan without any entry node without predecessors"); 100 } 101 102 VPlan *VPBlockBase::getPlan() { return getPlanEntry(this)->Plan; } 103 104 const VPlan *VPBlockBase::getPlan() const { return getPlanEntry(this)->Plan; } 105 106 /// \return the VPBasicBlock that is the entry of Block, possibly indirectly. 107 const VPBasicBlock *VPBlockBase::getEntryBasicBlock() const { 108 const VPBlockBase *Block = this; 109 while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 110 Block = Region->getEntry(); 111 return cast<VPBasicBlock>(Block); 112 } 113 114 VPBasicBlock *VPBlockBase::getEntryBasicBlock() { 115 VPBlockBase *Block = this; 116 while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 117 Block = Region->getEntry(); 118 return cast<VPBasicBlock>(Block); 119 } 120 121 void VPBlockBase::setPlan(VPlan *ParentPlan) { 122 assert(ParentPlan->getEntry() == this && 123 "Can only set plan on its entry block."); 124 Plan = ParentPlan; 125 } 126 127 /// \return the VPBasicBlock that is the exit of Block, possibly indirectly. 128 const VPBasicBlock *VPBlockBase::getExitBasicBlock() const { 129 const VPBlockBase *Block = this; 130 while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 131 Block = Region->getExit(); 132 return cast<VPBasicBlock>(Block); 133 } 134 135 VPBasicBlock *VPBlockBase::getExitBasicBlock() { 136 VPBlockBase *Block = this; 137 while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 138 Block = Region->getExit(); 139 return cast<VPBasicBlock>(Block); 140 } 141 142 VPBlockBase *VPBlockBase::getEnclosingBlockWithSuccessors() { 143 if (!Successors.empty() || !Parent) 144 return this; 145 assert(Parent->getExit() == this && 146 "Block w/o successors not the exit of its parent."); 147 return Parent->getEnclosingBlockWithSuccessors(); 148 } 149 150 VPBlockBase *VPBlockBase::getEnclosingBlockWithPredecessors() { 151 if (!Predecessors.empty() || !Parent) 152 return this; 153 assert(Parent->getEntry() == this && 154 "Block w/o predecessors not the entry of its parent."); 155 return Parent->getEnclosingBlockWithPredecessors(); 156 } 157 158 void VPBlockBase::deleteCFG(VPBlockBase *Entry) { 159 SmallVector<VPBlockBase *, 8> Blocks; 160 for (VPBlockBase *Block : depth_first(Entry)) 161 Blocks.push_back(Block); 162 163 for (VPBlockBase *Block : Blocks) 164 delete Block; 165 } 166 167 BasicBlock * 168 VPBasicBlock::createEmptyBasicBlock(VPTransformState::CFGState &CFG) { 169 // BB stands for IR BasicBlocks. VPBB stands for VPlan VPBasicBlocks. 170 // Pred stands for Predessor. Prev stands for Previous - last visited/created. 171 BasicBlock *PrevBB = CFG.PrevBB; 172 BasicBlock *NewBB = BasicBlock::Create(PrevBB->getContext(), getName(), 173 PrevBB->getParent(), CFG.LastBB); 174 LLVM_DEBUG(dbgs() << "LV: created " << NewBB->getName() << '\n'); 175 176 // Hook up the new basic block to its predecessors. 177 for (VPBlockBase *PredVPBlock : getHierarchicalPredecessors()) { 178 VPBasicBlock *PredVPBB = PredVPBlock->getExitBasicBlock(); 179 auto &PredVPSuccessors = PredVPBB->getSuccessors(); 180 BasicBlock *PredBB = CFG.VPBB2IRBB[PredVPBB]; 181 182 // In outer loop vectorization scenario, the predecessor BBlock may not yet 183 // be visited(backedge). Mark the VPBasicBlock for fixup at the end of 184 // vectorization. We do not encounter this case in inner loop vectorization 185 // as we start out by building a loop skeleton with the vector loop header 186 // and latch blocks. As a result, we never enter this function for the 187 // header block in the non VPlan-native path. 188 if (!PredBB) { 189 assert(EnableVPlanNativePath && 190 "Unexpected null predecessor in non VPlan-native path"); 191 CFG.VPBBsToFix.push_back(PredVPBB); 192 continue; 193 } 194 195 assert(PredBB && "Predecessor basic-block not found building successor."); 196 auto *PredBBTerminator = PredBB->getTerminator(); 197 LLVM_DEBUG(dbgs() << "LV: draw edge from" << PredBB->getName() << '\n'); 198 if (isa<UnreachableInst>(PredBBTerminator)) { 199 assert(PredVPSuccessors.size() == 1 && 200 "Predecessor ending w/o branch must have single successor."); 201 PredBBTerminator->eraseFromParent(); 202 BranchInst::Create(NewBB, PredBB); 203 } else { 204 assert(PredVPSuccessors.size() == 2 && 205 "Predecessor ending with branch must have two successors."); 206 unsigned idx = PredVPSuccessors.front() == this ? 0 : 1; 207 assert(!PredBBTerminator->getSuccessor(idx) && 208 "Trying to reset an existing successor block."); 209 PredBBTerminator->setSuccessor(idx, NewBB); 210 } 211 } 212 return NewBB; 213 } 214 215 void VPBasicBlock::execute(VPTransformState *State) { 216 bool Replica = State->Instance && 217 !(State->Instance->Part == 0 && State->Instance->Lane == 0); 218 VPBasicBlock *PrevVPBB = State->CFG.PrevVPBB; 219 VPBlockBase *SingleHPred = nullptr; 220 BasicBlock *NewBB = State->CFG.PrevBB; // Reuse it if possible. 221 222 // 1. Create an IR basic block, or reuse the last one if possible. 223 // The last IR basic block is reused, as an optimization, in three cases: 224 // A. the first VPBB reuses the loop header BB - when PrevVPBB is null; 225 // B. when the current VPBB has a single (hierarchical) predecessor which 226 // is PrevVPBB and the latter has a single (hierarchical) successor; and 227 // C. when the current VPBB is an entry of a region replica - where PrevVPBB 228 // is the exit of this region from a previous instance, or the predecessor 229 // of this region. 230 if (PrevVPBB && /* A */ 231 !((SingleHPred = getSingleHierarchicalPredecessor()) && 232 SingleHPred->getExitBasicBlock() == PrevVPBB && 233 PrevVPBB->getSingleHierarchicalSuccessor()) && /* B */ 234 !(Replica && getPredecessors().empty())) { /* C */ 235 NewBB = createEmptyBasicBlock(State->CFG); 236 State->Builder.SetInsertPoint(NewBB); 237 // Temporarily terminate with unreachable until CFG is rewired. 238 UnreachableInst *Terminator = State->Builder.CreateUnreachable(); 239 State->Builder.SetInsertPoint(Terminator); 240 // Register NewBB in its loop. In innermost loops its the same for all BB's. 241 Loop *L = State->LI->getLoopFor(State->CFG.LastBB); 242 L->addBasicBlockToLoop(NewBB, *State->LI); 243 State->CFG.PrevBB = NewBB; 244 } 245 246 // 2. Fill the IR basic block with IR instructions. 247 LLVM_DEBUG(dbgs() << "LV: vectorizing VPBB:" << getName() 248 << " in BB:" << NewBB->getName() << '\n'); 249 250 State->CFG.VPBB2IRBB[this] = NewBB; 251 State->CFG.PrevVPBB = this; 252 253 for (VPRecipeBase &Recipe : Recipes) 254 Recipe.execute(*State); 255 256 VPValue *CBV; 257 if (EnableVPlanNativePath && (CBV = getCondBit())) { 258 Value *IRCBV = CBV->getUnderlyingValue(); 259 assert(IRCBV && "Unexpected null underlying value for condition bit"); 260 261 // Condition bit value in a VPBasicBlock is used as the branch selector. In 262 // the VPlan-native path case, since all branches are uniform we generate a 263 // branch instruction using the condition value from vector lane 0 and dummy 264 // successors. The successors are fixed later when the successor blocks are 265 // visited. 266 Value *NewCond = State->Callback.getOrCreateVectorValues(IRCBV, 0); 267 NewCond = State->Builder.CreateExtractElement(NewCond, 268 State->Builder.getInt32(0)); 269 270 // Replace the temporary unreachable terminator with the new conditional 271 // branch. 272 auto *CurrentTerminator = NewBB->getTerminator(); 273 assert(isa<UnreachableInst>(CurrentTerminator) && 274 "Expected to replace unreachable terminator with conditional " 275 "branch."); 276 auto *CondBr = BranchInst::Create(NewBB, nullptr, NewCond); 277 CondBr->setSuccessor(0, nullptr); 278 ReplaceInstWithInst(CurrentTerminator, CondBr); 279 } 280 281 LLVM_DEBUG(dbgs() << "LV: filled BB:" << *NewBB); 282 } 283 284 void VPRegionBlock::execute(VPTransformState *State) { 285 ReversePostOrderTraversal<VPBlockBase *> RPOT(Entry); 286 287 if (!isReplicator()) { 288 // Visit the VPBlocks connected to "this", starting from it. 289 for (VPBlockBase *Block : RPOT) { 290 if (EnableVPlanNativePath) { 291 // The inner loop vectorization path does not represent loop preheader 292 // and exit blocks as part of the VPlan. In the VPlan-native path, skip 293 // vectorizing loop preheader block. In future, we may replace this 294 // check with the check for loop preheader. 295 if (Block->getNumPredecessors() == 0) 296 continue; 297 298 // Skip vectorizing loop exit block. In future, we may replace this 299 // check with the check for loop exit. 300 if (Block->getNumSuccessors() == 0) 301 continue; 302 } 303 304 LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n'); 305 Block->execute(State); 306 } 307 return; 308 } 309 310 assert(!State->Instance && "Replicating a Region with non-null instance."); 311 312 // Enter replicating mode. 313 State->Instance = {0, 0}; 314 315 for (unsigned Part = 0, UF = State->UF; Part < UF; ++Part) { 316 State->Instance->Part = Part; 317 assert(!State->VF.isScalable() && "VF is assumed to be non scalable."); 318 for (unsigned Lane = 0, VF = State->VF.getKnownMinValue(); Lane < VF; 319 ++Lane) { 320 State->Instance->Lane = Lane; 321 // Visit the VPBlocks connected to \p this, starting from it. 322 for (VPBlockBase *Block : RPOT) { 323 LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n'); 324 Block->execute(State); 325 } 326 } 327 } 328 329 // Exit replicating mode. 330 State->Instance.reset(); 331 } 332 333 void VPRecipeBase::insertBefore(VPRecipeBase *InsertPos) { 334 assert(!Parent && "Recipe already in some VPBasicBlock"); 335 assert(InsertPos->getParent() && 336 "Insertion position not in any VPBasicBlock"); 337 Parent = InsertPos->getParent(); 338 Parent->getRecipeList().insert(InsertPos->getIterator(), this); 339 } 340 341 void VPRecipeBase::insertAfter(VPRecipeBase *InsertPos) { 342 assert(!Parent && "Recipe already in some VPBasicBlock"); 343 assert(InsertPos->getParent() && 344 "Insertion position not in any VPBasicBlock"); 345 Parent = InsertPos->getParent(); 346 Parent->getRecipeList().insertAfter(InsertPos->getIterator(), this); 347 } 348 349 void VPRecipeBase::removeFromParent() { 350 assert(getParent() && "Recipe not in any VPBasicBlock"); 351 getParent()->getRecipeList().remove(getIterator()); 352 Parent = nullptr; 353 } 354 355 iplist<VPRecipeBase>::iterator VPRecipeBase::eraseFromParent() { 356 assert(getParent() && "Recipe not in any VPBasicBlock"); 357 return getParent()->getRecipeList().erase(getIterator()); 358 } 359 360 void VPRecipeBase::moveAfter(VPRecipeBase *InsertPos) { 361 removeFromParent(); 362 insertAfter(InsertPos); 363 } 364 365 void VPInstruction::generateInstruction(VPTransformState &State, 366 unsigned Part) { 367 IRBuilder<> &Builder = State.Builder; 368 369 if (Instruction::isBinaryOp(getOpcode())) { 370 Value *A = State.get(getOperand(0), Part); 371 Value *B = State.get(getOperand(1), Part); 372 Value *V = Builder.CreateBinOp((Instruction::BinaryOps)getOpcode(), A, B); 373 State.set(this, V, Part); 374 return; 375 } 376 377 switch (getOpcode()) { 378 case VPInstruction::Not: { 379 Value *A = State.get(getOperand(0), Part); 380 Value *V = Builder.CreateNot(A); 381 State.set(this, V, Part); 382 break; 383 } 384 case VPInstruction::ICmpULE: { 385 Value *IV = State.get(getOperand(0), Part); 386 Value *TC = State.get(getOperand(1), Part); 387 Value *V = Builder.CreateICmpULE(IV, TC); 388 State.set(this, V, Part); 389 break; 390 } 391 case Instruction::Select: { 392 Value *Cond = State.get(getOperand(0), Part); 393 Value *Op1 = State.get(getOperand(1), Part); 394 Value *Op2 = State.get(getOperand(2), Part); 395 Value *V = Builder.CreateSelect(Cond, Op1, Op2); 396 State.set(this, V, Part); 397 break; 398 } 399 case VPInstruction::ActiveLaneMask: { 400 // Get first lane of vector induction variable. 401 Value *VIVElem0 = State.get(getOperand(0), {Part, 0}); 402 // Get the original loop tripcount. 403 Value *ScalarTC = State.TripCount; 404 405 auto *Int1Ty = Type::getInt1Ty(Builder.getContext()); 406 auto *PredTy = FixedVectorType::get(Int1Ty, State.VF.getKnownMinValue()); 407 Instruction *Call = Builder.CreateIntrinsic( 408 Intrinsic::get_active_lane_mask, {PredTy, ScalarTC->getType()}, 409 {VIVElem0, ScalarTC}, nullptr, "active.lane.mask"); 410 State.set(this, Call, Part); 411 break; 412 } 413 default: 414 llvm_unreachable("Unsupported opcode for instruction"); 415 } 416 } 417 418 void VPInstruction::execute(VPTransformState &State) { 419 assert(!State.Instance && "VPInstruction executing an Instance"); 420 for (unsigned Part = 0; Part < State.UF; ++Part) 421 generateInstruction(State, Part); 422 } 423 424 void VPInstruction::print(raw_ostream &O, const Twine &Indent, 425 VPSlotTracker &SlotTracker) const { 426 O << "\"EMIT "; 427 print(O, SlotTracker); 428 } 429 430 void VPInstruction::print(raw_ostream &O) const { 431 VPSlotTracker SlotTracker(getParent()->getPlan()); 432 print(O, SlotTracker); 433 } 434 435 void VPInstruction::print(raw_ostream &O, VPSlotTracker &SlotTracker) const { 436 if (hasResult()) { 437 printAsOperand(O, SlotTracker); 438 O << " = "; 439 } 440 441 switch (getOpcode()) { 442 case VPInstruction::Not: 443 O << "not"; 444 break; 445 case VPInstruction::ICmpULE: 446 O << "icmp ule"; 447 break; 448 case VPInstruction::SLPLoad: 449 O << "combined load"; 450 break; 451 case VPInstruction::SLPStore: 452 O << "combined store"; 453 break; 454 case VPInstruction::ActiveLaneMask: 455 O << "active lane mask"; 456 break; 457 458 default: 459 O << Instruction::getOpcodeName(getOpcode()); 460 } 461 462 for (const VPValue *Operand : operands()) { 463 O << " "; 464 Operand->printAsOperand(O, SlotTracker); 465 } 466 } 467 468 /// Generate the code inside the body of the vectorized loop. Assumes a single 469 /// LoopVectorBody basic-block was created for this. Introduce additional 470 /// basic-blocks as needed, and fill them all. 471 void VPlan::execute(VPTransformState *State) { 472 // -1. Check if the backedge taken count is needed, and if so build it. 473 if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) { 474 Value *TC = State->TripCount; 475 IRBuilder<> Builder(State->CFG.PrevBB->getTerminator()); 476 auto *TCMO = Builder.CreateSub(TC, ConstantInt::get(TC->getType(), 1), 477 "trip.count.minus.1"); 478 auto VF = State->VF; 479 Value *VTCMO = 480 VF == 1 ? TCMO : Builder.CreateVectorSplat(VF, TCMO, "broadcast"); 481 for (unsigned Part = 0, UF = State->UF; Part < UF; ++Part) 482 State->set(BackedgeTakenCount, VTCMO, Part); 483 } 484 485 // 0. Set the reverse mapping from VPValues to Values for code generation. 486 for (auto &Entry : Value2VPValue) 487 State->VPValue2Value[Entry.second] = Entry.first; 488 489 BasicBlock *VectorPreHeaderBB = State->CFG.PrevBB; 490 BasicBlock *VectorHeaderBB = VectorPreHeaderBB->getSingleSuccessor(); 491 assert(VectorHeaderBB && "Loop preheader does not have a single successor."); 492 493 // 1. Make room to generate basic-blocks inside loop body if needed. 494 BasicBlock *VectorLatchBB = VectorHeaderBB->splitBasicBlock( 495 VectorHeaderBB->getFirstInsertionPt(), "vector.body.latch"); 496 Loop *L = State->LI->getLoopFor(VectorHeaderBB); 497 L->addBasicBlockToLoop(VectorLatchBB, *State->LI); 498 // Remove the edge between Header and Latch to allow other connections. 499 // Temporarily terminate with unreachable until CFG is rewired. 500 // Note: this asserts the generated code's assumption that 501 // getFirstInsertionPt() can be dereferenced into an Instruction. 502 VectorHeaderBB->getTerminator()->eraseFromParent(); 503 State->Builder.SetInsertPoint(VectorHeaderBB); 504 UnreachableInst *Terminator = State->Builder.CreateUnreachable(); 505 State->Builder.SetInsertPoint(Terminator); 506 507 // 2. Generate code in loop body. 508 State->CFG.PrevVPBB = nullptr; 509 State->CFG.PrevBB = VectorHeaderBB; 510 State->CFG.LastBB = VectorLatchBB; 511 512 for (VPBlockBase *Block : depth_first(Entry)) 513 Block->execute(State); 514 515 // Setup branch terminator successors for VPBBs in VPBBsToFix based on 516 // VPBB's successors. 517 for (auto VPBB : State->CFG.VPBBsToFix) { 518 assert(EnableVPlanNativePath && 519 "Unexpected VPBBsToFix in non VPlan-native path"); 520 BasicBlock *BB = State->CFG.VPBB2IRBB[VPBB]; 521 assert(BB && "Unexpected null basic block for VPBB"); 522 523 unsigned Idx = 0; 524 auto *BBTerminator = BB->getTerminator(); 525 526 for (VPBlockBase *SuccVPBlock : VPBB->getHierarchicalSuccessors()) { 527 VPBasicBlock *SuccVPBB = SuccVPBlock->getEntryBasicBlock(); 528 BBTerminator->setSuccessor(Idx, State->CFG.VPBB2IRBB[SuccVPBB]); 529 ++Idx; 530 } 531 } 532 533 // 3. Merge the temporary latch created with the last basic-block filled. 534 BasicBlock *LastBB = State->CFG.PrevBB; 535 // Connect LastBB to VectorLatchBB to facilitate their merge. 536 assert((EnableVPlanNativePath || 537 isa<UnreachableInst>(LastBB->getTerminator())) && 538 "Expected InnerLoop VPlan CFG to terminate with unreachable"); 539 assert((!EnableVPlanNativePath || isa<BranchInst>(LastBB->getTerminator())) && 540 "Expected VPlan CFG to terminate with branch in NativePath"); 541 LastBB->getTerminator()->eraseFromParent(); 542 BranchInst::Create(VectorLatchBB, LastBB); 543 544 // Merge LastBB with Latch. 545 bool Merged = MergeBlockIntoPredecessor(VectorLatchBB, nullptr, State->LI); 546 (void)Merged; 547 assert(Merged && "Could not merge last basic block with latch."); 548 VectorLatchBB = LastBB; 549 550 // We do not attempt to preserve DT for outer loop vectorization currently. 551 if (!EnableVPlanNativePath) 552 updateDominatorTree(State->DT, VectorPreHeaderBB, VectorLatchBB, 553 L->getExitBlock()); 554 } 555 556 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 557 LLVM_DUMP_METHOD 558 void VPlan::dump() const { dbgs() << *this << '\n'; } 559 #endif 560 561 void VPlan::updateDominatorTree(DominatorTree *DT, BasicBlock *LoopPreHeaderBB, 562 BasicBlock *LoopLatchBB, 563 BasicBlock *LoopExitBB) { 564 BasicBlock *LoopHeaderBB = LoopPreHeaderBB->getSingleSuccessor(); 565 assert(LoopHeaderBB && "Loop preheader does not have a single successor."); 566 // The vector body may be more than a single basic-block by this point. 567 // Update the dominator tree information inside the vector body by propagating 568 // it from header to latch, expecting only triangular control-flow, if any. 569 BasicBlock *PostDomSucc = nullptr; 570 for (auto *BB = LoopHeaderBB; BB != LoopLatchBB; BB = PostDomSucc) { 571 // Get the list of successors of this block. 572 std::vector<BasicBlock *> Succs(succ_begin(BB), succ_end(BB)); 573 assert(Succs.size() <= 2 && 574 "Basic block in vector loop has more than 2 successors."); 575 PostDomSucc = Succs[0]; 576 if (Succs.size() == 1) { 577 assert(PostDomSucc->getSinglePredecessor() && 578 "PostDom successor has more than one predecessor."); 579 DT->addNewBlock(PostDomSucc, BB); 580 continue; 581 } 582 BasicBlock *InterimSucc = Succs[1]; 583 if (PostDomSucc->getSingleSuccessor() == InterimSucc) { 584 PostDomSucc = Succs[1]; 585 InterimSucc = Succs[0]; 586 } 587 assert(InterimSucc->getSingleSuccessor() == PostDomSucc && 588 "One successor of a basic block does not lead to the other."); 589 assert(InterimSucc->getSinglePredecessor() && 590 "Interim successor has more than one predecessor."); 591 assert(PostDomSucc->hasNPredecessors(2) && 592 "PostDom successor has more than two predecessors."); 593 DT->addNewBlock(InterimSucc, BB); 594 DT->addNewBlock(PostDomSucc, BB); 595 } 596 // Latch block is a new dominator for the loop exit. 597 DT->changeImmediateDominator(LoopExitBB, LoopLatchBB); 598 assert(DT->verify(DominatorTree::VerificationLevel::Fast)); 599 } 600 601 const Twine VPlanPrinter::getUID(const VPBlockBase *Block) { 602 return (isa<VPRegionBlock>(Block) ? "cluster_N" : "N") + 603 Twine(getOrCreateBID(Block)); 604 } 605 606 const Twine VPlanPrinter::getOrCreateName(const VPBlockBase *Block) { 607 const std::string &Name = Block->getName(); 608 if (!Name.empty()) 609 return Name; 610 return "VPB" + Twine(getOrCreateBID(Block)); 611 } 612 613 void VPlanPrinter::dump() { 614 Depth = 1; 615 bumpIndent(0); 616 OS << "digraph VPlan {\n"; 617 OS << "graph [labelloc=t, fontsize=30; label=\"Vectorization Plan"; 618 if (!Plan.getName().empty()) 619 OS << "\\n" << DOT::EscapeString(Plan.getName()); 620 if (Plan.BackedgeTakenCount) { 621 OS << ", where:\\n"; 622 Plan.BackedgeTakenCount->print(OS, SlotTracker); 623 OS << " := BackedgeTakenCount"; 624 } 625 OS << "\"]\n"; 626 OS << "node [shape=rect, fontname=Courier, fontsize=30]\n"; 627 OS << "edge [fontname=Courier, fontsize=30]\n"; 628 OS << "compound=true\n"; 629 630 for (const VPBlockBase *Block : depth_first(Plan.getEntry())) 631 dumpBlock(Block); 632 633 OS << "}\n"; 634 } 635 636 void VPlanPrinter::dumpBlock(const VPBlockBase *Block) { 637 if (const VPBasicBlock *BasicBlock = dyn_cast<VPBasicBlock>(Block)) 638 dumpBasicBlock(BasicBlock); 639 else if (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 640 dumpRegion(Region); 641 else 642 llvm_unreachable("Unsupported kind of VPBlock."); 643 } 644 645 void VPlanPrinter::drawEdge(const VPBlockBase *From, const VPBlockBase *To, 646 bool Hidden, const Twine &Label) { 647 // Due to "dot" we print an edge between two regions as an edge between the 648 // exit basic block and the entry basic of the respective regions. 649 const VPBlockBase *Tail = From->getExitBasicBlock(); 650 const VPBlockBase *Head = To->getEntryBasicBlock(); 651 OS << Indent << getUID(Tail) << " -> " << getUID(Head); 652 OS << " [ label=\"" << Label << '\"'; 653 if (Tail != From) 654 OS << " ltail=" << getUID(From); 655 if (Head != To) 656 OS << " lhead=" << getUID(To); 657 if (Hidden) 658 OS << "; splines=none"; 659 OS << "]\n"; 660 } 661 662 void VPlanPrinter::dumpEdges(const VPBlockBase *Block) { 663 auto &Successors = Block->getSuccessors(); 664 if (Successors.size() == 1) 665 drawEdge(Block, Successors.front(), false, ""); 666 else if (Successors.size() == 2) { 667 drawEdge(Block, Successors.front(), false, "T"); 668 drawEdge(Block, Successors.back(), false, "F"); 669 } else { 670 unsigned SuccessorNumber = 0; 671 for (auto *Successor : Successors) 672 drawEdge(Block, Successor, false, Twine(SuccessorNumber++)); 673 } 674 } 675 676 void VPlanPrinter::dumpBasicBlock(const VPBasicBlock *BasicBlock) { 677 OS << Indent << getUID(BasicBlock) << " [label =\n"; 678 bumpIndent(1); 679 OS << Indent << "\"" << DOT::EscapeString(BasicBlock->getName()) << ":\\n\""; 680 bumpIndent(1); 681 682 // Dump the block predicate. 683 const VPValue *Pred = BasicBlock->getPredicate(); 684 if (Pred) { 685 OS << " +\n" << Indent << " \"BlockPredicate: "; 686 if (const VPInstruction *PredI = dyn_cast<VPInstruction>(Pred)) { 687 PredI->printAsOperand(OS, SlotTracker); 688 OS << " (" << DOT::EscapeString(PredI->getParent()->getName()) 689 << ")\\l\""; 690 } else 691 Pred->printAsOperand(OS, SlotTracker); 692 } 693 694 for (const VPRecipeBase &Recipe : *BasicBlock) { 695 OS << " +\n" << Indent; 696 Recipe.print(OS, Indent, SlotTracker); 697 OS << "\\l\""; 698 } 699 700 // Dump the condition bit. 701 const VPValue *CBV = BasicBlock->getCondBit(); 702 if (CBV) { 703 OS << " +\n" << Indent << " \"CondBit: "; 704 if (const VPInstruction *CBI = dyn_cast<VPInstruction>(CBV)) { 705 CBI->printAsOperand(OS, SlotTracker); 706 OS << " (" << DOT::EscapeString(CBI->getParent()->getName()) << ")\\l\""; 707 } else { 708 CBV->printAsOperand(OS, SlotTracker); 709 OS << "\""; 710 } 711 } 712 713 bumpIndent(-2); 714 OS << "\n" << Indent << "]\n"; 715 dumpEdges(BasicBlock); 716 } 717 718 void VPlanPrinter::dumpRegion(const VPRegionBlock *Region) { 719 OS << Indent << "subgraph " << getUID(Region) << " {\n"; 720 bumpIndent(1); 721 OS << Indent << "fontname=Courier\n" 722 << Indent << "label=\"" 723 << DOT::EscapeString(Region->isReplicator() ? "<xVFxUF> " : "<x1> ") 724 << DOT::EscapeString(Region->getName()) << "\"\n"; 725 // Dump the blocks of the region. 726 assert(Region->getEntry() && "Region contains no inner blocks."); 727 for (const VPBlockBase *Block : depth_first(Region->getEntry())) 728 dumpBlock(Block); 729 bumpIndent(-1); 730 OS << Indent << "}\n"; 731 dumpEdges(Region); 732 } 733 734 void VPlanPrinter::printAsIngredient(raw_ostream &O, Value *V) { 735 std::string IngredientString; 736 raw_string_ostream RSO(IngredientString); 737 if (auto *Inst = dyn_cast<Instruction>(V)) { 738 if (!Inst->getType()->isVoidTy()) { 739 Inst->printAsOperand(RSO, false); 740 RSO << " = "; 741 } 742 RSO << Inst->getOpcodeName() << " "; 743 unsigned E = Inst->getNumOperands(); 744 if (E > 0) { 745 Inst->getOperand(0)->printAsOperand(RSO, false); 746 for (unsigned I = 1; I < E; ++I) 747 Inst->getOperand(I)->printAsOperand(RSO << ", ", false); 748 } 749 } else // !Inst 750 V->printAsOperand(RSO, false); 751 RSO.flush(); 752 O << DOT::EscapeString(IngredientString); 753 } 754 755 void VPWidenCallRecipe::print(raw_ostream &O, const Twine &Indent, 756 VPSlotTracker &SlotTracker) const { 757 O << "\"WIDEN-CALL " << VPlanIngredient(&Ingredient); 758 } 759 760 void VPWidenSelectRecipe::print(raw_ostream &O, const Twine &Indent, 761 VPSlotTracker &SlotTracker) const { 762 O << "\"WIDEN-SELECT" << VPlanIngredient(&Ingredient) 763 << (InvariantCond ? " (condition is loop invariant)" : ""); 764 } 765 766 void VPWidenRecipe::print(raw_ostream &O, const Twine &Indent, 767 VPSlotTracker &SlotTracker) const { 768 O << "\"WIDEN\\l\""; 769 O << "\" " << VPlanIngredient(&Ingredient); 770 } 771 772 void VPWidenIntOrFpInductionRecipe::print(raw_ostream &O, const Twine &Indent, 773 VPSlotTracker &SlotTracker) const { 774 O << "\"WIDEN-INDUCTION"; 775 if (Trunc) { 776 O << "\\l\""; 777 O << " +\n" << Indent << "\" " << VPlanIngredient(IV) << "\\l\""; 778 O << " +\n" << Indent << "\" " << VPlanIngredient(Trunc); 779 } else 780 O << " " << VPlanIngredient(IV); 781 } 782 783 void VPWidenGEPRecipe::print(raw_ostream &O, const Twine &Indent, 784 VPSlotTracker &SlotTracker) const { 785 O << "\"WIDEN-GEP "; 786 O << (IsPtrLoopInvariant ? "Inv" : "Var"); 787 size_t IndicesNumber = IsIndexLoopInvariant.size(); 788 for (size_t I = 0; I < IndicesNumber; ++I) 789 O << "[" << (IsIndexLoopInvariant[I] ? "Inv" : "Var") << "]"; 790 O << "\\l\""; 791 O << " +\n" << Indent << "\" " << VPlanIngredient(GEP); 792 } 793 794 void VPWidenPHIRecipe::print(raw_ostream &O, const Twine &Indent, 795 VPSlotTracker &SlotTracker) const { 796 O << "\"WIDEN-PHI " << VPlanIngredient(Phi); 797 } 798 799 void VPBlendRecipe::print(raw_ostream &O, const Twine &Indent, 800 VPSlotTracker &SlotTracker) const { 801 O << "\"BLEND "; 802 Phi->printAsOperand(O, false); 803 O << " ="; 804 if (getNumIncomingValues() == 1) { 805 // Not a User of any mask: not really blending, this is a 806 // single-predecessor phi. 807 O << " "; 808 getIncomingValue(0)->printAsOperand(O, SlotTracker); 809 } else { 810 for (unsigned I = 0, E = getNumIncomingValues(); I < E; ++I) { 811 O << " "; 812 getIncomingValue(I)->printAsOperand(O, SlotTracker); 813 O << "/"; 814 getMask(I)->printAsOperand(O, SlotTracker); 815 } 816 } 817 } 818 819 void VPReductionRecipe::print(raw_ostream &O, const Twine &Indent, 820 VPSlotTracker &SlotTracker) const { 821 O << "\"REDUCE of" << *I << " as "; 822 ChainOp->printAsOperand(O, SlotTracker); 823 O << " + reduce("; 824 VecOp->printAsOperand(O, SlotTracker); 825 O << ")"; 826 } 827 828 void VPReplicateRecipe::print(raw_ostream &O, const Twine &Indent, 829 VPSlotTracker &SlotTracker) const { 830 O << "\"" << (IsUniform ? "CLONE " : "REPLICATE ") 831 << VPlanIngredient(Ingredient); 832 if (AlsoPack) 833 O << " (S->V)"; 834 } 835 836 void VPPredInstPHIRecipe::print(raw_ostream &O, const Twine &Indent, 837 VPSlotTracker &SlotTracker) const { 838 O << "\"PHI-PREDICATED-INSTRUCTION " << VPlanIngredient(PredInst); 839 } 840 841 void VPWidenMemoryInstructionRecipe::print(raw_ostream &O, const Twine &Indent, 842 VPSlotTracker &SlotTracker) const { 843 O << "\"WIDEN " << VPlanIngredient(&Instr); 844 O << ", "; 845 getAddr()->printAsOperand(O, SlotTracker); 846 VPValue *Mask = getMask(); 847 if (Mask) { 848 O << ", "; 849 Mask->printAsOperand(O, SlotTracker); 850 } 851 } 852 853 void VPWidenCanonicalIVRecipe::execute(VPTransformState &State) { 854 Value *CanonicalIV = State.CanonicalIV; 855 Type *STy = CanonicalIV->getType(); 856 IRBuilder<> Builder(State.CFG.PrevBB->getTerminator()); 857 ElementCount VF = State.VF; 858 assert(!VF.isScalable() && "the code following assumes non scalables ECs"); 859 Value *VStart = VF.isScalar() 860 ? CanonicalIV 861 : Builder.CreateVectorSplat(VF.getKnownMinValue(), 862 CanonicalIV, "broadcast"); 863 for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part) { 864 SmallVector<Constant *, 8> Indices; 865 for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane) 866 Indices.push_back( 867 ConstantInt::get(STy, Part * VF.getKnownMinValue() + Lane)); 868 // If VF == 1, there is only one iteration in the loop above, thus the 869 // element pushed back into Indices is ConstantInt::get(STy, Part) 870 Constant *VStep = VF == 1 ? Indices.back() : ConstantVector::get(Indices); 871 // Add the consecutive indices to the vector value. 872 Value *CanonicalVectorIV = Builder.CreateAdd(VStart, VStep, "vec.iv"); 873 State.set(getVPValue(), CanonicalVectorIV, Part); 874 } 875 } 876 877 void VPWidenCanonicalIVRecipe::print(raw_ostream &O, const Twine &Indent, 878 VPSlotTracker &SlotTracker) const { 879 O << "\"EMIT "; 880 getVPValue()->printAsOperand(O, SlotTracker); 881 O << " = WIDEN-CANONICAL-INDUCTION"; 882 } 883 884 template void DomTreeBuilder::Calculate<VPDominatorTree>(VPDominatorTree &DT); 885 886 void VPValue::replaceAllUsesWith(VPValue *New) { 887 for (VPUser *User : users()) 888 for (unsigned I = 0, E = User->getNumOperands(); I < E; ++I) 889 if (User->getOperand(I) == this) 890 User->setOperand(I, New); 891 } 892 893 void VPValue::printAsOperand(raw_ostream &OS, VPSlotTracker &Tracker) const { 894 if (const Value *UV = getUnderlyingValue()) { 895 OS << "ir<"; 896 UV->printAsOperand(OS, false); 897 OS << ">"; 898 return; 899 } 900 901 unsigned Slot = Tracker.getSlot(this); 902 if (Slot == unsigned(-1)) 903 OS << "<badref>"; 904 else 905 OS << "vp<%" << Tracker.getSlot(this) << ">"; 906 } 907 908 void VPInterleavedAccessInfo::visitRegion(VPRegionBlock *Region, 909 Old2NewTy &Old2New, 910 InterleavedAccessInfo &IAI) { 911 ReversePostOrderTraversal<VPBlockBase *> RPOT(Region->getEntry()); 912 for (VPBlockBase *Base : RPOT) { 913 visitBlock(Base, Old2New, IAI); 914 } 915 } 916 917 void VPInterleavedAccessInfo::visitBlock(VPBlockBase *Block, Old2NewTy &Old2New, 918 InterleavedAccessInfo &IAI) { 919 if (VPBasicBlock *VPBB = dyn_cast<VPBasicBlock>(Block)) { 920 for (VPRecipeBase &VPI : *VPBB) { 921 assert(isa<VPInstruction>(&VPI) && "Can only handle VPInstructions"); 922 auto *VPInst = cast<VPInstruction>(&VPI); 923 auto *Inst = cast<Instruction>(VPInst->getUnderlyingValue()); 924 auto *IG = IAI.getInterleaveGroup(Inst); 925 if (!IG) 926 continue; 927 928 auto NewIGIter = Old2New.find(IG); 929 if (NewIGIter == Old2New.end()) 930 Old2New[IG] = new InterleaveGroup<VPInstruction>( 931 IG->getFactor(), IG->isReverse(), IG->getAlign()); 932 933 if (Inst == IG->getInsertPos()) 934 Old2New[IG]->setInsertPos(VPInst); 935 936 InterleaveGroupMap[VPInst] = Old2New[IG]; 937 InterleaveGroupMap[VPInst]->insertMember( 938 VPInst, IG->getIndex(Inst), 939 Align(IG->isReverse() ? (-1) * int(IG->getFactor()) 940 : IG->getFactor())); 941 } 942 } else if (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 943 visitRegion(Region, Old2New, IAI); 944 else 945 llvm_unreachable("Unsupported kind of VPBlock."); 946 } 947 948 VPInterleavedAccessInfo::VPInterleavedAccessInfo(VPlan &Plan, 949 InterleavedAccessInfo &IAI) { 950 Old2NewTy Old2New; 951 visitRegion(cast<VPRegionBlock>(Plan.getEntry()), Old2New, IAI); 952 } 953 954 void VPSlotTracker::assignSlot(const VPValue *V) { 955 assert(Slots.find(V) == Slots.end() && "VPValue already has a slot!"); 956 const Value *UV = V->getUnderlyingValue(); 957 if (UV) 958 return; 959 const auto *VPI = dyn_cast<VPInstruction>(V); 960 if (VPI && !VPI->hasResult()) 961 return; 962 963 Slots[V] = NextSlot++; 964 } 965 966 void VPSlotTracker::assignSlots(const VPBlockBase *VPBB) { 967 if (auto *Region = dyn_cast<VPRegionBlock>(VPBB)) 968 assignSlots(Region); 969 else 970 assignSlots(cast<VPBasicBlock>(VPBB)); 971 } 972 973 void VPSlotTracker::assignSlots(const VPRegionBlock *Region) { 974 ReversePostOrderTraversal<const VPBlockBase *> RPOT(Region->getEntry()); 975 for (const VPBlockBase *Block : RPOT) 976 assignSlots(Block); 977 } 978 979 void VPSlotTracker::assignSlots(const VPBasicBlock *VPBB) { 980 for (const VPRecipeBase &Recipe : *VPBB) { 981 if (const auto *VPI = dyn_cast<VPInstruction>(&Recipe)) 982 assignSlot(VPI); 983 else if (const auto *VPIV = dyn_cast<VPWidenCanonicalIVRecipe>(&Recipe)) 984 assignSlot(VPIV->getVPValue()); 985 } 986 } 987 988 void VPSlotTracker::assignSlots(const VPlan &Plan) { 989 990 for (const VPValue *V : Plan.VPExternalDefs) 991 assignSlot(V); 992 993 for (auto &E : Plan.Value2VPValue) 994 if (!isa<VPInstruction>(E.second)) 995 assignSlot(E.second); 996 997 for (const VPValue *V : Plan.VPCBVs) 998 assignSlot(V); 999 1000 if (Plan.BackedgeTakenCount) 1001 assignSlot(Plan.BackedgeTakenCount); 1002 1003 ReversePostOrderTraversal<const VPBlockBase *> RPOT(Plan.getEntry()); 1004 for (const VPBlockBase *Block : RPOT) 1005 assignSlots(Block); 1006 } 1007