1 //===- VPlan.cpp - Vectorizer Plan ----------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This is the LLVM vectorization plan. It represents a candidate for 11 /// vectorization, allowing to plan and optimize how to vectorize a given loop 12 /// before generating LLVM-IR. 13 /// The vectorizer uses vectorization plans to estimate the costs of potential 14 /// candidates and if profitable to execute the desired plan, generating vector 15 /// LLVM-IR code. 16 /// 17 //===----------------------------------------------------------------------===// 18 19 #include "VPlan.h" 20 #include "VPlanDominatorTree.h" 21 #include "llvm/ADT/DepthFirstIterator.h" 22 #include "llvm/ADT/PostOrderIterator.h" 23 #include "llvm/ADT/STLExtras.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/Twine.h" 26 #include "llvm/Analysis/IVDescriptors.h" 27 #include "llvm/Analysis/LoopInfo.h" 28 #include "llvm/IR/BasicBlock.h" 29 #include "llvm/IR/CFG.h" 30 #include "llvm/IR/IRBuilder.h" 31 #include "llvm/IR/Instruction.h" 32 #include "llvm/IR/Instructions.h" 33 #include "llvm/IR/Type.h" 34 #include "llvm/IR/Value.h" 35 #include "llvm/Support/Casting.h" 36 #include "llvm/Support/CommandLine.h" 37 #include "llvm/Support/Debug.h" 38 #include "llvm/Support/ErrorHandling.h" 39 #include "llvm/Support/GenericDomTreeConstruction.h" 40 #include "llvm/Support/GraphWriter.h" 41 #include "llvm/Support/raw_ostream.h" 42 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 43 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 44 #include <cassert> 45 #include <string> 46 #include <vector> 47 48 using namespace llvm; 49 extern cl::opt<bool> EnableVPlanNativePath; 50 51 #define DEBUG_TYPE "vplan" 52 53 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 54 raw_ostream &llvm::operator<<(raw_ostream &OS, const VPValue &V) { 55 const VPInstruction *Instr = dyn_cast<VPInstruction>(&V); 56 VPSlotTracker SlotTracker( 57 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr); 58 V.print(OS, SlotTracker); 59 return OS; 60 } 61 #endif 62 63 Value *VPLane::getAsRuntimeExpr(IRBuilderBase &Builder, 64 const ElementCount &VF) const { 65 switch (LaneKind) { 66 case VPLane::Kind::ScalableLast: 67 // Lane = RuntimeVF - VF.getKnownMinValue() + Lane 68 return Builder.CreateSub(getRuntimeVF(Builder, Builder.getInt32Ty(), VF), 69 Builder.getInt32(VF.getKnownMinValue() - Lane)); 70 case VPLane::Kind::First: 71 return Builder.getInt32(Lane); 72 } 73 llvm_unreachable("Unknown lane kind"); 74 } 75 76 VPValue::VPValue(const unsigned char SC, Value *UV, VPDef *Def) 77 : SubclassID(SC), UnderlyingVal(UV), Def(Def) { 78 if (Def) 79 Def->addDefinedValue(this); 80 } 81 82 VPValue::~VPValue() { 83 assert(Users.empty() && "trying to delete a VPValue with remaining users"); 84 if (Def) 85 Def->removeDefinedValue(this); 86 } 87 88 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 89 void VPValue::print(raw_ostream &OS, VPSlotTracker &SlotTracker) const { 90 if (const VPRecipeBase *R = dyn_cast_or_null<VPRecipeBase>(Def)) 91 R->print(OS, "", SlotTracker); 92 else 93 printAsOperand(OS, SlotTracker); 94 } 95 96 void VPValue::dump() const { 97 const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this->Def); 98 VPSlotTracker SlotTracker( 99 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr); 100 print(dbgs(), SlotTracker); 101 dbgs() << "\n"; 102 } 103 104 void VPDef::dump() const { 105 const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this); 106 VPSlotTracker SlotTracker( 107 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr); 108 print(dbgs(), "", SlotTracker); 109 dbgs() << "\n"; 110 } 111 #endif 112 113 // Get the top-most entry block of \p Start. This is the entry block of the 114 // containing VPlan. This function is templated to support both const and non-const blocks 115 template <typename T> static T *getPlanEntry(T *Start) { 116 T *Next = Start; 117 T *Current = Start; 118 while ((Next = Next->getParent())) 119 Current = Next; 120 121 SmallSetVector<T *, 8> WorkList; 122 WorkList.insert(Current); 123 124 for (unsigned i = 0; i < WorkList.size(); i++) { 125 T *Current = WorkList[i]; 126 if (Current->getNumPredecessors() == 0) 127 return Current; 128 auto &Predecessors = Current->getPredecessors(); 129 WorkList.insert(Predecessors.begin(), Predecessors.end()); 130 } 131 132 llvm_unreachable("VPlan without any entry node without predecessors"); 133 } 134 135 VPlan *VPBlockBase::getPlan() { return getPlanEntry(this)->Plan; } 136 137 const VPlan *VPBlockBase::getPlan() const { return getPlanEntry(this)->Plan; } 138 139 /// \return the VPBasicBlock that is the entry of Block, possibly indirectly. 140 const VPBasicBlock *VPBlockBase::getEntryBasicBlock() const { 141 const VPBlockBase *Block = this; 142 while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 143 Block = Region->getEntry(); 144 return cast<VPBasicBlock>(Block); 145 } 146 147 VPBasicBlock *VPBlockBase::getEntryBasicBlock() { 148 VPBlockBase *Block = this; 149 while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 150 Block = Region->getEntry(); 151 return cast<VPBasicBlock>(Block); 152 } 153 154 void VPBlockBase::setPlan(VPlan *ParentPlan) { 155 assert(ParentPlan->getEntry() == this && 156 "Can only set plan on its entry block."); 157 Plan = ParentPlan; 158 } 159 160 /// \return the VPBasicBlock that is the exit of Block, possibly indirectly. 161 const VPBasicBlock *VPBlockBase::getExitBasicBlock() const { 162 const VPBlockBase *Block = this; 163 while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 164 Block = Region->getExit(); 165 return cast<VPBasicBlock>(Block); 166 } 167 168 VPBasicBlock *VPBlockBase::getExitBasicBlock() { 169 VPBlockBase *Block = this; 170 while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 171 Block = Region->getExit(); 172 return cast<VPBasicBlock>(Block); 173 } 174 175 VPBlockBase *VPBlockBase::getEnclosingBlockWithSuccessors() { 176 if (!Successors.empty() || !Parent) 177 return this; 178 assert(Parent->getExit() == this && 179 "Block w/o successors not the exit of its parent."); 180 return Parent->getEnclosingBlockWithSuccessors(); 181 } 182 183 VPBlockBase *VPBlockBase::getEnclosingBlockWithPredecessors() { 184 if (!Predecessors.empty() || !Parent) 185 return this; 186 assert(Parent->getEntry() == this && 187 "Block w/o predecessors not the entry of its parent."); 188 return Parent->getEnclosingBlockWithPredecessors(); 189 } 190 191 VPValue *VPBlockBase::getCondBit() { 192 return CondBitUser.getSingleOperandOrNull(); 193 } 194 195 const VPValue *VPBlockBase::getCondBit() const { 196 return CondBitUser.getSingleOperandOrNull(); 197 } 198 199 void VPBlockBase::setCondBit(VPValue *CV) { CondBitUser.resetSingleOpUser(CV); } 200 201 VPValue *VPBlockBase::getPredicate() { 202 return PredicateUser.getSingleOperandOrNull(); 203 } 204 205 const VPValue *VPBlockBase::getPredicate() const { 206 return PredicateUser.getSingleOperandOrNull(); 207 } 208 209 void VPBlockBase::setPredicate(VPValue *CV) { 210 PredicateUser.resetSingleOpUser(CV); 211 } 212 213 void VPBlockBase::deleteCFG(VPBlockBase *Entry) { 214 SmallVector<VPBlockBase *, 8> Blocks(depth_first(Entry)); 215 216 for (VPBlockBase *Block : Blocks) 217 delete Block; 218 } 219 220 VPBasicBlock::iterator VPBasicBlock::getFirstNonPhi() { 221 iterator It = begin(); 222 while (It != end() && It->isPhi()) 223 It++; 224 return It; 225 } 226 227 Value *VPTransformState::get(VPValue *Def, const VPIteration &Instance) { 228 if (!Def->getDef()) 229 return Def->getLiveInIRValue(); 230 231 if (hasScalarValue(Def, Instance)) { 232 return Data 233 .PerPartScalars[Def][Instance.Part][Instance.Lane.mapToCacheIndex(VF)]; 234 } 235 236 assert(hasVectorValue(Def, Instance.Part)); 237 auto *VecPart = Data.PerPartOutput[Def][Instance.Part]; 238 if (!VecPart->getType()->isVectorTy()) { 239 assert(Instance.Lane.isFirstLane() && "cannot get lane > 0 for scalar"); 240 return VecPart; 241 } 242 // TODO: Cache created scalar values. 243 Value *Lane = Instance.Lane.getAsRuntimeExpr(Builder, VF); 244 auto *Extract = Builder.CreateExtractElement(VecPart, Lane); 245 // set(Def, Extract, Instance); 246 return Extract; 247 } 248 BasicBlock *VPTransformState::CFGState::getPreheaderBBFor(VPRecipeBase *R) { 249 VPRegionBlock *LoopRegion = R->getParent()->getEnclosingLoopRegion(); 250 return VPBB2IRBB[LoopRegion->getPreheaderVPBB()]; 251 } 252 253 BasicBlock * 254 VPBasicBlock::createEmptyBasicBlock(VPTransformState::CFGState &CFG) { 255 // BB stands for IR BasicBlocks. VPBB stands for VPlan VPBasicBlocks. 256 // Pred stands for Predessor. Prev stands for Previous - last visited/created. 257 BasicBlock *PrevBB = CFG.PrevBB; 258 BasicBlock *NewBB = BasicBlock::Create(PrevBB->getContext(), getName(), 259 PrevBB->getParent(), CFG.ExitBB); 260 LLVM_DEBUG(dbgs() << "LV: created " << NewBB->getName() << '\n'); 261 262 // Hook up the new basic block to its predecessors. 263 for (VPBlockBase *PredVPBlock : getHierarchicalPredecessors()) { 264 VPBasicBlock *PredVPBB = PredVPBlock->getExitBasicBlock(); 265 auto &PredVPSuccessors = PredVPBB->getSuccessors(); 266 BasicBlock *PredBB = CFG.VPBB2IRBB[PredVPBB]; 267 268 // In outer loop vectorization scenario, the predecessor BBlock may not yet 269 // be visited(backedge). Mark the VPBasicBlock for fixup at the end of 270 // vectorization. We do not encounter this case in inner loop vectorization 271 // as we start out by building a loop skeleton with the vector loop header 272 // and latch blocks. As a result, we never enter this function for the 273 // header block in the non VPlan-native path. 274 if (!PredBB) { 275 assert(EnableVPlanNativePath && 276 "Unexpected null predecessor in non VPlan-native path"); 277 CFG.VPBBsToFix.push_back(PredVPBB); 278 continue; 279 } 280 281 assert(PredBB && "Predecessor basic-block not found building successor."); 282 auto *PredBBTerminator = PredBB->getTerminator(); 283 LLVM_DEBUG(dbgs() << "LV: draw edge from" << PredBB->getName() << '\n'); 284 285 auto *TermBr = dyn_cast<BranchInst>(PredBBTerminator); 286 if (isa<UnreachableInst>(PredBBTerminator) || 287 (TermBr && !TermBr->isConditional())) { 288 assert(PredVPSuccessors.size() == 1 && 289 "Predecessor ending w/o branch must have single successor."); 290 if (TermBr) { 291 TermBr->setSuccessor(0, NewBB); 292 } else { 293 DebugLoc DL = PredBBTerminator->getDebugLoc(); 294 PredBBTerminator->eraseFromParent(); 295 auto *Br = BranchInst::Create(NewBB, PredBB); 296 Br->setDebugLoc(DL); 297 } 298 } else { 299 if (PredVPSuccessors.size() == 2) { 300 unsigned idx = PredVPSuccessors.front() == this ? 0 : 1; 301 assert(!PredBBTerminator->getSuccessor(idx) && 302 "Trying to reset an existing successor block."); 303 PredBBTerminator->setSuccessor(idx, NewBB); 304 } else { 305 auto *Reg = dyn_cast<VPRegionBlock>(PredVPBB->getParent()); 306 assert(Reg && !Reg->isReplicator()); 307 assert(this == Reg->getSingleSuccessor()); 308 PredBBTerminator->setSuccessor(0, NewBB); 309 PredBBTerminator->setSuccessor( 310 1, CFG.VPBB2IRBB[Reg->getEntryBasicBlock()]); 311 } 312 } 313 } 314 return NewBB; 315 } 316 317 void VPBasicBlock::execute(VPTransformState *State) { 318 bool Replica = State->Instance && !State->Instance->isFirstIteration(); 319 VPBasicBlock *PrevVPBB = State->CFG.PrevVPBB; 320 VPBlockBase *SingleHPred = nullptr; 321 BasicBlock *NewBB = State->CFG.PrevBB; // Reuse it if possible. 322 323 auto IsNonReplicateR = [](VPBlockBase *BB) { 324 auto *R = dyn_cast<VPRegionBlock>(BB); 325 return R && !R->isReplicator(); 326 }; 327 328 // 1. Create an IR basic block, or reuse the last one or ExitBB if possible. 329 if (getPlan()->getVectorLoopRegion()->getSingleSuccessor() == this) { 330 // ExitBB can be re-used for the exit block of the Plan. 331 NewBB = State->CFG.ExitBB; 332 State->CFG.PrevBB = NewBB; 333 } else if (PrevVPBB && /* A */ 334 !((SingleHPred = getSingleHierarchicalPredecessor()) && 335 SingleHPred->getExitBasicBlock() == PrevVPBB && 336 PrevVPBB->getSingleHierarchicalSuccessor() && 337 (SingleHPred->getParent() == getEnclosingLoopRegion() && 338 !IsNonReplicateR(SingleHPred))) && /* B */ 339 !(Replica && getPredecessors().empty())) { /* C */ 340 // The last IR basic block is reused, as an optimization, in three cases: 341 // A. the first VPBB reuses the loop pre-header BB - when PrevVPBB is null; 342 // B. when the current VPBB has a single (hierarchical) predecessor which 343 // is PrevVPBB and the latter has a single (hierarchical) successor which 344 // both are in the same non-replicator region; and 345 // C. when the current VPBB is an entry of a region replica - where PrevVPBB 346 // is the exit of this region from a previous instance, or the 347 // predecessor of this region. 348 349 NewBB = createEmptyBasicBlock(State->CFG); 350 State->Builder.SetInsertPoint(NewBB); 351 // Temporarily terminate with unreachable until CFG is rewired. 352 UnreachableInst *Terminator = State->Builder.CreateUnreachable(); 353 // Register NewBB in its loop. In innermost loops its the same for all 354 // BB's. 355 if (State->CurrentVectorLoop) 356 State->CurrentVectorLoop->addBasicBlockToLoop(NewBB, *State->LI); 357 State->Builder.SetInsertPoint(Terminator); 358 State->CFG.PrevBB = NewBB; 359 } 360 361 // 2. Fill the IR basic block with IR instructions. 362 LLVM_DEBUG(dbgs() << "LV: vectorizing VPBB:" << getName() 363 << " in BB:" << NewBB->getName() << '\n'); 364 365 State->CFG.VPBB2IRBB[this] = NewBB; 366 State->CFG.PrevVPBB = this; 367 368 for (VPRecipeBase &Recipe : Recipes) 369 Recipe.execute(*State); 370 371 VPValue *CBV; 372 if (EnableVPlanNativePath && (CBV = getCondBit())) { 373 assert(CBV->getUnderlyingValue() && 374 "Unexpected null underlying value for condition bit"); 375 376 // Condition bit value in a VPBasicBlock is used as the branch selector. In 377 // the VPlan-native path case, since all branches are uniform we generate a 378 // branch instruction using the condition value from vector lane 0 and dummy 379 // successors. The successors are fixed later when the successor blocks are 380 // visited. 381 Value *NewCond = State->get(CBV, {0, 0}); 382 383 // Replace the temporary unreachable terminator with the new conditional 384 // branch. 385 auto *CurrentTerminator = NewBB->getTerminator(); 386 assert(isa<UnreachableInst>(CurrentTerminator) && 387 "Expected to replace unreachable terminator with conditional " 388 "branch."); 389 auto *CondBr = BranchInst::Create(NewBB, nullptr, NewCond); 390 CondBr->setSuccessor(0, nullptr); 391 ReplaceInstWithInst(CurrentTerminator, CondBr); 392 } 393 394 LLVM_DEBUG(dbgs() << "LV: filled BB:" << *NewBB); 395 } 396 397 void VPBasicBlock::dropAllReferences(VPValue *NewValue) { 398 for (VPRecipeBase &R : Recipes) { 399 for (auto *Def : R.definedValues()) 400 Def->replaceAllUsesWith(NewValue); 401 402 for (unsigned I = 0, E = R.getNumOperands(); I != E; I++) 403 R.setOperand(I, NewValue); 404 } 405 } 406 407 VPBasicBlock *VPBasicBlock::splitAt(iterator SplitAt) { 408 assert((SplitAt == end() || SplitAt->getParent() == this) && 409 "can only split at a position in the same block"); 410 411 SmallVector<VPBlockBase *, 2> Succs(successors()); 412 // First, disconnect the current block from its successors. 413 for (VPBlockBase *Succ : Succs) 414 VPBlockUtils::disconnectBlocks(this, Succ); 415 416 // Create new empty block after the block to split. 417 auto *SplitBlock = new VPBasicBlock(getName() + ".split"); 418 VPBlockUtils::insertBlockAfter(SplitBlock, this); 419 420 // Add successors for block to split to new block. 421 for (VPBlockBase *Succ : Succs) 422 VPBlockUtils::connectBlocks(SplitBlock, Succ); 423 424 // Finally, move the recipes starting at SplitAt to new block. 425 for (VPRecipeBase &ToMove : 426 make_early_inc_range(make_range(SplitAt, this->end()))) 427 ToMove.moveBefore(*SplitBlock, SplitBlock->end()); 428 429 return SplitBlock; 430 } 431 432 VPRegionBlock *VPBasicBlock::getEnclosingLoopRegion() { 433 VPRegionBlock *P = getParent(); 434 if (P && P->isReplicator()) { 435 P = P->getParent(); 436 assert(!cast<VPRegionBlock>(P)->isReplicator() && 437 "unexpected nested replicate regions"); 438 } 439 return P; 440 } 441 442 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 443 void VPBlockBase::printSuccessors(raw_ostream &O, const Twine &Indent) const { 444 if (getSuccessors().empty()) { 445 O << Indent << "No successors\n"; 446 } else { 447 O << Indent << "Successor(s): "; 448 ListSeparator LS; 449 for (auto *Succ : getSuccessors()) 450 O << LS << Succ->getName(); 451 O << '\n'; 452 } 453 } 454 455 void VPBasicBlock::print(raw_ostream &O, const Twine &Indent, 456 VPSlotTracker &SlotTracker) const { 457 O << Indent << getName() << ":\n"; 458 if (const VPValue *Pred = getPredicate()) { 459 O << Indent << "BlockPredicate:"; 460 Pred->printAsOperand(O, SlotTracker); 461 if (const auto *PredInst = dyn_cast<VPInstruction>(Pred)) 462 O << " (" << PredInst->getParent()->getName() << ")"; 463 O << '\n'; 464 } 465 466 auto RecipeIndent = Indent + " "; 467 for (const VPRecipeBase &Recipe : *this) { 468 Recipe.print(O, RecipeIndent, SlotTracker); 469 O << '\n'; 470 } 471 472 printSuccessors(O, Indent); 473 474 if (const VPValue *CBV = getCondBit()) { 475 O << Indent << "CondBit: "; 476 CBV->printAsOperand(O, SlotTracker); 477 if (const auto *CBI = dyn_cast<VPInstruction>(CBV)) 478 O << " (" << CBI->getParent()->getName() << ")"; 479 O << '\n'; 480 } 481 } 482 #endif 483 484 void VPRegionBlock::dropAllReferences(VPValue *NewValue) { 485 for (VPBlockBase *Block : depth_first(Entry)) 486 // Drop all references in VPBasicBlocks and replace all uses with 487 // DummyValue. 488 Block->dropAllReferences(NewValue); 489 } 490 491 void VPRegionBlock::execute(VPTransformState *State) { 492 ReversePostOrderTraversal<VPBlockBase *> RPOT(Entry); 493 494 if (!isReplicator()) { 495 // Create and register the new vector loop. 496 Loop *PrevLoop = State->CurrentVectorLoop; 497 State->CurrentVectorLoop = State->LI->AllocateLoop(); 498 BasicBlock *VectorPH = State->CFG.VPBB2IRBB[getPreheaderVPBB()]; 499 Loop *ParentLoop = State->LI->getLoopFor(VectorPH); 500 501 // Insert the new loop into the loop nest and register the new basic blocks 502 // before calling any utilities such as SCEV that require valid LoopInfo. 503 if (ParentLoop) 504 ParentLoop->addChildLoop(State->CurrentVectorLoop); 505 else 506 State->LI->addTopLevelLoop(State->CurrentVectorLoop); 507 508 // Visit the VPBlocks connected to "this", starting from it. 509 for (VPBlockBase *Block : RPOT) { 510 LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n'); 511 Block->execute(State); 512 } 513 514 State->CurrentVectorLoop = PrevLoop; 515 return; 516 } 517 518 assert(!State->Instance && "Replicating a Region with non-null instance."); 519 520 // Enter replicating mode. 521 State->Instance = VPIteration(0, 0); 522 523 for (unsigned Part = 0, UF = State->UF; Part < UF; ++Part) { 524 State->Instance->Part = Part; 525 assert(!State->VF.isScalable() && "VF is assumed to be non scalable."); 526 for (unsigned Lane = 0, VF = State->VF.getKnownMinValue(); Lane < VF; 527 ++Lane) { 528 State->Instance->Lane = VPLane(Lane, VPLane::Kind::First); 529 // Visit the VPBlocks connected to \p this, starting from it. 530 for (VPBlockBase *Block : RPOT) { 531 LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n'); 532 Block->execute(State); 533 } 534 } 535 } 536 537 // Exit replicating mode. 538 State->Instance.reset(); 539 } 540 541 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 542 void VPRegionBlock::print(raw_ostream &O, const Twine &Indent, 543 VPSlotTracker &SlotTracker) const { 544 O << Indent << (isReplicator() ? "<xVFxUF> " : "<x1> ") << getName() << ": {"; 545 auto NewIndent = Indent + " "; 546 for (auto *BlockBase : depth_first(Entry)) { 547 O << '\n'; 548 BlockBase->print(O, NewIndent, SlotTracker); 549 } 550 O << Indent << "}\n"; 551 552 printSuccessors(O, Indent); 553 } 554 #endif 555 556 bool VPRecipeBase::mayWriteToMemory() const { 557 switch (getVPDefID()) { 558 case VPWidenMemoryInstructionSC: { 559 return cast<VPWidenMemoryInstructionRecipe>(this)->isStore(); 560 } 561 case VPReplicateSC: 562 case VPWidenCallSC: 563 return cast<Instruction>(getVPSingleValue()->getUnderlyingValue()) 564 ->mayWriteToMemory(); 565 case VPBranchOnMaskSC: 566 return false; 567 case VPWidenIntOrFpInductionSC: 568 case VPWidenCanonicalIVSC: 569 case VPWidenPHISC: 570 case VPBlendSC: 571 case VPWidenSC: 572 case VPWidenGEPSC: 573 case VPReductionSC: 574 case VPWidenSelectSC: { 575 const Instruction *I = 576 dyn_cast_or_null<Instruction>(getVPSingleValue()->getUnderlyingValue()); 577 (void)I; 578 assert((!I || !I->mayWriteToMemory()) && 579 "underlying instruction may write to memory"); 580 return false; 581 } 582 default: 583 return true; 584 } 585 } 586 587 bool VPRecipeBase::mayReadFromMemory() const { 588 switch (getVPDefID()) { 589 case VPWidenMemoryInstructionSC: { 590 return !cast<VPWidenMemoryInstructionRecipe>(this)->isStore(); 591 } 592 case VPReplicateSC: 593 case VPWidenCallSC: 594 return cast<Instruction>(getVPSingleValue()->getUnderlyingValue()) 595 ->mayReadFromMemory(); 596 case VPBranchOnMaskSC: 597 return false; 598 case VPWidenIntOrFpInductionSC: 599 case VPWidenCanonicalIVSC: 600 case VPWidenPHISC: 601 case VPBlendSC: 602 case VPWidenSC: 603 case VPWidenGEPSC: 604 case VPReductionSC: 605 case VPWidenSelectSC: { 606 const Instruction *I = 607 dyn_cast_or_null<Instruction>(getVPSingleValue()->getUnderlyingValue()); 608 (void)I; 609 assert((!I || !I->mayReadFromMemory()) && 610 "underlying instruction may read from memory"); 611 return false; 612 } 613 default: 614 return true; 615 } 616 } 617 618 bool VPRecipeBase::mayHaveSideEffects() const { 619 switch (getVPDefID()) { 620 case VPBranchOnMaskSC: 621 return false; 622 case VPWidenIntOrFpInductionSC: 623 case VPWidenPointerInductionSC: 624 case VPWidenCanonicalIVSC: 625 case VPWidenPHISC: 626 case VPBlendSC: 627 case VPWidenSC: 628 case VPWidenGEPSC: 629 case VPReductionSC: 630 case VPWidenSelectSC: 631 case VPScalarIVStepsSC: { 632 const Instruction *I = 633 dyn_cast_or_null<Instruction>(getVPSingleValue()->getUnderlyingValue()); 634 (void)I; 635 assert((!I || !I->mayHaveSideEffects()) && 636 "underlying instruction has side-effects"); 637 return false; 638 } 639 case VPReplicateSC: { 640 auto *R = cast<VPReplicateRecipe>(this); 641 return R->getUnderlyingInstr()->mayHaveSideEffects(); 642 } 643 default: 644 return true; 645 } 646 } 647 648 void VPRecipeBase::insertBefore(VPRecipeBase *InsertPos) { 649 assert(!Parent && "Recipe already in some VPBasicBlock"); 650 assert(InsertPos->getParent() && 651 "Insertion position not in any VPBasicBlock"); 652 Parent = InsertPos->getParent(); 653 Parent->getRecipeList().insert(InsertPos->getIterator(), this); 654 } 655 656 void VPRecipeBase::insertBefore(VPBasicBlock &BB, 657 iplist<VPRecipeBase>::iterator I) { 658 assert(!Parent && "Recipe already in some VPBasicBlock"); 659 assert(I == BB.end() || I->getParent() == &BB); 660 Parent = &BB; 661 BB.getRecipeList().insert(I, this); 662 } 663 664 void VPRecipeBase::insertAfter(VPRecipeBase *InsertPos) { 665 assert(!Parent && "Recipe already in some VPBasicBlock"); 666 assert(InsertPos->getParent() && 667 "Insertion position not in any VPBasicBlock"); 668 Parent = InsertPos->getParent(); 669 Parent->getRecipeList().insertAfter(InsertPos->getIterator(), this); 670 } 671 672 void VPRecipeBase::removeFromParent() { 673 assert(getParent() && "Recipe not in any VPBasicBlock"); 674 getParent()->getRecipeList().remove(getIterator()); 675 Parent = nullptr; 676 } 677 678 iplist<VPRecipeBase>::iterator VPRecipeBase::eraseFromParent() { 679 assert(getParent() && "Recipe not in any VPBasicBlock"); 680 return getParent()->getRecipeList().erase(getIterator()); 681 } 682 683 void VPRecipeBase::moveAfter(VPRecipeBase *InsertPos) { 684 removeFromParent(); 685 insertAfter(InsertPos); 686 } 687 688 void VPRecipeBase::moveBefore(VPBasicBlock &BB, 689 iplist<VPRecipeBase>::iterator I) { 690 removeFromParent(); 691 insertBefore(BB, I); 692 } 693 694 void VPInstruction::generateInstruction(VPTransformState &State, 695 unsigned Part) { 696 IRBuilderBase &Builder = State.Builder; 697 Builder.SetCurrentDebugLocation(DL); 698 699 if (Instruction::isBinaryOp(getOpcode())) { 700 Value *A = State.get(getOperand(0), Part); 701 Value *B = State.get(getOperand(1), Part); 702 Value *V = Builder.CreateBinOp((Instruction::BinaryOps)getOpcode(), A, B); 703 State.set(this, V, Part); 704 return; 705 } 706 707 switch (getOpcode()) { 708 case VPInstruction::Not: { 709 Value *A = State.get(getOperand(0), Part); 710 Value *V = Builder.CreateNot(A); 711 State.set(this, V, Part); 712 break; 713 } 714 case VPInstruction::ICmpULE: { 715 Value *IV = State.get(getOperand(0), Part); 716 Value *TC = State.get(getOperand(1), Part); 717 Value *V = Builder.CreateICmpULE(IV, TC); 718 State.set(this, V, Part); 719 break; 720 } 721 case Instruction::Select: { 722 Value *Cond = State.get(getOperand(0), Part); 723 Value *Op1 = State.get(getOperand(1), Part); 724 Value *Op2 = State.get(getOperand(2), Part); 725 Value *V = Builder.CreateSelect(Cond, Op1, Op2); 726 State.set(this, V, Part); 727 break; 728 } 729 case VPInstruction::ActiveLaneMask: { 730 // Get first lane of vector induction variable. 731 Value *VIVElem0 = State.get(getOperand(0), VPIteration(Part, 0)); 732 // Get the original loop tripcount. 733 Value *ScalarTC = State.get(getOperand(1), Part); 734 735 auto *Int1Ty = Type::getInt1Ty(Builder.getContext()); 736 auto *PredTy = VectorType::get(Int1Ty, State.VF); 737 Instruction *Call = Builder.CreateIntrinsic( 738 Intrinsic::get_active_lane_mask, {PredTy, ScalarTC->getType()}, 739 {VIVElem0, ScalarTC}, nullptr, "active.lane.mask"); 740 State.set(this, Call, Part); 741 break; 742 } 743 case VPInstruction::FirstOrderRecurrenceSplice: { 744 // Generate code to combine the previous and current values in vector v3. 745 // 746 // vector.ph: 747 // v_init = vector(..., ..., ..., a[-1]) 748 // br vector.body 749 // 750 // vector.body 751 // i = phi [0, vector.ph], [i+4, vector.body] 752 // v1 = phi [v_init, vector.ph], [v2, vector.body] 753 // v2 = a[i, i+1, i+2, i+3]; 754 // v3 = vector(v1(3), v2(0, 1, 2)) 755 756 // For the first part, use the recurrence phi (v1), otherwise v2. 757 auto *V1 = State.get(getOperand(0), 0); 758 Value *PartMinus1 = Part == 0 ? V1 : State.get(getOperand(1), Part - 1); 759 if (!PartMinus1->getType()->isVectorTy()) { 760 State.set(this, PartMinus1, Part); 761 } else { 762 Value *V2 = State.get(getOperand(1), Part); 763 State.set(this, Builder.CreateVectorSplice(PartMinus1, V2, -1), Part); 764 } 765 break; 766 } 767 768 case VPInstruction::CanonicalIVIncrement: 769 case VPInstruction::CanonicalIVIncrementNUW: { 770 Value *Next = nullptr; 771 if (Part == 0) { 772 bool IsNUW = getOpcode() == VPInstruction::CanonicalIVIncrementNUW; 773 auto *Phi = State.get(getOperand(0), 0); 774 // The loop step is equal to the vectorization factor (num of SIMD 775 // elements) times the unroll factor (num of SIMD instructions). 776 Value *Step = 777 createStepForVF(Builder, Phi->getType(), State.VF, State.UF); 778 Next = Builder.CreateAdd(Phi, Step, "index.next", IsNUW, false); 779 } else { 780 Next = State.get(this, 0); 781 } 782 783 State.set(this, Next, Part); 784 break; 785 } 786 case VPInstruction::BranchOnCount: { 787 if (Part != 0) 788 break; 789 // First create the compare. 790 Value *IV = State.get(getOperand(0), Part); 791 Value *TC = State.get(getOperand(1), Part); 792 Value *Cond = Builder.CreateICmpEQ(IV, TC); 793 794 // Now create the branch. 795 auto *Plan = getParent()->getPlan(); 796 VPRegionBlock *TopRegion = Plan->getVectorLoopRegion(); 797 VPBasicBlock *Header = TopRegion->getEntry()->getEntryBasicBlock(); 798 if (Header->empty()) { 799 assert(EnableVPlanNativePath && 800 "empty entry block only expected in VPlanNativePath"); 801 Header = cast<VPBasicBlock>(Header->getSingleSuccessor()); 802 } 803 // TODO: Once the exit block is modeled in VPlan, use it instead of going 804 // through State.CFG.ExitBB. 805 BasicBlock *Exit = State.CFG.ExitBB; 806 807 Builder.CreateCondBr(Cond, Exit, State.CFG.VPBB2IRBB[Header]); 808 Builder.GetInsertBlock()->getTerminator()->eraseFromParent(); 809 break; 810 } 811 default: 812 llvm_unreachable("Unsupported opcode for instruction"); 813 } 814 } 815 816 void VPInstruction::execute(VPTransformState &State) { 817 assert(!State.Instance && "VPInstruction executing an Instance"); 818 IRBuilderBase::FastMathFlagGuard FMFGuard(State.Builder); 819 State.Builder.setFastMathFlags(FMF); 820 for (unsigned Part = 0; Part < State.UF; ++Part) 821 generateInstruction(State, Part); 822 } 823 824 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 825 void VPInstruction::dump() const { 826 VPSlotTracker SlotTracker(getParent()->getPlan()); 827 print(dbgs(), "", SlotTracker); 828 } 829 830 void VPInstruction::print(raw_ostream &O, const Twine &Indent, 831 VPSlotTracker &SlotTracker) const { 832 O << Indent << "EMIT "; 833 834 if (hasResult()) { 835 printAsOperand(O, SlotTracker); 836 O << " = "; 837 } 838 839 switch (getOpcode()) { 840 case VPInstruction::Not: 841 O << "not"; 842 break; 843 case VPInstruction::ICmpULE: 844 O << "icmp ule"; 845 break; 846 case VPInstruction::SLPLoad: 847 O << "combined load"; 848 break; 849 case VPInstruction::SLPStore: 850 O << "combined store"; 851 break; 852 case VPInstruction::ActiveLaneMask: 853 O << "active lane mask"; 854 break; 855 case VPInstruction::FirstOrderRecurrenceSplice: 856 O << "first-order splice"; 857 break; 858 case VPInstruction::CanonicalIVIncrement: 859 O << "VF * UF + "; 860 break; 861 case VPInstruction::CanonicalIVIncrementNUW: 862 O << "VF * UF +(nuw) "; 863 break; 864 case VPInstruction::BranchOnCount: 865 O << "branch-on-count "; 866 break; 867 default: 868 O << Instruction::getOpcodeName(getOpcode()); 869 } 870 871 O << FMF; 872 873 for (const VPValue *Operand : operands()) { 874 O << " "; 875 Operand->printAsOperand(O, SlotTracker); 876 } 877 878 if (DL) { 879 O << ", !dbg "; 880 DL.print(O); 881 } 882 } 883 #endif 884 885 void VPInstruction::setFastMathFlags(FastMathFlags FMFNew) { 886 // Make sure the VPInstruction is a floating-point operation. 887 assert((Opcode == Instruction::FAdd || Opcode == Instruction::FMul || 888 Opcode == Instruction::FNeg || Opcode == Instruction::FSub || 889 Opcode == Instruction::FDiv || Opcode == Instruction::FRem || 890 Opcode == Instruction::FCmp) && 891 "this op can't take fast-math flags"); 892 FMF = FMFNew; 893 } 894 895 void VPlan::prepareToExecute(Value *TripCountV, Value *VectorTripCountV, 896 Value *CanonicalIVStartValue, 897 VPTransformState &State) { 898 // Check if the trip count is needed, and if so build it. 899 if (TripCount && TripCount->getNumUsers()) { 900 for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part) 901 State.set(TripCount, TripCountV, Part); 902 } 903 904 // Check if the backedge taken count is needed, and if so build it. 905 if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) { 906 IRBuilder<> Builder(State.CFG.PrevBB->getTerminator()); 907 auto *TCMO = Builder.CreateSub(TripCountV, 908 ConstantInt::get(TripCountV->getType(), 1), 909 "trip.count.minus.1"); 910 auto VF = State.VF; 911 Value *VTCMO = 912 VF.isScalar() ? TCMO : Builder.CreateVectorSplat(VF, TCMO, "broadcast"); 913 for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part) 914 State.set(BackedgeTakenCount, VTCMO, Part); 915 } 916 917 for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part) 918 State.set(&VectorTripCount, VectorTripCountV, Part); 919 920 // When vectorizing the epilogue loop, the canonical induction start value 921 // needs to be changed from zero to the value after the main vector loop. 922 if (CanonicalIVStartValue) { 923 VPValue *VPV = getOrAddExternalDef(CanonicalIVStartValue); 924 auto *IV = getCanonicalIV(); 925 assert(all_of(IV->users(), 926 [](const VPUser *U) { 927 if (isa<VPScalarIVStepsRecipe>(U)) 928 return true; 929 auto *VPI = cast<VPInstruction>(U); 930 return VPI->getOpcode() == 931 VPInstruction::CanonicalIVIncrement || 932 VPI->getOpcode() == 933 VPInstruction::CanonicalIVIncrementNUW; 934 }) && 935 "the canonical IV should only be used by its increments or " 936 "ScalarIVSteps when " 937 "resetting the start value"); 938 IV->setOperand(0, VPV); 939 } 940 } 941 942 /// Generate the code inside the preheader and body of the vectorized loop. 943 /// Assumes a single pre-header basic-block was created for this. Introduce 944 /// additional basic-blocks as needed, and fill them all. 945 void VPlan::execute(VPTransformState *State) { 946 // Set the reverse mapping from VPValues to Values for code generation. 947 for (auto &Entry : Value2VPValue) 948 State->VPValue2Value[Entry.second] = Entry.first; 949 950 // Initialize CFG state. 951 State->CFG.PrevVPBB = nullptr; 952 State->CFG.ExitBB = State->CFG.PrevBB->getSingleSuccessor(); 953 BasicBlock *VectorPreHeader = State->CFG.PrevBB; 954 State->Builder.SetInsertPoint(VectorPreHeader->getTerminator()); 955 956 // Generate code in the loop pre-header and body. 957 for (VPBlockBase *Block : depth_first(Entry)) 958 Block->execute(State); 959 960 // Setup branch terminator successors for VPBBs in VPBBsToFix based on 961 // VPBB's successors. 962 for (auto VPBB : State->CFG.VPBBsToFix) { 963 assert(EnableVPlanNativePath && 964 "Unexpected VPBBsToFix in non VPlan-native path"); 965 BasicBlock *BB = State->CFG.VPBB2IRBB[VPBB]; 966 assert(BB && "Unexpected null basic block for VPBB"); 967 968 unsigned Idx = 0; 969 auto *BBTerminator = BB->getTerminator(); 970 971 for (VPBlockBase *SuccVPBlock : VPBB->getHierarchicalSuccessors()) { 972 VPBasicBlock *SuccVPBB = SuccVPBlock->getEntryBasicBlock(); 973 BBTerminator->setSuccessor(Idx, State->CFG.VPBB2IRBB[SuccVPBB]); 974 ++Idx; 975 } 976 } 977 978 VPBasicBlock *LatchVPBB = getVectorLoopRegion()->getExitBasicBlock(); 979 BasicBlock *VectorLatchBB = State->CFG.VPBB2IRBB[LatchVPBB]; 980 981 // Fix the latch value of canonical, reduction and first-order recurrences 982 // phis in the vector loop. 983 VPBasicBlock *Header = getVectorLoopRegion()->getEntryBasicBlock(); 984 for (VPRecipeBase &R : Header->phis()) { 985 // Skip phi-like recipes that generate their backedege values themselves. 986 if (isa<VPWidenPHIRecipe>(&R)) 987 continue; 988 989 if (isa<VPWidenPointerInductionRecipe>(&R) || 990 isa<VPWidenIntOrFpInductionRecipe>(&R)) { 991 PHINode *Phi = nullptr; 992 if (isa<VPWidenIntOrFpInductionRecipe>(&R)) { 993 Phi = cast<PHINode>(State->get(R.getVPSingleValue(), 0)); 994 } else { 995 auto *WidenPhi = cast<VPWidenPointerInductionRecipe>(&R); 996 // TODO: Split off the case that all users of a pointer phi are scalar 997 // from the VPWidenPointerInductionRecipe. 998 if (all_of(WidenPhi->users(), [WidenPhi](const VPUser *U) { 999 return cast<VPRecipeBase>(U)->usesScalars(WidenPhi); 1000 })) 1001 continue; 1002 1003 auto *GEP = cast<GetElementPtrInst>(State->get(WidenPhi, 0)); 1004 Phi = cast<PHINode>(GEP->getPointerOperand()); 1005 } 1006 1007 Phi->setIncomingBlock(1, VectorLatchBB); 1008 1009 // Move the last step to the end of the latch block. This ensures 1010 // consistent placement of all induction updates. 1011 Instruction *Inc = cast<Instruction>(Phi->getIncomingValue(1)); 1012 Inc->moveBefore(VectorLatchBB->getTerminator()->getPrevNode()); 1013 continue; 1014 } 1015 1016 auto *PhiR = cast<VPHeaderPHIRecipe>(&R); 1017 // For canonical IV, first-order recurrences and in-order reduction phis, 1018 // only a single part is generated, which provides the last part from the 1019 // previous iteration. For non-ordered reductions all UF parts are 1020 // generated. 1021 bool SinglePartNeeded = isa<VPCanonicalIVPHIRecipe>(PhiR) || 1022 isa<VPFirstOrderRecurrencePHIRecipe>(PhiR) || 1023 cast<VPReductionPHIRecipe>(PhiR)->isOrdered(); 1024 unsigned LastPartForNewPhi = SinglePartNeeded ? 1 : State->UF; 1025 1026 for (unsigned Part = 0; Part < LastPartForNewPhi; ++Part) { 1027 Value *Phi = State->get(PhiR, Part); 1028 Value *Val = State->get(PhiR->getBackedgeValue(), 1029 SinglePartNeeded ? State->UF - 1 : Part); 1030 cast<PHINode>(Phi)->addIncoming(Val, VectorLatchBB); 1031 } 1032 } 1033 1034 // We do not attempt to preserve DT for outer loop vectorization currently. 1035 if (!EnableVPlanNativePath) { 1036 BasicBlock *VectorHeaderBB = State->CFG.VPBB2IRBB[Header]; 1037 State->DT->addNewBlock(VectorHeaderBB, VectorPreHeader); 1038 updateDominatorTree(State->DT, VectorHeaderBB, VectorLatchBB, 1039 State->CFG.ExitBB); 1040 } 1041 } 1042 1043 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1044 LLVM_DUMP_METHOD 1045 void VPlan::print(raw_ostream &O) const { 1046 VPSlotTracker SlotTracker(this); 1047 1048 O << "VPlan '" << Name << "' {"; 1049 1050 if (VectorTripCount.getNumUsers() > 0) { 1051 O << "\nLive-in "; 1052 VectorTripCount.printAsOperand(O, SlotTracker); 1053 O << " = vector-trip-count\n"; 1054 } 1055 1056 if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) { 1057 O << "\nLive-in "; 1058 BackedgeTakenCount->printAsOperand(O, SlotTracker); 1059 O << " = backedge-taken count\n"; 1060 } 1061 1062 for (const VPBlockBase *Block : depth_first(getEntry())) { 1063 O << '\n'; 1064 Block->print(O, "", SlotTracker); 1065 } 1066 O << "}\n"; 1067 } 1068 1069 LLVM_DUMP_METHOD 1070 void VPlan::printDOT(raw_ostream &O) const { 1071 VPlanPrinter Printer(O, *this); 1072 Printer.dump(); 1073 } 1074 1075 LLVM_DUMP_METHOD 1076 void VPlan::dump() const { print(dbgs()); } 1077 #endif 1078 1079 void VPlan::updateDominatorTree(DominatorTree *DT, BasicBlock *LoopHeaderBB, 1080 BasicBlock *LoopLatchBB, 1081 BasicBlock *LoopExitBB) { 1082 // The vector body may be more than a single basic-block by this point. 1083 // Update the dominator tree information inside the vector body by propagating 1084 // it from header to latch, expecting only triangular control-flow, if any. 1085 BasicBlock *PostDomSucc = nullptr; 1086 for (auto *BB = LoopHeaderBB; BB != LoopLatchBB; BB = PostDomSucc) { 1087 // Get the list of successors of this block. 1088 std::vector<BasicBlock *> Succs(succ_begin(BB), succ_end(BB)); 1089 assert(Succs.size() <= 2 && 1090 "Basic block in vector loop has more than 2 successors."); 1091 PostDomSucc = Succs[0]; 1092 if (Succs.size() == 1) { 1093 assert(PostDomSucc->getSinglePredecessor() && 1094 "PostDom successor has more than one predecessor."); 1095 DT->addNewBlock(PostDomSucc, BB); 1096 continue; 1097 } 1098 BasicBlock *InterimSucc = Succs[1]; 1099 if (PostDomSucc->getSingleSuccessor() == InterimSucc) { 1100 PostDomSucc = Succs[1]; 1101 InterimSucc = Succs[0]; 1102 } 1103 assert(InterimSucc->getSingleSuccessor() == PostDomSucc && 1104 "One successor of a basic block does not lead to the other."); 1105 assert(InterimSucc->getSinglePredecessor() && 1106 "Interim successor has more than one predecessor."); 1107 assert(PostDomSucc->hasNPredecessors(2) && 1108 "PostDom successor has more than two predecessors."); 1109 DT->addNewBlock(InterimSucc, BB); 1110 DT->addNewBlock(PostDomSucc, BB); 1111 } 1112 // Latch block is a new dominator for the loop exit. 1113 DT->changeImmediateDominator(LoopExitBB, LoopLatchBB); 1114 assert(DT->verify(DominatorTree::VerificationLevel::Fast)); 1115 } 1116 1117 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1118 Twine VPlanPrinter::getUID(const VPBlockBase *Block) { 1119 return (isa<VPRegionBlock>(Block) ? "cluster_N" : "N") + 1120 Twine(getOrCreateBID(Block)); 1121 } 1122 1123 Twine VPlanPrinter::getOrCreateName(const VPBlockBase *Block) { 1124 const std::string &Name = Block->getName(); 1125 if (!Name.empty()) 1126 return Name; 1127 return "VPB" + Twine(getOrCreateBID(Block)); 1128 } 1129 1130 void VPlanPrinter::dump() { 1131 Depth = 1; 1132 bumpIndent(0); 1133 OS << "digraph VPlan {\n"; 1134 OS << "graph [labelloc=t, fontsize=30; label=\"Vectorization Plan"; 1135 if (!Plan.getName().empty()) 1136 OS << "\\n" << DOT::EscapeString(Plan.getName()); 1137 if (Plan.BackedgeTakenCount) { 1138 OS << ", where:\\n"; 1139 Plan.BackedgeTakenCount->print(OS, SlotTracker); 1140 OS << " := BackedgeTakenCount"; 1141 } 1142 OS << "\"]\n"; 1143 OS << "node [shape=rect, fontname=Courier, fontsize=30]\n"; 1144 OS << "edge [fontname=Courier, fontsize=30]\n"; 1145 OS << "compound=true\n"; 1146 1147 for (const VPBlockBase *Block : depth_first(Plan.getEntry())) 1148 dumpBlock(Block); 1149 1150 OS << "}\n"; 1151 } 1152 1153 void VPlanPrinter::dumpBlock(const VPBlockBase *Block) { 1154 if (const VPBasicBlock *BasicBlock = dyn_cast<VPBasicBlock>(Block)) 1155 dumpBasicBlock(BasicBlock); 1156 else if (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 1157 dumpRegion(Region); 1158 else 1159 llvm_unreachable("Unsupported kind of VPBlock."); 1160 } 1161 1162 void VPlanPrinter::drawEdge(const VPBlockBase *From, const VPBlockBase *To, 1163 bool Hidden, const Twine &Label) { 1164 // Due to "dot" we print an edge between two regions as an edge between the 1165 // exit basic block and the entry basic of the respective regions. 1166 const VPBlockBase *Tail = From->getExitBasicBlock(); 1167 const VPBlockBase *Head = To->getEntryBasicBlock(); 1168 OS << Indent << getUID(Tail) << " -> " << getUID(Head); 1169 OS << " [ label=\"" << Label << '\"'; 1170 if (Tail != From) 1171 OS << " ltail=" << getUID(From); 1172 if (Head != To) 1173 OS << " lhead=" << getUID(To); 1174 if (Hidden) 1175 OS << "; splines=none"; 1176 OS << "]\n"; 1177 } 1178 1179 void VPlanPrinter::dumpEdges(const VPBlockBase *Block) { 1180 auto &Successors = Block->getSuccessors(); 1181 if (Successors.size() == 1) 1182 drawEdge(Block, Successors.front(), false, ""); 1183 else if (Successors.size() == 2) { 1184 drawEdge(Block, Successors.front(), false, "T"); 1185 drawEdge(Block, Successors.back(), false, "F"); 1186 } else { 1187 unsigned SuccessorNumber = 0; 1188 for (auto *Successor : Successors) 1189 drawEdge(Block, Successor, false, Twine(SuccessorNumber++)); 1190 } 1191 } 1192 1193 void VPlanPrinter::dumpBasicBlock(const VPBasicBlock *BasicBlock) { 1194 // Implement dot-formatted dump by performing plain-text dump into the 1195 // temporary storage followed by some post-processing. 1196 OS << Indent << getUID(BasicBlock) << " [label =\n"; 1197 bumpIndent(1); 1198 std::string Str; 1199 raw_string_ostream SS(Str); 1200 // Use no indentation as we need to wrap the lines into quotes ourselves. 1201 BasicBlock->print(SS, "", SlotTracker); 1202 1203 // We need to process each line of the output separately, so split 1204 // single-string plain-text dump. 1205 SmallVector<StringRef, 0> Lines; 1206 StringRef(Str).rtrim('\n').split(Lines, "\n"); 1207 1208 auto EmitLine = [&](StringRef Line, StringRef Suffix) { 1209 OS << Indent << '"' << DOT::EscapeString(Line.str()) << "\\l\"" << Suffix; 1210 }; 1211 1212 // Don't need the "+" after the last line. 1213 for (auto Line : make_range(Lines.begin(), Lines.end() - 1)) 1214 EmitLine(Line, " +\n"); 1215 EmitLine(Lines.back(), "\n"); 1216 1217 bumpIndent(-1); 1218 OS << Indent << "]\n"; 1219 1220 dumpEdges(BasicBlock); 1221 } 1222 1223 void VPlanPrinter::dumpRegion(const VPRegionBlock *Region) { 1224 OS << Indent << "subgraph " << getUID(Region) << " {\n"; 1225 bumpIndent(1); 1226 OS << Indent << "fontname=Courier\n" 1227 << Indent << "label=\"" 1228 << DOT::EscapeString(Region->isReplicator() ? "<xVFxUF> " : "<x1> ") 1229 << DOT::EscapeString(Region->getName()) << "\"\n"; 1230 // Dump the blocks of the region. 1231 assert(Region->getEntry() && "Region contains no inner blocks."); 1232 for (const VPBlockBase *Block : depth_first(Region->getEntry())) 1233 dumpBlock(Block); 1234 bumpIndent(-1); 1235 OS << Indent << "}\n"; 1236 dumpEdges(Region); 1237 } 1238 1239 void VPlanIngredient::print(raw_ostream &O) const { 1240 if (auto *Inst = dyn_cast<Instruction>(V)) { 1241 if (!Inst->getType()->isVoidTy()) { 1242 Inst->printAsOperand(O, false); 1243 O << " = "; 1244 } 1245 O << Inst->getOpcodeName() << " "; 1246 unsigned E = Inst->getNumOperands(); 1247 if (E > 0) { 1248 Inst->getOperand(0)->printAsOperand(O, false); 1249 for (unsigned I = 1; I < E; ++I) 1250 Inst->getOperand(I)->printAsOperand(O << ", ", false); 1251 } 1252 } else // !Inst 1253 V->printAsOperand(O, false); 1254 } 1255 1256 void VPWidenCallRecipe::print(raw_ostream &O, const Twine &Indent, 1257 VPSlotTracker &SlotTracker) const { 1258 O << Indent << "WIDEN-CALL "; 1259 1260 auto *CI = cast<CallInst>(getUnderlyingInstr()); 1261 if (CI->getType()->isVoidTy()) 1262 O << "void "; 1263 else { 1264 printAsOperand(O, SlotTracker); 1265 O << " = "; 1266 } 1267 1268 O << "call @" << CI->getCalledFunction()->getName() << "("; 1269 printOperands(O, SlotTracker); 1270 O << ")"; 1271 } 1272 1273 void VPWidenSelectRecipe::print(raw_ostream &O, const Twine &Indent, 1274 VPSlotTracker &SlotTracker) const { 1275 O << Indent << "WIDEN-SELECT "; 1276 printAsOperand(O, SlotTracker); 1277 O << " = select "; 1278 getOperand(0)->printAsOperand(O, SlotTracker); 1279 O << ", "; 1280 getOperand(1)->printAsOperand(O, SlotTracker); 1281 O << ", "; 1282 getOperand(2)->printAsOperand(O, SlotTracker); 1283 O << (InvariantCond ? " (condition is loop invariant)" : ""); 1284 } 1285 1286 void VPWidenRecipe::print(raw_ostream &O, const Twine &Indent, 1287 VPSlotTracker &SlotTracker) const { 1288 O << Indent << "WIDEN "; 1289 printAsOperand(O, SlotTracker); 1290 O << " = " << getUnderlyingInstr()->getOpcodeName() << " "; 1291 printOperands(O, SlotTracker); 1292 } 1293 1294 void VPWidenIntOrFpInductionRecipe::print(raw_ostream &O, const Twine &Indent, 1295 VPSlotTracker &SlotTracker) const { 1296 O << Indent << "WIDEN-INDUCTION"; 1297 if (getTruncInst()) { 1298 O << "\\l\""; 1299 O << " +\n" << Indent << "\" " << VPlanIngredient(IV) << "\\l\""; 1300 O << " +\n" << Indent << "\" "; 1301 getVPValue(0)->printAsOperand(O, SlotTracker); 1302 } else 1303 O << " " << VPlanIngredient(IV); 1304 1305 O << ", "; 1306 getStepValue()->printAsOperand(O, SlotTracker); 1307 } 1308 1309 void VPWidenPointerInductionRecipe::print(raw_ostream &O, const Twine &Indent, 1310 VPSlotTracker &SlotTracker) const { 1311 O << Indent << "EMIT "; 1312 printAsOperand(O, SlotTracker); 1313 O << " = WIDEN-POINTER-INDUCTION "; 1314 getStartValue()->printAsOperand(O, SlotTracker); 1315 O << ", " << *IndDesc.getStep(); 1316 } 1317 1318 #endif 1319 1320 bool VPWidenIntOrFpInductionRecipe::isCanonical() const { 1321 auto *StartC = dyn_cast<ConstantInt>(getStartValue()->getLiveInIRValue()); 1322 auto *StepC = dyn_cast<SCEVConstant>(getInductionDescriptor().getStep()); 1323 return StartC && StartC->isZero() && StepC && StepC->isOne(); 1324 } 1325 1326 VPCanonicalIVPHIRecipe *VPScalarIVStepsRecipe::getCanonicalIV() const { 1327 return cast<VPCanonicalIVPHIRecipe>(getOperand(0)); 1328 } 1329 1330 bool VPScalarIVStepsRecipe::isCanonical() const { 1331 auto *CanIV = getCanonicalIV(); 1332 // The start value of the steps-recipe must match the start value of the 1333 // canonical induction and it must step by 1. 1334 if (CanIV->getStartValue() != getStartValue()) 1335 return false; 1336 auto *StepVPV = getStepValue(); 1337 if (StepVPV->getDef()) 1338 return false; 1339 auto *StepC = dyn_cast_or_null<ConstantInt>(StepVPV->getLiveInIRValue()); 1340 return StepC && StepC->isOne(); 1341 } 1342 1343 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1344 void VPScalarIVStepsRecipe::print(raw_ostream &O, const Twine &Indent, 1345 VPSlotTracker &SlotTracker) const { 1346 O << Indent; 1347 printAsOperand(O, SlotTracker); 1348 O << Indent << "= SCALAR-STEPS "; 1349 printOperands(O, SlotTracker); 1350 } 1351 1352 void VPWidenGEPRecipe::print(raw_ostream &O, const Twine &Indent, 1353 VPSlotTracker &SlotTracker) const { 1354 O << Indent << "WIDEN-GEP "; 1355 O << (IsPtrLoopInvariant ? "Inv" : "Var"); 1356 size_t IndicesNumber = IsIndexLoopInvariant.size(); 1357 for (size_t I = 0; I < IndicesNumber; ++I) 1358 O << "[" << (IsIndexLoopInvariant[I] ? "Inv" : "Var") << "]"; 1359 1360 O << " "; 1361 printAsOperand(O, SlotTracker); 1362 O << " = getelementptr "; 1363 printOperands(O, SlotTracker); 1364 } 1365 1366 void VPWidenPHIRecipe::print(raw_ostream &O, const Twine &Indent, 1367 VPSlotTracker &SlotTracker) const { 1368 O << Indent << "WIDEN-PHI "; 1369 1370 auto *OriginalPhi = cast<PHINode>(getUnderlyingValue()); 1371 // Unless all incoming values are modeled in VPlan print the original PHI 1372 // directly. 1373 // TODO: Remove once all VPWidenPHIRecipe instances keep all relevant incoming 1374 // values as VPValues. 1375 if (getNumOperands() != OriginalPhi->getNumOperands()) { 1376 O << VPlanIngredient(OriginalPhi); 1377 return; 1378 } 1379 1380 printAsOperand(O, SlotTracker); 1381 O << " = phi "; 1382 printOperands(O, SlotTracker); 1383 } 1384 1385 void VPBlendRecipe::print(raw_ostream &O, const Twine &Indent, 1386 VPSlotTracker &SlotTracker) const { 1387 O << Indent << "BLEND "; 1388 Phi->printAsOperand(O, false); 1389 O << " ="; 1390 if (getNumIncomingValues() == 1) { 1391 // Not a User of any mask: not really blending, this is a 1392 // single-predecessor phi. 1393 O << " "; 1394 getIncomingValue(0)->printAsOperand(O, SlotTracker); 1395 } else { 1396 for (unsigned I = 0, E = getNumIncomingValues(); I < E; ++I) { 1397 O << " "; 1398 getIncomingValue(I)->printAsOperand(O, SlotTracker); 1399 O << "/"; 1400 getMask(I)->printAsOperand(O, SlotTracker); 1401 } 1402 } 1403 } 1404 1405 void VPReductionRecipe::print(raw_ostream &O, const Twine &Indent, 1406 VPSlotTracker &SlotTracker) const { 1407 O << Indent << "REDUCE "; 1408 printAsOperand(O, SlotTracker); 1409 O << " = "; 1410 getChainOp()->printAsOperand(O, SlotTracker); 1411 O << " +"; 1412 if (isa<FPMathOperator>(getUnderlyingInstr())) 1413 O << getUnderlyingInstr()->getFastMathFlags(); 1414 O << " reduce." << Instruction::getOpcodeName(RdxDesc->getOpcode()) << " ("; 1415 getVecOp()->printAsOperand(O, SlotTracker); 1416 if (getCondOp()) { 1417 O << ", "; 1418 getCondOp()->printAsOperand(O, SlotTracker); 1419 } 1420 O << ")"; 1421 } 1422 1423 void VPReplicateRecipe::print(raw_ostream &O, const Twine &Indent, 1424 VPSlotTracker &SlotTracker) const { 1425 O << Indent << (IsUniform ? "CLONE " : "REPLICATE "); 1426 1427 if (!getUnderlyingInstr()->getType()->isVoidTy()) { 1428 printAsOperand(O, SlotTracker); 1429 O << " = "; 1430 } 1431 O << Instruction::getOpcodeName(getUnderlyingInstr()->getOpcode()) << " "; 1432 printOperands(O, SlotTracker); 1433 1434 if (AlsoPack) 1435 O << " (S->V)"; 1436 } 1437 1438 void VPPredInstPHIRecipe::print(raw_ostream &O, const Twine &Indent, 1439 VPSlotTracker &SlotTracker) const { 1440 O << Indent << "PHI-PREDICATED-INSTRUCTION "; 1441 printAsOperand(O, SlotTracker); 1442 O << " = "; 1443 printOperands(O, SlotTracker); 1444 } 1445 1446 void VPWidenMemoryInstructionRecipe::print(raw_ostream &O, const Twine &Indent, 1447 VPSlotTracker &SlotTracker) const { 1448 O << Indent << "WIDEN "; 1449 1450 if (!isStore()) { 1451 printAsOperand(O, SlotTracker); 1452 O << " = "; 1453 } 1454 O << Instruction::getOpcodeName(Ingredient.getOpcode()) << " "; 1455 1456 printOperands(O, SlotTracker); 1457 } 1458 #endif 1459 1460 void VPCanonicalIVPHIRecipe::execute(VPTransformState &State) { 1461 Value *Start = getStartValue()->getLiveInIRValue(); 1462 PHINode *EntryPart = PHINode::Create( 1463 Start->getType(), 2, "index", &*State.CFG.PrevBB->getFirstInsertionPt()); 1464 1465 BasicBlock *VectorPH = State.CFG.getPreheaderBBFor(this); 1466 EntryPart->addIncoming(Start, VectorPH); 1467 EntryPart->setDebugLoc(DL); 1468 for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part) 1469 State.set(this, EntryPart, Part); 1470 } 1471 1472 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1473 void VPCanonicalIVPHIRecipe::print(raw_ostream &O, const Twine &Indent, 1474 VPSlotTracker &SlotTracker) const { 1475 O << Indent << "EMIT "; 1476 printAsOperand(O, SlotTracker); 1477 O << " = CANONICAL-INDUCTION"; 1478 } 1479 #endif 1480 1481 void VPExpandSCEVRecipe::execute(VPTransformState &State) { 1482 assert(!State.Instance && "cannot be used in per-lane"); 1483 const DataLayout &DL = State.CFG.PrevBB->getModule()->getDataLayout(); 1484 SCEVExpander Exp(SE, DL, "induction"); 1485 1486 Value *Res = Exp.expandCodeFor(Expr, Expr->getType(), 1487 &*State.Builder.GetInsertPoint()); 1488 1489 for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part) 1490 State.set(this, Res, Part); 1491 } 1492 1493 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1494 void VPExpandSCEVRecipe::print(raw_ostream &O, const Twine &Indent, 1495 VPSlotTracker &SlotTracker) const { 1496 O << Indent << "EMIT "; 1497 getVPSingleValue()->printAsOperand(O, SlotTracker); 1498 O << " = EXPAND SCEV " << *Expr; 1499 } 1500 #endif 1501 1502 void VPWidenCanonicalIVRecipe::execute(VPTransformState &State) { 1503 Value *CanonicalIV = State.get(getOperand(0), 0); 1504 Type *STy = CanonicalIV->getType(); 1505 IRBuilder<> Builder(State.CFG.PrevBB->getTerminator()); 1506 ElementCount VF = State.VF; 1507 Value *VStart = VF.isScalar() 1508 ? CanonicalIV 1509 : Builder.CreateVectorSplat(VF, CanonicalIV, "broadcast"); 1510 for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part) { 1511 Value *VStep = createStepForVF(Builder, STy, VF, Part); 1512 if (VF.isVector()) { 1513 VStep = Builder.CreateVectorSplat(VF, VStep); 1514 VStep = Builder.CreateAdd(VStep, Builder.CreateStepVector(VStep->getType())); 1515 } 1516 Value *CanonicalVectorIV = Builder.CreateAdd(VStart, VStep, "vec.iv"); 1517 State.set(this, CanonicalVectorIV, Part); 1518 } 1519 } 1520 1521 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1522 void VPWidenCanonicalIVRecipe::print(raw_ostream &O, const Twine &Indent, 1523 VPSlotTracker &SlotTracker) const { 1524 O << Indent << "EMIT "; 1525 printAsOperand(O, SlotTracker); 1526 O << " = WIDEN-CANONICAL-INDUCTION "; 1527 printOperands(O, SlotTracker); 1528 } 1529 #endif 1530 1531 void VPFirstOrderRecurrencePHIRecipe::execute(VPTransformState &State) { 1532 auto &Builder = State.Builder; 1533 // Create a vector from the initial value. 1534 auto *VectorInit = getStartValue()->getLiveInIRValue(); 1535 1536 Type *VecTy = State.VF.isScalar() 1537 ? VectorInit->getType() 1538 : VectorType::get(VectorInit->getType(), State.VF); 1539 1540 BasicBlock *VectorPH = State.CFG.getPreheaderBBFor(this); 1541 if (State.VF.isVector()) { 1542 auto *IdxTy = Builder.getInt32Ty(); 1543 auto *One = ConstantInt::get(IdxTy, 1); 1544 IRBuilder<>::InsertPointGuard Guard(Builder); 1545 Builder.SetInsertPoint(VectorPH->getTerminator()); 1546 auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, State.VF); 1547 auto *LastIdx = Builder.CreateSub(RuntimeVF, One); 1548 VectorInit = Builder.CreateInsertElement( 1549 PoisonValue::get(VecTy), VectorInit, LastIdx, "vector.recur.init"); 1550 } 1551 1552 // Create a phi node for the new recurrence. 1553 PHINode *EntryPart = PHINode::Create( 1554 VecTy, 2, "vector.recur", &*State.CFG.PrevBB->getFirstInsertionPt()); 1555 EntryPart->addIncoming(VectorInit, VectorPH); 1556 State.set(this, EntryPart, 0); 1557 } 1558 1559 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1560 void VPFirstOrderRecurrencePHIRecipe::print(raw_ostream &O, const Twine &Indent, 1561 VPSlotTracker &SlotTracker) const { 1562 O << Indent << "FIRST-ORDER-RECURRENCE-PHI "; 1563 printAsOperand(O, SlotTracker); 1564 O << " = phi "; 1565 printOperands(O, SlotTracker); 1566 } 1567 #endif 1568 1569 void VPReductionPHIRecipe::execute(VPTransformState &State) { 1570 PHINode *PN = cast<PHINode>(getUnderlyingValue()); 1571 auto &Builder = State.Builder; 1572 1573 // In order to support recurrences we need to be able to vectorize Phi nodes. 1574 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 1575 // stage #1: We create a new vector PHI node with no incoming edges. We'll use 1576 // this value when we vectorize all of the instructions that use the PHI. 1577 bool ScalarPHI = State.VF.isScalar() || IsInLoop; 1578 Type *VecTy = 1579 ScalarPHI ? PN->getType() : VectorType::get(PN->getType(), State.VF); 1580 1581 BasicBlock *HeaderBB = State.CFG.PrevBB; 1582 assert(State.CurrentVectorLoop->getHeader() == HeaderBB && 1583 "recipe must be in the vector loop header"); 1584 unsigned LastPartForNewPhi = isOrdered() ? 1 : State.UF; 1585 for (unsigned Part = 0; Part < LastPartForNewPhi; ++Part) { 1586 Value *EntryPart = 1587 PHINode::Create(VecTy, 2, "vec.phi", &*HeaderBB->getFirstInsertionPt()); 1588 State.set(this, EntryPart, Part); 1589 } 1590 1591 BasicBlock *VectorPH = State.CFG.getPreheaderBBFor(this); 1592 1593 // Reductions do not have to start at zero. They can start with 1594 // any loop invariant values. 1595 VPValue *StartVPV = getStartValue(); 1596 Value *StartV = StartVPV->getLiveInIRValue(); 1597 1598 Value *Iden = nullptr; 1599 RecurKind RK = RdxDesc.getRecurrenceKind(); 1600 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(RK) || 1601 RecurrenceDescriptor::isSelectCmpRecurrenceKind(RK)) { 1602 // MinMax reduction have the start value as their identify. 1603 if (ScalarPHI) { 1604 Iden = StartV; 1605 } else { 1606 IRBuilderBase::InsertPointGuard IPBuilder(Builder); 1607 Builder.SetInsertPoint(VectorPH->getTerminator()); 1608 StartV = Iden = 1609 Builder.CreateVectorSplat(State.VF, StartV, "minmax.ident"); 1610 } 1611 } else { 1612 Iden = RdxDesc.getRecurrenceIdentity(RK, VecTy->getScalarType(), 1613 RdxDesc.getFastMathFlags()); 1614 1615 if (!ScalarPHI) { 1616 Iden = Builder.CreateVectorSplat(State.VF, Iden); 1617 IRBuilderBase::InsertPointGuard IPBuilder(Builder); 1618 Builder.SetInsertPoint(VectorPH->getTerminator()); 1619 Constant *Zero = Builder.getInt32(0); 1620 StartV = Builder.CreateInsertElement(Iden, StartV, Zero); 1621 } 1622 } 1623 1624 for (unsigned Part = 0; Part < LastPartForNewPhi; ++Part) { 1625 Value *EntryPart = State.get(this, Part); 1626 // Make sure to add the reduction start value only to the 1627 // first unroll part. 1628 Value *StartVal = (Part == 0) ? StartV : Iden; 1629 cast<PHINode>(EntryPart)->addIncoming(StartVal, VectorPH); 1630 } 1631 } 1632 1633 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1634 void VPReductionPHIRecipe::print(raw_ostream &O, const Twine &Indent, 1635 VPSlotTracker &SlotTracker) const { 1636 O << Indent << "WIDEN-REDUCTION-PHI "; 1637 1638 printAsOperand(O, SlotTracker); 1639 O << " = phi "; 1640 printOperands(O, SlotTracker); 1641 } 1642 #endif 1643 1644 template void DomTreeBuilder::Calculate<VPDominatorTree>(VPDominatorTree &DT); 1645 1646 void VPValue::replaceAllUsesWith(VPValue *New) { 1647 for (unsigned J = 0; J < getNumUsers();) { 1648 VPUser *User = Users[J]; 1649 unsigned NumUsers = getNumUsers(); 1650 for (unsigned I = 0, E = User->getNumOperands(); I < E; ++I) 1651 if (User->getOperand(I) == this) 1652 User->setOperand(I, New); 1653 // If a user got removed after updating the current user, the next user to 1654 // update will be moved to the current position, so we only need to 1655 // increment the index if the number of users did not change. 1656 if (NumUsers == getNumUsers()) 1657 J++; 1658 } 1659 } 1660 1661 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1662 void VPValue::printAsOperand(raw_ostream &OS, VPSlotTracker &Tracker) const { 1663 if (const Value *UV = getUnderlyingValue()) { 1664 OS << "ir<"; 1665 UV->printAsOperand(OS, false); 1666 OS << ">"; 1667 return; 1668 } 1669 1670 unsigned Slot = Tracker.getSlot(this); 1671 if (Slot == unsigned(-1)) 1672 OS << "<badref>"; 1673 else 1674 OS << "vp<%" << Tracker.getSlot(this) << ">"; 1675 } 1676 1677 void VPUser::printOperands(raw_ostream &O, VPSlotTracker &SlotTracker) const { 1678 interleaveComma(operands(), O, [&O, &SlotTracker](VPValue *Op) { 1679 Op->printAsOperand(O, SlotTracker); 1680 }); 1681 } 1682 #endif 1683 1684 void VPInterleavedAccessInfo::visitRegion(VPRegionBlock *Region, 1685 Old2NewTy &Old2New, 1686 InterleavedAccessInfo &IAI) { 1687 ReversePostOrderTraversal<VPBlockBase *> RPOT(Region->getEntry()); 1688 for (VPBlockBase *Base : RPOT) { 1689 visitBlock(Base, Old2New, IAI); 1690 } 1691 } 1692 1693 void VPInterleavedAccessInfo::visitBlock(VPBlockBase *Block, Old2NewTy &Old2New, 1694 InterleavedAccessInfo &IAI) { 1695 if (VPBasicBlock *VPBB = dyn_cast<VPBasicBlock>(Block)) { 1696 for (VPRecipeBase &VPI : *VPBB) { 1697 if (isa<VPHeaderPHIRecipe>(&VPI)) 1698 continue; 1699 assert(isa<VPInstruction>(&VPI) && "Can only handle VPInstructions"); 1700 auto *VPInst = cast<VPInstruction>(&VPI); 1701 auto *Inst = cast<Instruction>(VPInst->getUnderlyingValue()); 1702 auto *IG = IAI.getInterleaveGroup(Inst); 1703 if (!IG) 1704 continue; 1705 1706 auto NewIGIter = Old2New.find(IG); 1707 if (NewIGIter == Old2New.end()) 1708 Old2New[IG] = new InterleaveGroup<VPInstruction>( 1709 IG->getFactor(), IG->isReverse(), IG->getAlign()); 1710 1711 if (Inst == IG->getInsertPos()) 1712 Old2New[IG]->setInsertPos(VPInst); 1713 1714 InterleaveGroupMap[VPInst] = Old2New[IG]; 1715 InterleaveGroupMap[VPInst]->insertMember( 1716 VPInst, IG->getIndex(Inst), 1717 Align(IG->isReverse() ? (-1) * int(IG->getFactor()) 1718 : IG->getFactor())); 1719 } 1720 } else if (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 1721 visitRegion(Region, Old2New, IAI); 1722 else 1723 llvm_unreachable("Unsupported kind of VPBlock."); 1724 } 1725 1726 VPInterleavedAccessInfo::VPInterleavedAccessInfo(VPlan &Plan, 1727 InterleavedAccessInfo &IAI) { 1728 Old2NewTy Old2New; 1729 visitRegion(Plan.getVectorLoopRegion(), Old2New, IAI); 1730 } 1731 1732 void VPSlotTracker::assignSlot(const VPValue *V) { 1733 assert(Slots.find(V) == Slots.end() && "VPValue already has a slot!"); 1734 Slots[V] = NextSlot++; 1735 } 1736 1737 void VPSlotTracker::assignSlots(const VPlan &Plan) { 1738 1739 for (const auto &P : Plan.VPExternalDefs) 1740 assignSlot(P.second); 1741 1742 assignSlot(&Plan.VectorTripCount); 1743 if (Plan.BackedgeTakenCount) 1744 assignSlot(Plan.BackedgeTakenCount); 1745 1746 ReversePostOrderTraversal< 1747 VPBlockRecursiveTraversalWrapper<const VPBlockBase *>> 1748 RPOT(VPBlockRecursiveTraversalWrapper<const VPBlockBase *>( 1749 Plan.getEntry())); 1750 for (const VPBasicBlock *VPBB : 1751 VPBlockUtils::blocksOnly<const VPBasicBlock>(RPOT)) 1752 for (const VPRecipeBase &Recipe : *VPBB) 1753 for (VPValue *Def : Recipe.definedValues()) 1754 assignSlot(Def); 1755 } 1756 1757 bool vputils::onlyFirstLaneUsed(VPValue *Def) { 1758 return all_of(Def->users(), [Def](VPUser *U) { 1759 return cast<VPRecipeBase>(U)->onlyFirstLaneUsed(Def); 1760 }); 1761 } 1762 1763 VPValue *vputils::getOrCreateVPValueForSCEVExpr(VPlan &Plan, const SCEV *Expr, 1764 ScalarEvolution &SE) { 1765 if (auto *E = dyn_cast<SCEVConstant>(Expr)) 1766 return Plan.getOrAddExternalDef(E->getValue()); 1767 if (auto *E = dyn_cast<SCEVUnknown>(Expr)) 1768 return Plan.getOrAddExternalDef(E->getValue()); 1769 1770 VPBasicBlock *Preheader = Plan.getEntry()->getEntryBasicBlock(); 1771 VPValue *Step = new VPExpandSCEVRecipe(Expr, SE); 1772 Preheader->appendRecipe(cast<VPRecipeBase>(Step->getDef())); 1773 return Step; 1774 } 1775