1 //===- VPlan.cpp - Vectorizer Plan ----------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This is the LLVM vectorization plan. It represents a candidate for 11 /// vectorization, allowing to plan and optimize how to vectorize a given loop 12 /// before generating LLVM-IR. 13 /// The vectorizer uses vectorization plans to estimate the costs of potential 14 /// candidates and if profitable to execute the desired plan, generating vector 15 /// LLVM-IR code. 16 /// 17 //===----------------------------------------------------------------------===// 18 19 #include "VPlan.h" 20 #include "VPlanDominatorTree.h" 21 #include "llvm/ADT/DepthFirstIterator.h" 22 #include "llvm/ADT/PostOrderIterator.h" 23 #include "llvm/ADT/STLExtras.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/Twine.h" 26 #include "llvm/Analysis/IVDescriptors.h" 27 #include "llvm/Analysis/LoopInfo.h" 28 #include "llvm/IR/BasicBlock.h" 29 #include "llvm/IR/CFG.h" 30 #include "llvm/IR/InstrTypes.h" 31 #include "llvm/IR/Instruction.h" 32 #include "llvm/IR/Instructions.h" 33 #include "llvm/IR/Type.h" 34 #include "llvm/IR/Value.h" 35 #include "llvm/Support/Casting.h" 36 #include "llvm/Support/CommandLine.h" 37 #include "llvm/Support/Debug.h" 38 #include "llvm/Support/ErrorHandling.h" 39 #include "llvm/Support/GenericDomTreeConstruction.h" 40 #include "llvm/Support/GraphWriter.h" 41 #include "llvm/Support/raw_ostream.h" 42 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 43 #include <cassert> 44 #include <iterator> 45 #include <string> 46 #include <vector> 47 48 using namespace llvm; 49 extern cl::opt<bool> EnableVPlanNativePath; 50 51 #define DEBUG_TYPE "vplan" 52 53 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 54 raw_ostream &llvm::operator<<(raw_ostream &OS, const VPValue &V) { 55 const VPInstruction *Instr = dyn_cast<VPInstruction>(&V); 56 VPSlotTracker SlotTracker( 57 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr); 58 V.print(OS, SlotTracker); 59 return OS; 60 } 61 #endif 62 63 Value *VPLane::getAsRuntimeExpr(IRBuilder<> &Builder, 64 const ElementCount &VF) const { 65 switch (LaneKind) { 66 case VPLane::Kind::ScalableLast: 67 // Lane = RuntimeVF - VF.getKnownMinValue() + Lane 68 return Builder.CreateSub(getRuntimeVF(Builder, Builder.getInt32Ty(), VF), 69 Builder.getInt32(VF.getKnownMinValue() - Lane)); 70 case VPLane::Kind::First: 71 return Builder.getInt32(Lane); 72 } 73 llvm_unreachable("Unknown lane kind"); 74 } 75 76 VPValue::VPValue(const unsigned char SC, Value *UV, VPDef *Def) 77 : SubclassID(SC), UnderlyingVal(UV), Def(Def) { 78 if (Def) 79 Def->addDefinedValue(this); 80 } 81 82 VPValue::~VPValue() { 83 assert(Users.empty() && "trying to delete a VPValue with remaining users"); 84 if (Def) 85 Def->removeDefinedValue(this); 86 } 87 88 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 89 void VPValue::print(raw_ostream &OS, VPSlotTracker &SlotTracker) const { 90 if (const VPRecipeBase *R = dyn_cast_or_null<VPRecipeBase>(Def)) 91 R->print(OS, "", SlotTracker); 92 else 93 printAsOperand(OS, SlotTracker); 94 } 95 96 void VPValue::dump() const { 97 const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this->Def); 98 VPSlotTracker SlotTracker( 99 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr); 100 print(dbgs(), SlotTracker); 101 dbgs() << "\n"; 102 } 103 104 void VPDef::dump() const { 105 const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this); 106 VPSlotTracker SlotTracker( 107 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr); 108 print(dbgs(), "", SlotTracker); 109 dbgs() << "\n"; 110 } 111 #endif 112 113 // Get the top-most entry block of \p Start. This is the entry block of the 114 // containing VPlan. This function is templated to support both const and non-const blocks 115 template <typename T> static T *getPlanEntry(T *Start) { 116 T *Next = Start; 117 T *Current = Start; 118 while ((Next = Next->getParent())) 119 Current = Next; 120 121 SmallSetVector<T *, 8> WorkList; 122 WorkList.insert(Current); 123 124 for (unsigned i = 0; i < WorkList.size(); i++) { 125 T *Current = WorkList[i]; 126 if (Current->getNumPredecessors() == 0) 127 return Current; 128 auto &Predecessors = Current->getPredecessors(); 129 WorkList.insert(Predecessors.begin(), Predecessors.end()); 130 } 131 132 llvm_unreachable("VPlan without any entry node without predecessors"); 133 } 134 135 VPlan *VPBlockBase::getPlan() { return getPlanEntry(this)->Plan; } 136 137 const VPlan *VPBlockBase::getPlan() const { return getPlanEntry(this)->Plan; } 138 139 /// \return the VPBasicBlock that is the entry of Block, possibly indirectly. 140 const VPBasicBlock *VPBlockBase::getEntryBasicBlock() const { 141 const VPBlockBase *Block = this; 142 while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 143 Block = Region->getEntry(); 144 return cast<VPBasicBlock>(Block); 145 } 146 147 VPBasicBlock *VPBlockBase::getEntryBasicBlock() { 148 VPBlockBase *Block = this; 149 while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 150 Block = Region->getEntry(); 151 return cast<VPBasicBlock>(Block); 152 } 153 154 void VPBlockBase::setPlan(VPlan *ParentPlan) { 155 assert(ParentPlan->getEntry() == this && 156 "Can only set plan on its entry block."); 157 Plan = ParentPlan; 158 } 159 160 /// \return the VPBasicBlock that is the exit of Block, possibly indirectly. 161 const VPBasicBlock *VPBlockBase::getExitBasicBlock() const { 162 const VPBlockBase *Block = this; 163 while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 164 Block = Region->getExit(); 165 return cast<VPBasicBlock>(Block); 166 } 167 168 VPBasicBlock *VPBlockBase::getExitBasicBlock() { 169 VPBlockBase *Block = this; 170 while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 171 Block = Region->getExit(); 172 return cast<VPBasicBlock>(Block); 173 } 174 175 VPBlockBase *VPBlockBase::getEnclosingBlockWithSuccessors() { 176 if (!Successors.empty() || !Parent) 177 return this; 178 assert(Parent->getExit() == this && 179 "Block w/o successors not the exit of its parent."); 180 return Parent->getEnclosingBlockWithSuccessors(); 181 } 182 183 VPBlockBase *VPBlockBase::getEnclosingBlockWithPredecessors() { 184 if (!Predecessors.empty() || !Parent) 185 return this; 186 assert(Parent->getEntry() == this && 187 "Block w/o predecessors not the entry of its parent."); 188 return Parent->getEnclosingBlockWithPredecessors(); 189 } 190 191 static VPValue *getSingleOperandOrNull(VPUser &U) { 192 if (U.getNumOperands() == 1) 193 return U.getOperand(0); 194 195 return nullptr; 196 } 197 198 static const VPValue *getSingleOperandOrNull(const VPUser &U) { 199 if (U.getNumOperands() == 1) 200 return U.getOperand(0); 201 202 return nullptr; 203 } 204 205 static void resetSingleOpUser(VPUser &U, VPValue *NewVal) { 206 assert(U.getNumOperands() <= 1 && "Didn't expect more than one operand!"); 207 if (!NewVal) { 208 if (U.getNumOperands() == 1) 209 U.removeLastOperand(); 210 return; 211 } 212 213 if (U.getNumOperands() == 1) 214 U.setOperand(0, NewVal); 215 else 216 U.addOperand(NewVal); 217 } 218 219 VPValue *VPBlockBase::getCondBit() { 220 return getSingleOperandOrNull(CondBitUser); 221 } 222 223 const VPValue *VPBlockBase::getCondBit() const { 224 return getSingleOperandOrNull(CondBitUser); 225 } 226 227 void VPBlockBase::setCondBit(VPValue *CV) { 228 resetSingleOpUser(CondBitUser, CV); 229 } 230 231 VPValue *VPBlockBase::getPredicate() { 232 return getSingleOperandOrNull(PredicateUser); 233 } 234 235 const VPValue *VPBlockBase::getPredicate() const { 236 return getSingleOperandOrNull(PredicateUser); 237 } 238 239 void VPBlockBase::setPredicate(VPValue *CV) { 240 resetSingleOpUser(PredicateUser, CV); 241 } 242 243 void VPBlockBase::deleteCFG(VPBlockBase *Entry) { 244 SmallVector<VPBlockBase *, 8> Blocks(depth_first(Entry)); 245 246 for (VPBlockBase *Block : Blocks) 247 delete Block; 248 } 249 250 VPBasicBlock::iterator VPBasicBlock::getFirstNonPhi() { 251 iterator It = begin(); 252 while (It != end() && It->isPhi()) 253 It++; 254 return It; 255 } 256 257 Value *VPTransformState::get(VPValue *Def, const VPIteration &Instance) { 258 if (!Def->getDef()) 259 return Def->getLiveInIRValue(); 260 261 if (hasScalarValue(Def, Instance)) { 262 return Data 263 .PerPartScalars[Def][Instance.Part][Instance.Lane.mapToCacheIndex(VF)]; 264 } 265 266 assert(hasVectorValue(Def, Instance.Part)); 267 auto *VecPart = Data.PerPartOutput[Def][Instance.Part]; 268 if (!VecPart->getType()->isVectorTy()) { 269 assert(Instance.Lane.isFirstLane() && "cannot get lane > 0 for scalar"); 270 return VecPart; 271 } 272 // TODO: Cache created scalar values. 273 Value *Lane = Instance.Lane.getAsRuntimeExpr(Builder, VF); 274 auto *Extract = Builder.CreateExtractElement(VecPart, Lane); 275 // set(Def, Extract, Instance); 276 return Extract; 277 } 278 279 BasicBlock * 280 VPBasicBlock::createEmptyBasicBlock(VPTransformState::CFGState &CFG) { 281 // BB stands for IR BasicBlocks. VPBB stands for VPlan VPBasicBlocks. 282 // Pred stands for Predessor. Prev stands for Previous - last visited/created. 283 BasicBlock *PrevBB = CFG.PrevBB; 284 BasicBlock *NewBB = BasicBlock::Create(PrevBB->getContext(), getName(), 285 PrevBB->getParent(), CFG.LastBB); 286 LLVM_DEBUG(dbgs() << "LV: created " << NewBB->getName() << '\n'); 287 288 // Hook up the new basic block to its predecessors. 289 for (VPBlockBase *PredVPBlock : getHierarchicalPredecessors()) { 290 VPBasicBlock *PredVPBB = PredVPBlock->getExitBasicBlock(); 291 auto &PredVPSuccessors = PredVPBB->getSuccessors(); 292 BasicBlock *PredBB = CFG.VPBB2IRBB[PredVPBB]; 293 294 // In outer loop vectorization scenario, the predecessor BBlock may not yet 295 // be visited(backedge). Mark the VPBasicBlock for fixup at the end of 296 // vectorization. We do not encounter this case in inner loop vectorization 297 // as we start out by building a loop skeleton with the vector loop header 298 // and latch blocks. As a result, we never enter this function for the 299 // header block in the non VPlan-native path. 300 if (!PredBB) { 301 assert(EnableVPlanNativePath && 302 "Unexpected null predecessor in non VPlan-native path"); 303 CFG.VPBBsToFix.push_back(PredVPBB); 304 continue; 305 } 306 307 assert(PredBB && "Predecessor basic-block not found building successor."); 308 auto *PredBBTerminator = PredBB->getTerminator(); 309 LLVM_DEBUG(dbgs() << "LV: draw edge from" << PredBB->getName() << '\n'); 310 if (isa<UnreachableInst>(PredBBTerminator)) { 311 assert(PredVPSuccessors.size() == 1 && 312 "Predecessor ending w/o branch must have single successor."); 313 PredBBTerminator->eraseFromParent(); 314 BranchInst::Create(NewBB, PredBB); 315 } else { 316 assert(PredVPSuccessors.size() == 2 && 317 "Predecessor ending with branch must have two successors."); 318 unsigned idx = PredVPSuccessors.front() == this ? 0 : 1; 319 assert(!PredBBTerminator->getSuccessor(idx) && 320 "Trying to reset an existing successor block."); 321 PredBBTerminator->setSuccessor(idx, NewBB); 322 } 323 } 324 return NewBB; 325 } 326 327 void VPBasicBlock::execute(VPTransformState *State) { 328 bool Replica = State->Instance && !State->Instance->isFirstIteration(); 329 VPBasicBlock *PrevVPBB = State->CFG.PrevVPBB; 330 VPBlockBase *SingleHPred = nullptr; 331 BasicBlock *NewBB = State->CFG.PrevBB; // Reuse it if possible. 332 333 // 1. Create an IR basic block, or reuse the last one if possible. 334 // The last IR basic block is reused, as an optimization, in three cases: 335 // A. the first VPBB reuses the loop header BB - when PrevVPBB is null; 336 // B. when the current VPBB has a single (hierarchical) predecessor which 337 // is PrevVPBB and the latter has a single (hierarchical) successor; and 338 // C. when the current VPBB is an entry of a region replica - where PrevVPBB 339 // is the exit of this region from a previous instance, or the predecessor 340 // of this region. 341 if (PrevVPBB && /* A */ 342 !((SingleHPred = getSingleHierarchicalPredecessor()) && 343 SingleHPred->getExitBasicBlock() == PrevVPBB && 344 PrevVPBB->getSingleHierarchicalSuccessor()) && /* B */ 345 !(Replica && getPredecessors().empty())) { /* C */ 346 NewBB = createEmptyBasicBlock(State->CFG); 347 State->Builder.SetInsertPoint(NewBB); 348 // Temporarily terminate with unreachable until CFG is rewired. 349 UnreachableInst *Terminator = State->Builder.CreateUnreachable(); 350 State->Builder.SetInsertPoint(Terminator); 351 // Register NewBB in its loop. In innermost loops its the same for all BB's. 352 Loop *L = State->LI->getLoopFor(State->CFG.LastBB); 353 L->addBasicBlockToLoop(NewBB, *State->LI); 354 State->CFG.PrevBB = NewBB; 355 } 356 357 // 2. Fill the IR basic block with IR instructions. 358 LLVM_DEBUG(dbgs() << "LV: vectorizing VPBB:" << getName() 359 << " in BB:" << NewBB->getName() << '\n'); 360 361 State->CFG.VPBB2IRBB[this] = NewBB; 362 State->CFG.PrevVPBB = this; 363 364 for (VPRecipeBase &Recipe : Recipes) 365 Recipe.execute(*State); 366 367 VPValue *CBV; 368 if (EnableVPlanNativePath && (CBV = getCondBit())) { 369 assert(CBV->getUnderlyingValue() && 370 "Unexpected null underlying value for condition bit"); 371 372 // Condition bit value in a VPBasicBlock is used as the branch selector. In 373 // the VPlan-native path case, since all branches are uniform we generate a 374 // branch instruction using the condition value from vector lane 0 and dummy 375 // successors. The successors are fixed later when the successor blocks are 376 // visited. 377 Value *NewCond = State->get(CBV, {0, 0}); 378 379 // Replace the temporary unreachable terminator with the new conditional 380 // branch. 381 auto *CurrentTerminator = NewBB->getTerminator(); 382 assert(isa<UnreachableInst>(CurrentTerminator) && 383 "Expected to replace unreachable terminator with conditional " 384 "branch."); 385 auto *CondBr = BranchInst::Create(NewBB, nullptr, NewCond); 386 CondBr->setSuccessor(0, nullptr); 387 ReplaceInstWithInst(CurrentTerminator, CondBr); 388 } 389 390 LLVM_DEBUG(dbgs() << "LV: filled BB:" << *NewBB); 391 } 392 393 void VPBasicBlock::dropAllReferences(VPValue *NewValue) { 394 for (VPRecipeBase &R : Recipes) { 395 for (auto *Def : R.definedValues()) 396 Def->replaceAllUsesWith(NewValue); 397 398 for (unsigned I = 0, E = R.getNumOperands(); I != E; I++) 399 R.setOperand(I, NewValue); 400 } 401 } 402 403 VPBasicBlock *VPBasicBlock::splitAt(iterator SplitAt) { 404 assert((SplitAt == end() || SplitAt->getParent() == this) && 405 "can only split at a position in the same block"); 406 407 SmallVector<VPBlockBase *, 2> Succs(getSuccessors().begin(), 408 getSuccessors().end()); 409 // First, disconnect the current block from its successors. 410 for (VPBlockBase *Succ : Succs) 411 VPBlockUtils::disconnectBlocks(this, Succ); 412 413 // Create new empty block after the block to split. 414 auto *SplitBlock = new VPBasicBlock(getName() + ".split"); 415 VPBlockUtils::insertBlockAfter(SplitBlock, this); 416 417 // Add successors for block to split to new block. 418 for (VPBlockBase *Succ : Succs) 419 VPBlockUtils::connectBlocks(SplitBlock, Succ); 420 421 // Finally, move the recipes starting at SplitAt to new block. 422 for (VPRecipeBase &ToMove : 423 make_early_inc_range(make_range(SplitAt, this->end()))) 424 ToMove.moveBefore(*SplitBlock, SplitBlock->end()); 425 426 return SplitBlock; 427 } 428 429 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 430 void VPBasicBlock::print(raw_ostream &O, const Twine &Indent, 431 VPSlotTracker &SlotTracker) const { 432 O << Indent << getName() << ":\n"; 433 if (const VPValue *Pred = getPredicate()) { 434 O << Indent << "BlockPredicate:"; 435 Pred->printAsOperand(O, SlotTracker); 436 if (const auto *PredInst = dyn_cast<VPInstruction>(Pred)) 437 O << " (" << PredInst->getParent()->getName() << ")"; 438 O << '\n'; 439 } 440 441 auto RecipeIndent = Indent + " "; 442 for (const VPRecipeBase &Recipe : *this) { 443 Recipe.print(O, RecipeIndent, SlotTracker); 444 O << '\n'; 445 } 446 447 if (getSuccessors().empty()) { 448 O << Indent << "No successors\n"; 449 } else { 450 O << Indent << "Successor(s): "; 451 ListSeparator LS; 452 for (auto *Succ : getSuccessors()) 453 O << LS << Succ->getName(); 454 O << '\n'; 455 } 456 457 if (const VPValue *CBV = getCondBit()) { 458 O << Indent << "CondBit: "; 459 CBV->printAsOperand(O, SlotTracker); 460 if (const auto *CBI = dyn_cast<VPInstruction>(CBV)) 461 O << " (" << CBI->getParent()->getName() << ")"; 462 O << '\n'; 463 } 464 } 465 #endif 466 467 void VPRegionBlock::dropAllReferences(VPValue *NewValue) { 468 for (VPBlockBase *Block : depth_first(Entry)) 469 // Drop all references in VPBasicBlocks and replace all uses with 470 // DummyValue. 471 Block->dropAllReferences(NewValue); 472 } 473 474 void VPRegionBlock::execute(VPTransformState *State) { 475 ReversePostOrderTraversal<VPBlockBase *> RPOT(Entry); 476 477 if (!isReplicator()) { 478 // Visit the VPBlocks connected to "this", starting from it. 479 for (VPBlockBase *Block : RPOT) { 480 if (EnableVPlanNativePath) { 481 // The inner loop vectorization path does not represent loop preheader 482 // and exit blocks as part of the VPlan. In the VPlan-native path, skip 483 // vectorizing loop preheader block. In future, we may replace this 484 // check with the check for loop preheader. 485 if (Block->getNumPredecessors() == 0) 486 continue; 487 488 // Skip vectorizing loop exit block. In future, we may replace this 489 // check with the check for loop exit. 490 if (Block->getNumSuccessors() == 0) 491 continue; 492 } 493 494 LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n'); 495 Block->execute(State); 496 } 497 return; 498 } 499 500 assert(!State->Instance && "Replicating a Region with non-null instance."); 501 502 // Enter replicating mode. 503 State->Instance = VPIteration(0, 0); 504 505 for (unsigned Part = 0, UF = State->UF; Part < UF; ++Part) { 506 State->Instance->Part = Part; 507 assert(!State->VF.isScalable() && "VF is assumed to be non scalable."); 508 for (unsigned Lane = 0, VF = State->VF.getKnownMinValue(); Lane < VF; 509 ++Lane) { 510 State->Instance->Lane = VPLane(Lane, VPLane::Kind::First); 511 // Visit the VPBlocks connected to \p this, starting from it. 512 for (VPBlockBase *Block : RPOT) { 513 LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n'); 514 Block->execute(State); 515 } 516 } 517 } 518 519 // Exit replicating mode. 520 State->Instance.reset(); 521 } 522 523 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 524 void VPRegionBlock::print(raw_ostream &O, const Twine &Indent, 525 VPSlotTracker &SlotTracker) const { 526 O << Indent << (isReplicator() ? "<xVFxUF> " : "<x1> ") << getName() << ": {"; 527 auto NewIndent = Indent + " "; 528 for (auto *BlockBase : depth_first(Entry)) { 529 O << '\n'; 530 BlockBase->print(O, NewIndent, SlotTracker); 531 } 532 O << Indent << "}\n"; 533 } 534 #endif 535 536 bool VPRecipeBase::mayHaveSideEffects() const { 537 switch (getVPDefID()) { 538 case VPBranchOnMaskSC: 539 return false; 540 case VPBlendSC: 541 case VPWidenSC: 542 case VPWidenGEPSC: 543 case VPReductionSC: 544 case VPWidenSelectSC: { 545 const Instruction *I = 546 dyn_cast_or_null<Instruction>(getVPValue()->getUnderlyingValue()); 547 (void)I; 548 assert((!I || !I->mayHaveSideEffects()) && 549 "underlying instruction has side-effects"); 550 return false; 551 } 552 case VPReplicateSC: { 553 auto *R = cast<VPReplicateRecipe>(this); 554 return R->getUnderlyingInstr()->mayHaveSideEffects(); 555 } 556 default: 557 return true; 558 } 559 } 560 561 void VPRecipeBase::insertBefore(VPRecipeBase *InsertPos) { 562 assert(!Parent && "Recipe already in some VPBasicBlock"); 563 assert(InsertPos->getParent() && 564 "Insertion position not in any VPBasicBlock"); 565 Parent = InsertPos->getParent(); 566 Parent->getRecipeList().insert(InsertPos->getIterator(), this); 567 } 568 569 void VPRecipeBase::insertAfter(VPRecipeBase *InsertPos) { 570 assert(!Parent && "Recipe already in some VPBasicBlock"); 571 assert(InsertPos->getParent() && 572 "Insertion position not in any VPBasicBlock"); 573 Parent = InsertPos->getParent(); 574 Parent->getRecipeList().insertAfter(InsertPos->getIterator(), this); 575 } 576 577 void VPRecipeBase::removeFromParent() { 578 assert(getParent() && "Recipe not in any VPBasicBlock"); 579 getParent()->getRecipeList().remove(getIterator()); 580 Parent = nullptr; 581 } 582 583 iplist<VPRecipeBase>::iterator VPRecipeBase::eraseFromParent() { 584 assert(getParent() && "Recipe not in any VPBasicBlock"); 585 return getParent()->getRecipeList().erase(getIterator()); 586 } 587 588 void VPRecipeBase::moveAfter(VPRecipeBase *InsertPos) { 589 removeFromParent(); 590 insertAfter(InsertPos); 591 } 592 593 void VPRecipeBase::moveBefore(VPBasicBlock &BB, 594 iplist<VPRecipeBase>::iterator I) { 595 assert(I == BB.end() || I->getParent() == &BB); 596 removeFromParent(); 597 Parent = &BB; 598 BB.getRecipeList().insert(I, this); 599 } 600 601 void VPInstruction::generateInstruction(VPTransformState &State, 602 unsigned Part) { 603 IRBuilder<> &Builder = State.Builder; 604 605 if (Instruction::isBinaryOp(getOpcode())) { 606 Value *A = State.get(getOperand(0), Part); 607 Value *B = State.get(getOperand(1), Part); 608 Value *V = Builder.CreateBinOp((Instruction::BinaryOps)getOpcode(), A, B); 609 State.set(this, V, Part); 610 return; 611 } 612 613 switch (getOpcode()) { 614 case VPInstruction::Not: { 615 Value *A = State.get(getOperand(0), Part); 616 Value *V = Builder.CreateNot(A); 617 State.set(this, V, Part); 618 break; 619 } 620 case VPInstruction::ICmpULE: { 621 Value *IV = State.get(getOperand(0), Part); 622 Value *TC = State.get(getOperand(1), Part); 623 Value *V = Builder.CreateICmpULE(IV, TC); 624 State.set(this, V, Part); 625 break; 626 } 627 case Instruction::Select: { 628 Value *Cond = State.get(getOperand(0), Part); 629 Value *Op1 = State.get(getOperand(1), Part); 630 Value *Op2 = State.get(getOperand(2), Part); 631 Value *V = Builder.CreateSelect(Cond, Op1, Op2); 632 State.set(this, V, Part); 633 break; 634 } 635 case VPInstruction::ActiveLaneMask: { 636 // Get first lane of vector induction variable. 637 Value *VIVElem0 = State.get(getOperand(0), VPIteration(Part, 0)); 638 // Get the original loop tripcount. 639 Value *ScalarTC = State.TripCount; 640 641 auto *Int1Ty = Type::getInt1Ty(Builder.getContext()); 642 auto *PredTy = FixedVectorType::get(Int1Ty, State.VF.getKnownMinValue()); 643 Instruction *Call = Builder.CreateIntrinsic( 644 Intrinsic::get_active_lane_mask, {PredTy, ScalarTC->getType()}, 645 {VIVElem0, ScalarTC}, nullptr, "active.lane.mask"); 646 State.set(this, Call, Part); 647 break; 648 } 649 default: 650 llvm_unreachable("Unsupported opcode for instruction"); 651 } 652 } 653 654 void VPInstruction::execute(VPTransformState &State) { 655 assert(!State.Instance && "VPInstruction executing an Instance"); 656 for (unsigned Part = 0; Part < State.UF; ++Part) 657 generateInstruction(State, Part); 658 } 659 660 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 661 void VPInstruction::dump() const { 662 VPSlotTracker SlotTracker(getParent()->getPlan()); 663 print(dbgs(), "", SlotTracker); 664 } 665 666 void VPInstruction::print(raw_ostream &O, const Twine &Indent, 667 VPSlotTracker &SlotTracker) const { 668 O << Indent << "EMIT "; 669 670 if (hasResult()) { 671 printAsOperand(O, SlotTracker); 672 O << " = "; 673 } 674 675 switch (getOpcode()) { 676 case VPInstruction::Not: 677 O << "not"; 678 break; 679 case VPInstruction::ICmpULE: 680 O << "icmp ule"; 681 break; 682 case VPInstruction::SLPLoad: 683 O << "combined load"; 684 break; 685 case VPInstruction::SLPStore: 686 O << "combined store"; 687 break; 688 case VPInstruction::ActiveLaneMask: 689 O << "active lane mask"; 690 break; 691 692 default: 693 O << Instruction::getOpcodeName(getOpcode()); 694 } 695 696 for (const VPValue *Operand : operands()) { 697 O << " "; 698 Operand->printAsOperand(O, SlotTracker); 699 } 700 } 701 #endif 702 703 /// Generate the code inside the body of the vectorized loop. Assumes a single 704 /// LoopVectorBody basic-block was created for this. Introduce additional 705 /// basic-blocks as needed, and fill them all. 706 void VPlan::execute(VPTransformState *State) { 707 // -1. Check if the backedge taken count is needed, and if so build it. 708 if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) { 709 Value *TC = State->TripCount; 710 IRBuilder<> Builder(State->CFG.PrevBB->getTerminator()); 711 auto *TCMO = Builder.CreateSub(TC, ConstantInt::get(TC->getType(), 1), 712 "trip.count.minus.1"); 713 auto VF = State->VF; 714 Value *VTCMO = 715 VF.isScalar() ? TCMO : Builder.CreateVectorSplat(VF, TCMO, "broadcast"); 716 for (unsigned Part = 0, UF = State->UF; Part < UF; ++Part) 717 State->set(BackedgeTakenCount, VTCMO, Part); 718 } 719 720 // 0. Set the reverse mapping from VPValues to Values for code generation. 721 for (auto &Entry : Value2VPValue) 722 State->VPValue2Value[Entry.second] = Entry.first; 723 724 BasicBlock *VectorPreHeaderBB = State->CFG.PrevBB; 725 BasicBlock *VectorHeaderBB = VectorPreHeaderBB->getSingleSuccessor(); 726 assert(VectorHeaderBB && "Loop preheader does not have a single successor."); 727 728 // 1. Make room to generate basic-blocks inside loop body if needed. 729 BasicBlock *VectorLatchBB = VectorHeaderBB->splitBasicBlock( 730 VectorHeaderBB->getFirstInsertionPt(), "vector.body.latch"); 731 Loop *L = State->LI->getLoopFor(VectorHeaderBB); 732 L->addBasicBlockToLoop(VectorLatchBB, *State->LI); 733 // Remove the edge between Header and Latch to allow other connections. 734 // Temporarily terminate with unreachable until CFG is rewired. 735 // Note: this asserts the generated code's assumption that 736 // getFirstInsertionPt() can be dereferenced into an Instruction. 737 VectorHeaderBB->getTerminator()->eraseFromParent(); 738 State->Builder.SetInsertPoint(VectorHeaderBB); 739 UnreachableInst *Terminator = State->Builder.CreateUnreachable(); 740 State->Builder.SetInsertPoint(Terminator); 741 742 // 2. Generate code in loop body. 743 State->CFG.PrevVPBB = nullptr; 744 State->CFG.PrevBB = VectorHeaderBB; 745 State->CFG.LastBB = VectorLatchBB; 746 747 for (VPBlockBase *Block : depth_first(Entry)) 748 Block->execute(State); 749 750 // Setup branch terminator successors for VPBBs in VPBBsToFix based on 751 // VPBB's successors. 752 for (auto VPBB : State->CFG.VPBBsToFix) { 753 assert(EnableVPlanNativePath && 754 "Unexpected VPBBsToFix in non VPlan-native path"); 755 BasicBlock *BB = State->CFG.VPBB2IRBB[VPBB]; 756 assert(BB && "Unexpected null basic block for VPBB"); 757 758 unsigned Idx = 0; 759 auto *BBTerminator = BB->getTerminator(); 760 761 for (VPBlockBase *SuccVPBlock : VPBB->getHierarchicalSuccessors()) { 762 VPBasicBlock *SuccVPBB = SuccVPBlock->getEntryBasicBlock(); 763 BBTerminator->setSuccessor(Idx, State->CFG.VPBB2IRBB[SuccVPBB]); 764 ++Idx; 765 } 766 } 767 768 // 3. Merge the temporary latch created with the last basic-block filled. 769 BasicBlock *LastBB = State->CFG.PrevBB; 770 // Connect LastBB to VectorLatchBB to facilitate their merge. 771 assert((EnableVPlanNativePath || 772 isa<UnreachableInst>(LastBB->getTerminator())) && 773 "Expected InnerLoop VPlan CFG to terminate with unreachable"); 774 assert((!EnableVPlanNativePath || isa<BranchInst>(LastBB->getTerminator())) && 775 "Expected VPlan CFG to terminate with branch in NativePath"); 776 LastBB->getTerminator()->eraseFromParent(); 777 BranchInst::Create(VectorLatchBB, LastBB); 778 779 // Merge LastBB with Latch. 780 bool Merged = MergeBlockIntoPredecessor(VectorLatchBB, nullptr, State->LI); 781 (void)Merged; 782 assert(Merged && "Could not merge last basic block with latch."); 783 VectorLatchBB = LastBB; 784 785 // We do not attempt to preserve DT for outer loop vectorization currently. 786 if (!EnableVPlanNativePath) 787 updateDominatorTree(State->DT, VectorPreHeaderBB, VectorLatchBB, 788 L->getExitBlock()); 789 } 790 791 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 792 LLVM_DUMP_METHOD 793 void VPlan::print(raw_ostream &O) const { 794 VPSlotTracker SlotTracker(this); 795 796 O << "VPlan '" << Name << "' {"; 797 for (const VPBlockBase *Block : depth_first(getEntry())) { 798 O << '\n'; 799 Block->print(O, "", SlotTracker); 800 } 801 O << "}\n"; 802 } 803 804 LLVM_DUMP_METHOD 805 void VPlan::printDOT(raw_ostream &O) const { 806 VPlanPrinter Printer(O, *this); 807 Printer.dump(); 808 } 809 810 LLVM_DUMP_METHOD 811 void VPlan::dump() const { print(dbgs()); } 812 #endif 813 814 void VPlan::updateDominatorTree(DominatorTree *DT, BasicBlock *LoopPreHeaderBB, 815 BasicBlock *LoopLatchBB, 816 BasicBlock *LoopExitBB) { 817 BasicBlock *LoopHeaderBB = LoopPreHeaderBB->getSingleSuccessor(); 818 assert(LoopHeaderBB && "Loop preheader does not have a single successor."); 819 // The vector body may be more than a single basic-block by this point. 820 // Update the dominator tree information inside the vector body by propagating 821 // it from header to latch, expecting only triangular control-flow, if any. 822 BasicBlock *PostDomSucc = nullptr; 823 for (auto *BB = LoopHeaderBB; BB != LoopLatchBB; BB = PostDomSucc) { 824 // Get the list of successors of this block. 825 std::vector<BasicBlock *> Succs(succ_begin(BB), succ_end(BB)); 826 assert(Succs.size() <= 2 && 827 "Basic block in vector loop has more than 2 successors."); 828 PostDomSucc = Succs[0]; 829 if (Succs.size() == 1) { 830 assert(PostDomSucc->getSinglePredecessor() && 831 "PostDom successor has more than one predecessor."); 832 DT->addNewBlock(PostDomSucc, BB); 833 continue; 834 } 835 BasicBlock *InterimSucc = Succs[1]; 836 if (PostDomSucc->getSingleSuccessor() == InterimSucc) { 837 PostDomSucc = Succs[1]; 838 InterimSucc = Succs[0]; 839 } 840 assert(InterimSucc->getSingleSuccessor() == PostDomSucc && 841 "One successor of a basic block does not lead to the other."); 842 assert(InterimSucc->getSinglePredecessor() && 843 "Interim successor has more than one predecessor."); 844 assert(PostDomSucc->hasNPredecessors(2) && 845 "PostDom successor has more than two predecessors."); 846 DT->addNewBlock(InterimSucc, BB); 847 DT->addNewBlock(PostDomSucc, BB); 848 } 849 // Latch block is a new dominator for the loop exit. 850 DT->changeImmediateDominator(LoopExitBB, LoopLatchBB); 851 assert(DT->verify(DominatorTree::VerificationLevel::Fast)); 852 } 853 854 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 855 const Twine VPlanPrinter::getUID(const VPBlockBase *Block) { 856 return (isa<VPRegionBlock>(Block) ? "cluster_N" : "N") + 857 Twine(getOrCreateBID(Block)); 858 } 859 860 const Twine VPlanPrinter::getOrCreateName(const VPBlockBase *Block) { 861 const std::string &Name = Block->getName(); 862 if (!Name.empty()) 863 return Name; 864 return "VPB" + Twine(getOrCreateBID(Block)); 865 } 866 867 void VPlanPrinter::dump() { 868 Depth = 1; 869 bumpIndent(0); 870 OS << "digraph VPlan {\n"; 871 OS << "graph [labelloc=t, fontsize=30; label=\"Vectorization Plan"; 872 if (!Plan.getName().empty()) 873 OS << "\\n" << DOT::EscapeString(Plan.getName()); 874 if (Plan.BackedgeTakenCount) { 875 OS << ", where:\\n"; 876 Plan.BackedgeTakenCount->print(OS, SlotTracker); 877 OS << " := BackedgeTakenCount"; 878 } 879 OS << "\"]\n"; 880 OS << "node [shape=rect, fontname=Courier, fontsize=30]\n"; 881 OS << "edge [fontname=Courier, fontsize=30]\n"; 882 OS << "compound=true\n"; 883 884 for (const VPBlockBase *Block : depth_first(Plan.getEntry())) 885 dumpBlock(Block); 886 887 OS << "}\n"; 888 } 889 890 void VPlanPrinter::dumpBlock(const VPBlockBase *Block) { 891 if (const VPBasicBlock *BasicBlock = dyn_cast<VPBasicBlock>(Block)) 892 dumpBasicBlock(BasicBlock); 893 else if (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 894 dumpRegion(Region); 895 else 896 llvm_unreachable("Unsupported kind of VPBlock."); 897 } 898 899 void VPlanPrinter::drawEdge(const VPBlockBase *From, const VPBlockBase *To, 900 bool Hidden, const Twine &Label) { 901 // Due to "dot" we print an edge between two regions as an edge between the 902 // exit basic block and the entry basic of the respective regions. 903 const VPBlockBase *Tail = From->getExitBasicBlock(); 904 const VPBlockBase *Head = To->getEntryBasicBlock(); 905 OS << Indent << getUID(Tail) << " -> " << getUID(Head); 906 OS << " [ label=\"" << Label << '\"'; 907 if (Tail != From) 908 OS << " ltail=" << getUID(From); 909 if (Head != To) 910 OS << " lhead=" << getUID(To); 911 if (Hidden) 912 OS << "; splines=none"; 913 OS << "]\n"; 914 } 915 916 void VPlanPrinter::dumpEdges(const VPBlockBase *Block) { 917 auto &Successors = Block->getSuccessors(); 918 if (Successors.size() == 1) 919 drawEdge(Block, Successors.front(), false, ""); 920 else if (Successors.size() == 2) { 921 drawEdge(Block, Successors.front(), false, "T"); 922 drawEdge(Block, Successors.back(), false, "F"); 923 } else { 924 unsigned SuccessorNumber = 0; 925 for (auto *Successor : Successors) 926 drawEdge(Block, Successor, false, Twine(SuccessorNumber++)); 927 } 928 } 929 930 void VPlanPrinter::dumpBasicBlock(const VPBasicBlock *BasicBlock) { 931 // Implement dot-formatted dump by performing plain-text dump into the 932 // temporary storage followed by some post-processing. 933 OS << Indent << getUID(BasicBlock) << " [label =\n"; 934 bumpIndent(1); 935 std::string Str; 936 raw_string_ostream SS(Str); 937 // Use no indentation as we need to wrap the lines into quotes ourselves. 938 BasicBlock->print(SS, "", SlotTracker); 939 940 // We need to process each line of the output separately, so split 941 // single-string plain-text dump. 942 SmallVector<StringRef, 0> Lines; 943 StringRef(Str).rtrim('\n').split(Lines, "\n"); 944 945 auto EmitLine = [&](StringRef Line, StringRef Suffix) { 946 OS << Indent << '"' << DOT::EscapeString(Line.str()) << "\\l\"" << Suffix; 947 }; 948 949 // Don't need the "+" after the last line. 950 for (auto Line : make_range(Lines.begin(), Lines.end() - 1)) 951 EmitLine(Line, " +\n"); 952 EmitLine(Lines.back(), "\n"); 953 954 bumpIndent(-1); 955 OS << Indent << "]\n"; 956 957 dumpEdges(BasicBlock); 958 } 959 960 void VPlanPrinter::dumpRegion(const VPRegionBlock *Region) { 961 OS << Indent << "subgraph " << getUID(Region) << " {\n"; 962 bumpIndent(1); 963 OS << Indent << "fontname=Courier\n" 964 << Indent << "label=\"" 965 << DOT::EscapeString(Region->isReplicator() ? "<xVFxUF> " : "<x1> ") 966 << DOT::EscapeString(Region->getName()) << "\"\n"; 967 // Dump the blocks of the region. 968 assert(Region->getEntry() && "Region contains no inner blocks."); 969 for (const VPBlockBase *Block : depth_first(Region->getEntry())) 970 dumpBlock(Block); 971 bumpIndent(-1); 972 OS << Indent << "}\n"; 973 dumpEdges(Region); 974 } 975 976 void VPlanIngredient::print(raw_ostream &O) const { 977 if (auto *Inst = dyn_cast<Instruction>(V)) { 978 if (!Inst->getType()->isVoidTy()) { 979 Inst->printAsOperand(O, false); 980 O << " = "; 981 } 982 O << Inst->getOpcodeName() << " "; 983 unsigned E = Inst->getNumOperands(); 984 if (E > 0) { 985 Inst->getOperand(0)->printAsOperand(O, false); 986 for (unsigned I = 1; I < E; ++I) 987 Inst->getOperand(I)->printAsOperand(O << ", ", false); 988 } 989 } else // !Inst 990 V->printAsOperand(O, false); 991 } 992 993 void VPWidenCallRecipe::print(raw_ostream &O, const Twine &Indent, 994 VPSlotTracker &SlotTracker) const { 995 O << Indent << "WIDEN-CALL "; 996 997 auto *CI = cast<CallInst>(getUnderlyingInstr()); 998 if (CI->getType()->isVoidTy()) 999 O << "void "; 1000 else { 1001 printAsOperand(O, SlotTracker); 1002 O << " = "; 1003 } 1004 1005 O << "call @" << CI->getCalledFunction()->getName() << "("; 1006 printOperands(O, SlotTracker); 1007 O << ")"; 1008 } 1009 1010 void VPWidenSelectRecipe::print(raw_ostream &O, const Twine &Indent, 1011 VPSlotTracker &SlotTracker) const { 1012 O << Indent << "WIDEN-SELECT "; 1013 printAsOperand(O, SlotTracker); 1014 O << " = select "; 1015 getOperand(0)->printAsOperand(O, SlotTracker); 1016 O << ", "; 1017 getOperand(1)->printAsOperand(O, SlotTracker); 1018 O << ", "; 1019 getOperand(2)->printAsOperand(O, SlotTracker); 1020 O << (InvariantCond ? " (condition is loop invariant)" : ""); 1021 } 1022 1023 void VPWidenRecipe::print(raw_ostream &O, const Twine &Indent, 1024 VPSlotTracker &SlotTracker) const { 1025 O << Indent << "WIDEN "; 1026 printAsOperand(O, SlotTracker); 1027 O << " = " << getUnderlyingInstr()->getOpcodeName() << " "; 1028 printOperands(O, SlotTracker); 1029 } 1030 1031 void VPWidenIntOrFpInductionRecipe::print(raw_ostream &O, const Twine &Indent, 1032 VPSlotTracker &SlotTracker) const { 1033 O << Indent << "WIDEN-INDUCTION"; 1034 if (getTruncInst()) { 1035 O << "\\l\""; 1036 O << " +\n" << Indent << "\" " << VPlanIngredient(IV) << "\\l\""; 1037 O << " +\n" << Indent << "\" "; 1038 getVPValue(0)->printAsOperand(O, SlotTracker); 1039 } else 1040 O << " " << VPlanIngredient(IV); 1041 } 1042 1043 void VPWidenGEPRecipe::print(raw_ostream &O, const Twine &Indent, 1044 VPSlotTracker &SlotTracker) const { 1045 O << Indent << "WIDEN-GEP "; 1046 O << (IsPtrLoopInvariant ? "Inv" : "Var"); 1047 size_t IndicesNumber = IsIndexLoopInvariant.size(); 1048 for (size_t I = 0; I < IndicesNumber; ++I) 1049 O << "[" << (IsIndexLoopInvariant[I] ? "Inv" : "Var") << "]"; 1050 1051 O << " "; 1052 printAsOperand(O, SlotTracker); 1053 O << " = getelementptr "; 1054 printOperands(O, SlotTracker); 1055 } 1056 1057 void VPWidenPHIRecipe::print(raw_ostream &O, const Twine &Indent, 1058 VPSlotTracker &SlotTracker) const { 1059 O << Indent << "WIDEN-PHI "; 1060 1061 auto *OriginalPhi = cast<PHINode>(getUnderlyingValue()); 1062 // Unless all incoming values are modeled in VPlan print the original PHI 1063 // directly. 1064 // TODO: Remove once all VPWidenPHIRecipe instances keep all relevant incoming 1065 // values as VPValues. 1066 if (getNumOperands() != OriginalPhi->getNumOperands()) { 1067 O << VPlanIngredient(OriginalPhi); 1068 return; 1069 } 1070 1071 printAsOperand(O, SlotTracker); 1072 O << " = phi "; 1073 printOperands(O, SlotTracker); 1074 } 1075 1076 void VPBlendRecipe::print(raw_ostream &O, const Twine &Indent, 1077 VPSlotTracker &SlotTracker) const { 1078 O << Indent << "BLEND "; 1079 Phi->printAsOperand(O, false); 1080 O << " ="; 1081 if (getNumIncomingValues() == 1) { 1082 // Not a User of any mask: not really blending, this is a 1083 // single-predecessor phi. 1084 O << " "; 1085 getIncomingValue(0)->printAsOperand(O, SlotTracker); 1086 } else { 1087 for (unsigned I = 0, E = getNumIncomingValues(); I < E; ++I) { 1088 O << " "; 1089 getIncomingValue(I)->printAsOperand(O, SlotTracker); 1090 O << "/"; 1091 getMask(I)->printAsOperand(O, SlotTracker); 1092 } 1093 } 1094 } 1095 1096 void VPReductionRecipe::print(raw_ostream &O, const Twine &Indent, 1097 VPSlotTracker &SlotTracker) const { 1098 O << Indent << "REDUCE "; 1099 printAsOperand(O, SlotTracker); 1100 O << " = "; 1101 getChainOp()->printAsOperand(O, SlotTracker); 1102 O << " + reduce." << Instruction::getOpcodeName(RdxDesc->getOpcode()) 1103 << " ("; 1104 getVecOp()->printAsOperand(O, SlotTracker); 1105 if (getCondOp()) { 1106 O << ", "; 1107 getCondOp()->printAsOperand(O, SlotTracker); 1108 } 1109 O << ")"; 1110 } 1111 1112 void VPReplicateRecipe::print(raw_ostream &O, const Twine &Indent, 1113 VPSlotTracker &SlotTracker) const { 1114 O << Indent << (IsUniform ? "CLONE " : "REPLICATE "); 1115 1116 if (!getUnderlyingInstr()->getType()->isVoidTy()) { 1117 printAsOperand(O, SlotTracker); 1118 O << " = "; 1119 } 1120 O << Instruction::getOpcodeName(getUnderlyingInstr()->getOpcode()) << " "; 1121 printOperands(O, SlotTracker); 1122 1123 if (AlsoPack) 1124 O << " (S->V)"; 1125 } 1126 1127 void VPPredInstPHIRecipe::print(raw_ostream &O, const Twine &Indent, 1128 VPSlotTracker &SlotTracker) const { 1129 O << Indent << "PHI-PREDICATED-INSTRUCTION "; 1130 printAsOperand(O, SlotTracker); 1131 O << " = "; 1132 printOperands(O, SlotTracker); 1133 } 1134 1135 void VPWidenMemoryInstructionRecipe::print(raw_ostream &O, const Twine &Indent, 1136 VPSlotTracker &SlotTracker) const { 1137 O << Indent << "WIDEN "; 1138 1139 if (!isStore()) { 1140 getVPValue()->printAsOperand(O, SlotTracker); 1141 O << " = "; 1142 } 1143 O << Instruction::getOpcodeName(Ingredient.getOpcode()) << " "; 1144 1145 printOperands(O, SlotTracker); 1146 } 1147 #endif 1148 1149 void VPWidenCanonicalIVRecipe::execute(VPTransformState &State) { 1150 Value *CanonicalIV = State.CanonicalIV; 1151 Type *STy = CanonicalIV->getType(); 1152 IRBuilder<> Builder(State.CFG.PrevBB->getTerminator()); 1153 ElementCount VF = State.VF; 1154 assert(!VF.isScalable() && "the code following assumes non scalables ECs"); 1155 Value *VStart = VF.isScalar() 1156 ? CanonicalIV 1157 : Builder.CreateVectorSplat(VF.getKnownMinValue(), 1158 CanonicalIV, "broadcast"); 1159 for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part) { 1160 SmallVector<Constant *, 8> Indices; 1161 for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane) 1162 Indices.push_back( 1163 ConstantInt::get(STy, Part * VF.getKnownMinValue() + Lane)); 1164 // If VF == 1, there is only one iteration in the loop above, thus the 1165 // element pushed back into Indices is ConstantInt::get(STy, Part) 1166 Constant *VStep = 1167 VF.isScalar() ? Indices.back() : ConstantVector::get(Indices); 1168 // Add the consecutive indices to the vector value. 1169 Value *CanonicalVectorIV = Builder.CreateAdd(VStart, VStep, "vec.iv"); 1170 State.set(getVPSingleValue(), CanonicalVectorIV, Part); 1171 } 1172 } 1173 1174 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1175 void VPWidenCanonicalIVRecipe::print(raw_ostream &O, const Twine &Indent, 1176 VPSlotTracker &SlotTracker) const { 1177 O << Indent << "EMIT "; 1178 getVPValue()->printAsOperand(O, SlotTracker); 1179 O << " = WIDEN-CANONICAL-INDUCTION"; 1180 } 1181 #endif 1182 1183 template void DomTreeBuilder::Calculate<VPDominatorTree>(VPDominatorTree &DT); 1184 1185 void VPValue::replaceAllUsesWith(VPValue *New) { 1186 for (unsigned J = 0; J < getNumUsers();) { 1187 VPUser *User = Users[J]; 1188 unsigned NumUsers = getNumUsers(); 1189 for (unsigned I = 0, E = User->getNumOperands(); I < E; ++I) 1190 if (User->getOperand(I) == this) 1191 User->setOperand(I, New); 1192 // If a user got removed after updating the current user, the next user to 1193 // update will be moved to the current position, so we only need to 1194 // increment the index if the number of users did not change. 1195 if (NumUsers == getNumUsers()) 1196 J++; 1197 } 1198 } 1199 1200 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1201 void VPValue::printAsOperand(raw_ostream &OS, VPSlotTracker &Tracker) const { 1202 if (const Value *UV = getUnderlyingValue()) { 1203 OS << "ir<"; 1204 UV->printAsOperand(OS, false); 1205 OS << ">"; 1206 return; 1207 } 1208 1209 unsigned Slot = Tracker.getSlot(this); 1210 if (Slot == unsigned(-1)) 1211 OS << "<badref>"; 1212 else 1213 OS << "vp<%" << Tracker.getSlot(this) << ">"; 1214 } 1215 1216 void VPUser::printOperands(raw_ostream &O, VPSlotTracker &SlotTracker) const { 1217 interleaveComma(operands(), O, [&O, &SlotTracker](VPValue *Op) { 1218 Op->printAsOperand(O, SlotTracker); 1219 }); 1220 } 1221 #endif 1222 1223 void VPInterleavedAccessInfo::visitRegion(VPRegionBlock *Region, 1224 Old2NewTy &Old2New, 1225 InterleavedAccessInfo &IAI) { 1226 ReversePostOrderTraversal<VPBlockBase *> RPOT(Region->getEntry()); 1227 for (VPBlockBase *Base : RPOT) { 1228 visitBlock(Base, Old2New, IAI); 1229 } 1230 } 1231 1232 void VPInterleavedAccessInfo::visitBlock(VPBlockBase *Block, Old2NewTy &Old2New, 1233 InterleavedAccessInfo &IAI) { 1234 if (VPBasicBlock *VPBB = dyn_cast<VPBasicBlock>(Block)) { 1235 for (VPRecipeBase &VPI : *VPBB) { 1236 if (isa<VPWidenPHIRecipe>(&VPI)) 1237 continue; 1238 assert(isa<VPInstruction>(&VPI) && "Can only handle VPInstructions"); 1239 auto *VPInst = cast<VPInstruction>(&VPI); 1240 auto *Inst = cast<Instruction>(VPInst->getUnderlyingValue()); 1241 auto *IG = IAI.getInterleaveGroup(Inst); 1242 if (!IG) 1243 continue; 1244 1245 auto NewIGIter = Old2New.find(IG); 1246 if (NewIGIter == Old2New.end()) 1247 Old2New[IG] = new InterleaveGroup<VPInstruction>( 1248 IG->getFactor(), IG->isReverse(), IG->getAlign()); 1249 1250 if (Inst == IG->getInsertPos()) 1251 Old2New[IG]->setInsertPos(VPInst); 1252 1253 InterleaveGroupMap[VPInst] = Old2New[IG]; 1254 InterleaveGroupMap[VPInst]->insertMember( 1255 VPInst, IG->getIndex(Inst), 1256 Align(IG->isReverse() ? (-1) * int(IG->getFactor()) 1257 : IG->getFactor())); 1258 } 1259 } else if (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 1260 visitRegion(Region, Old2New, IAI); 1261 else 1262 llvm_unreachable("Unsupported kind of VPBlock."); 1263 } 1264 1265 VPInterleavedAccessInfo::VPInterleavedAccessInfo(VPlan &Plan, 1266 InterleavedAccessInfo &IAI) { 1267 Old2NewTy Old2New; 1268 visitRegion(cast<VPRegionBlock>(Plan.getEntry()), Old2New, IAI); 1269 } 1270 1271 void VPSlotTracker::assignSlot(const VPValue *V) { 1272 assert(Slots.find(V) == Slots.end() && "VPValue already has a slot!"); 1273 Slots[V] = NextSlot++; 1274 } 1275 1276 void VPSlotTracker::assignSlots(const VPlan &Plan) { 1277 1278 for (const VPValue *V : Plan.VPExternalDefs) 1279 assignSlot(V); 1280 1281 if (Plan.BackedgeTakenCount) 1282 assignSlot(Plan.BackedgeTakenCount); 1283 1284 ReversePostOrderTraversal< 1285 VPBlockRecursiveTraversalWrapper<const VPBlockBase *>> 1286 RPOT(VPBlockRecursiveTraversalWrapper<const VPBlockBase *>( 1287 Plan.getEntry())); 1288 for (const VPBasicBlock *VPBB : 1289 VPBlockUtils::blocksOnly<const VPBasicBlock>(RPOT)) 1290 for (const VPRecipeBase &Recipe : *VPBB) 1291 for (VPValue *Def : Recipe.definedValues()) 1292 assignSlot(Def); 1293 } 1294