xref: /llvm-project/llvm/lib/Transforms/Vectorize/VPlan.cpp (revision bd0b1311dbd59b4b7c4188ef0ed930848dc657d1)
1 //===- VPlan.cpp - Vectorizer Plan ----------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This is the LLVM vectorization plan. It represents a candidate for
11 /// vectorization, allowing to plan and optimize how to vectorize a given loop
12 /// before generating LLVM-IR.
13 /// The vectorizer uses vectorization plans to estimate the costs of potential
14 /// candidates and if profitable to execute the desired plan, generating vector
15 /// LLVM-IR code.
16 ///
17 //===----------------------------------------------------------------------===//
18 
19 #include "VPlan.h"
20 #include "VPlanDominatorTree.h"
21 #include "llvm/ADT/DepthFirstIterator.h"
22 #include "llvm/ADT/PostOrderIterator.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/Twine.h"
25 #include "llvm/Analysis/IVDescriptors.h"
26 #include "llvm/Analysis/LoopInfo.h"
27 #include "llvm/IR/BasicBlock.h"
28 #include "llvm/IR/CFG.h"
29 #include "llvm/IR/InstrTypes.h"
30 #include "llvm/IR/Instruction.h"
31 #include "llvm/IR/Instructions.h"
32 #include "llvm/IR/Type.h"
33 #include "llvm/IR/Value.h"
34 #include "llvm/Support/Casting.h"
35 #include "llvm/Support/CommandLine.h"
36 #include "llvm/Support/Debug.h"
37 #include "llvm/Support/ErrorHandling.h"
38 #include "llvm/Support/GenericDomTreeConstruction.h"
39 #include "llvm/Support/GraphWriter.h"
40 #include "llvm/Support/raw_ostream.h"
41 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
42 #include <cassert>
43 #include <iterator>
44 #include <string>
45 #include <vector>
46 
47 using namespace llvm;
48 extern cl::opt<bool> EnableVPlanNativePath;
49 
50 #define DEBUG_TYPE "vplan"
51 
52 raw_ostream &llvm::operator<<(raw_ostream &OS, const VPValue &V) {
53   const VPInstruction *Instr = dyn_cast<VPInstruction>(&V);
54   VPSlotTracker SlotTracker(
55       (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr);
56   V.print(OS, SlotTracker);
57   return OS;
58 }
59 
60 VPValue::VPValue(const unsigned char SC, Value *UV, VPDef *Def)
61     : SubclassID(SC), UnderlyingVal(UV), Def(Def) {
62   if (Def)
63     Def->addDefinedValue(this);
64 }
65 
66 VPValue::~VPValue() {
67   assert(Users.empty() && "trying to delete a VPValue with remaining users");
68   if (Def)
69     Def->removeDefinedValue(this);
70 }
71 
72 void VPValue::print(raw_ostream &OS, VPSlotTracker &SlotTracker) const {
73   if (const VPInstruction *Instr = dyn_cast<VPInstruction>(this))
74     Instr->print(OS, SlotTracker);
75   else
76     printAsOperand(OS, SlotTracker);
77 }
78 
79 void VPValue::dump() const {
80   const VPInstruction *Instr = dyn_cast<VPInstruction>(this);
81   VPSlotTracker SlotTracker(
82       (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr);
83   print(dbgs(), SlotTracker);
84   dbgs() << "\n";
85 }
86 
87 void VPRecipeBase::dump() const {
88   VPSlotTracker SlotTracker(nullptr);
89   print(dbgs(), "", SlotTracker);
90   dbgs() << "\n";
91 }
92 
93 VPUser *VPRecipeBase::toVPUser() {
94   if (auto *U = dyn_cast<VPInstruction>(this))
95     return U;
96   if (auto *U = dyn_cast<VPWidenRecipe>(this))
97     return U;
98   if (auto *U = dyn_cast<VPWidenCallRecipe>(this))
99     return U;
100   if (auto *U = dyn_cast<VPWidenSelectRecipe>(this))
101     return U;
102   if (auto *U = dyn_cast<VPWidenGEPRecipe>(this))
103     return U;
104   if (auto *U = dyn_cast<VPBlendRecipe>(this))
105     return U;
106   if (auto *U = dyn_cast<VPInterleaveRecipe>(this))
107     return U;
108   if (auto *U = dyn_cast<VPReplicateRecipe>(this))
109     return U;
110   if (auto *U = dyn_cast<VPBranchOnMaskRecipe>(this))
111     return U;
112   if (auto *U = dyn_cast<VPWidenMemoryInstructionRecipe>(this))
113     return U;
114   if (auto *U = dyn_cast<VPReductionRecipe>(this))
115     return U;
116   return nullptr;
117 }
118 
119 VPValue *VPRecipeBase::toVPValue() {
120   if (auto *V = dyn_cast<VPInstruction>(this))
121     return V;
122   if (auto *V = dyn_cast<VPReductionRecipe>(this))
123     return V;
124   if (auto *V = dyn_cast<VPWidenMemoryInstructionRecipe>(this))
125     return V;
126   if (auto *V = dyn_cast<VPWidenCallRecipe>(this))
127     return V;
128   if (auto *V = dyn_cast<VPWidenSelectRecipe>(this))
129     return V;
130   if (auto *V = dyn_cast<VPWidenGEPRecipe>(this))
131     return V;
132   if (auto *V = dyn_cast<VPWidenRecipe>(this))
133     return V;
134   if (auto *V = dyn_cast<VPReplicateRecipe>(this))
135     return V;
136   return nullptr;
137 }
138 
139 const VPValue *VPRecipeBase::toVPValue() const {
140   if (auto *V = dyn_cast<VPInstruction>(this))
141     return V;
142   if (auto *V = dyn_cast<VPReductionRecipe>(this))
143     return V;
144   if (auto *V = dyn_cast<VPWidenMemoryInstructionRecipe>(this))
145     return V;
146   if (auto *V = dyn_cast<VPWidenCallRecipe>(this))
147     return V;
148   if (auto *V = dyn_cast<VPWidenSelectRecipe>(this))
149     return V;
150   if (auto *V = dyn_cast<VPWidenGEPRecipe>(this))
151     return V;
152   if (auto *V = dyn_cast<VPWidenRecipe>(this))
153     return V;
154   if (auto *V = dyn_cast<VPReplicateRecipe>(this))
155     return V;
156   return nullptr;
157 }
158 
159 // Get the top-most entry block of \p Start. This is the entry block of the
160 // containing VPlan. This function is templated to support both const and non-const blocks
161 template <typename T> static T *getPlanEntry(T *Start) {
162   T *Next = Start;
163   T *Current = Start;
164   while ((Next = Next->getParent()))
165     Current = Next;
166 
167   SmallSetVector<T *, 8> WorkList;
168   WorkList.insert(Current);
169 
170   for (unsigned i = 0; i < WorkList.size(); i++) {
171     T *Current = WorkList[i];
172     if (Current->getNumPredecessors() == 0)
173       return Current;
174     auto &Predecessors = Current->getPredecessors();
175     WorkList.insert(Predecessors.begin(), Predecessors.end());
176   }
177 
178   llvm_unreachable("VPlan without any entry node without predecessors");
179 }
180 
181 VPlan *VPBlockBase::getPlan() { return getPlanEntry(this)->Plan; }
182 
183 const VPlan *VPBlockBase::getPlan() const { return getPlanEntry(this)->Plan; }
184 
185 /// \return the VPBasicBlock that is the entry of Block, possibly indirectly.
186 const VPBasicBlock *VPBlockBase::getEntryBasicBlock() const {
187   const VPBlockBase *Block = this;
188   while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
189     Block = Region->getEntry();
190   return cast<VPBasicBlock>(Block);
191 }
192 
193 VPBasicBlock *VPBlockBase::getEntryBasicBlock() {
194   VPBlockBase *Block = this;
195   while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
196     Block = Region->getEntry();
197   return cast<VPBasicBlock>(Block);
198 }
199 
200 void VPBlockBase::setPlan(VPlan *ParentPlan) {
201   assert(ParentPlan->getEntry() == this &&
202          "Can only set plan on its entry block.");
203   Plan = ParentPlan;
204 }
205 
206 /// \return the VPBasicBlock that is the exit of Block, possibly indirectly.
207 const VPBasicBlock *VPBlockBase::getExitBasicBlock() const {
208   const VPBlockBase *Block = this;
209   while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
210     Block = Region->getExit();
211   return cast<VPBasicBlock>(Block);
212 }
213 
214 VPBasicBlock *VPBlockBase::getExitBasicBlock() {
215   VPBlockBase *Block = this;
216   while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
217     Block = Region->getExit();
218   return cast<VPBasicBlock>(Block);
219 }
220 
221 VPBlockBase *VPBlockBase::getEnclosingBlockWithSuccessors() {
222   if (!Successors.empty() || !Parent)
223     return this;
224   assert(Parent->getExit() == this &&
225          "Block w/o successors not the exit of its parent.");
226   return Parent->getEnclosingBlockWithSuccessors();
227 }
228 
229 VPBlockBase *VPBlockBase::getEnclosingBlockWithPredecessors() {
230   if (!Predecessors.empty() || !Parent)
231     return this;
232   assert(Parent->getEntry() == this &&
233          "Block w/o predecessors not the entry of its parent.");
234   return Parent->getEnclosingBlockWithPredecessors();
235 }
236 
237 void VPBlockBase::deleteCFG(VPBlockBase *Entry) {
238   SmallVector<VPBlockBase *, 8> Blocks;
239 
240   for (VPBlockBase *Block : depth_first(Entry))
241     Blocks.push_back(Block);
242 
243   for (VPBlockBase *Block : Blocks)
244     delete Block;
245 }
246 
247 VPBasicBlock::iterator VPBasicBlock::getFirstNonPhi() {
248   iterator It = begin();
249   while (It != end() && (isa<VPWidenPHIRecipe>(&*It) ||
250                          isa<VPWidenIntOrFpInductionRecipe>(&*It) ||
251                          isa<VPPredInstPHIRecipe>(&*It) ||
252                          isa<VPWidenCanonicalIVRecipe>(&*It)))
253     It++;
254   return It;
255 }
256 
257 BasicBlock *
258 VPBasicBlock::createEmptyBasicBlock(VPTransformState::CFGState &CFG) {
259   // BB stands for IR BasicBlocks. VPBB stands for VPlan VPBasicBlocks.
260   // Pred stands for Predessor. Prev stands for Previous - last visited/created.
261   BasicBlock *PrevBB = CFG.PrevBB;
262   BasicBlock *NewBB = BasicBlock::Create(PrevBB->getContext(), getName(),
263                                          PrevBB->getParent(), CFG.LastBB);
264   LLVM_DEBUG(dbgs() << "LV: created " << NewBB->getName() << '\n');
265 
266   // Hook up the new basic block to its predecessors.
267   for (VPBlockBase *PredVPBlock : getHierarchicalPredecessors()) {
268     VPBasicBlock *PredVPBB = PredVPBlock->getExitBasicBlock();
269     auto &PredVPSuccessors = PredVPBB->getSuccessors();
270     BasicBlock *PredBB = CFG.VPBB2IRBB[PredVPBB];
271 
272     // In outer loop vectorization scenario, the predecessor BBlock may not yet
273     // be visited(backedge). Mark the VPBasicBlock for fixup at the end of
274     // vectorization. We do not encounter this case in inner loop vectorization
275     // as we start out by building a loop skeleton with the vector loop header
276     // and latch blocks. As a result, we never enter this function for the
277     // header block in the non VPlan-native path.
278     if (!PredBB) {
279       assert(EnableVPlanNativePath &&
280              "Unexpected null predecessor in non VPlan-native path");
281       CFG.VPBBsToFix.push_back(PredVPBB);
282       continue;
283     }
284 
285     assert(PredBB && "Predecessor basic-block not found building successor.");
286     auto *PredBBTerminator = PredBB->getTerminator();
287     LLVM_DEBUG(dbgs() << "LV: draw edge from" << PredBB->getName() << '\n');
288     if (isa<UnreachableInst>(PredBBTerminator)) {
289       assert(PredVPSuccessors.size() == 1 &&
290              "Predecessor ending w/o branch must have single successor.");
291       PredBBTerminator->eraseFromParent();
292       BranchInst::Create(NewBB, PredBB);
293     } else {
294       assert(PredVPSuccessors.size() == 2 &&
295              "Predecessor ending with branch must have two successors.");
296       unsigned idx = PredVPSuccessors.front() == this ? 0 : 1;
297       assert(!PredBBTerminator->getSuccessor(idx) &&
298              "Trying to reset an existing successor block.");
299       PredBBTerminator->setSuccessor(idx, NewBB);
300     }
301   }
302   return NewBB;
303 }
304 
305 void VPBasicBlock::execute(VPTransformState *State) {
306   bool Replica = State->Instance &&
307                  !(State->Instance->Part == 0 && State->Instance->Lane == 0);
308   VPBasicBlock *PrevVPBB = State->CFG.PrevVPBB;
309   VPBlockBase *SingleHPred = nullptr;
310   BasicBlock *NewBB = State->CFG.PrevBB; // Reuse it if possible.
311 
312   // 1. Create an IR basic block, or reuse the last one if possible.
313   // The last IR basic block is reused, as an optimization, in three cases:
314   // A. the first VPBB reuses the loop header BB - when PrevVPBB is null;
315   // B. when the current VPBB has a single (hierarchical) predecessor which
316   //    is PrevVPBB and the latter has a single (hierarchical) successor; and
317   // C. when the current VPBB is an entry of a region replica - where PrevVPBB
318   //    is the exit of this region from a previous instance, or the predecessor
319   //    of this region.
320   if (PrevVPBB && /* A */
321       !((SingleHPred = getSingleHierarchicalPredecessor()) &&
322         SingleHPred->getExitBasicBlock() == PrevVPBB &&
323         PrevVPBB->getSingleHierarchicalSuccessor()) && /* B */
324       !(Replica && getPredecessors().empty())) {       /* C */
325     NewBB = createEmptyBasicBlock(State->CFG);
326     State->Builder.SetInsertPoint(NewBB);
327     // Temporarily terminate with unreachable until CFG is rewired.
328     UnreachableInst *Terminator = State->Builder.CreateUnreachable();
329     State->Builder.SetInsertPoint(Terminator);
330     // Register NewBB in its loop. In innermost loops its the same for all BB's.
331     Loop *L = State->LI->getLoopFor(State->CFG.LastBB);
332     L->addBasicBlockToLoop(NewBB, *State->LI);
333     State->CFG.PrevBB = NewBB;
334   }
335 
336   // 2. Fill the IR basic block with IR instructions.
337   LLVM_DEBUG(dbgs() << "LV: vectorizing VPBB:" << getName()
338                     << " in BB:" << NewBB->getName() << '\n');
339 
340   State->CFG.VPBB2IRBB[this] = NewBB;
341   State->CFG.PrevVPBB = this;
342 
343   for (VPRecipeBase &Recipe : Recipes)
344     Recipe.execute(*State);
345 
346   VPValue *CBV;
347   if (EnableVPlanNativePath && (CBV = getCondBit())) {
348     Value *IRCBV = CBV->getUnderlyingValue();
349     assert(IRCBV && "Unexpected null underlying value for condition bit");
350 
351     // Condition bit value in a VPBasicBlock is used as the branch selector. In
352     // the VPlan-native path case, since all branches are uniform we generate a
353     // branch instruction using the condition value from vector lane 0 and dummy
354     // successors. The successors are fixed later when the successor blocks are
355     // visited.
356     Value *NewCond = State->Callback.getOrCreateVectorValues(IRCBV, 0);
357     NewCond = State->Builder.CreateExtractElement(NewCond,
358                                                   State->Builder.getInt32(0));
359 
360     // Replace the temporary unreachable terminator with the new conditional
361     // branch.
362     auto *CurrentTerminator = NewBB->getTerminator();
363     assert(isa<UnreachableInst>(CurrentTerminator) &&
364            "Expected to replace unreachable terminator with conditional "
365            "branch.");
366     auto *CondBr = BranchInst::Create(NewBB, nullptr, NewCond);
367     CondBr->setSuccessor(0, nullptr);
368     ReplaceInstWithInst(CurrentTerminator, CondBr);
369   }
370 
371   LLVM_DEBUG(dbgs() << "LV: filled BB:" << *NewBB);
372 }
373 
374 void VPBasicBlock::dropAllReferences(VPValue *NewValue) {
375   for (VPRecipeBase &R : Recipes) {
376     if (auto *VPV = R.toVPValue())
377       VPV->replaceAllUsesWith(NewValue);
378 
379     if (auto *User = R.toVPUser())
380       for (unsigned I = 0, E = User->getNumOperands(); I != E; I++)
381         User->setOperand(I, NewValue);
382   }
383 }
384 
385 void VPRegionBlock::dropAllReferences(VPValue *NewValue) {
386   for (VPBlockBase *Block : depth_first(Entry))
387     // Drop all references in VPBasicBlocks and replace all uses with
388     // DummyValue.
389     Block->dropAllReferences(NewValue);
390 }
391 
392 void VPRegionBlock::execute(VPTransformState *State) {
393   ReversePostOrderTraversal<VPBlockBase *> RPOT(Entry);
394 
395   if (!isReplicator()) {
396     // Visit the VPBlocks connected to "this", starting from it.
397     for (VPBlockBase *Block : RPOT) {
398       if (EnableVPlanNativePath) {
399         // The inner loop vectorization path does not represent loop preheader
400         // and exit blocks as part of the VPlan. In the VPlan-native path, skip
401         // vectorizing loop preheader block. In future, we may replace this
402         // check with the check for loop preheader.
403         if (Block->getNumPredecessors() == 0)
404           continue;
405 
406         // Skip vectorizing loop exit block. In future, we may replace this
407         // check with the check for loop exit.
408         if (Block->getNumSuccessors() == 0)
409           continue;
410       }
411 
412       LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n');
413       Block->execute(State);
414     }
415     return;
416   }
417 
418   assert(!State->Instance && "Replicating a Region with non-null instance.");
419 
420   // Enter replicating mode.
421   State->Instance = {0, 0};
422 
423   for (unsigned Part = 0, UF = State->UF; Part < UF; ++Part) {
424     State->Instance->Part = Part;
425     assert(!State->VF.isScalable() && "VF is assumed to be non scalable.");
426     for (unsigned Lane = 0, VF = State->VF.getKnownMinValue(); Lane < VF;
427          ++Lane) {
428       State->Instance->Lane = Lane;
429       // Visit the VPBlocks connected to \p this, starting from it.
430       for (VPBlockBase *Block : RPOT) {
431         LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n');
432         Block->execute(State);
433       }
434     }
435   }
436 
437   // Exit replicating mode.
438   State->Instance.reset();
439 }
440 
441 void VPRecipeBase::insertBefore(VPRecipeBase *InsertPos) {
442   assert(!Parent && "Recipe already in some VPBasicBlock");
443   assert(InsertPos->getParent() &&
444          "Insertion position not in any VPBasicBlock");
445   Parent = InsertPos->getParent();
446   Parent->getRecipeList().insert(InsertPos->getIterator(), this);
447 }
448 
449 void VPRecipeBase::insertAfter(VPRecipeBase *InsertPos) {
450   assert(!Parent && "Recipe already in some VPBasicBlock");
451   assert(InsertPos->getParent() &&
452          "Insertion position not in any VPBasicBlock");
453   Parent = InsertPos->getParent();
454   Parent->getRecipeList().insertAfter(InsertPos->getIterator(), this);
455 }
456 
457 void VPRecipeBase::removeFromParent() {
458   assert(getParent() && "Recipe not in any VPBasicBlock");
459   getParent()->getRecipeList().remove(getIterator());
460   Parent = nullptr;
461 }
462 
463 iplist<VPRecipeBase>::iterator VPRecipeBase::eraseFromParent() {
464   assert(getParent() && "Recipe not in any VPBasicBlock");
465   return getParent()->getRecipeList().erase(getIterator());
466 }
467 
468 void VPRecipeBase::moveAfter(VPRecipeBase *InsertPos) {
469   removeFromParent();
470   insertAfter(InsertPos);
471 }
472 
473 void VPInstruction::generateInstruction(VPTransformState &State,
474                                         unsigned Part) {
475   IRBuilder<> &Builder = State.Builder;
476 
477   if (Instruction::isBinaryOp(getOpcode())) {
478     Value *A = State.get(getOperand(0), Part);
479     Value *B = State.get(getOperand(1), Part);
480     Value *V = Builder.CreateBinOp((Instruction::BinaryOps)getOpcode(), A, B);
481     State.set(this, V, Part);
482     return;
483   }
484 
485   switch (getOpcode()) {
486   case VPInstruction::Not: {
487     Value *A = State.get(getOperand(0), Part);
488     Value *V = Builder.CreateNot(A);
489     State.set(this, V, Part);
490     break;
491   }
492   case VPInstruction::ICmpULE: {
493     Value *IV = State.get(getOperand(0), Part);
494     Value *TC = State.get(getOperand(1), Part);
495     Value *V = Builder.CreateICmpULE(IV, TC);
496     State.set(this, V, Part);
497     break;
498   }
499   case Instruction::Select: {
500     Value *Cond = State.get(getOperand(0), Part);
501     Value *Op1 = State.get(getOperand(1), Part);
502     Value *Op2 = State.get(getOperand(2), Part);
503     Value *V = Builder.CreateSelect(Cond, Op1, Op2);
504     State.set(this, V, Part);
505     break;
506   }
507   case VPInstruction::ActiveLaneMask: {
508     // Get first lane of vector induction variable.
509     Value *VIVElem0 = State.get(getOperand(0), {Part, 0});
510     // Get the original loop tripcount.
511     Value *ScalarTC = State.TripCount;
512 
513     auto *Int1Ty = Type::getInt1Ty(Builder.getContext());
514     auto *PredTy = FixedVectorType::get(Int1Ty, State.VF.getKnownMinValue());
515     Instruction *Call = Builder.CreateIntrinsic(
516         Intrinsic::get_active_lane_mask, {PredTy, ScalarTC->getType()},
517         {VIVElem0, ScalarTC}, nullptr, "active.lane.mask");
518     State.set(this, Call, Part);
519     break;
520   }
521   default:
522     llvm_unreachable("Unsupported opcode for instruction");
523   }
524 }
525 
526 void VPInstruction::execute(VPTransformState &State) {
527   assert(!State.Instance && "VPInstruction executing an Instance");
528   for (unsigned Part = 0; Part < State.UF; ++Part)
529     generateInstruction(State, Part);
530 }
531 
532 void VPInstruction::print(raw_ostream &O, const Twine &Indent,
533                           VPSlotTracker &SlotTracker) const {
534   O << "\"EMIT ";
535   print(O, SlotTracker);
536 }
537 
538 void VPInstruction::print(raw_ostream &O) const {
539   VPSlotTracker SlotTracker(getParent()->getPlan());
540   print(O, SlotTracker);
541 }
542 
543 void VPInstruction::print(raw_ostream &O, VPSlotTracker &SlotTracker) const {
544   if (hasResult()) {
545     printAsOperand(O, SlotTracker);
546     O << " = ";
547   }
548 
549   switch (getOpcode()) {
550   case VPInstruction::Not:
551     O << "not";
552     break;
553   case VPInstruction::ICmpULE:
554     O << "icmp ule";
555     break;
556   case VPInstruction::SLPLoad:
557     O << "combined load";
558     break;
559   case VPInstruction::SLPStore:
560     O << "combined store";
561     break;
562   case VPInstruction::ActiveLaneMask:
563     O << "active lane mask";
564     break;
565 
566   default:
567     O << Instruction::getOpcodeName(getOpcode());
568   }
569 
570   for (const VPValue *Operand : operands()) {
571     O << " ";
572     Operand->printAsOperand(O, SlotTracker);
573   }
574 }
575 
576 /// Generate the code inside the body of the vectorized loop. Assumes a single
577 /// LoopVectorBody basic-block was created for this. Introduce additional
578 /// basic-blocks as needed, and fill them all.
579 void VPlan::execute(VPTransformState *State) {
580   // -1. Check if the backedge taken count is needed, and if so build it.
581   if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) {
582     Value *TC = State->TripCount;
583     IRBuilder<> Builder(State->CFG.PrevBB->getTerminator());
584     auto *TCMO = Builder.CreateSub(TC, ConstantInt::get(TC->getType(), 1),
585                                    "trip.count.minus.1");
586     auto VF = State->VF;
587     Value *VTCMO =
588         VF.isScalar() ? TCMO : Builder.CreateVectorSplat(VF, TCMO, "broadcast");
589     for (unsigned Part = 0, UF = State->UF; Part < UF; ++Part)
590       State->set(BackedgeTakenCount, VTCMO, Part);
591   }
592 
593   // 0. Set the reverse mapping from VPValues to Values for code generation.
594   for (auto &Entry : Value2VPValue)
595     State->VPValue2Value[Entry.second] = Entry.first;
596 
597   BasicBlock *VectorPreHeaderBB = State->CFG.PrevBB;
598   BasicBlock *VectorHeaderBB = VectorPreHeaderBB->getSingleSuccessor();
599   assert(VectorHeaderBB && "Loop preheader does not have a single successor.");
600 
601   // 1. Make room to generate basic-blocks inside loop body if needed.
602   BasicBlock *VectorLatchBB = VectorHeaderBB->splitBasicBlock(
603       VectorHeaderBB->getFirstInsertionPt(), "vector.body.latch");
604   Loop *L = State->LI->getLoopFor(VectorHeaderBB);
605   L->addBasicBlockToLoop(VectorLatchBB, *State->LI);
606   // Remove the edge between Header and Latch to allow other connections.
607   // Temporarily terminate with unreachable until CFG is rewired.
608   // Note: this asserts the generated code's assumption that
609   // getFirstInsertionPt() can be dereferenced into an Instruction.
610   VectorHeaderBB->getTerminator()->eraseFromParent();
611   State->Builder.SetInsertPoint(VectorHeaderBB);
612   UnreachableInst *Terminator = State->Builder.CreateUnreachable();
613   State->Builder.SetInsertPoint(Terminator);
614 
615   // 2. Generate code in loop body.
616   State->CFG.PrevVPBB = nullptr;
617   State->CFG.PrevBB = VectorHeaderBB;
618   State->CFG.LastBB = VectorLatchBB;
619 
620   for (VPBlockBase *Block : depth_first(Entry))
621     Block->execute(State);
622 
623   // Setup branch terminator successors for VPBBs in VPBBsToFix based on
624   // VPBB's successors.
625   for (auto VPBB : State->CFG.VPBBsToFix) {
626     assert(EnableVPlanNativePath &&
627            "Unexpected VPBBsToFix in non VPlan-native path");
628     BasicBlock *BB = State->CFG.VPBB2IRBB[VPBB];
629     assert(BB && "Unexpected null basic block for VPBB");
630 
631     unsigned Idx = 0;
632     auto *BBTerminator = BB->getTerminator();
633 
634     for (VPBlockBase *SuccVPBlock : VPBB->getHierarchicalSuccessors()) {
635       VPBasicBlock *SuccVPBB = SuccVPBlock->getEntryBasicBlock();
636       BBTerminator->setSuccessor(Idx, State->CFG.VPBB2IRBB[SuccVPBB]);
637       ++Idx;
638     }
639   }
640 
641   // 3. Merge the temporary latch created with the last basic-block filled.
642   BasicBlock *LastBB = State->CFG.PrevBB;
643   // Connect LastBB to VectorLatchBB to facilitate their merge.
644   assert((EnableVPlanNativePath ||
645           isa<UnreachableInst>(LastBB->getTerminator())) &&
646          "Expected InnerLoop VPlan CFG to terminate with unreachable");
647   assert((!EnableVPlanNativePath || isa<BranchInst>(LastBB->getTerminator())) &&
648          "Expected VPlan CFG to terminate with branch in NativePath");
649   LastBB->getTerminator()->eraseFromParent();
650   BranchInst::Create(VectorLatchBB, LastBB);
651 
652   // Merge LastBB with Latch.
653   bool Merged = MergeBlockIntoPredecessor(VectorLatchBB, nullptr, State->LI);
654   (void)Merged;
655   assert(Merged && "Could not merge last basic block with latch.");
656   VectorLatchBB = LastBB;
657 
658   // We do not attempt to preserve DT for outer loop vectorization currently.
659   if (!EnableVPlanNativePath)
660     updateDominatorTree(State->DT, VectorPreHeaderBB, VectorLatchBB,
661                         L->getExitBlock());
662 }
663 
664 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
665 LLVM_DUMP_METHOD
666 void VPlan::dump() const { dbgs() << *this << '\n'; }
667 #endif
668 
669 void VPlan::updateDominatorTree(DominatorTree *DT, BasicBlock *LoopPreHeaderBB,
670                                 BasicBlock *LoopLatchBB,
671                                 BasicBlock *LoopExitBB) {
672   BasicBlock *LoopHeaderBB = LoopPreHeaderBB->getSingleSuccessor();
673   assert(LoopHeaderBB && "Loop preheader does not have a single successor.");
674   // The vector body may be more than a single basic-block by this point.
675   // Update the dominator tree information inside the vector body by propagating
676   // it from header to latch, expecting only triangular control-flow, if any.
677   BasicBlock *PostDomSucc = nullptr;
678   for (auto *BB = LoopHeaderBB; BB != LoopLatchBB; BB = PostDomSucc) {
679     // Get the list of successors of this block.
680     std::vector<BasicBlock *> Succs(succ_begin(BB), succ_end(BB));
681     assert(Succs.size() <= 2 &&
682            "Basic block in vector loop has more than 2 successors.");
683     PostDomSucc = Succs[0];
684     if (Succs.size() == 1) {
685       assert(PostDomSucc->getSinglePredecessor() &&
686              "PostDom successor has more than one predecessor.");
687       DT->addNewBlock(PostDomSucc, BB);
688       continue;
689     }
690     BasicBlock *InterimSucc = Succs[1];
691     if (PostDomSucc->getSingleSuccessor() == InterimSucc) {
692       PostDomSucc = Succs[1];
693       InterimSucc = Succs[0];
694     }
695     assert(InterimSucc->getSingleSuccessor() == PostDomSucc &&
696            "One successor of a basic block does not lead to the other.");
697     assert(InterimSucc->getSinglePredecessor() &&
698            "Interim successor has more than one predecessor.");
699     assert(PostDomSucc->hasNPredecessors(2) &&
700            "PostDom successor has more than two predecessors.");
701     DT->addNewBlock(InterimSucc, BB);
702     DT->addNewBlock(PostDomSucc, BB);
703   }
704   // Latch block is a new dominator for the loop exit.
705   DT->changeImmediateDominator(LoopExitBB, LoopLatchBB);
706   assert(DT->verify(DominatorTree::VerificationLevel::Fast));
707 }
708 
709 const Twine VPlanPrinter::getUID(const VPBlockBase *Block) {
710   return (isa<VPRegionBlock>(Block) ? "cluster_N" : "N") +
711          Twine(getOrCreateBID(Block));
712 }
713 
714 const Twine VPlanPrinter::getOrCreateName(const VPBlockBase *Block) {
715   const std::string &Name = Block->getName();
716   if (!Name.empty())
717     return Name;
718   return "VPB" + Twine(getOrCreateBID(Block));
719 }
720 
721 void VPlanPrinter::dump() {
722   Depth = 1;
723   bumpIndent(0);
724   OS << "digraph VPlan {\n";
725   OS << "graph [labelloc=t, fontsize=30; label=\"Vectorization Plan";
726   if (!Plan.getName().empty())
727     OS << "\\n" << DOT::EscapeString(Plan.getName());
728   if (Plan.BackedgeTakenCount) {
729     OS << ", where:\\n";
730     Plan.BackedgeTakenCount->print(OS, SlotTracker);
731     OS << " := BackedgeTakenCount";
732   }
733   OS << "\"]\n";
734   OS << "node [shape=rect, fontname=Courier, fontsize=30]\n";
735   OS << "edge [fontname=Courier, fontsize=30]\n";
736   OS << "compound=true\n";
737 
738   for (const VPBlockBase *Block : depth_first(Plan.getEntry()))
739     dumpBlock(Block);
740 
741   OS << "}\n";
742 }
743 
744 void VPlanPrinter::dumpBlock(const VPBlockBase *Block) {
745   if (const VPBasicBlock *BasicBlock = dyn_cast<VPBasicBlock>(Block))
746     dumpBasicBlock(BasicBlock);
747   else if (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
748     dumpRegion(Region);
749   else
750     llvm_unreachable("Unsupported kind of VPBlock.");
751 }
752 
753 void VPlanPrinter::drawEdge(const VPBlockBase *From, const VPBlockBase *To,
754                             bool Hidden, const Twine &Label) {
755   // Due to "dot" we print an edge between two regions as an edge between the
756   // exit basic block and the entry basic of the respective regions.
757   const VPBlockBase *Tail = From->getExitBasicBlock();
758   const VPBlockBase *Head = To->getEntryBasicBlock();
759   OS << Indent << getUID(Tail) << " -> " << getUID(Head);
760   OS << " [ label=\"" << Label << '\"';
761   if (Tail != From)
762     OS << " ltail=" << getUID(From);
763   if (Head != To)
764     OS << " lhead=" << getUID(To);
765   if (Hidden)
766     OS << "; splines=none";
767   OS << "]\n";
768 }
769 
770 void VPlanPrinter::dumpEdges(const VPBlockBase *Block) {
771   auto &Successors = Block->getSuccessors();
772   if (Successors.size() == 1)
773     drawEdge(Block, Successors.front(), false, "");
774   else if (Successors.size() == 2) {
775     drawEdge(Block, Successors.front(), false, "T");
776     drawEdge(Block, Successors.back(), false, "F");
777   } else {
778     unsigned SuccessorNumber = 0;
779     for (auto *Successor : Successors)
780       drawEdge(Block, Successor, false, Twine(SuccessorNumber++));
781   }
782 }
783 
784 void VPlanPrinter::dumpBasicBlock(const VPBasicBlock *BasicBlock) {
785   OS << Indent << getUID(BasicBlock) << " [label =\n";
786   bumpIndent(1);
787   OS << Indent << "\"" << DOT::EscapeString(BasicBlock->getName()) << ":\\n\"";
788   bumpIndent(1);
789 
790   // Dump the block predicate.
791   const VPValue *Pred = BasicBlock->getPredicate();
792   if (Pred) {
793     OS << " +\n" << Indent << " \"BlockPredicate: ";
794     if (const VPInstruction *PredI = dyn_cast<VPInstruction>(Pred)) {
795       PredI->printAsOperand(OS, SlotTracker);
796       OS << " (" << DOT::EscapeString(PredI->getParent()->getName())
797          << ")\\l\"";
798     } else
799       Pred->printAsOperand(OS, SlotTracker);
800   }
801 
802   for (const VPRecipeBase &Recipe : *BasicBlock) {
803     OS << " +\n" << Indent;
804     Recipe.print(OS, Indent, SlotTracker);
805     OS << "\\l\"";
806   }
807 
808   // Dump the condition bit.
809   const VPValue *CBV = BasicBlock->getCondBit();
810   if (CBV) {
811     OS << " +\n" << Indent << " \"CondBit: ";
812     if (const VPInstruction *CBI = dyn_cast<VPInstruction>(CBV)) {
813       CBI->printAsOperand(OS, SlotTracker);
814       OS << " (" << DOT::EscapeString(CBI->getParent()->getName()) << ")\\l\"";
815     } else {
816       CBV->printAsOperand(OS, SlotTracker);
817       OS << "\"";
818     }
819   }
820 
821   bumpIndent(-2);
822   OS << "\n" << Indent << "]\n";
823   dumpEdges(BasicBlock);
824 }
825 
826 void VPlanPrinter::dumpRegion(const VPRegionBlock *Region) {
827   OS << Indent << "subgraph " << getUID(Region) << " {\n";
828   bumpIndent(1);
829   OS << Indent << "fontname=Courier\n"
830      << Indent << "label=\""
831      << DOT::EscapeString(Region->isReplicator() ? "<xVFxUF> " : "<x1> ")
832      << DOT::EscapeString(Region->getName()) << "\"\n";
833   // Dump the blocks of the region.
834   assert(Region->getEntry() && "Region contains no inner blocks.");
835   for (const VPBlockBase *Block : depth_first(Region->getEntry()))
836     dumpBlock(Block);
837   bumpIndent(-1);
838   OS << Indent << "}\n";
839   dumpEdges(Region);
840 }
841 
842 void VPlanPrinter::printAsIngredient(raw_ostream &O, const Value *V) {
843   std::string IngredientString;
844   raw_string_ostream RSO(IngredientString);
845   if (auto *Inst = dyn_cast<Instruction>(V)) {
846     if (!Inst->getType()->isVoidTy()) {
847       Inst->printAsOperand(RSO, false);
848       RSO << " = ";
849     }
850     RSO << Inst->getOpcodeName() << " ";
851     unsigned E = Inst->getNumOperands();
852     if (E > 0) {
853       Inst->getOperand(0)->printAsOperand(RSO, false);
854       for (unsigned I = 1; I < E; ++I)
855         Inst->getOperand(I)->printAsOperand(RSO << ", ", false);
856     }
857   } else // !Inst
858     V->printAsOperand(RSO, false);
859   RSO.flush();
860   O << DOT::EscapeString(IngredientString);
861 }
862 
863 void VPWidenCallRecipe::print(raw_ostream &O, const Twine &Indent,
864                               VPSlotTracker &SlotTracker) const {
865   O << "\"WIDEN-CALL ";
866 
867   auto *CI = cast<CallInst>(getUnderlyingInstr());
868   if (CI->getType()->isVoidTy())
869     O << "void ";
870   else {
871     printAsOperand(O, SlotTracker);
872     O << " = ";
873   }
874 
875   O << "call @" << CI->getCalledFunction()->getName() << "(";
876   printOperands(O, SlotTracker);
877   O << ")";
878 }
879 
880 void VPWidenSelectRecipe::print(raw_ostream &O, const Twine &Indent,
881                                 VPSlotTracker &SlotTracker) const {
882   O << "\"WIDEN-SELECT ";
883   printAsOperand(O, SlotTracker);
884   O << " = select ";
885   getOperand(0)->printAsOperand(O, SlotTracker);
886   O << ", ";
887   getOperand(1)->printAsOperand(O, SlotTracker);
888   O << ", ";
889   getOperand(2)->printAsOperand(O, SlotTracker);
890   O << (InvariantCond ? " (condition is loop invariant)" : "");
891 }
892 
893 void VPWidenRecipe::print(raw_ostream &O, const Twine &Indent,
894                           VPSlotTracker &SlotTracker) const {
895   O << "\"WIDEN ";
896   printAsOperand(O, SlotTracker);
897   O << " = " << getUnderlyingInstr()->getOpcodeName() << " ";
898   printOperands(O, SlotTracker);
899 }
900 
901 void VPWidenIntOrFpInductionRecipe::print(raw_ostream &O, const Twine &Indent,
902                                           VPSlotTracker &SlotTracker) const {
903   O << "\"WIDEN-INDUCTION";
904   if (Trunc) {
905     O << "\\l\"";
906     O << " +\n" << Indent << "\"  " << VPlanIngredient(IV) << "\\l\"";
907     O << " +\n" << Indent << "\"  " << VPlanIngredient(Trunc);
908   } else
909     O << " " << VPlanIngredient(IV);
910 }
911 
912 void VPWidenGEPRecipe::print(raw_ostream &O, const Twine &Indent,
913                              VPSlotTracker &SlotTracker) const {
914   O << "\"WIDEN-GEP ";
915   O << (IsPtrLoopInvariant ? "Inv" : "Var");
916   size_t IndicesNumber = IsIndexLoopInvariant.size();
917   for (size_t I = 0; I < IndicesNumber; ++I)
918     O << "[" << (IsIndexLoopInvariant[I] ? "Inv" : "Var") << "]";
919 
920   O << " ";
921   printAsOperand(O, SlotTracker);
922   O << " = getelementptr ";
923   printOperands(O, SlotTracker);
924 }
925 
926 void VPWidenPHIRecipe::print(raw_ostream &O, const Twine &Indent,
927                              VPSlotTracker &SlotTracker) const {
928   O << "\"WIDEN-PHI " << VPlanIngredient(Phi);
929 }
930 
931 void VPBlendRecipe::print(raw_ostream &O, const Twine &Indent,
932                           VPSlotTracker &SlotTracker) const {
933   O << "\"BLEND ";
934   Phi->printAsOperand(O, false);
935   O << " =";
936   if (getNumIncomingValues() == 1) {
937     // Not a User of any mask: not really blending, this is a
938     // single-predecessor phi.
939     O << " ";
940     getIncomingValue(0)->printAsOperand(O, SlotTracker);
941   } else {
942     for (unsigned I = 0, E = getNumIncomingValues(); I < E; ++I) {
943       O << " ";
944       getIncomingValue(I)->printAsOperand(O, SlotTracker);
945       O << "/";
946       getMask(I)->printAsOperand(O, SlotTracker);
947     }
948   }
949 }
950 
951 void VPReductionRecipe::print(raw_ostream &O, const Twine &Indent,
952                               VPSlotTracker &SlotTracker) const {
953   O << "\"REDUCE ";
954   printAsOperand(O, SlotTracker);
955   O << " = ";
956   getChainOp()->printAsOperand(O, SlotTracker);
957   O << " + reduce." << Instruction::getOpcodeName(RdxDesc->getRecurrenceBinOp())
958     << " (";
959   getVecOp()->printAsOperand(O, SlotTracker);
960   if (getCondOp()) {
961     O << ", ";
962     getCondOp()->printAsOperand(O, SlotTracker);
963   }
964   O << ")";
965 }
966 
967 void VPReplicateRecipe::print(raw_ostream &O, const Twine &Indent,
968                               VPSlotTracker &SlotTracker) const {
969   O << "\"" << (IsUniform ? "CLONE " : "REPLICATE ")
970     << VPlanIngredient(getUnderlyingInstr());
971   if (AlsoPack)
972     O << " (S->V)";
973 }
974 
975 void VPPredInstPHIRecipe::print(raw_ostream &O, const Twine &Indent,
976                                 VPSlotTracker &SlotTracker) const {
977   O << "\"PHI-PREDICATED-INSTRUCTION " << VPlanIngredient(PredInst);
978 }
979 
980 void VPWidenMemoryInstructionRecipe::print(raw_ostream &O, const Twine &Indent,
981                                            VPSlotTracker &SlotTracker) const {
982   O << "\"WIDEN ";
983 
984   if (!isStore()) {
985     printAsOperand(O, SlotTracker);
986     O << " = ";
987   }
988   O << Instruction::getOpcodeName(getUnderlyingInstr()->getOpcode()) << " ";
989 
990   printOperands(O, SlotTracker);
991 }
992 
993 void VPWidenCanonicalIVRecipe::execute(VPTransformState &State) {
994   Value *CanonicalIV = State.CanonicalIV;
995   Type *STy = CanonicalIV->getType();
996   IRBuilder<> Builder(State.CFG.PrevBB->getTerminator());
997   ElementCount VF = State.VF;
998   assert(!VF.isScalable() && "the code following assumes non scalables ECs");
999   Value *VStart = VF.isScalar()
1000                       ? CanonicalIV
1001                       : Builder.CreateVectorSplat(VF.getKnownMinValue(),
1002                                                   CanonicalIV, "broadcast");
1003   for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part) {
1004     SmallVector<Constant *, 8> Indices;
1005     for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane)
1006       Indices.push_back(
1007           ConstantInt::get(STy, Part * VF.getKnownMinValue() + Lane));
1008     // If VF == 1, there is only one iteration in the loop above, thus the
1009     // element pushed back into Indices is ConstantInt::get(STy, Part)
1010     Constant *VStep =
1011         VF.isScalar() ? Indices.back() : ConstantVector::get(Indices);
1012     // Add the consecutive indices to the vector value.
1013     Value *CanonicalVectorIV = Builder.CreateAdd(VStart, VStep, "vec.iv");
1014     State.set(getVPValue(), CanonicalVectorIV, Part);
1015   }
1016 }
1017 
1018 void VPWidenCanonicalIVRecipe::print(raw_ostream &O, const Twine &Indent,
1019                                      VPSlotTracker &SlotTracker) const {
1020   O << "\"EMIT ";
1021   getVPValue()->printAsOperand(O, SlotTracker);
1022   O << " = WIDEN-CANONICAL-INDUCTION";
1023 }
1024 
1025 template void DomTreeBuilder::Calculate<VPDominatorTree>(VPDominatorTree &DT);
1026 
1027 void VPValue::replaceAllUsesWith(VPValue *New) {
1028   for (unsigned J = 0; J < getNumUsers();) {
1029     VPUser *User = Users[J];
1030     unsigned NumUsers = getNumUsers();
1031     for (unsigned I = 0, E = User->getNumOperands(); I < E; ++I)
1032       if (User->getOperand(I) == this)
1033         User->setOperand(I, New);
1034     // If a user got removed after updating the current user, the next user to
1035     // update will be moved to the current position, so we only need to
1036     // increment the index if the number of users did not change.
1037     if (NumUsers == getNumUsers())
1038       J++;
1039   }
1040 }
1041 
1042 void VPValue::printAsOperand(raw_ostream &OS, VPSlotTracker &Tracker) const {
1043   if (const Value *UV = getUnderlyingValue()) {
1044     OS << "ir<";
1045     UV->printAsOperand(OS, false);
1046     OS << ">";
1047     return;
1048   }
1049 
1050   unsigned Slot = Tracker.getSlot(this);
1051   if (Slot == unsigned(-1))
1052     OS << "<badref>";
1053   else
1054     OS << "vp<%" << Tracker.getSlot(this) << ">";
1055 }
1056 
1057 void VPUser::printOperands(raw_ostream &O, VPSlotTracker &SlotTracker) const {
1058   bool First = true;
1059   for (VPValue *Op : operands()) {
1060     if (!First)
1061       O << ", ";
1062     Op->printAsOperand(O, SlotTracker);
1063     First = false;
1064   }
1065 }
1066 
1067 void VPInterleavedAccessInfo::visitRegion(VPRegionBlock *Region,
1068                                           Old2NewTy &Old2New,
1069                                           InterleavedAccessInfo &IAI) {
1070   ReversePostOrderTraversal<VPBlockBase *> RPOT(Region->getEntry());
1071   for (VPBlockBase *Base : RPOT) {
1072     visitBlock(Base, Old2New, IAI);
1073   }
1074 }
1075 
1076 void VPInterleavedAccessInfo::visitBlock(VPBlockBase *Block, Old2NewTy &Old2New,
1077                                          InterleavedAccessInfo &IAI) {
1078   if (VPBasicBlock *VPBB = dyn_cast<VPBasicBlock>(Block)) {
1079     for (VPRecipeBase &VPI : *VPBB) {
1080       assert(isa<VPInstruction>(&VPI) && "Can only handle VPInstructions");
1081       auto *VPInst = cast<VPInstruction>(&VPI);
1082       auto *Inst = cast<Instruction>(VPInst->getUnderlyingValue());
1083       auto *IG = IAI.getInterleaveGroup(Inst);
1084       if (!IG)
1085         continue;
1086 
1087       auto NewIGIter = Old2New.find(IG);
1088       if (NewIGIter == Old2New.end())
1089         Old2New[IG] = new InterleaveGroup<VPInstruction>(
1090             IG->getFactor(), IG->isReverse(), IG->getAlign());
1091 
1092       if (Inst == IG->getInsertPos())
1093         Old2New[IG]->setInsertPos(VPInst);
1094 
1095       InterleaveGroupMap[VPInst] = Old2New[IG];
1096       InterleaveGroupMap[VPInst]->insertMember(
1097           VPInst, IG->getIndex(Inst),
1098           Align(IG->isReverse() ? (-1) * int(IG->getFactor())
1099                                 : IG->getFactor()));
1100     }
1101   } else if (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
1102     visitRegion(Region, Old2New, IAI);
1103   else
1104     llvm_unreachable("Unsupported kind of VPBlock.");
1105 }
1106 
1107 VPInterleavedAccessInfo::VPInterleavedAccessInfo(VPlan &Plan,
1108                                                  InterleavedAccessInfo &IAI) {
1109   Old2NewTy Old2New;
1110   visitRegion(cast<VPRegionBlock>(Plan.getEntry()), Old2New, IAI);
1111 }
1112 
1113 void VPSlotTracker::assignSlot(const VPValue *V) {
1114   assert(Slots.find(V) == Slots.end() && "VPValue already has a slot!");
1115   const Value *UV = V->getUnderlyingValue();
1116   if (UV)
1117     return;
1118   const auto *VPI = dyn_cast<VPInstruction>(V);
1119   if (VPI && !VPI->hasResult())
1120     return;
1121 
1122   Slots[V] = NextSlot++;
1123 }
1124 
1125 void VPSlotTracker::assignSlots(const VPBlockBase *VPBB) {
1126   if (auto *Region = dyn_cast<VPRegionBlock>(VPBB))
1127     assignSlots(Region);
1128   else
1129     assignSlots(cast<VPBasicBlock>(VPBB));
1130 }
1131 
1132 void VPSlotTracker::assignSlots(const VPRegionBlock *Region) {
1133   ReversePostOrderTraversal<const VPBlockBase *> RPOT(Region->getEntry());
1134   for (const VPBlockBase *Block : RPOT)
1135     assignSlots(Block);
1136 }
1137 
1138 void VPSlotTracker::assignSlots(const VPBasicBlock *VPBB) {
1139   for (const VPRecipeBase &Recipe : *VPBB) {
1140     if (const auto *VPI = dyn_cast<VPInstruction>(&Recipe))
1141       assignSlot(VPI);
1142     else if (const auto *VPIV = dyn_cast<VPWidenCanonicalIVRecipe>(&Recipe))
1143       assignSlot(VPIV->getVPValue());
1144   }
1145 }
1146 
1147 void VPSlotTracker::assignSlots(const VPlan &Plan) {
1148 
1149   for (const VPValue *V : Plan.VPExternalDefs)
1150     assignSlot(V);
1151 
1152   for (auto &E : Plan.Value2VPValue)
1153     if (!isa<VPInstruction>(E.second))
1154       assignSlot(E.second);
1155 
1156   for (const VPValue *V : Plan.VPCBVs)
1157     assignSlot(V);
1158 
1159   if (Plan.BackedgeTakenCount)
1160     assignSlot(Plan.BackedgeTakenCount);
1161 
1162   ReversePostOrderTraversal<const VPBlockBase *> RPOT(Plan.getEntry());
1163   for (const VPBlockBase *Block : RPOT)
1164     assignSlots(Block);
1165 }
1166