xref: /llvm-project/llvm/lib/Transforms/Vectorize/VPlan.cpp (revision c1a9d14982f887355da1959eba3a47b952fc6e7a)
1 //===- VPlan.cpp - Vectorizer Plan ----------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This is the LLVM vectorization plan. It represents a candidate for
11 /// vectorization, allowing to plan and optimize how to vectorize a given loop
12 /// before generating LLVM-IR.
13 /// The vectorizer uses vectorization plans to estimate the costs of potential
14 /// candidates and if profitable to execute the desired plan, generating vector
15 /// LLVM-IR code.
16 ///
17 //===----------------------------------------------------------------------===//
18 
19 #include "VPlan.h"
20 #include "VPlanDominatorTree.h"
21 #include "llvm/ADT/DepthFirstIterator.h"
22 #include "llvm/ADT/PostOrderIterator.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/Twine.h"
26 #include "llvm/Analysis/IVDescriptors.h"
27 #include "llvm/Analysis/LoopInfo.h"
28 #include "llvm/IR/BasicBlock.h"
29 #include "llvm/IR/CFG.h"
30 #include "llvm/IR/IRBuilder.h"
31 #include "llvm/IR/Instruction.h"
32 #include "llvm/IR/Instructions.h"
33 #include "llvm/IR/Type.h"
34 #include "llvm/IR/Value.h"
35 #include "llvm/Support/Casting.h"
36 #include "llvm/Support/CommandLine.h"
37 #include "llvm/Support/Debug.h"
38 #include "llvm/Support/ErrorHandling.h"
39 #include "llvm/Support/GenericDomTreeConstruction.h"
40 #include "llvm/Support/GraphWriter.h"
41 #include "llvm/Support/raw_ostream.h"
42 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
43 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
44 #include <cassert>
45 #include <string>
46 #include <vector>
47 
48 using namespace llvm;
49 extern cl::opt<bool> EnableVPlanNativePath;
50 
51 #define DEBUG_TYPE "vplan"
52 
53 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
54 raw_ostream &llvm::operator<<(raw_ostream &OS, const VPValue &V) {
55   const VPInstruction *Instr = dyn_cast<VPInstruction>(&V);
56   VPSlotTracker SlotTracker(
57       (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr);
58   V.print(OS, SlotTracker);
59   return OS;
60 }
61 #endif
62 
63 Value *VPLane::getAsRuntimeExpr(IRBuilderBase &Builder,
64                                 const ElementCount &VF) const {
65   switch (LaneKind) {
66   case VPLane::Kind::ScalableLast:
67     // Lane = RuntimeVF - VF.getKnownMinValue() + Lane
68     return Builder.CreateSub(getRuntimeVF(Builder, Builder.getInt32Ty(), VF),
69                              Builder.getInt32(VF.getKnownMinValue() - Lane));
70   case VPLane::Kind::First:
71     return Builder.getInt32(Lane);
72   }
73   llvm_unreachable("Unknown lane kind");
74 }
75 
76 VPValue::VPValue(const unsigned char SC, Value *UV, VPDef *Def)
77     : SubclassID(SC), UnderlyingVal(UV), Def(Def) {
78   if (Def)
79     Def->addDefinedValue(this);
80 }
81 
82 VPValue::~VPValue() {
83   assert(Users.empty() && "trying to delete a VPValue with remaining users");
84   if (Def)
85     Def->removeDefinedValue(this);
86 }
87 
88 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
89 void VPValue::print(raw_ostream &OS, VPSlotTracker &SlotTracker) const {
90   if (const VPRecipeBase *R = dyn_cast_or_null<VPRecipeBase>(Def))
91     R->print(OS, "", SlotTracker);
92   else
93     printAsOperand(OS, SlotTracker);
94 }
95 
96 void VPValue::dump() const {
97   const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this->Def);
98   VPSlotTracker SlotTracker(
99       (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr);
100   print(dbgs(), SlotTracker);
101   dbgs() << "\n";
102 }
103 
104 void VPDef::dump() const {
105   const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this);
106   VPSlotTracker SlotTracker(
107       (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr);
108   print(dbgs(), "", SlotTracker);
109   dbgs() << "\n";
110 }
111 #endif
112 
113 // Get the top-most entry block of \p Start. This is the entry block of the
114 // containing VPlan. This function is templated to support both const and non-const blocks
115 template <typename T> static T *getPlanEntry(T *Start) {
116   T *Next = Start;
117   T *Current = Start;
118   while ((Next = Next->getParent()))
119     Current = Next;
120 
121   SmallSetVector<T *, 8> WorkList;
122   WorkList.insert(Current);
123 
124   for (unsigned i = 0; i < WorkList.size(); i++) {
125     T *Current = WorkList[i];
126     if (Current->getNumPredecessors() == 0)
127       return Current;
128     auto &Predecessors = Current->getPredecessors();
129     WorkList.insert(Predecessors.begin(), Predecessors.end());
130   }
131 
132   llvm_unreachable("VPlan without any entry node without predecessors");
133 }
134 
135 VPlan *VPBlockBase::getPlan() { return getPlanEntry(this)->Plan; }
136 
137 const VPlan *VPBlockBase::getPlan() const { return getPlanEntry(this)->Plan; }
138 
139 /// \return the VPBasicBlock that is the entry of Block, possibly indirectly.
140 const VPBasicBlock *VPBlockBase::getEntryBasicBlock() const {
141   const VPBlockBase *Block = this;
142   while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
143     Block = Region->getEntry();
144   return cast<VPBasicBlock>(Block);
145 }
146 
147 VPBasicBlock *VPBlockBase::getEntryBasicBlock() {
148   VPBlockBase *Block = this;
149   while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
150     Block = Region->getEntry();
151   return cast<VPBasicBlock>(Block);
152 }
153 
154 void VPBlockBase::setPlan(VPlan *ParentPlan) {
155   assert(ParentPlan->getEntry() == this &&
156          "Can only set plan on its entry block.");
157   Plan = ParentPlan;
158 }
159 
160 /// \return the VPBasicBlock that is the exit of Block, possibly indirectly.
161 const VPBasicBlock *VPBlockBase::getExitBasicBlock() const {
162   const VPBlockBase *Block = this;
163   while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
164     Block = Region->getExit();
165   return cast<VPBasicBlock>(Block);
166 }
167 
168 VPBasicBlock *VPBlockBase::getExitBasicBlock() {
169   VPBlockBase *Block = this;
170   while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
171     Block = Region->getExit();
172   return cast<VPBasicBlock>(Block);
173 }
174 
175 VPBlockBase *VPBlockBase::getEnclosingBlockWithSuccessors() {
176   if (!Successors.empty() || !Parent)
177     return this;
178   assert(Parent->getExit() == this &&
179          "Block w/o successors not the exit of its parent.");
180   return Parent->getEnclosingBlockWithSuccessors();
181 }
182 
183 VPBlockBase *VPBlockBase::getEnclosingBlockWithPredecessors() {
184   if (!Predecessors.empty() || !Parent)
185     return this;
186   assert(Parent->getEntry() == this &&
187          "Block w/o predecessors not the entry of its parent.");
188   return Parent->getEnclosingBlockWithPredecessors();
189 }
190 
191 VPValue *VPBlockBase::getCondBit() {
192   return CondBitUser.getSingleOperandOrNull();
193 }
194 
195 const VPValue *VPBlockBase::getCondBit() const {
196   return CondBitUser.getSingleOperandOrNull();
197 }
198 
199 void VPBlockBase::setCondBit(VPValue *CV) { CondBitUser.resetSingleOpUser(CV); }
200 
201 VPValue *VPBlockBase::getPredicate() {
202   return PredicateUser.getSingleOperandOrNull();
203 }
204 
205 const VPValue *VPBlockBase::getPredicate() const {
206   return PredicateUser.getSingleOperandOrNull();
207 }
208 
209 void VPBlockBase::setPredicate(VPValue *CV) {
210   PredicateUser.resetSingleOpUser(CV);
211 }
212 
213 void VPBlockBase::deleteCFG(VPBlockBase *Entry) {
214   SmallVector<VPBlockBase *, 8> Blocks(depth_first(Entry));
215 
216   for (VPBlockBase *Block : Blocks)
217     delete Block;
218 }
219 
220 VPBasicBlock::iterator VPBasicBlock::getFirstNonPhi() {
221   iterator It = begin();
222   while (It != end() && It->isPhi())
223     It++;
224   return It;
225 }
226 
227 Value *VPTransformState::get(VPValue *Def, const VPIteration &Instance) {
228   if (!Def->getDef())
229     return Def->getLiveInIRValue();
230 
231   if (hasScalarValue(Def, Instance)) {
232     return Data
233         .PerPartScalars[Def][Instance.Part][Instance.Lane.mapToCacheIndex(VF)];
234   }
235 
236   assert(hasVectorValue(Def, Instance.Part));
237   auto *VecPart = Data.PerPartOutput[Def][Instance.Part];
238   if (!VecPart->getType()->isVectorTy()) {
239     assert(Instance.Lane.isFirstLane() && "cannot get lane > 0 for scalar");
240     return VecPart;
241   }
242   // TODO: Cache created scalar values.
243   Value *Lane = Instance.Lane.getAsRuntimeExpr(Builder, VF);
244   auto *Extract = Builder.CreateExtractElement(VecPart, Lane);
245   // set(Def, Extract, Instance);
246   return Extract;
247 }
248 BasicBlock *VPTransformState::CFGState::getPreheaderBBFor(VPRecipeBase *R) {
249   VPRegionBlock *LoopRegion = R->getParent()->getEnclosingLoopRegion();
250   return VPBB2IRBB[LoopRegion->getPreheaderVPBB()];
251 }
252 
253 BasicBlock *
254 VPBasicBlock::createEmptyBasicBlock(VPTransformState::CFGState &CFG) {
255   // BB stands for IR BasicBlocks. VPBB stands for VPlan VPBasicBlocks.
256   // Pred stands for Predessor. Prev stands for Previous - last visited/created.
257   BasicBlock *PrevBB = CFG.PrevBB;
258   BasicBlock *NewBB = BasicBlock::Create(PrevBB->getContext(), getName(),
259                                          PrevBB->getParent(), CFG.ExitBB);
260   LLVM_DEBUG(dbgs() << "LV: created " << NewBB->getName() << '\n');
261 
262   // Hook up the new basic block to its predecessors.
263   for (VPBlockBase *PredVPBlock : getHierarchicalPredecessors()) {
264     VPBasicBlock *PredVPBB = PredVPBlock->getExitBasicBlock();
265     auto &PredVPSuccessors = PredVPBB->getSuccessors();
266     BasicBlock *PredBB = CFG.VPBB2IRBB[PredVPBB];
267 
268     // In outer loop vectorization scenario, the predecessor BBlock may not yet
269     // be visited(backedge). Mark the VPBasicBlock for fixup at the end of
270     // vectorization. We do not encounter this case in inner loop vectorization
271     // as we start out by building a loop skeleton with the vector loop header
272     // and latch blocks. As a result, we never enter this function for the
273     // header block in the non VPlan-native path.
274     if (!PredBB) {
275       assert(EnableVPlanNativePath &&
276              "Unexpected null predecessor in non VPlan-native path");
277       CFG.VPBBsToFix.push_back(PredVPBB);
278       continue;
279     }
280 
281     assert(PredBB && "Predecessor basic-block not found building successor.");
282     auto *PredBBTerminator = PredBB->getTerminator();
283     LLVM_DEBUG(dbgs() << "LV: draw edge from" << PredBB->getName() << '\n');
284 
285     auto *TermBr = dyn_cast<BranchInst>(PredBBTerminator);
286     if (isa<UnreachableInst>(PredBBTerminator)) {
287       assert(PredVPSuccessors.size() == 1 &&
288              "Predecessor ending w/o branch must have single successor.");
289       DebugLoc DL = PredBBTerminator->getDebugLoc();
290       PredBBTerminator->eraseFromParent();
291       auto *Br = BranchInst::Create(NewBB, PredBB);
292       Br->setDebugLoc(DL);
293     } else if (TermBr && !TermBr->isConditional()) {
294       TermBr->setSuccessor(0, NewBB);
295     } else if (PredVPSuccessors.size() == 2) {
296       unsigned idx = PredVPSuccessors.front() == this ? 0 : 1;
297       assert(!PredBBTerminator->getSuccessor(idx) &&
298              "Trying to reset an existing successor block.");
299       PredBBTerminator->setSuccessor(idx, NewBB);
300     } else {
301       // PredVPBB is the exit block of a loop region. Connect its successor
302       // outside the region.
303       auto *LoopRegion = cast<VPRegionBlock>(PredVPBB->getParent());
304       assert(!LoopRegion->isReplicator() &&
305              "predecessor must be in a loop region");
306       assert(PredVPSuccessors.empty() &&
307              LoopRegion->getExitBasicBlock() == PredVPBB &&
308              "PredVPBB must be the exit block of its parent region");
309       assert(this == LoopRegion->getSingleSuccessor() &&
310              "the current block must be the single successor of the region");
311       PredBBTerminator->setSuccessor(0, NewBB);
312       PredBBTerminator->setSuccessor(
313           1, CFG.VPBB2IRBB[LoopRegion->getEntryBasicBlock()]);
314     }
315   }
316   return NewBB;
317 }
318 
319 void VPBasicBlock::execute(VPTransformState *State) {
320   bool Replica = State->Instance && !State->Instance->isFirstIteration();
321   VPBasicBlock *PrevVPBB = State->CFG.PrevVPBB;
322   VPBlockBase *SingleHPred = nullptr;
323   BasicBlock *NewBB = State->CFG.PrevBB; // Reuse it if possible.
324 
325   auto IsLoopRegion = [](VPBlockBase *BB) {
326     auto *R = dyn_cast<VPRegionBlock>(BB);
327     return R && !R->isReplicator();
328   };
329 
330   // 1. Create an IR basic block, or reuse the last one or ExitBB if possible.
331   if (getPlan()->getVectorLoopRegion()->getSingleSuccessor() == this) {
332     // ExitBB can be re-used for the exit block of the Plan.
333     NewBB = State->CFG.ExitBB;
334     State->CFG.PrevBB = NewBB;
335   } else if (PrevVPBB && /* A */
336              !((SingleHPred = getSingleHierarchicalPredecessor()) &&
337                SingleHPred->getExitBasicBlock() == PrevVPBB &&
338                PrevVPBB->getSingleHierarchicalSuccessor() &&
339                (SingleHPred->getParent() == getEnclosingLoopRegion() &&
340                 !IsLoopRegion(SingleHPred))) &&         /* B */
341              !(Replica && getPredecessors().empty())) { /* C */
342     // The last IR basic block is reused, as an optimization, in three cases:
343     // A. the first VPBB reuses the loop pre-header BB - when PrevVPBB is null;
344     // B. when the current VPBB has a single (hierarchical) predecessor which
345     //    is PrevVPBB and the latter has a single (hierarchical) successor which
346     //    both are in the same non-replicator region; and
347     // C. when the current VPBB is an entry of a region replica - where PrevVPBB
348     //    is the exit of this region from a previous instance, or the
349     //    predecessor of this region.
350 
351     NewBB = createEmptyBasicBlock(State->CFG);
352     State->Builder.SetInsertPoint(NewBB);
353     // Temporarily terminate with unreachable until CFG is rewired.
354     UnreachableInst *Terminator = State->Builder.CreateUnreachable();
355     // Register NewBB in its loop. In innermost loops its the same for all
356     // BB's.
357     if (State->CurrentVectorLoop)
358       State->CurrentVectorLoop->addBasicBlockToLoop(NewBB, *State->LI);
359     State->Builder.SetInsertPoint(Terminator);
360     State->CFG.PrevBB = NewBB;
361   }
362 
363   // 2. Fill the IR basic block with IR instructions.
364   LLVM_DEBUG(dbgs() << "LV: vectorizing VPBB:" << getName()
365                     << " in BB:" << NewBB->getName() << '\n');
366 
367   State->CFG.VPBB2IRBB[this] = NewBB;
368   State->CFG.PrevVPBB = this;
369 
370   for (VPRecipeBase &Recipe : Recipes)
371     Recipe.execute(*State);
372 
373   VPValue *CBV;
374   if (EnableVPlanNativePath && (CBV = getCondBit())) {
375     assert(CBV->getUnderlyingValue() &&
376            "Unexpected null underlying value for condition bit");
377 
378     // Condition bit value in a VPBasicBlock is used as the branch selector. In
379     // the VPlan-native path case, since all branches are uniform we generate a
380     // branch instruction using the condition value from vector lane 0 and dummy
381     // successors. The successors are fixed later when the successor blocks are
382     // visited.
383     Value *NewCond = State->get(CBV, {0, 0});
384 
385     // Replace the temporary unreachable terminator with the new conditional
386     // branch.
387     auto *CurrentTerminator = NewBB->getTerminator();
388     assert(isa<UnreachableInst>(CurrentTerminator) &&
389            "Expected to replace unreachable terminator with conditional "
390            "branch.");
391     auto *CondBr = BranchInst::Create(NewBB, nullptr, NewCond);
392     CondBr->setSuccessor(0, nullptr);
393     ReplaceInstWithInst(CurrentTerminator, CondBr);
394   }
395 
396   LLVM_DEBUG(dbgs() << "LV: filled BB:" << *NewBB);
397 }
398 
399 void VPBasicBlock::dropAllReferences(VPValue *NewValue) {
400   for (VPRecipeBase &R : Recipes) {
401     for (auto *Def : R.definedValues())
402       Def->replaceAllUsesWith(NewValue);
403 
404     for (unsigned I = 0, E = R.getNumOperands(); I != E; I++)
405       R.setOperand(I, NewValue);
406   }
407 }
408 
409 VPBasicBlock *VPBasicBlock::splitAt(iterator SplitAt) {
410   assert((SplitAt == end() || SplitAt->getParent() == this) &&
411          "can only split at a position in the same block");
412 
413   SmallVector<VPBlockBase *, 2> Succs(successors());
414   // First, disconnect the current block from its successors.
415   for (VPBlockBase *Succ : Succs)
416     VPBlockUtils::disconnectBlocks(this, Succ);
417 
418   // Create new empty block after the block to split.
419   auto *SplitBlock = new VPBasicBlock(getName() + ".split");
420   VPBlockUtils::insertBlockAfter(SplitBlock, this);
421 
422   // Add successors for block to split to new block.
423   for (VPBlockBase *Succ : Succs)
424     VPBlockUtils::connectBlocks(SplitBlock, Succ);
425 
426   // Finally, move the recipes starting at SplitAt to new block.
427   for (VPRecipeBase &ToMove :
428        make_early_inc_range(make_range(SplitAt, this->end())))
429     ToMove.moveBefore(*SplitBlock, SplitBlock->end());
430 
431   return SplitBlock;
432 }
433 
434 VPRegionBlock *VPBasicBlock::getEnclosingLoopRegion() {
435   VPRegionBlock *P = getParent();
436   if (P && P->isReplicator()) {
437     P = P->getParent();
438     assert(!cast<VPRegionBlock>(P)->isReplicator() &&
439            "unexpected nested replicate regions");
440   }
441   return P;
442 }
443 
444 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
445 void VPBlockBase::printSuccessors(raw_ostream &O, const Twine &Indent) const {
446   if (getSuccessors().empty()) {
447     O << Indent << "No successors\n";
448   } else {
449     O << Indent << "Successor(s): ";
450     ListSeparator LS;
451     for (auto *Succ : getSuccessors())
452       O << LS << Succ->getName();
453     O << '\n';
454   }
455 }
456 
457 void VPBasicBlock::print(raw_ostream &O, const Twine &Indent,
458                          VPSlotTracker &SlotTracker) const {
459   O << Indent << getName() << ":\n";
460   if (const VPValue *Pred = getPredicate()) {
461     O << Indent << "BlockPredicate:";
462     Pred->printAsOperand(O, SlotTracker);
463     if (const auto *PredInst = dyn_cast<VPInstruction>(Pred))
464       O << " (" << PredInst->getParent()->getName() << ")";
465     O << '\n';
466   }
467 
468   auto RecipeIndent = Indent + "  ";
469   for (const VPRecipeBase &Recipe : *this) {
470     Recipe.print(O, RecipeIndent, SlotTracker);
471     O << '\n';
472   }
473 
474   printSuccessors(O, Indent);
475 
476   if (const VPValue *CBV = getCondBit()) {
477     O << Indent << "CondBit: ";
478     CBV->printAsOperand(O, SlotTracker);
479     if (const auto *CBI = dyn_cast<VPInstruction>(CBV))
480       O << " (" << CBI->getParent()->getName() << ")";
481     O << '\n';
482   }
483 }
484 #endif
485 
486 void VPRegionBlock::dropAllReferences(VPValue *NewValue) {
487   for (VPBlockBase *Block : depth_first(Entry))
488     // Drop all references in VPBasicBlocks and replace all uses with
489     // DummyValue.
490     Block->dropAllReferences(NewValue);
491 }
492 
493 void VPRegionBlock::execute(VPTransformState *State) {
494   ReversePostOrderTraversal<VPBlockBase *> RPOT(Entry);
495 
496   if (!isReplicator()) {
497     // Create and register the new vector loop.
498     Loop *PrevLoop = State->CurrentVectorLoop;
499     State->CurrentVectorLoop = State->LI->AllocateLoop();
500     BasicBlock *VectorPH = State->CFG.VPBB2IRBB[getPreheaderVPBB()];
501     Loop *ParentLoop = State->LI->getLoopFor(VectorPH);
502 
503     // Insert the new loop into the loop nest and register the new basic blocks
504     // before calling any utilities such as SCEV that require valid LoopInfo.
505     if (ParentLoop)
506       ParentLoop->addChildLoop(State->CurrentVectorLoop);
507     else
508       State->LI->addTopLevelLoop(State->CurrentVectorLoop);
509 
510     // Visit the VPBlocks connected to "this", starting from it.
511     for (VPBlockBase *Block : RPOT) {
512       LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n');
513       Block->execute(State);
514     }
515 
516     State->CurrentVectorLoop = PrevLoop;
517     return;
518   }
519 
520   assert(!State->Instance && "Replicating a Region with non-null instance.");
521 
522   // Enter replicating mode.
523   State->Instance = VPIteration(0, 0);
524 
525   for (unsigned Part = 0, UF = State->UF; Part < UF; ++Part) {
526     State->Instance->Part = Part;
527     assert(!State->VF.isScalable() && "VF is assumed to be non scalable.");
528     for (unsigned Lane = 0, VF = State->VF.getKnownMinValue(); Lane < VF;
529          ++Lane) {
530       State->Instance->Lane = VPLane(Lane, VPLane::Kind::First);
531       // Visit the VPBlocks connected to \p this, starting from it.
532       for (VPBlockBase *Block : RPOT) {
533         LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n');
534         Block->execute(State);
535       }
536     }
537   }
538 
539   // Exit replicating mode.
540   State->Instance.reset();
541 }
542 
543 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
544 void VPRegionBlock::print(raw_ostream &O, const Twine &Indent,
545                           VPSlotTracker &SlotTracker) const {
546   O << Indent << (isReplicator() ? "<xVFxUF> " : "<x1> ") << getName() << ": {";
547   auto NewIndent = Indent + "  ";
548   for (auto *BlockBase : depth_first(Entry)) {
549     O << '\n';
550     BlockBase->print(O, NewIndent, SlotTracker);
551   }
552   O << Indent << "}\n";
553 
554   printSuccessors(O, Indent);
555 }
556 #endif
557 
558 bool VPRecipeBase::mayWriteToMemory() const {
559   switch (getVPDefID()) {
560   case VPWidenMemoryInstructionSC: {
561     return cast<VPWidenMemoryInstructionRecipe>(this)->isStore();
562   }
563   case VPReplicateSC:
564   case VPWidenCallSC:
565     return cast<Instruction>(getVPSingleValue()->getUnderlyingValue())
566         ->mayWriteToMemory();
567   case VPBranchOnMaskSC:
568     return false;
569   case VPWidenIntOrFpInductionSC:
570   case VPWidenCanonicalIVSC:
571   case VPWidenPHISC:
572   case VPBlendSC:
573   case VPWidenSC:
574   case VPWidenGEPSC:
575   case VPReductionSC:
576   case VPWidenSelectSC: {
577     const Instruction *I =
578         dyn_cast_or_null<Instruction>(getVPSingleValue()->getUnderlyingValue());
579     (void)I;
580     assert((!I || !I->mayWriteToMemory()) &&
581            "underlying instruction may write to memory");
582     return false;
583   }
584   default:
585     return true;
586   }
587 }
588 
589 bool VPRecipeBase::mayReadFromMemory() const {
590   switch (getVPDefID()) {
591   case VPWidenMemoryInstructionSC: {
592     return !cast<VPWidenMemoryInstructionRecipe>(this)->isStore();
593   }
594   case VPReplicateSC:
595   case VPWidenCallSC:
596     return cast<Instruction>(getVPSingleValue()->getUnderlyingValue())
597         ->mayReadFromMemory();
598   case VPBranchOnMaskSC:
599     return false;
600   case VPWidenIntOrFpInductionSC:
601   case VPWidenCanonicalIVSC:
602   case VPWidenPHISC:
603   case VPBlendSC:
604   case VPWidenSC:
605   case VPWidenGEPSC:
606   case VPReductionSC:
607   case VPWidenSelectSC: {
608     const Instruction *I =
609         dyn_cast_or_null<Instruction>(getVPSingleValue()->getUnderlyingValue());
610     (void)I;
611     assert((!I || !I->mayReadFromMemory()) &&
612            "underlying instruction may read from memory");
613     return false;
614   }
615   default:
616     return true;
617   }
618 }
619 
620 bool VPRecipeBase::mayHaveSideEffects() const {
621   switch (getVPDefID()) {
622   case VPBranchOnMaskSC:
623     return false;
624   case VPWidenIntOrFpInductionSC:
625   case VPWidenPointerInductionSC:
626   case VPWidenCanonicalIVSC:
627   case VPWidenPHISC:
628   case VPBlendSC:
629   case VPWidenSC:
630   case VPWidenGEPSC:
631   case VPReductionSC:
632   case VPWidenSelectSC:
633   case VPScalarIVStepsSC: {
634     const Instruction *I =
635         dyn_cast_or_null<Instruction>(getVPSingleValue()->getUnderlyingValue());
636     (void)I;
637     assert((!I || !I->mayHaveSideEffects()) &&
638            "underlying instruction has side-effects");
639     return false;
640   }
641   case VPReplicateSC: {
642     auto *R = cast<VPReplicateRecipe>(this);
643     return R->getUnderlyingInstr()->mayHaveSideEffects();
644   }
645   default:
646     return true;
647   }
648 }
649 
650 void VPRecipeBase::insertBefore(VPRecipeBase *InsertPos) {
651   assert(!Parent && "Recipe already in some VPBasicBlock");
652   assert(InsertPos->getParent() &&
653          "Insertion position not in any VPBasicBlock");
654   Parent = InsertPos->getParent();
655   Parent->getRecipeList().insert(InsertPos->getIterator(), this);
656 }
657 
658 void VPRecipeBase::insertBefore(VPBasicBlock &BB,
659                                 iplist<VPRecipeBase>::iterator I) {
660   assert(!Parent && "Recipe already in some VPBasicBlock");
661   assert(I == BB.end() || I->getParent() == &BB);
662   Parent = &BB;
663   BB.getRecipeList().insert(I, this);
664 }
665 
666 void VPRecipeBase::insertAfter(VPRecipeBase *InsertPos) {
667   assert(!Parent && "Recipe already in some VPBasicBlock");
668   assert(InsertPos->getParent() &&
669          "Insertion position not in any VPBasicBlock");
670   Parent = InsertPos->getParent();
671   Parent->getRecipeList().insertAfter(InsertPos->getIterator(), this);
672 }
673 
674 void VPRecipeBase::removeFromParent() {
675   assert(getParent() && "Recipe not in any VPBasicBlock");
676   getParent()->getRecipeList().remove(getIterator());
677   Parent = nullptr;
678 }
679 
680 iplist<VPRecipeBase>::iterator VPRecipeBase::eraseFromParent() {
681   assert(getParent() && "Recipe not in any VPBasicBlock");
682   return getParent()->getRecipeList().erase(getIterator());
683 }
684 
685 void VPRecipeBase::moveAfter(VPRecipeBase *InsertPos) {
686   removeFromParent();
687   insertAfter(InsertPos);
688 }
689 
690 void VPRecipeBase::moveBefore(VPBasicBlock &BB,
691                               iplist<VPRecipeBase>::iterator I) {
692   removeFromParent();
693   insertBefore(BB, I);
694 }
695 
696 void VPInstruction::generateInstruction(VPTransformState &State,
697                                         unsigned Part) {
698   IRBuilderBase &Builder = State.Builder;
699   Builder.SetCurrentDebugLocation(DL);
700 
701   if (Instruction::isBinaryOp(getOpcode())) {
702     Value *A = State.get(getOperand(0), Part);
703     Value *B = State.get(getOperand(1), Part);
704     Value *V = Builder.CreateBinOp((Instruction::BinaryOps)getOpcode(), A, B);
705     State.set(this, V, Part);
706     return;
707   }
708 
709   switch (getOpcode()) {
710   case VPInstruction::Not: {
711     Value *A = State.get(getOperand(0), Part);
712     Value *V = Builder.CreateNot(A);
713     State.set(this, V, Part);
714     break;
715   }
716   case VPInstruction::ICmpULE: {
717     Value *IV = State.get(getOperand(0), Part);
718     Value *TC = State.get(getOperand(1), Part);
719     Value *V = Builder.CreateICmpULE(IV, TC);
720     State.set(this, V, Part);
721     break;
722   }
723   case Instruction::Select: {
724     Value *Cond = State.get(getOperand(0), Part);
725     Value *Op1 = State.get(getOperand(1), Part);
726     Value *Op2 = State.get(getOperand(2), Part);
727     Value *V = Builder.CreateSelect(Cond, Op1, Op2);
728     State.set(this, V, Part);
729     break;
730   }
731   case VPInstruction::ActiveLaneMask: {
732     // Get first lane of vector induction variable.
733     Value *VIVElem0 = State.get(getOperand(0), VPIteration(Part, 0));
734     // Get the original loop tripcount.
735     Value *ScalarTC = State.get(getOperand(1), Part);
736 
737     auto *Int1Ty = Type::getInt1Ty(Builder.getContext());
738     auto *PredTy = VectorType::get(Int1Ty, State.VF);
739     Instruction *Call = Builder.CreateIntrinsic(
740         Intrinsic::get_active_lane_mask, {PredTy, ScalarTC->getType()},
741         {VIVElem0, ScalarTC}, nullptr, "active.lane.mask");
742     State.set(this, Call, Part);
743     break;
744   }
745   case VPInstruction::FirstOrderRecurrenceSplice: {
746     // Generate code to combine the previous and current values in vector v3.
747     //
748     //   vector.ph:
749     //     v_init = vector(..., ..., ..., a[-1])
750     //     br vector.body
751     //
752     //   vector.body
753     //     i = phi [0, vector.ph], [i+4, vector.body]
754     //     v1 = phi [v_init, vector.ph], [v2, vector.body]
755     //     v2 = a[i, i+1, i+2, i+3];
756     //     v3 = vector(v1(3), v2(0, 1, 2))
757 
758     // For the first part, use the recurrence phi (v1), otherwise v2.
759     auto *V1 = State.get(getOperand(0), 0);
760     Value *PartMinus1 = Part == 0 ? V1 : State.get(getOperand(1), Part - 1);
761     if (!PartMinus1->getType()->isVectorTy()) {
762       State.set(this, PartMinus1, Part);
763     } else {
764       Value *V2 = State.get(getOperand(1), Part);
765       State.set(this, Builder.CreateVectorSplice(PartMinus1, V2, -1), Part);
766     }
767     break;
768   }
769 
770   case VPInstruction::CanonicalIVIncrement:
771   case VPInstruction::CanonicalIVIncrementNUW: {
772     Value *Next = nullptr;
773     if (Part == 0) {
774       bool IsNUW = getOpcode() == VPInstruction::CanonicalIVIncrementNUW;
775       auto *Phi = State.get(getOperand(0), 0);
776       // The loop step is equal to the vectorization factor (num of SIMD
777       // elements) times the unroll factor (num of SIMD instructions).
778       Value *Step =
779           createStepForVF(Builder, Phi->getType(), State.VF, State.UF);
780       Next = Builder.CreateAdd(Phi, Step, "index.next", IsNUW, false);
781     } else {
782       Next = State.get(this, 0);
783     }
784 
785     State.set(this, Next, Part);
786     break;
787   }
788   case VPInstruction::BranchOnCount: {
789     if (Part != 0)
790       break;
791     // First create the compare.
792     Value *IV = State.get(getOperand(0), Part);
793     Value *TC = State.get(getOperand(1), Part);
794     Value *Cond = Builder.CreateICmpEQ(IV, TC);
795 
796     // Now create the branch.
797     auto *Plan = getParent()->getPlan();
798     VPRegionBlock *TopRegion = Plan->getVectorLoopRegion();
799     VPBasicBlock *Header = TopRegion->getEntry()->getEntryBasicBlock();
800     if (Header->empty()) {
801       assert(EnableVPlanNativePath &&
802              "empty entry block only expected in VPlanNativePath");
803       Header = cast<VPBasicBlock>(Header->getSingleSuccessor());
804     }
805     // TODO: Once the exit block is modeled in VPlan, use it instead of going
806     // through State.CFG.ExitBB.
807     BasicBlock *Exit = State.CFG.ExitBB;
808 
809     Builder.CreateCondBr(Cond, Exit, State.CFG.VPBB2IRBB[Header]);
810     Builder.GetInsertBlock()->getTerminator()->eraseFromParent();
811     break;
812   }
813   default:
814     llvm_unreachable("Unsupported opcode for instruction");
815   }
816 }
817 
818 void VPInstruction::execute(VPTransformState &State) {
819   assert(!State.Instance && "VPInstruction executing an Instance");
820   IRBuilderBase::FastMathFlagGuard FMFGuard(State.Builder);
821   State.Builder.setFastMathFlags(FMF);
822   for (unsigned Part = 0; Part < State.UF; ++Part)
823     generateInstruction(State, Part);
824 }
825 
826 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
827 void VPInstruction::dump() const {
828   VPSlotTracker SlotTracker(getParent()->getPlan());
829   print(dbgs(), "", SlotTracker);
830 }
831 
832 void VPInstruction::print(raw_ostream &O, const Twine &Indent,
833                           VPSlotTracker &SlotTracker) const {
834   O << Indent << "EMIT ";
835 
836   if (hasResult()) {
837     printAsOperand(O, SlotTracker);
838     O << " = ";
839   }
840 
841   switch (getOpcode()) {
842   case VPInstruction::Not:
843     O << "not";
844     break;
845   case VPInstruction::ICmpULE:
846     O << "icmp ule";
847     break;
848   case VPInstruction::SLPLoad:
849     O << "combined load";
850     break;
851   case VPInstruction::SLPStore:
852     O << "combined store";
853     break;
854   case VPInstruction::ActiveLaneMask:
855     O << "active lane mask";
856     break;
857   case VPInstruction::FirstOrderRecurrenceSplice:
858     O << "first-order splice";
859     break;
860   case VPInstruction::CanonicalIVIncrement:
861     O << "VF * UF + ";
862     break;
863   case VPInstruction::CanonicalIVIncrementNUW:
864     O << "VF * UF +(nuw) ";
865     break;
866   case VPInstruction::BranchOnCount:
867     O << "branch-on-count ";
868     break;
869   default:
870     O << Instruction::getOpcodeName(getOpcode());
871   }
872 
873   O << FMF;
874 
875   for (const VPValue *Operand : operands()) {
876     O << " ";
877     Operand->printAsOperand(O, SlotTracker);
878   }
879 
880   if (DL) {
881     O << ", !dbg ";
882     DL.print(O);
883   }
884 }
885 #endif
886 
887 void VPInstruction::setFastMathFlags(FastMathFlags FMFNew) {
888   // Make sure the VPInstruction is a floating-point operation.
889   assert((Opcode == Instruction::FAdd || Opcode == Instruction::FMul ||
890           Opcode == Instruction::FNeg || Opcode == Instruction::FSub ||
891           Opcode == Instruction::FDiv || Opcode == Instruction::FRem ||
892           Opcode == Instruction::FCmp) &&
893          "this op can't take fast-math flags");
894   FMF = FMFNew;
895 }
896 
897 void VPlan::prepareToExecute(Value *TripCountV, Value *VectorTripCountV,
898                              Value *CanonicalIVStartValue,
899                              VPTransformState &State) {
900   // Check if the trip count is needed, and if so build it.
901   if (TripCount && TripCount->getNumUsers()) {
902     for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part)
903       State.set(TripCount, TripCountV, Part);
904   }
905 
906   // Check if the backedge taken count is needed, and if so build it.
907   if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) {
908     IRBuilder<> Builder(State.CFG.PrevBB->getTerminator());
909     auto *TCMO = Builder.CreateSub(TripCountV,
910                                    ConstantInt::get(TripCountV->getType(), 1),
911                                    "trip.count.minus.1");
912     auto VF = State.VF;
913     Value *VTCMO =
914         VF.isScalar() ? TCMO : Builder.CreateVectorSplat(VF, TCMO, "broadcast");
915     for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part)
916       State.set(BackedgeTakenCount, VTCMO, Part);
917   }
918 
919   for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part)
920     State.set(&VectorTripCount, VectorTripCountV, Part);
921 
922   // When vectorizing the epilogue loop, the canonical induction start value
923   // needs to be changed from zero to the value after the main vector loop.
924   if (CanonicalIVStartValue) {
925     VPValue *VPV = getOrAddExternalDef(CanonicalIVStartValue);
926     auto *IV = getCanonicalIV();
927     assert(all_of(IV->users(),
928                   [](const VPUser *U) {
929                     if (isa<VPScalarIVStepsRecipe>(U))
930                       return true;
931                     auto *VPI = cast<VPInstruction>(U);
932                     return VPI->getOpcode() ==
933                                VPInstruction::CanonicalIVIncrement ||
934                            VPI->getOpcode() ==
935                                VPInstruction::CanonicalIVIncrementNUW;
936                   }) &&
937            "the canonical IV should only be used by its increments or "
938            "ScalarIVSteps when "
939            "resetting the start value");
940     IV->setOperand(0, VPV);
941   }
942 }
943 
944 /// Generate the code inside the preheader and body of the vectorized loop.
945 /// Assumes a single pre-header basic-block was created for this. Introduce
946 /// additional basic-blocks as needed, and fill them all.
947 void VPlan::execute(VPTransformState *State) {
948   // Set the reverse mapping from VPValues to Values for code generation.
949   for (auto &Entry : Value2VPValue)
950     State->VPValue2Value[Entry.second] = Entry.first;
951 
952   // Initialize CFG state.
953   State->CFG.PrevVPBB = nullptr;
954   State->CFG.ExitBB = State->CFG.PrevBB->getSingleSuccessor();
955   BasicBlock *VectorPreHeader = State->CFG.PrevBB;
956   State->Builder.SetInsertPoint(VectorPreHeader->getTerminator());
957 
958   // Generate code in the loop pre-header and body.
959   for (VPBlockBase *Block : depth_first(Entry))
960     Block->execute(State);
961 
962   // Setup branch terminator successors for VPBBs in VPBBsToFix based on
963   // VPBB's successors.
964   for (auto VPBB : State->CFG.VPBBsToFix) {
965     assert(EnableVPlanNativePath &&
966            "Unexpected VPBBsToFix in non VPlan-native path");
967     BasicBlock *BB = State->CFG.VPBB2IRBB[VPBB];
968     assert(BB && "Unexpected null basic block for VPBB");
969 
970     unsigned Idx = 0;
971     auto *BBTerminator = BB->getTerminator();
972 
973     for (VPBlockBase *SuccVPBlock : VPBB->getHierarchicalSuccessors()) {
974       VPBasicBlock *SuccVPBB = SuccVPBlock->getEntryBasicBlock();
975       BBTerminator->setSuccessor(Idx, State->CFG.VPBB2IRBB[SuccVPBB]);
976       ++Idx;
977     }
978   }
979 
980   VPBasicBlock *LatchVPBB = getVectorLoopRegion()->getExitBasicBlock();
981   BasicBlock *VectorLatchBB = State->CFG.VPBB2IRBB[LatchVPBB];
982 
983   // Fix the latch value of canonical, reduction and first-order recurrences
984   // phis in the vector loop.
985   VPBasicBlock *Header = getVectorLoopRegion()->getEntryBasicBlock();
986   for (VPRecipeBase &R : Header->phis()) {
987     // Skip phi-like recipes that generate their backedege values themselves.
988     if (isa<VPWidenPHIRecipe>(&R))
989       continue;
990 
991     if (isa<VPWidenPointerInductionRecipe>(&R) ||
992         isa<VPWidenIntOrFpInductionRecipe>(&R)) {
993       PHINode *Phi = nullptr;
994       if (isa<VPWidenIntOrFpInductionRecipe>(&R)) {
995         Phi = cast<PHINode>(State->get(R.getVPSingleValue(), 0));
996       } else {
997         auto *WidenPhi = cast<VPWidenPointerInductionRecipe>(&R);
998         // TODO: Split off the case that all users of a pointer phi are scalar
999         // from the VPWidenPointerInductionRecipe.
1000         if (all_of(WidenPhi->users(), [WidenPhi](const VPUser *U) {
1001               return U->usesScalars(WidenPhi);
1002             }))
1003           continue;
1004 
1005         auto *GEP = cast<GetElementPtrInst>(State->get(WidenPhi, 0));
1006         Phi = cast<PHINode>(GEP->getPointerOperand());
1007       }
1008 
1009       Phi->setIncomingBlock(1, VectorLatchBB);
1010 
1011       // Move the last step to the end of the latch block. This ensures
1012       // consistent placement of all induction updates.
1013       Instruction *Inc = cast<Instruction>(Phi->getIncomingValue(1));
1014       Inc->moveBefore(VectorLatchBB->getTerminator()->getPrevNode());
1015       continue;
1016     }
1017 
1018     auto *PhiR = cast<VPHeaderPHIRecipe>(&R);
1019     // For  canonical IV, first-order recurrences and in-order reduction phis,
1020     // only a single part is generated, which provides the last part from the
1021     // previous iteration. For non-ordered reductions all UF parts are
1022     // generated.
1023     bool SinglePartNeeded = isa<VPCanonicalIVPHIRecipe>(PhiR) ||
1024                             isa<VPFirstOrderRecurrencePHIRecipe>(PhiR) ||
1025                             cast<VPReductionPHIRecipe>(PhiR)->isOrdered();
1026     unsigned LastPartForNewPhi = SinglePartNeeded ? 1 : State->UF;
1027 
1028     for (unsigned Part = 0; Part < LastPartForNewPhi; ++Part) {
1029       Value *Phi = State->get(PhiR, Part);
1030       Value *Val = State->get(PhiR->getBackedgeValue(),
1031                               SinglePartNeeded ? State->UF - 1 : Part);
1032       cast<PHINode>(Phi)->addIncoming(Val, VectorLatchBB);
1033     }
1034   }
1035 
1036   // We do not attempt to preserve DT for outer loop vectorization currently.
1037   if (!EnableVPlanNativePath) {
1038     BasicBlock *VectorHeaderBB = State->CFG.VPBB2IRBB[Header];
1039     State->DT->addNewBlock(VectorHeaderBB, VectorPreHeader);
1040     updateDominatorTree(State->DT, VectorHeaderBB, VectorLatchBB,
1041                         State->CFG.ExitBB);
1042   }
1043 }
1044 
1045 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1046 LLVM_DUMP_METHOD
1047 void VPlan::print(raw_ostream &O) const {
1048   VPSlotTracker SlotTracker(this);
1049 
1050   O << "VPlan '" << Name << "' {";
1051 
1052   if (VectorTripCount.getNumUsers() > 0) {
1053     O << "\nLive-in ";
1054     VectorTripCount.printAsOperand(O, SlotTracker);
1055     O << " = vector-trip-count\n";
1056   }
1057 
1058   if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) {
1059     O << "\nLive-in ";
1060     BackedgeTakenCount->printAsOperand(O, SlotTracker);
1061     O << " = backedge-taken count\n";
1062   }
1063 
1064   for (const VPBlockBase *Block : depth_first(getEntry())) {
1065     O << '\n';
1066     Block->print(O, "", SlotTracker);
1067   }
1068   O << "}\n";
1069 }
1070 
1071 LLVM_DUMP_METHOD
1072 void VPlan::printDOT(raw_ostream &O) const {
1073   VPlanPrinter Printer(O, *this);
1074   Printer.dump();
1075 }
1076 
1077 LLVM_DUMP_METHOD
1078 void VPlan::dump() const { print(dbgs()); }
1079 #endif
1080 
1081 void VPlan::updateDominatorTree(DominatorTree *DT, BasicBlock *LoopHeaderBB,
1082                                 BasicBlock *LoopLatchBB,
1083                                 BasicBlock *LoopExitBB) {
1084   // The vector body may be more than a single basic-block by this point.
1085   // Update the dominator tree information inside the vector body by propagating
1086   // it from header to latch, expecting only triangular control-flow, if any.
1087   BasicBlock *PostDomSucc = nullptr;
1088   for (auto *BB = LoopHeaderBB; BB != LoopLatchBB; BB = PostDomSucc) {
1089     // Get the list of successors of this block.
1090     std::vector<BasicBlock *> Succs(succ_begin(BB), succ_end(BB));
1091     assert(Succs.size() <= 2 &&
1092            "Basic block in vector loop has more than 2 successors.");
1093     PostDomSucc = Succs[0];
1094     if (Succs.size() == 1) {
1095       assert(PostDomSucc->getSinglePredecessor() &&
1096              "PostDom successor has more than one predecessor.");
1097       DT->addNewBlock(PostDomSucc, BB);
1098       continue;
1099     }
1100     BasicBlock *InterimSucc = Succs[1];
1101     if (PostDomSucc->getSingleSuccessor() == InterimSucc) {
1102       PostDomSucc = Succs[1];
1103       InterimSucc = Succs[0];
1104     }
1105     assert(InterimSucc->getSingleSuccessor() == PostDomSucc &&
1106            "One successor of a basic block does not lead to the other.");
1107     assert(InterimSucc->getSinglePredecessor() &&
1108            "Interim successor has more than one predecessor.");
1109     assert(PostDomSucc->hasNPredecessors(2) &&
1110            "PostDom successor has more than two predecessors.");
1111     DT->addNewBlock(InterimSucc, BB);
1112     DT->addNewBlock(PostDomSucc, BB);
1113   }
1114   // Latch block is a new dominator for the loop exit.
1115   DT->changeImmediateDominator(LoopExitBB, LoopLatchBB);
1116   assert(DT->verify(DominatorTree::VerificationLevel::Fast));
1117 }
1118 
1119 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1120 Twine VPlanPrinter::getUID(const VPBlockBase *Block) {
1121   return (isa<VPRegionBlock>(Block) ? "cluster_N" : "N") +
1122          Twine(getOrCreateBID(Block));
1123 }
1124 
1125 Twine VPlanPrinter::getOrCreateName(const VPBlockBase *Block) {
1126   const std::string &Name = Block->getName();
1127   if (!Name.empty())
1128     return Name;
1129   return "VPB" + Twine(getOrCreateBID(Block));
1130 }
1131 
1132 void VPlanPrinter::dump() {
1133   Depth = 1;
1134   bumpIndent(0);
1135   OS << "digraph VPlan {\n";
1136   OS << "graph [labelloc=t, fontsize=30; label=\"Vectorization Plan";
1137   if (!Plan.getName().empty())
1138     OS << "\\n" << DOT::EscapeString(Plan.getName());
1139   if (Plan.BackedgeTakenCount) {
1140     OS << ", where:\\n";
1141     Plan.BackedgeTakenCount->print(OS, SlotTracker);
1142     OS << " := BackedgeTakenCount";
1143   }
1144   OS << "\"]\n";
1145   OS << "node [shape=rect, fontname=Courier, fontsize=30]\n";
1146   OS << "edge [fontname=Courier, fontsize=30]\n";
1147   OS << "compound=true\n";
1148 
1149   for (const VPBlockBase *Block : depth_first(Plan.getEntry()))
1150     dumpBlock(Block);
1151 
1152   OS << "}\n";
1153 }
1154 
1155 void VPlanPrinter::dumpBlock(const VPBlockBase *Block) {
1156   if (const VPBasicBlock *BasicBlock = dyn_cast<VPBasicBlock>(Block))
1157     dumpBasicBlock(BasicBlock);
1158   else if (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
1159     dumpRegion(Region);
1160   else
1161     llvm_unreachable("Unsupported kind of VPBlock.");
1162 }
1163 
1164 void VPlanPrinter::drawEdge(const VPBlockBase *From, const VPBlockBase *To,
1165                             bool Hidden, const Twine &Label) {
1166   // Due to "dot" we print an edge between two regions as an edge between the
1167   // exit basic block and the entry basic of the respective regions.
1168   const VPBlockBase *Tail = From->getExitBasicBlock();
1169   const VPBlockBase *Head = To->getEntryBasicBlock();
1170   OS << Indent << getUID(Tail) << " -> " << getUID(Head);
1171   OS << " [ label=\"" << Label << '\"';
1172   if (Tail != From)
1173     OS << " ltail=" << getUID(From);
1174   if (Head != To)
1175     OS << " lhead=" << getUID(To);
1176   if (Hidden)
1177     OS << "; splines=none";
1178   OS << "]\n";
1179 }
1180 
1181 void VPlanPrinter::dumpEdges(const VPBlockBase *Block) {
1182   auto &Successors = Block->getSuccessors();
1183   if (Successors.size() == 1)
1184     drawEdge(Block, Successors.front(), false, "");
1185   else if (Successors.size() == 2) {
1186     drawEdge(Block, Successors.front(), false, "T");
1187     drawEdge(Block, Successors.back(), false, "F");
1188   } else {
1189     unsigned SuccessorNumber = 0;
1190     for (auto *Successor : Successors)
1191       drawEdge(Block, Successor, false, Twine(SuccessorNumber++));
1192   }
1193 }
1194 
1195 void VPlanPrinter::dumpBasicBlock(const VPBasicBlock *BasicBlock) {
1196   // Implement dot-formatted dump by performing plain-text dump into the
1197   // temporary storage followed by some post-processing.
1198   OS << Indent << getUID(BasicBlock) << " [label =\n";
1199   bumpIndent(1);
1200   std::string Str;
1201   raw_string_ostream SS(Str);
1202   // Use no indentation as we need to wrap the lines into quotes ourselves.
1203   BasicBlock->print(SS, "", SlotTracker);
1204 
1205   // We need to process each line of the output separately, so split
1206   // single-string plain-text dump.
1207   SmallVector<StringRef, 0> Lines;
1208   StringRef(Str).rtrim('\n').split(Lines, "\n");
1209 
1210   auto EmitLine = [&](StringRef Line, StringRef Suffix) {
1211     OS << Indent << '"' << DOT::EscapeString(Line.str()) << "\\l\"" << Suffix;
1212   };
1213 
1214   // Don't need the "+" after the last line.
1215   for (auto Line : make_range(Lines.begin(), Lines.end() - 1))
1216     EmitLine(Line, " +\n");
1217   EmitLine(Lines.back(), "\n");
1218 
1219   bumpIndent(-1);
1220   OS << Indent << "]\n";
1221 
1222   dumpEdges(BasicBlock);
1223 }
1224 
1225 void VPlanPrinter::dumpRegion(const VPRegionBlock *Region) {
1226   OS << Indent << "subgraph " << getUID(Region) << " {\n";
1227   bumpIndent(1);
1228   OS << Indent << "fontname=Courier\n"
1229      << Indent << "label=\""
1230      << DOT::EscapeString(Region->isReplicator() ? "<xVFxUF> " : "<x1> ")
1231      << DOT::EscapeString(Region->getName()) << "\"\n";
1232   // Dump the blocks of the region.
1233   assert(Region->getEntry() && "Region contains no inner blocks.");
1234   for (const VPBlockBase *Block : depth_first(Region->getEntry()))
1235     dumpBlock(Block);
1236   bumpIndent(-1);
1237   OS << Indent << "}\n";
1238   dumpEdges(Region);
1239 }
1240 
1241 void VPlanIngredient::print(raw_ostream &O) const {
1242   if (auto *Inst = dyn_cast<Instruction>(V)) {
1243     if (!Inst->getType()->isVoidTy()) {
1244       Inst->printAsOperand(O, false);
1245       O << " = ";
1246     }
1247     O << Inst->getOpcodeName() << " ";
1248     unsigned E = Inst->getNumOperands();
1249     if (E > 0) {
1250       Inst->getOperand(0)->printAsOperand(O, false);
1251       for (unsigned I = 1; I < E; ++I)
1252         Inst->getOperand(I)->printAsOperand(O << ", ", false);
1253     }
1254   } else // !Inst
1255     V->printAsOperand(O, false);
1256 }
1257 
1258 void VPWidenCallRecipe::print(raw_ostream &O, const Twine &Indent,
1259                               VPSlotTracker &SlotTracker) const {
1260   O << Indent << "WIDEN-CALL ";
1261 
1262   auto *CI = cast<CallInst>(getUnderlyingInstr());
1263   if (CI->getType()->isVoidTy())
1264     O << "void ";
1265   else {
1266     printAsOperand(O, SlotTracker);
1267     O << " = ";
1268   }
1269 
1270   O << "call @" << CI->getCalledFunction()->getName() << "(";
1271   printOperands(O, SlotTracker);
1272   O << ")";
1273 }
1274 
1275 void VPWidenSelectRecipe::print(raw_ostream &O, const Twine &Indent,
1276                                 VPSlotTracker &SlotTracker) const {
1277   O << Indent << "WIDEN-SELECT ";
1278   printAsOperand(O, SlotTracker);
1279   O << " = select ";
1280   getOperand(0)->printAsOperand(O, SlotTracker);
1281   O << ", ";
1282   getOperand(1)->printAsOperand(O, SlotTracker);
1283   O << ", ";
1284   getOperand(2)->printAsOperand(O, SlotTracker);
1285   O << (InvariantCond ? " (condition is loop invariant)" : "");
1286 }
1287 
1288 void VPWidenRecipe::print(raw_ostream &O, const Twine &Indent,
1289                           VPSlotTracker &SlotTracker) const {
1290   O << Indent << "WIDEN ";
1291   printAsOperand(O, SlotTracker);
1292   O << " = " << getUnderlyingInstr()->getOpcodeName() << " ";
1293   printOperands(O, SlotTracker);
1294 }
1295 
1296 void VPWidenIntOrFpInductionRecipe::print(raw_ostream &O, const Twine &Indent,
1297                                           VPSlotTracker &SlotTracker) const {
1298   O << Indent << "WIDEN-INDUCTION";
1299   if (getTruncInst()) {
1300     O << "\\l\"";
1301     O << " +\n" << Indent << "\"  " << VPlanIngredient(IV) << "\\l\"";
1302     O << " +\n" << Indent << "\"  ";
1303     getVPValue(0)->printAsOperand(O, SlotTracker);
1304   } else
1305     O << " " << VPlanIngredient(IV);
1306 
1307   O << ", ";
1308   getStepValue()->printAsOperand(O, SlotTracker);
1309 }
1310 
1311 void VPWidenPointerInductionRecipe::print(raw_ostream &O, const Twine &Indent,
1312                                           VPSlotTracker &SlotTracker) const {
1313   O << Indent << "EMIT ";
1314   printAsOperand(O, SlotTracker);
1315   O << " = WIDEN-POINTER-INDUCTION ";
1316   getStartValue()->printAsOperand(O, SlotTracker);
1317   O << ", " << *IndDesc.getStep();
1318 }
1319 
1320 #endif
1321 
1322 bool VPWidenIntOrFpInductionRecipe::isCanonical() const {
1323   auto *StartC = dyn_cast<ConstantInt>(getStartValue()->getLiveInIRValue());
1324   auto *StepC = dyn_cast<SCEVConstant>(getInductionDescriptor().getStep());
1325   return StartC && StartC->isZero() && StepC && StepC->isOne();
1326 }
1327 
1328 VPCanonicalIVPHIRecipe *VPScalarIVStepsRecipe::getCanonicalIV() const {
1329   return cast<VPCanonicalIVPHIRecipe>(getOperand(0));
1330 }
1331 
1332 bool VPScalarIVStepsRecipe::isCanonical() const {
1333   auto *CanIV = getCanonicalIV();
1334   // The start value of the steps-recipe must match the start value of the
1335   // canonical induction and it must step by 1.
1336   if (CanIV->getStartValue() != getStartValue())
1337     return false;
1338   auto *StepVPV = getStepValue();
1339   if (StepVPV->getDef())
1340     return false;
1341   auto *StepC = dyn_cast_or_null<ConstantInt>(StepVPV->getLiveInIRValue());
1342   return StepC && StepC->isOne();
1343 }
1344 
1345 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1346 void VPScalarIVStepsRecipe::print(raw_ostream &O, const Twine &Indent,
1347                                   VPSlotTracker &SlotTracker) const {
1348   O << Indent;
1349   printAsOperand(O, SlotTracker);
1350   O << Indent << "= SCALAR-STEPS ";
1351   printOperands(O, SlotTracker);
1352 }
1353 
1354 void VPWidenGEPRecipe::print(raw_ostream &O, const Twine &Indent,
1355                              VPSlotTracker &SlotTracker) const {
1356   O << Indent << "WIDEN-GEP ";
1357   O << (IsPtrLoopInvariant ? "Inv" : "Var");
1358   size_t IndicesNumber = IsIndexLoopInvariant.size();
1359   for (size_t I = 0; I < IndicesNumber; ++I)
1360     O << "[" << (IsIndexLoopInvariant[I] ? "Inv" : "Var") << "]";
1361 
1362   O << " ";
1363   printAsOperand(O, SlotTracker);
1364   O << " = getelementptr ";
1365   printOperands(O, SlotTracker);
1366 }
1367 
1368 void VPWidenPHIRecipe::print(raw_ostream &O, const Twine &Indent,
1369                              VPSlotTracker &SlotTracker) const {
1370   O << Indent << "WIDEN-PHI ";
1371 
1372   auto *OriginalPhi = cast<PHINode>(getUnderlyingValue());
1373   // Unless all incoming values are modeled in VPlan  print the original PHI
1374   // directly.
1375   // TODO: Remove once all VPWidenPHIRecipe instances keep all relevant incoming
1376   // values as VPValues.
1377   if (getNumOperands() != OriginalPhi->getNumOperands()) {
1378     O << VPlanIngredient(OriginalPhi);
1379     return;
1380   }
1381 
1382   printAsOperand(O, SlotTracker);
1383   O << " = phi ";
1384   printOperands(O, SlotTracker);
1385 }
1386 
1387 void VPBlendRecipe::print(raw_ostream &O, const Twine &Indent,
1388                           VPSlotTracker &SlotTracker) const {
1389   O << Indent << "BLEND ";
1390   Phi->printAsOperand(O, false);
1391   O << " =";
1392   if (getNumIncomingValues() == 1) {
1393     // Not a User of any mask: not really blending, this is a
1394     // single-predecessor phi.
1395     O << " ";
1396     getIncomingValue(0)->printAsOperand(O, SlotTracker);
1397   } else {
1398     for (unsigned I = 0, E = getNumIncomingValues(); I < E; ++I) {
1399       O << " ";
1400       getIncomingValue(I)->printAsOperand(O, SlotTracker);
1401       O << "/";
1402       getMask(I)->printAsOperand(O, SlotTracker);
1403     }
1404   }
1405 }
1406 
1407 void VPReductionRecipe::print(raw_ostream &O, const Twine &Indent,
1408                               VPSlotTracker &SlotTracker) const {
1409   O << Indent << "REDUCE ";
1410   printAsOperand(O, SlotTracker);
1411   O << " = ";
1412   getChainOp()->printAsOperand(O, SlotTracker);
1413   O << " +";
1414   if (isa<FPMathOperator>(getUnderlyingInstr()))
1415     O << getUnderlyingInstr()->getFastMathFlags();
1416   O << " reduce." << Instruction::getOpcodeName(RdxDesc->getOpcode()) << " (";
1417   getVecOp()->printAsOperand(O, SlotTracker);
1418   if (getCondOp()) {
1419     O << ", ";
1420     getCondOp()->printAsOperand(O, SlotTracker);
1421   }
1422   O << ")";
1423   if (RdxDesc->IntermediateStore)
1424     O << " (with final reduction value stored in invariant address sank "
1425          "outside of loop)";
1426 }
1427 
1428 void VPReplicateRecipe::print(raw_ostream &O, const Twine &Indent,
1429                               VPSlotTracker &SlotTracker) const {
1430   O << Indent << (IsUniform ? "CLONE " : "REPLICATE ");
1431 
1432   if (!getUnderlyingInstr()->getType()->isVoidTy()) {
1433     printAsOperand(O, SlotTracker);
1434     O << " = ";
1435   }
1436   if (auto *CB = dyn_cast<CallBase>(getUnderlyingInstr())) {
1437     O << "call @" << CB->getCalledFunction()->getName() << "(";
1438     interleaveComma(make_range(op_begin(), op_begin() + (getNumOperands() - 1)),
1439                     O, [&O, &SlotTracker](VPValue *Op) {
1440                       Op->printAsOperand(O, SlotTracker);
1441                     });
1442     O << ")";
1443   } else {
1444     O << Instruction::getOpcodeName(getUnderlyingInstr()->getOpcode()) << " ";
1445     printOperands(O, SlotTracker);
1446   }
1447 
1448   if (AlsoPack)
1449     O << " (S->V)";
1450 }
1451 
1452 void VPPredInstPHIRecipe::print(raw_ostream &O, const Twine &Indent,
1453                                 VPSlotTracker &SlotTracker) const {
1454   O << Indent << "PHI-PREDICATED-INSTRUCTION ";
1455   printAsOperand(O, SlotTracker);
1456   O << " = ";
1457   printOperands(O, SlotTracker);
1458 }
1459 
1460 void VPWidenMemoryInstructionRecipe::print(raw_ostream &O, const Twine &Indent,
1461                                            VPSlotTracker &SlotTracker) const {
1462   O << Indent << "WIDEN ";
1463 
1464   if (!isStore()) {
1465     printAsOperand(O, SlotTracker);
1466     O << " = ";
1467   }
1468   O << Instruction::getOpcodeName(Ingredient.getOpcode()) << " ";
1469 
1470   printOperands(O, SlotTracker);
1471 }
1472 #endif
1473 
1474 void VPCanonicalIVPHIRecipe::execute(VPTransformState &State) {
1475   Value *Start = getStartValue()->getLiveInIRValue();
1476   PHINode *EntryPart = PHINode::Create(
1477       Start->getType(), 2, "index", &*State.CFG.PrevBB->getFirstInsertionPt());
1478 
1479   BasicBlock *VectorPH = State.CFG.getPreheaderBBFor(this);
1480   EntryPart->addIncoming(Start, VectorPH);
1481   EntryPart->setDebugLoc(DL);
1482   for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part)
1483     State.set(this, EntryPart, Part);
1484 }
1485 
1486 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1487 void VPCanonicalIVPHIRecipe::print(raw_ostream &O, const Twine &Indent,
1488                                    VPSlotTracker &SlotTracker) const {
1489   O << Indent << "EMIT ";
1490   printAsOperand(O, SlotTracker);
1491   O << " = CANONICAL-INDUCTION";
1492 }
1493 #endif
1494 
1495 void VPExpandSCEVRecipe::execute(VPTransformState &State) {
1496   assert(!State.Instance && "cannot be used in per-lane");
1497   const DataLayout &DL = State.CFG.PrevBB->getModule()->getDataLayout();
1498   SCEVExpander Exp(SE, DL, "induction");
1499 
1500   Value *Res = Exp.expandCodeFor(Expr, Expr->getType(),
1501                                  &*State.Builder.GetInsertPoint());
1502 
1503   for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part)
1504     State.set(this, Res, Part);
1505 }
1506 
1507 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1508 void VPExpandSCEVRecipe::print(raw_ostream &O, const Twine &Indent,
1509                                VPSlotTracker &SlotTracker) const {
1510   O << Indent << "EMIT ";
1511   getVPSingleValue()->printAsOperand(O, SlotTracker);
1512   O << " = EXPAND SCEV " << *Expr;
1513 }
1514 #endif
1515 
1516 void VPWidenCanonicalIVRecipe::execute(VPTransformState &State) {
1517   Value *CanonicalIV = State.get(getOperand(0), 0);
1518   Type *STy = CanonicalIV->getType();
1519   IRBuilder<> Builder(State.CFG.PrevBB->getTerminator());
1520   ElementCount VF = State.VF;
1521   Value *VStart = VF.isScalar()
1522                       ? CanonicalIV
1523                       : Builder.CreateVectorSplat(VF, CanonicalIV, "broadcast");
1524   for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part) {
1525     Value *VStep = createStepForVF(Builder, STy, VF, Part);
1526     if (VF.isVector()) {
1527       VStep = Builder.CreateVectorSplat(VF, VStep);
1528       VStep = Builder.CreateAdd(VStep, Builder.CreateStepVector(VStep->getType()));
1529     }
1530     Value *CanonicalVectorIV = Builder.CreateAdd(VStart, VStep, "vec.iv");
1531     State.set(this, CanonicalVectorIV, Part);
1532   }
1533 }
1534 
1535 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1536 void VPWidenCanonicalIVRecipe::print(raw_ostream &O, const Twine &Indent,
1537                                      VPSlotTracker &SlotTracker) const {
1538   O << Indent << "EMIT ";
1539   printAsOperand(O, SlotTracker);
1540   O << " = WIDEN-CANONICAL-INDUCTION ";
1541   printOperands(O, SlotTracker);
1542 }
1543 #endif
1544 
1545 void VPFirstOrderRecurrencePHIRecipe::execute(VPTransformState &State) {
1546   auto &Builder = State.Builder;
1547   // Create a vector from the initial value.
1548   auto *VectorInit = getStartValue()->getLiveInIRValue();
1549 
1550   Type *VecTy = State.VF.isScalar()
1551                     ? VectorInit->getType()
1552                     : VectorType::get(VectorInit->getType(), State.VF);
1553 
1554   BasicBlock *VectorPH = State.CFG.getPreheaderBBFor(this);
1555   if (State.VF.isVector()) {
1556     auto *IdxTy = Builder.getInt32Ty();
1557     auto *One = ConstantInt::get(IdxTy, 1);
1558     IRBuilder<>::InsertPointGuard Guard(Builder);
1559     Builder.SetInsertPoint(VectorPH->getTerminator());
1560     auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, State.VF);
1561     auto *LastIdx = Builder.CreateSub(RuntimeVF, One);
1562     VectorInit = Builder.CreateInsertElement(
1563         PoisonValue::get(VecTy), VectorInit, LastIdx, "vector.recur.init");
1564   }
1565 
1566   // Create a phi node for the new recurrence.
1567   PHINode *EntryPart = PHINode::Create(
1568       VecTy, 2, "vector.recur", &*State.CFG.PrevBB->getFirstInsertionPt());
1569   EntryPart->addIncoming(VectorInit, VectorPH);
1570   State.set(this, EntryPart, 0);
1571 }
1572 
1573 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1574 void VPFirstOrderRecurrencePHIRecipe::print(raw_ostream &O, const Twine &Indent,
1575                                             VPSlotTracker &SlotTracker) const {
1576   O << Indent << "FIRST-ORDER-RECURRENCE-PHI ";
1577   printAsOperand(O, SlotTracker);
1578   O << " = phi ";
1579   printOperands(O, SlotTracker);
1580 }
1581 #endif
1582 
1583 void VPReductionPHIRecipe::execute(VPTransformState &State) {
1584   PHINode *PN = cast<PHINode>(getUnderlyingValue());
1585   auto &Builder = State.Builder;
1586 
1587   // In order to support recurrences we need to be able to vectorize Phi nodes.
1588   // Phi nodes have cycles, so we need to vectorize them in two stages. This is
1589   // stage #1: We create a new vector PHI node with no incoming edges. We'll use
1590   // this value when we vectorize all of the instructions that use the PHI.
1591   bool ScalarPHI = State.VF.isScalar() || IsInLoop;
1592   Type *VecTy =
1593       ScalarPHI ? PN->getType() : VectorType::get(PN->getType(), State.VF);
1594 
1595   BasicBlock *HeaderBB = State.CFG.PrevBB;
1596   assert(State.CurrentVectorLoop->getHeader() == HeaderBB &&
1597          "recipe must be in the vector loop header");
1598   unsigned LastPartForNewPhi = isOrdered() ? 1 : State.UF;
1599   for (unsigned Part = 0; Part < LastPartForNewPhi; ++Part) {
1600     Value *EntryPart =
1601         PHINode::Create(VecTy, 2, "vec.phi", &*HeaderBB->getFirstInsertionPt());
1602     State.set(this, EntryPart, Part);
1603   }
1604 
1605   BasicBlock *VectorPH = State.CFG.getPreheaderBBFor(this);
1606 
1607   // Reductions do not have to start at zero. They can start with
1608   // any loop invariant values.
1609   VPValue *StartVPV = getStartValue();
1610   Value *StartV = StartVPV->getLiveInIRValue();
1611 
1612   Value *Iden = nullptr;
1613   RecurKind RK = RdxDesc.getRecurrenceKind();
1614   if (RecurrenceDescriptor::isMinMaxRecurrenceKind(RK) ||
1615       RecurrenceDescriptor::isSelectCmpRecurrenceKind(RK)) {
1616     // MinMax reduction have the start value as their identify.
1617     if (ScalarPHI) {
1618       Iden = StartV;
1619     } else {
1620       IRBuilderBase::InsertPointGuard IPBuilder(Builder);
1621       Builder.SetInsertPoint(VectorPH->getTerminator());
1622       StartV = Iden =
1623           Builder.CreateVectorSplat(State.VF, StartV, "minmax.ident");
1624     }
1625   } else {
1626     Iden = RdxDesc.getRecurrenceIdentity(RK, VecTy->getScalarType(),
1627                                          RdxDesc.getFastMathFlags());
1628 
1629     if (!ScalarPHI) {
1630       Iden = Builder.CreateVectorSplat(State.VF, Iden);
1631       IRBuilderBase::InsertPointGuard IPBuilder(Builder);
1632       Builder.SetInsertPoint(VectorPH->getTerminator());
1633       Constant *Zero = Builder.getInt32(0);
1634       StartV = Builder.CreateInsertElement(Iden, StartV, Zero);
1635     }
1636   }
1637 
1638   for (unsigned Part = 0; Part < LastPartForNewPhi; ++Part) {
1639     Value *EntryPart = State.get(this, Part);
1640     // Make sure to add the reduction start value only to the
1641     // first unroll part.
1642     Value *StartVal = (Part == 0) ? StartV : Iden;
1643     cast<PHINode>(EntryPart)->addIncoming(StartVal, VectorPH);
1644   }
1645 }
1646 
1647 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1648 void VPReductionPHIRecipe::print(raw_ostream &O, const Twine &Indent,
1649                                  VPSlotTracker &SlotTracker) const {
1650   O << Indent << "WIDEN-REDUCTION-PHI ";
1651 
1652   printAsOperand(O, SlotTracker);
1653   O << " = phi ";
1654   printOperands(O, SlotTracker);
1655 }
1656 #endif
1657 
1658 template void DomTreeBuilder::Calculate<VPDominatorTree>(VPDominatorTree &DT);
1659 
1660 void VPValue::replaceAllUsesWith(VPValue *New) {
1661   for (unsigned J = 0; J < getNumUsers();) {
1662     VPUser *User = Users[J];
1663     unsigned NumUsers = getNumUsers();
1664     for (unsigned I = 0, E = User->getNumOperands(); I < E; ++I)
1665       if (User->getOperand(I) == this)
1666         User->setOperand(I, New);
1667     // If a user got removed after updating the current user, the next user to
1668     // update will be moved to the current position, so we only need to
1669     // increment the index if the number of users did not change.
1670     if (NumUsers == getNumUsers())
1671       J++;
1672   }
1673 }
1674 
1675 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1676 void VPValue::printAsOperand(raw_ostream &OS, VPSlotTracker &Tracker) const {
1677   if (const Value *UV = getUnderlyingValue()) {
1678     OS << "ir<";
1679     UV->printAsOperand(OS, false);
1680     OS << ">";
1681     return;
1682   }
1683 
1684   unsigned Slot = Tracker.getSlot(this);
1685   if (Slot == unsigned(-1))
1686     OS << "<badref>";
1687   else
1688     OS << "vp<%" << Tracker.getSlot(this) << ">";
1689 }
1690 
1691 void VPUser::printOperands(raw_ostream &O, VPSlotTracker &SlotTracker) const {
1692   interleaveComma(operands(), O, [&O, &SlotTracker](VPValue *Op) {
1693     Op->printAsOperand(O, SlotTracker);
1694   });
1695 }
1696 #endif
1697 
1698 void VPInterleavedAccessInfo::visitRegion(VPRegionBlock *Region,
1699                                           Old2NewTy &Old2New,
1700                                           InterleavedAccessInfo &IAI) {
1701   ReversePostOrderTraversal<VPBlockBase *> RPOT(Region->getEntry());
1702   for (VPBlockBase *Base : RPOT) {
1703     visitBlock(Base, Old2New, IAI);
1704   }
1705 }
1706 
1707 void VPInterleavedAccessInfo::visitBlock(VPBlockBase *Block, Old2NewTy &Old2New,
1708                                          InterleavedAccessInfo &IAI) {
1709   if (VPBasicBlock *VPBB = dyn_cast<VPBasicBlock>(Block)) {
1710     for (VPRecipeBase &VPI : *VPBB) {
1711       if (isa<VPHeaderPHIRecipe>(&VPI))
1712         continue;
1713       assert(isa<VPInstruction>(&VPI) && "Can only handle VPInstructions");
1714       auto *VPInst = cast<VPInstruction>(&VPI);
1715       auto *Inst = cast<Instruction>(VPInst->getUnderlyingValue());
1716       auto *IG = IAI.getInterleaveGroup(Inst);
1717       if (!IG)
1718         continue;
1719 
1720       auto NewIGIter = Old2New.find(IG);
1721       if (NewIGIter == Old2New.end())
1722         Old2New[IG] = new InterleaveGroup<VPInstruction>(
1723             IG->getFactor(), IG->isReverse(), IG->getAlign());
1724 
1725       if (Inst == IG->getInsertPos())
1726         Old2New[IG]->setInsertPos(VPInst);
1727 
1728       InterleaveGroupMap[VPInst] = Old2New[IG];
1729       InterleaveGroupMap[VPInst]->insertMember(
1730           VPInst, IG->getIndex(Inst),
1731           Align(IG->isReverse() ? (-1) * int(IG->getFactor())
1732                                 : IG->getFactor()));
1733     }
1734   } else if (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
1735     visitRegion(Region, Old2New, IAI);
1736   else
1737     llvm_unreachable("Unsupported kind of VPBlock.");
1738 }
1739 
1740 VPInterleavedAccessInfo::VPInterleavedAccessInfo(VPlan &Plan,
1741                                                  InterleavedAccessInfo &IAI) {
1742   Old2NewTy Old2New;
1743   visitRegion(Plan.getVectorLoopRegion(), Old2New, IAI);
1744 }
1745 
1746 void VPSlotTracker::assignSlot(const VPValue *V) {
1747   assert(Slots.find(V) == Slots.end() && "VPValue already has a slot!");
1748   Slots[V] = NextSlot++;
1749 }
1750 
1751 void VPSlotTracker::assignSlots(const VPlan &Plan) {
1752 
1753   for (const auto &P : Plan.VPExternalDefs)
1754     assignSlot(P.second);
1755 
1756   assignSlot(&Plan.VectorTripCount);
1757   if (Plan.BackedgeTakenCount)
1758     assignSlot(Plan.BackedgeTakenCount);
1759 
1760   ReversePostOrderTraversal<
1761       VPBlockRecursiveTraversalWrapper<const VPBlockBase *>>
1762       RPOT(VPBlockRecursiveTraversalWrapper<const VPBlockBase *>(
1763           Plan.getEntry()));
1764   for (const VPBasicBlock *VPBB :
1765        VPBlockUtils::blocksOnly<const VPBasicBlock>(RPOT))
1766     for (const VPRecipeBase &Recipe : *VPBB)
1767       for (VPValue *Def : Recipe.definedValues())
1768         assignSlot(Def);
1769 }
1770 
1771 bool vputils::onlyFirstLaneUsed(VPValue *Def) {
1772   return all_of(Def->users(),
1773                 [Def](VPUser *U) { return U->onlyFirstLaneUsed(Def); });
1774 }
1775 
1776 VPValue *vputils::getOrCreateVPValueForSCEVExpr(VPlan &Plan, const SCEV *Expr,
1777                                                 ScalarEvolution &SE) {
1778   if (auto *E = dyn_cast<SCEVConstant>(Expr))
1779     return Plan.getOrAddExternalDef(E->getValue());
1780   if (auto *E = dyn_cast<SCEVUnknown>(Expr))
1781     return Plan.getOrAddExternalDef(E->getValue());
1782 
1783   VPBasicBlock *Preheader = Plan.getEntry()->getEntryBasicBlock();
1784   VPValue *Step = new VPExpandSCEVRecipe(Expr, SE);
1785   Preheader->appendRecipe(cast<VPRecipeBase>(Step->getDef()));
1786   return Step;
1787 }
1788