1 //===- VPlan.cpp - Vectorizer Plan ----------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This is the LLVM vectorization plan. It represents a candidate for 11 /// vectorization, allowing to plan and optimize how to vectorize a given loop 12 /// before generating LLVM-IR. 13 /// The vectorizer uses vectorization plans to estimate the costs of potential 14 /// candidates and if profitable to execute the desired plan, generating vector 15 /// LLVM-IR code. 16 /// 17 //===----------------------------------------------------------------------===// 18 19 #include "VPlan.h" 20 #include "VPlanCFG.h" 21 #include "VPlanDominatorTree.h" 22 #include "llvm/ADT/DepthFirstIterator.h" 23 #include "llvm/ADT/PostOrderIterator.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/Twine.h" 27 #include "llvm/Analysis/LoopInfo.h" 28 #include "llvm/IR/BasicBlock.h" 29 #include "llvm/IR/CFG.h" 30 #include "llvm/IR/IRBuilder.h" 31 #include "llvm/IR/Instruction.h" 32 #include "llvm/IR/Instructions.h" 33 #include "llvm/IR/Type.h" 34 #include "llvm/IR/Value.h" 35 #include "llvm/Support/Casting.h" 36 #include "llvm/Support/CommandLine.h" 37 #include "llvm/Support/Debug.h" 38 #include "llvm/Support/GenericDomTreeConstruction.h" 39 #include "llvm/Support/GraphWriter.h" 40 #include "llvm/Support/raw_ostream.h" 41 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 42 #include "llvm/Transforms/Utils/LoopVersioning.h" 43 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 44 #include <cassert> 45 #include <string> 46 #include <vector> 47 48 using namespace llvm; 49 50 namespace llvm { 51 extern cl::opt<bool> EnableVPlanNativePath; 52 } 53 54 #define DEBUG_TYPE "vplan" 55 56 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 57 raw_ostream &llvm::operator<<(raw_ostream &OS, const VPValue &V) { 58 const VPInstruction *Instr = dyn_cast<VPInstruction>(&V); 59 VPSlotTracker SlotTracker( 60 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr); 61 V.print(OS, SlotTracker); 62 return OS; 63 } 64 #endif 65 66 Value *VPLane::getAsRuntimeExpr(IRBuilderBase &Builder, 67 const ElementCount &VF) const { 68 switch (LaneKind) { 69 case VPLane::Kind::ScalableLast: 70 // Lane = RuntimeVF - VF.getKnownMinValue() + Lane 71 return Builder.CreateSub(getRuntimeVF(Builder, Builder.getInt32Ty(), VF), 72 Builder.getInt32(VF.getKnownMinValue() - Lane)); 73 case VPLane::Kind::First: 74 return Builder.getInt32(Lane); 75 } 76 llvm_unreachable("Unknown lane kind"); 77 } 78 79 VPValue::VPValue(const unsigned char SC, Value *UV, VPDef *Def) 80 : SubclassID(SC), UnderlyingVal(UV), Def(Def) { 81 if (Def) 82 Def->addDefinedValue(this); 83 } 84 85 VPValue::~VPValue() { 86 assert(Users.empty() && "trying to delete a VPValue with remaining users"); 87 if (Def) 88 Def->removeDefinedValue(this); 89 } 90 91 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 92 void VPValue::print(raw_ostream &OS, VPSlotTracker &SlotTracker) const { 93 if (const VPRecipeBase *R = dyn_cast_or_null<VPRecipeBase>(Def)) 94 R->print(OS, "", SlotTracker); 95 else 96 printAsOperand(OS, SlotTracker); 97 } 98 99 void VPValue::dump() const { 100 const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this->Def); 101 VPSlotTracker SlotTracker( 102 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr); 103 print(dbgs(), SlotTracker); 104 dbgs() << "\n"; 105 } 106 107 void VPDef::dump() const { 108 const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this); 109 VPSlotTracker SlotTracker( 110 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr); 111 print(dbgs(), "", SlotTracker); 112 dbgs() << "\n"; 113 } 114 #endif 115 116 VPRecipeBase *VPValue::getDefiningRecipe() { 117 return cast_or_null<VPRecipeBase>(Def); 118 } 119 120 const VPRecipeBase *VPValue::getDefiningRecipe() const { 121 return cast_or_null<VPRecipeBase>(Def); 122 } 123 124 // Get the top-most entry block of \p Start. This is the entry block of the 125 // containing VPlan. This function is templated to support both const and non-const blocks 126 template <typename T> static T *getPlanEntry(T *Start) { 127 T *Next = Start; 128 T *Current = Start; 129 while ((Next = Next->getParent())) 130 Current = Next; 131 132 SmallSetVector<T *, 8> WorkList; 133 WorkList.insert(Current); 134 135 for (unsigned i = 0; i < WorkList.size(); i++) { 136 T *Current = WorkList[i]; 137 if (Current->getNumPredecessors() == 0) 138 return Current; 139 auto &Predecessors = Current->getPredecessors(); 140 WorkList.insert(Predecessors.begin(), Predecessors.end()); 141 } 142 143 llvm_unreachable("VPlan without any entry node without predecessors"); 144 } 145 146 VPlan *VPBlockBase::getPlan() { return getPlanEntry(this)->Plan; } 147 148 const VPlan *VPBlockBase::getPlan() const { return getPlanEntry(this)->Plan; } 149 150 /// \return the VPBasicBlock that is the entry of Block, possibly indirectly. 151 const VPBasicBlock *VPBlockBase::getEntryBasicBlock() const { 152 const VPBlockBase *Block = this; 153 while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 154 Block = Region->getEntry(); 155 return cast<VPBasicBlock>(Block); 156 } 157 158 VPBasicBlock *VPBlockBase::getEntryBasicBlock() { 159 VPBlockBase *Block = this; 160 while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 161 Block = Region->getEntry(); 162 return cast<VPBasicBlock>(Block); 163 } 164 165 void VPBlockBase::setPlan(VPlan *ParentPlan) { 166 assert( 167 (ParentPlan->getEntry() == this || ParentPlan->getPreheader() == this) && 168 "Can only set plan on its entry or preheader block."); 169 Plan = ParentPlan; 170 } 171 172 /// \return the VPBasicBlock that is the exit of Block, possibly indirectly. 173 const VPBasicBlock *VPBlockBase::getExitingBasicBlock() const { 174 const VPBlockBase *Block = this; 175 while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 176 Block = Region->getExiting(); 177 return cast<VPBasicBlock>(Block); 178 } 179 180 VPBasicBlock *VPBlockBase::getExitingBasicBlock() { 181 VPBlockBase *Block = this; 182 while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 183 Block = Region->getExiting(); 184 return cast<VPBasicBlock>(Block); 185 } 186 187 VPBlockBase *VPBlockBase::getEnclosingBlockWithSuccessors() { 188 if (!Successors.empty() || !Parent) 189 return this; 190 assert(Parent->getExiting() == this && 191 "Block w/o successors not the exiting block of its parent."); 192 return Parent->getEnclosingBlockWithSuccessors(); 193 } 194 195 VPBlockBase *VPBlockBase::getEnclosingBlockWithPredecessors() { 196 if (!Predecessors.empty() || !Parent) 197 return this; 198 assert(Parent->getEntry() == this && 199 "Block w/o predecessors not the entry of its parent."); 200 return Parent->getEnclosingBlockWithPredecessors(); 201 } 202 203 void VPBlockBase::deleteCFG(VPBlockBase *Entry) { 204 for (VPBlockBase *Block : to_vector(vp_depth_first_shallow(Entry))) 205 delete Block; 206 } 207 208 VPBasicBlock::iterator VPBasicBlock::getFirstNonPhi() { 209 iterator It = begin(); 210 while (It != end() && It->isPhi()) 211 It++; 212 return It; 213 } 214 215 Value *VPTransformState::get(VPValue *Def, const VPIteration &Instance) { 216 if (Def->isLiveIn()) 217 return Def->getLiveInIRValue(); 218 219 if (hasScalarValue(Def, Instance)) { 220 return Data 221 .PerPartScalars[Def][Instance.Part][Instance.Lane.mapToCacheIndex(VF)]; 222 } 223 224 assert(hasVectorValue(Def, Instance.Part)); 225 auto *VecPart = Data.PerPartOutput[Def][Instance.Part]; 226 if (!VecPart->getType()->isVectorTy()) { 227 assert(Instance.Lane.isFirstLane() && "cannot get lane > 0 for scalar"); 228 return VecPart; 229 } 230 // TODO: Cache created scalar values. 231 Value *Lane = Instance.Lane.getAsRuntimeExpr(Builder, VF); 232 auto *Extract = Builder.CreateExtractElement(VecPart, Lane); 233 // set(Def, Extract, Instance); 234 return Extract; 235 } 236 BasicBlock *VPTransformState::CFGState::getPreheaderBBFor(VPRecipeBase *R) { 237 VPRegionBlock *LoopRegion = R->getParent()->getEnclosingLoopRegion(); 238 return VPBB2IRBB[LoopRegion->getPreheaderVPBB()]; 239 } 240 241 void VPTransformState::addNewMetadata(Instruction *To, 242 const Instruction *Orig) { 243 // If the loop was versioned with memchecks, add the corresponding no-alias 244 // metadata. 245 if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig))) 246 LVer->annotateInstWithNoAlias(To, Orig); 247 } 248 249 void VPTransformState::addMetadata(Instruction *To, Instruction *From) { 250 propagateMetadata(To, From); 251 addNewMetadata(To, From); 252 } 253 254 void VPTransformState::addMetadata(ArrayRef<Value *> To, Instruction *From) { 255 for (Value *V : To) { 256 if (Instruction *I = dyn_cast<Instruction>(V)) 257 addMetadata(I, From); 258 } 259 } 260 261 void VPTransformState::setDebugLocFromInst(const Value *V) { 262 const Instruction *Inst = dyn_cast<Instruction>(V); 263 if (!Inst) { 264 Builder.SetCurrentDebugLocation(DebugLoc()); 265 return; 266 } 267 268 const DILocation *DIL = Inst->getDebugLoc(); 269 // When a FSDiscriminator is enabled, we don't need to add the multiply 270 // factors to the discriminators. 271 if (DIL && Inst->getFunction()->shouldEmitDebugInfoForProfiling() && 272 !isa<DbgInfoIntrinsic>(Inst) && !EnableFSDiscriminator) { 273 // FIXME: For scalable vectors, assume vscale=1. 274 auto NewDIL = 275 DIL->cloneByMultiplyingDuplicationFactor(UF * VF.getKnownMinValue()); 276 if (NewDIL) 277 Builder.SetCurrentDebugLocation(*NewDIL); 278 else 279 LLVM_DEBUG(dbgs() << "Failed to create new discriminator: " 280 << DIL->getFilename() << " Line: " << DIL->getLine()); 281 } else 282 Builder.SetCurrentDebugLocation(DIL); 283 } 284 285 BasicBlock * 286 VPBasicBlock::createEmptyBasicBlock(VPTransformState::CFGState &CFG) { 287 // BB stands for IR BasicBlocks. VPBB stands for VPlan VPBasicBlocks. 288 // Pred stands for Predessor. Prev stands for Previous - last visited/created. 289 BasicBlock *PrevBB = CFG.PrevBB; 290 BasicBlock *NewBB = BasicBlock::Create(PrevBB->getContext(), getName(), 291 PrevBB->getParent(), CFG.ExitBB); 292 LLVM_DEBUG(dbgs() << "LV: created " << NewBB->getName() << '\n'); 293 294 // Hook up the new basic block to its predecessors. 295 for (VPBlockBase *PredVPBlock : getHierarchicalPredecessors()) { 296 VPBasicBlock *PredVPBB = PredVPBlock->getExitingBasicBlock(); 297 auto &PredVPSuccessors = PredVPBB->getHierarchicalSuccessors(); 298 BasicBlock *PredBB = CFG.VPBB2IRBB[PredVPBB]; 299 300 assert(PredBB && "Predecessor basic-block not found building successor."); 301 auto *PredBBTerminator = PredBB->getTerminator(); 302 LLVM_DEBUG(dbgs() << "LV: draw edge from" << PredBB->getName() << '\n'); 303 304 auto *TermBr = dyn_cast<BranchInst>(PredBBTerminator); 305 if (isa<UnreachableInst>(PredBBTerminator)) { 306 assert(PredVPSuccessors.size() == 1 && 307 "Predecessor ending w/o branch must have single successor."); 308 DebugLoc DL = PredBBTerminator->getDebugLoc(); 309 PredBBTerminator->eraseFromParent(); 310 auto *Br = BranchInst::Create(NewBB, PredBB); 311 Br->setDebugLoc(DL); 312 } else if (TermBr && !TermBr->isConditional()) { 313 TermBr->setSuccessor(0, NewBB); 314 } else { 315 // Set each forward successor here when it is created, excluding 316 // backedges. A backward successor is set when the branch is created. 317 unsigned idx = PredVPSuccessors.front() == this ? 0 : 1; 318 assert(!TermBr->getSuccessor(idx) && 319 "Trying to reset an existing successor block."); 320 TermBr->setSuccessor(idx, NewBB); 321 } 322 } 323 return NewBB; 324 } 325 326 void VPBasicBlock::execute(VPTransformState *State) { 327 bool Replica = State->Instance && !State->Instance->isFirstIteration(); 328 VPBasicBlock *PrevVPBB = State->CFG.PrevVPBB; 329 VPBlockBase *SingleHPred = nullptr; 330 BasicBlock *NewBB = State->CFG.PrevBB; // Reuse it if possible. 331 332 auto IsLoopRegion = [](VPBlockBase *BB) { 333 auto *R = dyn_cast<VPRegionBlock>(BB); 334 return R && !R->isReplicator(); 335 }; 336 337 // 1. Create an IR basic block, or reuse the last one or ExitBB if possible. 338 if (getPlan()->getVectorLoopRegion()->getSingleSuccessor() == this) { 339 // ExitBB can be re-used for the exit block of the Plan. 340 NewBB = State->CFG.ExitBB; 341 State->CFG.PrevBB = NewBB; 342 343 // Update the branch instruction in the predecessor to branch to ExitBB. 344 VPBlockBase *PredVPB = getSingleHierarchicalPredecessor(); 345 VPBasicBlock *ExitingVPBB = PredVPB->getExitingBasicBlock(); 346 assert(PredVPB->getSingleSuccessor() == this && 347 "predecessor must have the current block as only successor"); 348 BasicBlock *ExitingBB = State->CFG.VPBB2IRBB[ExitingVPBB]; 349 // The Exit block of a loop is always set to be successor 0 of the Exiting 350 // block. 351 cast<BranchInst>(ExitingBB->getTerminator())->setSuccessor(0, NewBB); 352 } else if (PrevVPBB && /* A */ 353 !((SingleHPred = getSingleHierarchicalPredecessor()) && 354 SingleHPred->getExitingBasicBlock() == PrevVPBB && 355 PrevVPBB->getSingleHierarchicalSuccessor() && 356 (SingleHPred->getParent() == getEnclosingLoopRegion() && 357 !IsLoopRegion(SingleHPred))) && /* B */ 358 !(Replica && getPredecessors().empty())) { /* C */ 359 // The last IR basic block is reused, as an optimization, in three cases: 360 // A. the first VPBB reuses the loop pre-header BB - when PrevVPBB is null; 361 // B. when the current VPBB has a single (hierarchical) predecessor which 362 // is PrevVPBB and the latter has a single (hierarchical) successor which 363 // both are in the same non-replicator region; and 364 // C. when the current VPBB is an entry of a region replica - where PrevVPBB 365 // is the exiting VPBB of this region from a previous instance, or the 366 // predecessor of this region. 367 368 NewBB = createEmptyBasicBlock(State->CFG); 369 State->Builder.SetInsertPoint(NewBB); 370 // Temporarily terminate with unreachable until CFG is rewired. 371 UnreachableInst *Terminator = State->Builder.CreateUnreachable(); 372 // Register NewBB in its loop. In innermost loops its the same for all 373 // BB's. 374 if (State->CurrentVectorLoop) 375 State->CurrentVectorLoop->addBasicBlockToLoop(NewBB, *State->LI); 376 State->Builder.SetInsertPoint(Terminator); 377 State->CFG.PrevBB = NewBB; 378 } 379 380 // 2. Fill the IR basic block with IR instructions. 381 LLVM_DEBUG(dbgs() << "LV: vectorizing VPBB:" << getName() 382 << " in BB:" << NewBB->getName() << '\n'); 383 384 State->CFG.VPBB2IRBB[this] = NewBB; 385 State->CFG.PrevVPBB = this; 386 387 for (VPRecipeBase &Recipe : Recipes) 388 Recipe.execute(*State); 389 390 LLVM_DEBUG(dbgs() << "LV: filled BB:" << *NewBB); 391 } 392 393 void VPBasicBlock::dropAllReferences(VPValue *NewValue) { 394 for (VPRecipeBase &R : Recipes) { 395 for (auto *Def : R.definedValues()) 396 Def->replaceAllUsesWith(NewValue); 397 398 for (unsigned I = 0, E = R.getNumOperands(); I != E; I++) 399 R.setOperand(I, NewValue); 400 } 401 } 402 403 VPBasicBlock *VPBasicBlock::splitAt(iterator SplitAt) { 404 assert((SplitAt == end() || SplitAt->getParent() == this) && 405 "can only split at a position in the same block"); 406 407 SmallVector<VPBlockBase *, 2> Succs(successors()); 408 // First, disconnect the current block from its successors. 409 for (VPBlockBase *Succ : Succs) 410 VPBlockUtils::disconnectBlocks(this, Succ); 411 412 // Create new empty block after the block to split. 413 auto *SplitBlock = new VPBasicBlock(getName() + ".split"); 414 VPBlockUtils::insertBlockAfter(SplitBlock, this); 415 416 // Add successors for block to split to new block. 417 for (VPBlockBase *Succ : Succs) 418 VPBlockUtils::connectBlocks(SplitBlock, Succ); 419 420 // Finally, move the recipes starting at SplitAt to new block. 421 for (VPRecipeBase &ToMove : 422 make_early_inc_range(make_range(SplitAt, this->end()))) 423 ToMove.moveBefore(*SplitBlock, SplitBlock->end()); 424 425 return SplitBlock; 426 } 427 428 VPRegionBlock *VPBasicBlock::getEnclosingLoopRegion() { 429 VPRegionBlock *P = getParent(); 430 if (P && P->isReplicator()) { 431 P = P->getParent(); 432 assert(!cast<VPRegionBlock>(P)->isReplicator() && 433 "unexpected nested replicate regions"); 434 } 435 return P; 436 } 437 438 static bool hasConditionalTerminator(const VPBasicBlock *VPBB) { 439 if (VPBB->empty()) { 440 assert( 441 VPBB->getNumSuccessors() < 2 && 442 "block with multiple successors doesn't have a recipe as terminator"); 443 return false; 444 } 445 446 const VPRecipeBase *R = &VPBB->back(); 447 auto *VPI = dyn_cast<VPInstruction>(R); 448 bool IsCondBranch = 449 isa<VPBranchOnMaskRecipe>(R) || 450 (VPI && (VPI->getOpcode() == VPInstruction::BranchOnCond || 451 VPI->getOpcode() == VPInstruction::BranchOnCount)); 452 (void)IsCondBranch; 453 454 if (VPBB->getNumSuccessors() >= 2 || VPBB->isExiting()) { 455 assert(IsCondBranch && "block with multiple successors not terminated by " 456 "conditional branch recipe"); 457 458 return true; 459 } 460 461 assert( 462 !IsCondBranch && 463 "block with 0 or 1 successors terminated by conditional branch recipe"); 464 return false; 465 } 466 467 VPRecipeBase *VPBasicBlock::getTerminator() { 468 if (hasConditionalTerminator(this)) 469 return &back(); 470 return nullptr; 471 } 472 473 const VPRecipeBase *VPBasicBlock::getTerminator() const { 474 if (hasConditionalTerminator(this)) 475 return &back(); 476 return nullptr; 477 } 478 479 bool VPBasicBlock::isExiting() const { 480 return getParent()->getExitingBasicBlock() == this; 481 } 482 483 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 484 void VPBlockBase::printSuccessors(raw_ostream &O, const Twine &Indent) const { 485 if (getSuccessors().empty()) { 486 O << Indent << "No successors\n"; 487 } else { 488 O << Indent << "Successor(s): "; 489 ListSeparator LS; 490 for (auto *Succ : getSuccessors()) 491 O << LS << Succ->getName(); 492 O << '\n'; 493 } 494 } 495 496 void VPBasicBlock::print(raw_ostream &O, const Twine &Indent, 497 VPSlotTracker &SlotTracker) const { 498 O << Indent << getName() << ":\n"; 499 500 auto RecipeIndent = Indent + " "; 501 for (const VPRecipeBase &Recipe : *this) { 502 Recipe.print(O, RecipeIndent, SlotTracker); 503 O << '\n'; 504 } 505 506 printSuccessors(O, Indent); 507 } 508 #endif 509 510 void VPRegionBlock::dropAllReferences(VPValue *NewValue) { 511 for (VPBlockBase *Block : vp_depth_first_shallow(Entry)) 512 // Drop all references in VPBasicBlocks and replace all uses with 513 // DummyValue. 514 Block->dropAllReferences(NewValue); 515 } 516 517 void VPRegionBlock::execute(VPTransformState *State) { 518 ReversePostOrderTraversal<VPBlockShallowTraversalWrapper<VPBlockBase *>> 519 RPOT(Entry); 520 521 if (!isReplicator()) { 522 // Create and register the new vector loop. 523 Loop *PrevLoop = State->CurrentVectorLoop; 524 State->CurrentVectorLoop = State->LI->AllocateLoop(); 525 BasicBlock *VectorPH = State->CFG.VPBB2IRBB[getPreheaderVPBB()]; 526 Loop *ParentLoop = State->LI->getLoopFor(VectorPH); 527 528 // Insert the new loop into the loop nest and register the new basic blocks 529 // before calling any utilities such as SCEV that require valid LoopInfo. 530 if (ParentLoop) 531 ParentLoop->addChildLoop(State->CurrentVectorLoop); 532 else 533 State->LI->addTopLevelLoop(State->CurrentVectorLoop); 534 535 // Visit the VPBlocks connected to "this", starting from it. 536 for (VPBlockBase *Block : RPOT) { 537 LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n'); 538 Block->execute(State); 539 } 540 541 State->CurrentVectorLoop = PrevLoop; 542 return; 543 } 544 545 assert(!State->Instance && "Replicating a Region with non-null instance."); 546 547 // Enter replicating mode. 548 State->Instance = VPIteration(0, 0); 549 550 for (unsigned Part = 0, UF = State->UF; Part < UF; ++Part) { 551 State->Instance->Part = Part; 552 assert(!State->VF.isScalable() && "VF is assumed to be non scalable."); 553 for (unsigned Lane = 0, VF = State->VF.getKnownMinValue(); Lane < VF; 554 ++Lane) { 555 State->Instance->Lane = VPLane(Lane, VPLane::Kind::First); 556 // Visit the VPBlocks connected to \p this, starting from it. 557 for (VPBlockBase *Block : RPOT) { 558 LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n'); 559 Block->execute(State); 560 } 561 } 562 } 563 564 // Exit replicating mode. 565 State->Instance.reset(); 566 } 567 568 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 569 void VPRegionBlock::print(raw_ostream &O, const Twine &Indent, 570 VPSlotTracker &SlotTracker) const { 571 O << Indent << (isReplicator() ? "<xVFxUF> " : "<x1> ") << getName() << ": {"; 572 auto NewIndent = Indent + " "; 573 for (auto *BlockBase : vp_depth_first_shallow(Entry)) { 574 O << '\n'; 575 BlockBase->print(O, NewIndent, SlotTracker); 576 } 577 O << Indent << "}\n"; 578 579 printSuccessors(O, Indent); 580 } 581 #endif 582 583 VPlan::~VPlan() { 584 for (auto &KV : LiveOuts) 585 delete KV.second; 586 LiveOuts.clear(); 587 588 if (Entry) { 589 VPValue DummyValue; 590 for (VPBlockBase *Block : vp_depth_first_shallow(Entry)) 591 Block->dropAllReferences(&DummyValue); 592 593 VPBlockBase::deleteCFG(Entry); 594 } 595 for (VPValue *VPV : VPLiveInsToFree) 596 delete VPV; 597 if (BackedgeTakenCount) 598 delete BackedgeTakenCount; 599 } 600 601 VPlanPtr VPlan::createInitialVPlan(const SCEV *TripCount, ScalarEvolution &SE) { 602 VPBasicBlock *Preheader = new VPBasicBlock("ph"); 603 VPBasicBlock *VecPreheader = new VPBasicBlock("vector.ph"); 604 auto Plan = std::make_unique<VPlan>(Preheader, VecPreheader); 605 Plan->TripCount = 606 vputils::getOrCreateVPValueForSCEVExpr(*Plan, TripCount, SE); 607 return Plan; 608 } 609 610 VPActiveLaneMaskPHIRecipe *VPlan::getActiveLaneMaskPhi() { 611 VPBasicBlock *Header = getVectorLoopRegion()->getEntryBasicBlock(); 612 for (VPRecipeBase &R : Header->phis()) { 613 if (isa<VPActiveLaneMaskPHIRecipe>(&R)) 614 return cast<VPActiveLaneMaskPHIRecipe>(&R); 615 } 616 return nullptr; 617 } 618 619 void VPlan::prepareToExecute(Value *TripCountV, Value *VectorTripCountV, 620 Value *CanonicalIVStartValue, 621 VPTransformState &State, 622 bool IsEpilogueVectorization) { 623 // Check if the backedge taken count is needed, and if so build it. 624 if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) { 625 IRBuilder<> Builder(State.CFG.PrevBB->getTerminator()); 626 auto *TCMO = Builder.CreateSub(TripCountV, 627 ConstantInt::get(TripCountV->getType(), 1), 628 "trip.count.minus.1"); 629 auto VF = State.VF; 630 Value *VTCMO = 631 VF.isScalar() ? TCMO : Builder.CreateVectorSplat(VF, TCMO, "broadcast"); 632 for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part) 633 State.set(BackedgeTakenCount, VTCMO, Part); 634 } 635 636 for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part) 637 State.set(&VectorTripCount, VectorTripCountV, Part); 638 639 // When vectorizing the epilogue loop, the canonical induction start value 640 // needs to be changed from zero to the value after the main vector loop. 641 // FIXME: Improve modeling for canonical IV start values in the epilogue loop. 642 if (CanonicalIVStartValue) { 643 VPValue *VPV = getVPValueOrAddLiveIn(CanonicalIVStartValue); 644 auto *IV = getCanonicalIV(); 645 assert(all_of(IV->users(), 646 [](const VPUser *U) { 647 if (isa<VPScalarIVStepsRecipe>(U) || 648 isa<VPDerivedIVRecipe>(U)) 649 return true; 650 auto *VPI = cast<VPInstruction>(U); 651 return VPI->getOpcode() == 652 VPInstruction::CanonicalIVIncrement || 653 VPI->getOpcode() == 654 VPInstruction::CanonicalIVIncrementNUW; 655 }) && 656 "the canonical IV should only be used by its increments or " 657 "ScalarIVSteps when resetting the start value"); 658 IV->setOperand(0, VPV); 659 } 660 } 661 662 /// Generate the code inside the preheader and body of the vectorized loop. 663 /// Assumes a single pre-header basic-block was created for this. Introduce 664 /// additional basic-blocks as needed, and fill them all. 665 void VPlan::execute(VPTransformState *State) { 666 // Set the reverse mapping from VPValues to Values for code generation. 667 for (auto &Entry : Value2VPValue) 668 State->VPValue2Value[Entry.second] = Entry.first; 669 670 // Initialize CFG state. 671 State->CFG.PrevVPBB = nullptr; 672 State->CFG.ExitBB = State->CFG.PrevBB->getSingleSuccessor(); 673 BasicBlock *VectorPreHeader = State->CFG.PrevBB; 674 State->Builder.SetInsertPoint(VectorPreHeader->getTerminator()); 675 676 // Generate code in the loop pre-header and body. 677 for (VPBlockBase *Block : vp_depth_first_shallow(Entry)) 678 Block->execute(State); 679 680 VPBasicBlock *LatchVPBB = getVectorLoopRegion()->getExitingBasicBlock(); 681 BasicBlock *VectorLatchBB = State->CFG.VPBB2IRBB[LatchVPBB]; 682 683 // Fix the latch value of canonical, reduction and first-order recurrences 684 // phis in the vector loop. 685 VPBasicBlock *Header = getVectorLoopRegion()->getEntryBasicBlock(); 686 for (VPRecipeBase &R : Header->phis()) { 687 // Skip phi-like recipes that generate their backedege values themselves. 688 if (isa<VPWidenPHIRecipe>(&R)) 689 continue; 690 691 if (isa<VPWidenPointerInductionRecipe>(&R) || 692 isa<VPWidenIntOrFpInductionRecipe>(&R)) { 693 PHINode *Phi = nullptr; 694 if (isa<VPWidenIntOrFpInductionRecipe>(&R)) { 695 Phi = cast<PHINode>(State->get(R.getVPSingleValue(), 0)); 696 } else { 697 auto *WidenPhi = cast<VPWidenPointerInductionRecipe>(&R); 698 // TODO: Split off the case that all users of a pointer phi are scalar 699 // from the VPWidenPointerInductionRecipe. 700 if (WidenPhi->onlyScalarsGenerated(State->VF)) 701 continue; 702 703 auto *GEP = cast<GetElementPtrInst>(State->get(WidenPhi, 0)); 704 Phi = cast<PHINode>(GEP->getPointerOperand()); 705 } 706 707 Phi->setIncomingBlock(1, VectorLatchBB); 708 709 // Move the last step to the end of the latch block. This ensures 710 // consistent placement of all induction updates. 711 Instruction *Inc = cast<Instruction>(Phi->getIncomingValue(1)); 712 Inc->moveBefore(VectorLatchBB->getTerminator()->getPrevNode()); 713 continue; 714 } 715 716 auto *PhiR = cast<VPHeaderPHIRecipe>(&R); 717 // For canonical IV, first-order recurrences and in-order reduction phis, 718 // only a single part is generated, which provides the last part from the 719 // previous iteration. For non-ordered reductions all UF parts are 720 // generated. 721 bool SinglePartNeeded = isa<VPCanonicalIVPHIRecipe>(PhiR) || 722 isa<VPFirstOrderRecurrencePHIRecipe>(PhiR) || 723 (isa<VPReductionPHIRecipe>(PhiR) && 724 cast<VPReductionPHIRecipe>(PhiR)->isOrdered()); 725 unsigned LastPartForNewPhi = SinglePartNeeded ? 1 : State->UF; 726 727 for (unsigned Part = 0; Part < LastPartForNewPhi; ++Part) { 728 Value *Phi = State->get(PhiR, Part); 729 Value *Val = State->get(PhiR->getBackedgeValue(), 730 SinglePartNeeded ? State->UF - 1 : Part); 731 cast<PHINode>(Phi)->addIncoming(Val, VectorLatchBB); 732 } 733 } 734 735 // We do not attempt to preserve DT for outer loop vectorization currently. 736 if (!EnableVPlanNativePath) { 737 BasicBlock *VectorHeaderBB = State->CFG.VPBB2IRBB[Header]; 738 State->DT->addNewBlock(VectorHeaderBB, VectorPreHeader); 739 updateDominatorTree(State->DT, VectorHeaderBB, VectorLatchBB, 740 State->CFG.ExitBB); 741 } 742 } 743 744 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 745 LLVM_DUMP_METHOD 746 void VPlan::print(raw_ostream &O) const { 747 VPSlotTracker SlotTracker(this); 748 749 O << "VPlan '" << getName() << "' {"; 750 751 if (VectorTripCount.getNumUsers() > 0) { 752 O << "\nLive-in "; 753 VectorTripCount.printAsOperand(O, SlotTracker); 754 O << " = vector-trip-count"; 755 } 756 757 if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) { 758 O << "\nLive-in "; 759 BackedgeTakenCount->printAsOperand(O, SlotTracker); 760 O << " = backedge-taken count"; 761 } 762 763 O << "\n"; 764 if (TripCount->isLiveIn()) 765 O << "Live-in "; 766 TripCount->printAsOperand(O, SlotTracker); 767 O << " = original trip-count"; 768 O << "\n"; 769 770 if (!getPreheader()->empty()) { 771 O << "\n"; 772 getPreheader()->print(O, "", SlotTracker); 773 } 774 775 for (const VPBlockBase *Block : vp_depth_first_shallow(getEntry())) { 776 O << '\n'; 777 Block->print(O, "", SlotTracker); 778 } 779 780 if (!LiveOuts.empty()) 781 O << "\n"; 782 for (const auto &KV : LiveOuts) { 783 O << "Live-out "; 784 KV.second->getPhi()->printAsOperand(O); 785 O << " = "; 786 KV.second->getOperand(0)->printAsOperand(O, SlotTracker); 787 O << "\n"; 788 } 789 790 O << "}\n"; 791 } 792 793 std::string VPlan::getName() const { 794 std::string Out; 795 raw_string_ostream RSO(Out); 796 RSO << Name << " for "; 797 if (!VFs.empty()) { 798 RSO << "VF={" << VFs[0]; 799 for (ElementCount VF : drop_begin(VFs)) 800 RSO << "," << VF; 801 RSO << "},"; 802 } 803 804 if (UFs.empty()) { 805 RSO << "UF>=1"; 806 } else { 807 RSO << "UF={" << UFs[0]; 808 for (unsigned UF : drop_begin(UFs)) 809 RSO << "," << UF; 810 RSO << "}"; 811 } 812 813 return Out; 814 } 815 816 LLVM_DUMP_METHOD 817 void VPlan::printDOT(raw_ostream &O) const { 818 VPlanPrinter Printer(O, *this); 819 Printer.dump(); 820 } 821 822 LLVM_DUMP_METHOD 823 void VPlan::dump() const { print(dbgs()); } 824 #endif 825 826 void VPlan::addLiveOut(PHINode *PN, VPValue *V) { 827 assert(LiveOuts.count(PN) == 0 && "an exit value for PN already exists"); 828 LiveOuts.insert({PN, new VPLiveOut(PN, V)}); 829 } 830 831 void VPlan::updateDominatorTree(DominatorTree *DT, BasicBlock *LoopHeaderBB, 832 BasicBlock *LoopLatchBB, 833 BasicBlock *LoopExitBB) { 834 // The vector body may be more than a single basic-block by this point. 835 // Update the dominator tree information inside the vector body by propagating 836 // it from header to latch, expecting only triangular control-flow, if any. 837 BasicBlock *PostDomSucc = nullptr; 838 for (auto *BB = LoopHeaderBB; BB != LoopLatchBB; BB = PostDomSucc) { 839 // Get the list of successors of this block. 840 std::vector<BasicBlock *> Succs(succ_begin(BB), succ_end(BB)); 841 assert(Succs.size() <= 2 && 842 "Basic block in vector loop has more than 2 successors."); 843 PostDomSucc = Succs[0]; 844 if (Succs.size() == 1) { 845 assert(PostDomSucc->getSinglePredecessor() && 846 "PostDom successor has more than one predecessor."); 847 DT->addNewBlock(PostDomSucc, BB); 848 continue; 849 } 850 BasicBlock *InterimSucc = Succs[1]; 851 if (PostDomSucc->getSingleSuccessor() == InterimSucc) { 852 PostDomSucc = Succs[1]; 853 InterimSucc = Succs[0]; 854 } 855 assert(InterimSucc->getSingleSuccessor() == PostDomSucc && 856 "One successor of a basic block does not lead to the other."); 857 assert(InterimSucc->getSinglePredecessor() && 858 "Interim successor has more than one predecessor."); 859 assert(PostDomSucc->hasNPredecessors(2) && 860 "PostDom successor has more than two predecessors."); 861 DT->addNewBlock(InterimSucc, BB); 862 DT->addNewBlock(PostDomSucc, BB); 863 } 864 // Latch block is a new dominator for the loop exit. 865 DT->changeImmediateDominator(LoopExitBB, LoopLatchBB); 866 assert(DT->verify(DominatorTree::VerificationLevel::Fast)); 867 } 868 869 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 870 871 Twine VPlanPrinter::getUID(const VPBlockBase *Block) { 872 return (isa<VPRegionBlock>(Block) ? "cluster_N" : "N") + 873 Twine(getOrCreateBID(Block)); 874 } 875 876 Twine VPlanPrinter::getOrCreateName(const VPBlockBase *Block) { 877 const std::string &Name = Block->getName(); 878 if (!Name.empty()) 879 return Name; 880 return "VPB" + Twine(getOrCreateBID(Block)); 881 } 882 883 void VPlanPrinter::dump() { 884 Depth = 1; 885 bumpIndent(0); 886 OS << "digraph VPlan {\n"; 887 OS << "graph [labelloc=t, fontsize=30; label=\"Vectorization Plan"; 888 if (!Plan.getName().empty()) 889 OS << "\\n" << DOT::EscapeString(Plan.getName()); 890 if (Plan.BackedgeTakenCount) { 891 OS << ", where:\\n"; 892 Plan.BackedgeTakenCount->print(OS, SlotTracker); 893 OS << " := BackedgeTakenCount"; 894 } 895 OS << "\"]\n"; 896 OS << "node [shape=rect, fontname=Courier, fontsize=30]\n"; 897 OS << "edge [fontname=Courier, fontsize=30]\n"; 898 OS << "compound=true\n"; 899 900 dumpBlock(Plan.getPreheader()); 901 902 for (const VPBlockBase *Block : vp_depth_first_shallow(Plan.getEntry())) 903 dumpBlock(Block); 904 905 OS << "}\n"; 906 } 907 908 void VPlanPrinter::dumpBlock(const VPBlockBase *Block) { 909 if (const VPBasicBlock *BasicBlock = dyn_cast<VPBasicBlock>(Block)) 910 dumpBasicBlock(BasicBlock); 911 else if (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 912 dumpRegion(Region); 913 else 914 llvm_unreachable("Unsupported kind of VPBlock."); 915 } 916 917 void VPlanPrinter::drawEdge(const VPBlockBase *From, const VPBlockBase *To, 918 bool Hidden, const Twine &Label) { 919 // Due to "dot" we print an edge between two regions as an edge between the 920 // exiting basic block and the entry basic of the respective regions. 921 const VPBlockBase *Tail = From->getExitingBasicBlock(); 922 const VPBlockBase *Head = To->getEntryBasicBlock(); 923 OS << Indent << getUID(Tail) << " -> " << getUID(Head); 924 OS << " [ label=\"" << Label << '\"'; 925 if (Tail != From) 926 OS << " ltail=" << getUID(From); 927 if (Head != To) 928 OS << " lhead=" << getUID(To); 929 if (Hidden) 930 OS << "; splines=none"; 931 OS << "]\n"; 932 } 933 934 void VPlanPrinter::dumpEdges(const VPBlockBase *Block) { 935 auto &Successors = Block->getSuccessors(); 936 if (Successors.size() == 1) 937 drawEdge(Block, Successors.front(), false, ""); 938 else if (Successors.size() == 2) { 939 drawEdge(Block, Successors.front(), false, "T"); 940 drawEdge(Block, Successors.back(), false, "F"); 941 } else { 942 unsigned SuccessorNumber = 0; 943 for (auto *Successor : Successors) 944 drawEdge(Block, Successor, false, Twine(SuccessorNumber++)); 945 } 946 } 947 948 void VPlanPrinter::dumpBasicBlock(const VPBasicBlock *BasicBlock) { 949 // Implement dot-formatted dump by performing plain-text dump into the 950 // temporary storage followed by some post-processing. 951 OS << Indent << getUID(BasicBlock) << " [label =\n"; 952 bumpIndent(1); 953 std::string Str; 954 raw_string_ostream SS(Str); 955 // Use no indentation as we need to wrap the lines into quotes ourselves. 956 BasicBlock->print(SS, "", SlotTracker); 957 958 // We need to process each line of the output separately, so split 959 // single-string plain-text dump. 960 SmallVector<StringRef, 0> Lines; 961 StringRef(Str).rtrim('\n').split(Lines, "\n"); 962 963 auto EmitLine = [&](StringRef Line, StringRef Suffix) { 964 OS << Indent << '"' << DOT::EscapeString(Line.str()) << "\\l\"" << Suffix; 965 }; 966 967 // Don't need the "+" after the last line. 968 for (auto Line : make_range(Lines.begin(), Lines.end() - 1)) 969 EmitLine(Line, " +\n"); 970 EmitLine(Lines.back(), "\n"); 971 972 bumpIndent(-1); 973 OS << Indent << "]\n"; 974 975 dumpEdges(BasicBlock); 976 } 977 978 void VPlanPrinter::dumpRegion(const VPRegionBlock *Region) { 979 OS << Indent << "subgraph " << getUID(Region) << " {\n"; 980 bumpIndent(1); 981 OS << Indent << "fontname=Courier\n" 982 << Indent << "label=\"" 983 << DOT::EscapeString(Region->isReplicator() ? "<xVFxUF> " : "<x1> ") 984 << DOT::EscapeString(Region->getName()) << "\"\n"; 985 // Dump the blocks of the region. 986 assert(Region->getEntry() && "Region contains no inner blocks."); 987 for (const VPBlockBase *Block : vp_depth_first_shallow(Region->getEntry())) 988 dumpBlock(Block); 989 bumpIndent(-1); 990 OS << Indent << "}\n"; 991 dumpEdges(Region); 992 } 993 994 void VPlanIngredient::print(raw_ostream &O) const { 995 if (auto *Inst = dyn_cast<Instruction>(V)) { 996 if (!Inst->getType()->isVoidTy()) { 997 Inst->printAsOperand(O, false); 998 O << " = "; 999 } 1000 O << Inst->getOpcodeName() << " "; 1001 unsigned E = Inst->getNumOperands(); 1002 if (E > 0) { 1003 Inst->getOperand(0)->printAsOperand(O, false); 1004 for (unsigned I = 1; I < E; ++I) 1005 Inst->getOperand(I)->printAsOperand(O << ", ", false); 1006 } 1007 } else // !Inst 1008 V->printAsOperand(O, false); 1009 } 1010 1011 #endif 1012 1013 template void DomTreeBuilder::Calculate<VPDominatorTree>(VPDominatorTree &DT); 1014 1015 void VPValue::replaceAllUsesWith(VPValue *New) { 1016 for (unsigned J = 0; J < getNumUsers();) { 1017 VPUser *User = Users[J]; 1018 unsigned NumUsers = getNumUsers(); 1019 for (unsigned I = 0, E = User->getNumOperands(); I < E; ++I) 1020 if (User->getOperand(I) == this) 1021 User->setOperand(I, New); 1022 // If a user got removed after updating the current user, the next user to 1023 // update will be moved to the current position, so we only need to 1024 // increment the index if the number of users did not change. 1025 if (NumUsers == getNumUsers()) 1026 J++; 1027 } 1028 } 1029 1030 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1031 void VPValue::printAsOperand(raw_ostream &OS, VPSlotTracker &Tracker) const { 1032 if (const Value *UV = getUnderlyingValue()) { 1033 OS << "ir<"; 1034 UV->printAsOperand(OS, false); 1035 OS << ">"; 1036 return; 1037 } 1038 1039 unsigned Slot = Tracker.getSlot(this); 1040 if (Slot == unsigned(-1)) 1041 OS << "<badref>"; 1042 else 1043 OS << "vp<%" << Tracker.getSlot(this) << ">"; 1044 } 1045 1046 void VPUser::printOperands(raw_ostream &O, VPSlotTracker &SlotTracker) const { 1047 interleaveComma(operands(), O, [&O, &SlotTracker](VPValue *Op) { 1048 Op->printAsOperand(O, SlotTracker); 1049 }); 1050 } 1051 #endif 1052 1053 void VPInterleavedAccessInfo::visitRegion(VPRegionBlock *Region, 1054 Old2NewTy &Old2New, 1055 InterleavedAccessInfo &IAI) { 1056 ReversePostOrderTraversal<VPBlockShallowTraversalWrapper<VPBlockBase *>> 1057 RPOT(Region->getEntry()); 1058 for (VPBlockBase *Base : RPOT) { 1059 visitBlock(Base, Old2New, IAI); 1060 } 1061 } 1062 1063 void VPInterleavedAccessInfo::visitBlock(VPBlockBase *Block, Old2NewTy &Old2New, 1064 InterleavedAccessInfo &IAI) { 1065 if (VPBasicBlock *VPBB = dyn_cast<VPBasicBlock>(Block)) { 1066 for (VPRecipeBase &VPI : *VPBB) { 1067 if (isa<VPHeaderPHIRecipe>(&VPI)) 1068 continue; 1069 assert(isa<VPInstruction>(&VPI) && "Can only handle VPInstructions"); 1070 auto *VPInst = cast<VPInstruction>(&VPI); 1071 1072 auto *Inst = dyn_cast_or_null<Instruction>(VPInst->getUnderlyingValue()); 1073 if (!Inst) 1074 continue; 1075 auto *IG = IAI.getInterleaveGroup(Inst); 1076 if (!IG) 1077 continue; 1078 1079 auto NewIGIter = Old2New.find(IG); 1080 if (NewIGIter == Old2New.end()) 1081 Old2New[IG] = new InterleaveGroup<VPInstruction>( 1082 IG->getFactor(), IG->isReverse(), IG->getAlign()); 1083 1084 if (Inst == IG->getInsertPos()) 1085 Old2New[IG]->setInsertPos(VPInst); 1086 1087 InterleaveGroupMap[VPInst] = Old2New[IG]; 1088 InterleaveGroupMap[VPInst]->insertMember( 1089 VPInst, IG->getIndex(Inst), 1090 Align(IG->isReverse() ? (-1) * int(IG->getFactor()) 1091 : IG->getFactor())); 1092 } 1093 } else if (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 1094 visitRegion(Region, Old2New, IAI); 1095 else 1096 llvm_unreachable("Unsupported kind of VPBlock."); 1097 } 1098 1099 VPInterleavedAccessInfo::VPInterleavedAccessInfo(VPlan &Plan, 1100 InterleavedAccessInfo &IAI) { 1101 Old2NewTy Old2New; 1102 visitRegion(Plan.getVectorLoopRegion(), Old2New, IAI); 1103 } 1104 1105 void VPSlotTracker::assignSlot(const VPValue *V) { 1106 assert(!Slots.contains(V) && "VPValue already has a slot!"); 1107 Slots[V] = NextSlot++; 1108 } 1109 1110 void VPSlotTracker::assignSlots(const VPlan &Plan) { 1111 assignSlot(&Plan.VectorTripCount); 1112 if (Plan.BackedgeTakenCount) 1113 assignSlot(Plan.BackedgeTakenCount); 1114 assignSlots(Plan.getPreheader()); 1115 1116 ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<const VPBlockBase *>> 1117 RPOT(VPBlockDeepTraversalWrapper<const VPBlockBase *>(Plan.getEntry())); 1118 for (const VPBasicBlock *VPBB : 1119 VPBlockUtils::blocksOnly<const VPBasicBlock>(RPOT)) 1120 assignSlots(VPBB); 1121 } 1122 1123 void VPSlotTracker::assignSlots(const VPBasicBlock *VPBB) { 1124 for (const VPRecipeBase &Recipe : *VPBB) 1125 for (VPValue *Def : Recipe.definedValues()) 1126 assignSlot(Def); 1127 } 1128 1129 bool vputils::onlyFirstLaneUsed(VPValue *Def) { 1130 return all_of(Def->users(), 1131 [Def](VPUser *U) { return U->onlyFirstLaneUsed(Def); }); 1132 } 1133 1134 VPValue *vputils::getOrCreateVPValueForSCEVExpr(VPlan &Plan, const SCEV *Expr, 1135 ScalarEvolution &SE) { 1136 if (auto *Expanded = Plan.getSCEVExpansion(Expr)) 1137 return Expanded; 1138 VPValue *Expanded = nullptr; 1139 if (auto *E = dyn_cast<SCEVConstant>(Expr)) 1140 Expanded = Plan.getVPValueOrAddLiveIn(E->getValue()); 1141 else if (auto *E = dyn_cast<SCEVUnknown>(Expr)) 1142 Expanded = Plan.getVPValueOrAddLiveIn(E->getValue()); 1143 else { 1144 Expanded = new VPExpandSCEVRecipe(Expr, SE); 1145 Plan.getPreheader()->appendRecipe(Expanded->getDefiningRecipe()); 1146 } 1147 Plan.addSCEVExpansion(Expr, Expanded); 1148 return Expanded; 1149 } 1150