1 //===- VPlan.cpp - Vectorizer Plan ----------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This is the LLVM vectorization plan. It represents a candidate for 11 /// vectorization, allowing to plan and optimize how to vectorize a given loop 12 /// before generating LLVM-IR. 13 /// The vectorizer uses vectorization plans to estimate the costs of potential 14 /// candidates and if profitable to execute the desired plan, generating vector 15 /// LLVM-IR code. 16 /// 17 //===----------------------------------------------------------------------===// 18 19 #include "VPlan.h" 20 #include "LoopVectorizationPlanner.h" 21 #include "VPlanCFG.h" 22 #include "VPlanDominatorTree.h" 23 #include "VPlanPatternMatch.h" 24 #include "llvm/ADT/PostOrderIterator.h" 25 #include "llvm/ADT/STLExtras.h" 26 #include "llvm/ADT/SmallVector.h" 27 #include "llvm/ADT/StringExtras.h" 28 #include "llvm/ADT/Twine.h" 29 #include "llvm/Analysis/DomTreeUpdater.h" 30 #include "llvm/Analysis/LoopInfo.h" 31 #include "llvm/IR/BasicBlock.h" 32 #include "llvm/IR/CFG.h" 33 #include "llvm/IR/IRBuilder.h" 34 #include "llvm/IR/Instruction.h" 35 #include "llvm/IR/Instructions.h" 36 #include "llvm/IR/Type.h" 37 #include "llvm/IR/Value.h" 38 #include "llvm/Support/Casting.h" 39 #include "llvm/Support/CommandLine.h" 40 #include "llvm/Support/Debug.h" 41 #include "llvm/Support/GenericDomTreeConstruction.h" 42 #include "llvm/Support/GraphWriter.h" 43 #include "llvm/Support/raw_ostream.h" 44 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 45 #include "llvm/Transforms/Utils/LoopVersioning.h" 46 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 47 #include <cassert> 48 #include <string> 49 #include <vector> 50 51 using namespace llvm; 52 using namespace llvm::VPlanPatternMatch; 53 54 namespace llvm { 55 extern cl::opt<bool> EnableVPlanNativePath; 56 } 57 58 #define DEBUG_TYPE "vplan" 59 60 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 61 raw_ostream &llvm::operator<<(raw_ostream &OS, const VPValue &V) { 62 const VPInstruction *Instr = dyn_cast<VPInstruction>(&V); 63 VPSlotTracker SlotTracker( 64 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr); 65 V.print(OS, SlotTracker); 66 return OS; 67 } 68 #endif 69 70 Value *VPLane::getAsRuntimeExpr(IRBuilderBase &Builder, 71 const ElementCount &VF) const { 72 switch (LaneKind) { 73 case VPLane::Kind::ScalableLast: 74 // Lane = RuntimeVF - VF.getKnownMinValue() + Lane 75 return Builder.CreateSub(getRuntimeVF(Builder, Builder.getInt32Ty(), VF), 76 Builder.getInt32(VF.getKnownMinValue() - Lane)); 77 case VPLane::Kind::First: 78 return Builder.getInt32(Lane); 79 } 80 llvm_unreachable("Unknown lane kind"); 81 } 82 83 VPValue::VPValue(const unsigned char SC, Value *UV, VPDef *Def) 84 : SubclassID(SC), UnderlyingVal(UV), Def(Def) { 85 if (Def) 86 Def->addDefinedValue(this); 87 } 88 89 VPValue::~VPValue() { 90 assert(Users.empty() && "trying to delete a VPValue with remaining users"); 91 if (Def) 92 Def->removeDefinedValue(this); 93 } 94 95 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 96 void VPValue::print(raw_ostream &OS, VPSlotTracker &SlotTracker) const { 97 if (const VPRecipeBase *R = dyn_cast_or_null<VPRecipeBase>(Def)) 98 R->print(OS, "", SlotTracker); 99 else 100 printAsOperand(OS, SlotTracker); 101 } 102 103 void VPValue::dump() const { 104 const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this->Def); 105 VPSlotTracker SlotTracker( 106 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr); 107 print(dbgs(), SlotTracker); 108 dbgs() << "\n"; 109 } 110 111 void VPDef::dump() const { 112 const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this); 113 VPSlotTracker SlotTracker( 114 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr); 115 print(dbgs(), "", SlotTracker); 116 dbgs() << "\n"; 117 } 118 #endif 119 120 VPRecipeBase *VPValue::getDefiningRecipe() { 121 return cast_or_null<VPRecipeBase>(Def); 122 } 123 124 const VPRecipeBase *VPValue::getDefiningRecipe() const { 125 return cast_or_null<VPRecipeBase>(Def); 126 } 127 128 // Get the top-most entry block of \p Start. This is the entry block of the 129 // containing VPlan. This function is templated to support both const and non-const blocks 130 template <typename T> static T *getPlanEntry(T *Start) { 131 T *Next = Start; 132 T *Current = Start; 133 while ((Next = Next->getParent())) 134 Current = Next; 135 136 SmallSetVector<T *, 8> WorkList; 137 WorkList.insert(Current); 138 139 for (unsigned i = 0; i < WorkList.size(); i++) { 140 T *Current = WorkList[i]; 141 if (Current->getNumPredecessors() == 0) 142 return Current; 143 auto &Predecessors = Current->getPredecessors(); 144 WorkList.insert(Predecessors.begin(), Predecessors.end()); 145 } 146 147 llvm_unreachable("VPlan without any entry node without predecessors"); 148 } 149 150 VPlan *VPBlockBase::getPlan() { return getPlanEntry(this)->Plan; } 151 152 const VPlan *VPBlockBase::getPlan() const { return getPlanEntry(this)->Plan; } 153 154 /// \return the VPBasicBlock that is the entry of Block, possibly indirectly. 155 const VPBasicBlock *VPBlockBase::getEntryBasicBlock() const { 156 const VPBlockBase *Block = this; 157 while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 158 Block = Region->getEntry(); 159 return cast<VPBasicBlock>(Block); 160 } 161 162 VPBasicBlock *VPBlockBase::getEntryBasicBlock() { 163 VPBlockBase *Block = this; 164 while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 165 Block = Region->getEntry(); 166 return cast<VPBasicBlock>(Block); 167 } 168 169 void VPBlockBase::setPlan(VPlan *ParentPlan) { 170 assert( 171 (ParentPlan->getEntry() == this || ParentPlan->getPreheader() == this) && 172 "Can only set plan on its entry or preheader block."); 173 Plan = ParentPlan; 174 } 175 176 /// \return the VPBasicBlock that is the exit of Block, possibly indirectly. 177 const VPBasicBlock *VPBlockBase::getExitingBasicBlock() const { 178 const VPBlockBase *Block = this; 179 while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 180 Block = Region->getExiting(); 181 return cast<VPBasicBlock>(Block); 182 } 183 184 VPBasicBlock *VPBlockBase::getExitingBasicBlock() { 185 VPBlockBase *Block = this; 186 while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 187 Block = Region->getExiting(); 188 return cast<VPBasicBlock>(Block); 189 } 190 191 VPBlockBase *VPBlockBase::getEnclosingBlockWithSuccessors() { 192 if (!Successors.empty() || !Parent) 193 return this; 194 assert(Parent->getExiting() == this && 195 "Block w/o successors not the exiting block of its parent."); 196 return Parent->getEnclosingBlockWithSuccessors(); 197 } 198 199 VPBlockBase *VPBlockBase::getEnclosingBlockWithPredecessors() { 200 if (!Predecessors.empty() || !Parent) 201 return this; 202 assert(Parent->getEntry() == this && 203 "Block w/o predecessors not the entry of its parent."); 204 return Parent->getEnclosingBlockWithPredecessors(); 205 } 206 207 void VPBlockBase::deleteCFG(VPBlockBase *Entry) { 208 for (VPBlockBase *Block : to_vector(vp_depth_first_shallow(Entry))) 209 delete Block; 210 } 211 212 VPBasicBlock::iterator VPBasicBlock::getFirstNonPhi() { 213 iterator It = begin(); 214 while (It != end() && It->isPhi()) 215 It++; 216 return It; 217 } 218 219 VPTransformState::VPTransformState(ElementCount VF, unsigned UF, LoopInfo *LI, 220 DominatorTree *DT, IRBuilderBase &Builder, 221 InnerLoopVectorizer *ILV, VPlan *Plan, 222 LLVMContext &Ctx) 223 : VF(VF), UF(UF), CFG(DT), LI(LI), Builder(Builder), ILV(ILV), Plan(Plan), 224 LVer(nullptr), 225 TypeAnalysis(Plan->getCanonicalIV()->getScalarType(), Ctx) {} 226 227 Value *VPTransformState::get(VPValue *Def, const VPIteration &Instance) { 228 if (Def->isLiveIn()) 229 return Def->getLiveInIRValue(); 230 231 if (hasScalarValue(Def, Instance)) { 232 return Data 233 .PerPartScalars[Def][Instance.Part][Instance.Lane.mapToCacheIndex(VF)]; 234 } 235 if (!Instance.Lane.isFirstLane() && 236 vputils::isUniformAfterVectorization(Def) && 237 hasScalarValue(Def, {Instance.Part, VPLane::getFirstLane()})) { 238 return Data.PerPartScalars[Def][Instance.Part][0]; 239 } 240 241 assert(hasVectorValue(Def, Instance.Part)); 242 auto *VecPart = Data.PerPartOutput[Def][Instance.Part]; 243 if (!VecPart->getType()->isVectorTy()) { 244 assert(Instance.Lane.isFirstLane() && "cannot get lane > 0 for scalar"); 245 return VecPart; 246 } 247 // TODO: Cache created scalar values. 248 Value *Lane = Instance.Lane.getAsRuntimeExpr(Builder, VF); 249 auto *Extract = Builder.CreateExtractElement(VecPart, Lane); 250 // set(Def, Extract, Instance); 251 return Extract; 252 } 253 254 Value *VPTransformState::get(VPValue *Def, unsigned Part, bool NeedsScalar) { 255 if (NeedsScalar) { 256 assert((VF.isScalar() || Def->isLiveIn() || hasVectorValue(Def, Part) || 257 (hasScalarValue(Def, VPIteration(Part, 0)) && 258 Data.PerPartScalars[Def][Part].size() == 1)) && 259 "Trying to access a single scalar per part but has multiple scalars " 260 "per part."); 261 return get(Def, VPIteration(Part, 0)); 262 } 263 264 // If Values have been set for this Def return the one relevant for \p Part. 265 if (hasVectorValue(Def, Part)) 266 return Data.PerPartOutput[Def][Part]; 267 268 auto GetBroadcastInstrs = [this, Def](Value *V) { 269 bool SafeToHoist = Def->isDefinedOutsideVectorRegions(); 270 if (VF.isScalar()) 271 return V; 272 // Place the code for broadcasting invariant variables in the new preheader. 273 IRBuilder<>::InsertPointGuard Guard(Builder); 274 if (SafeToHoist) { 275 BasicBlock *LoopVectorPreHeader = CFG.VPBB2IRBB[cast<VPBasicBlock>( 276 Plan->getVectorLoopRegion()->getSinglePredecessor())]; 277 if (LoopVectorPreHeader) 278 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 279 } 280 281 // Place the code for broadcasting invariant variables in the new preheader. 282 // Broadcast the scalar into all locations in the vector. 283 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 284 285 return Shuf; 286 }; 287 288 if (!hasScalarValue(Def, {Part, 0})) { 289 assert(Def->isLiveIn() && "expected a live-in"); 290 if (Part != 0) 291 return get(Def, 0); 292 Value *IRV = Def->getLiveInIRValue(); 293 Value *B = GetBroadcastInstrs(IRV); 294 set(Def, B, Part); 295 return B; 296 } 297 298 Value *ScalarValue = get(Def, {Part, 0}); 299 // If we aren't vectorizing, we can just copy the scalar map values over 300 // to the vector map. 301 if (VF.isScalar()) { 302 set(Def, ScalarValue, Part); 303 return ScalarValue; 304 } 305 306 bool IsUniform = vputils::isUniformAfterVectorization(Def); 307 308 unsigned LastLane = IsUniform ? 0 : VF.getKnownMinValue() - 1; 309 // Check if there is a scalar value for the selected lane. 310 if (!hasScalarValue(Def, {Part, LastLane})) { 311 // At the moment, VPWidenIntOrFpInductionRecipes, VPScalarIVStepsRecipes and 312 // VPExpandSCEVRecipes can also be uniform. 313 assert((isa<VPWidenIntOrFpInductionRecipe>(Def->getDefiningRecipe()) || 314 isa<VPScalarIVStepsRecipe>(Def->getDefiningRecipe()) || 315 isa<VPExpandSCEVRecipe>(Def->getDefiningRecipe())) && 316 "unexpected recipe found to be invariant"); 317 IsUniform = true; 318 LastLane = 0; 319 } 320 321 auto *LastInst = cast<Instruction>(get(Def, {Part, LastLane})); 322 // Set the insert point after the last scalarized instruction or after the 323 // last PHI, if LastInst is a PHI. This ensures the insertelement sequence 324 // will directly follow the scalar definitions. 325 auto OldIP = Builder.saveIP(); 326 auto NewIP = 327 isa<PHINode>(LastInst) 328 ? BasicBlock::iterator(LastInst->getParent()->getFirstNonPHI()) 329 : std::next(BasicBlock::iterator(LastInst)); 330 Builder.SetInsertPoint(&*NewIP); 331 332 // However, if we are vectorizing, we need to construct the vector values. 333 // If the value is known to be uniform after vectorization, we can just 334 // broadcast the scalar value corresponding to lane zero for each unroll 335 // iteration. Otherwise, we construct the vector values using 336 // insertelement instructions. Since the resulting vectors are stored in 337 // State, we will only generate the insertelements once. 338 Value *VectorValue = nullptr; 339 if (IsUniform) { 340 VectorValue = GetBroadcastInstrs(ScalarValue); 341 set(Def, VectorValue, Part); 342 } else { 343 // Initialize packing with insertelements to start from undef. 344 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 345 Value *Undef = PoisonValue::get(VectorType::get(LastInst->getType(), VF)); 346 set(Def, Undef, Part); 347 for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane) 348 packScalarIntoVectorValue(Def, {Part, Lane}); 349 VectorValue = get(Def, Part); 350 } 351 Builder.restoreIP(OldIP); 352 return VectorValue; 353 } 354 355 BasicBlock *VPTransformState::CFGState::getPreheaderBBFor(VPRecipeBase *R) { 356 VPRegionBlock *LoopRegion = R->getParent()->getEnclosingLoopRegion(); 357 return VPBB2IRBB[LoopRegion->getPreheaderVPBB()]; 358 } 359 360 void VPTransformState::addNewMetadata(Instruction *To, 361 const Instruction *Orig) { 362 // If the loop was versioned with memchecks, add the corresponding no-alias 363 // metadata. 364 if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig))) 365 LVer->annotateInstWithNoAlias(To, Orig); 366 } 367 368 void VPTransformState::addMetadata(Value *To, Instruction *From) { 369 // No source instruction to transfer metadata from? 370 if (!From) 371 return; 372 373 if (Instruction *ToI = dyn_cast<Instruction>(To)) { 374 propagateMetadata(ToI, From); 375 addNewMetadata(ToI, From); 376 } 377 } 378 379 void VPTransformState::setDebugLocFrom(DebugLoc DL) { 380 const DILocation *DIL = DL; 381 // When a FSDiscriminator is enabled, we don't need to add the multiply 382 // factors to the discriminators. 383 if (DIL && 384 Builder.GetInsertBlock() 385 ->getParent() 386 ->shouldEmitDebugInfoForProfiling() && 387 !EnableFSDiscriminator) { 388 // FIXME: For scalable vectors, assume vscale=1. 389 auto NewDIL = 390 DIL->cloneByMultiplyingDuplicationFactor(UF * VF.getKnownMinValue()); 391 if (NewDIL) 392 Builder.SetCurrentDebugLocation(*NewDIL); 393 else 394 LLVM_DEBUG(dbgs() << "Failed to create new discriminator: " 395 << DIL->getFilename() << " Line: " << DIL->getLine()); 396 } else 397 Builder.SetCurrentDebugLocation(DIL); 398 } 399 400 void VPTransformState::packScalarIntoVectorValue(VPValue *Def, 401 const VPIteration &Instance) { 402 Value *ScalarInst = get(Def, Instance); 403 Value *VectorValue = get(Def, Instance.Part); 404 VectorValue = Builder.CreateInsertElement( 405 VectorValue, ScalarInst, Instance.Lane.getAsRuntimeExpr(Builder, VF)); 406 set(Def, VectorValue, Instance.Part); 407 } 408 409 BasicBlock * 410 VPBasicBlock::createEmptyBasicBlock(VPTransformState::CFGState &CFG) { 411 // BB stands for IR BasicBlocks. VPBB stands for VPlan VPBasicBlocks. 412 // Pred stands for Predessor. Prev stands for Previous - last visited/created. 413 BasicBlock *PrevBB = CFG.PrevBB; 414 BasicBlock *NewBB = BasicBlock::Create(PrevBB->getContext(), getName(), 415 PrevBB->getParent(), CFG.ExitBB); 416 LLVM_DEBUG(dbgs() << "LV: created " << NewBB->getName() << '\n'); 417 418 // Hook up the new basic block to its predecessors. 419 for (VPBlockBase *PredVPBlock : getHierarchicalPredecessors()) { 420 VPBasicBlock *PredVPBB = PredVPBlock->getExitingBasicBlock(); 421 auto &PredVPSuccessors = PredVPBB->getHierarchicalSuccessors(); 422 BasicBlock *PredBB = CFG.VPBB2IRBB[PredVPBB]; 423 424 assert(PredBB && "Predecessor basic-block not found building successor."); 425 auto *PredBBTerminator = PredBB->getTerminator(); 426 LLVM_DEBUG(dbgs() << "LV: draw edge from" << PredBB->getName() << '\n'); 427 428 auto *TermBr = dyn_cast<BranchInst>(PredBBTerminator); 429 if (isa<UnreachableInst>(PredBBTerminator)) { 430 assert(PredVPSuccessors.size() == 1 && 431 "Predecessor ending w/o branch must have single successor."); 432 DebugLoc DL = PredBBTerminator->getDebugLoc(); 433 PredBBTerminator->eraseFromParent(); 434 auto *Br = BranchInst::Create(NewBB, PredBB); 435 Br->setDebugLoc(DL); 436 } else if (TermBr && !TermBr->isConditional()) { 437 TermBr->setSuccessor(0, NewBB); 438 } else { 439 // Set each forward successor here when it is created, excluding 440 // backedges. A backward successor is set when the branch is created. 441 unsigned idx = PredVPSuccessors.front() == this ? 0 : 1; 442 assert(!TermBr->getSuccessor(idx) && 443 "Trying to reset an existing successor block."); 444 TermBr->setSuccessor(idx, NewBB); 445 } 446 CFG.DTU.applyUpdates({{DominatorTree::Insert, PredBB, NewBB}}); 447 } 448 return NewBB; 449 } 450 451 void VPIRBasicBlock::execute(VPTransformState *State) { 452 assert(getHierarchicalSuccessors().size() <= 2 && 453 "VPIRBasicBlock can have at most two successors at the moment!"); 454 State->Builder.SetInsertPoint(getIRBasicBlock()->getTerminator()); 455 executeRecipes(State, getIRBasicBlock()); 456 if (getSingleSuccessor()) { 457 assert(isa<UnreachableInst>(getIRBasicBlock()->getTerminator())); 458 auto *Br = State->Builder.CreateBr(getIRBasicBlock()); 459 Br->setOperand(0, nullptr); 460 getIRBasicBlock()->getTerminator()->eraseFromParent(); 461 } 462 463 for (VPBlockBase *PredVPBlock : getHierarchicalPredecessors()) { 464 VPBasicBlock *PredVPBB = PredVPBlock->getExitingBasicBlock(); 465 BasicBlock *PredBB = State->CFG.VPBB2IRBB[PredVPBB]; 466 assert(PredBB && "Predecessor basic-block not found building successor."); 467 LLVM_DEBUG(dbgs() << "LV: draw edge from" << PredBB->getName() << '\n'); 468 469 auto *PredBBTerminator = PredBB->getTerminator(); 470 auto *TermBr = cast<BranchInst>(PredBBTerminator); 471 // Set each forward successor here when it is created, excluding 472 // backedges. A backward successor is set when the branch is created. 473 const auto &PredVPSuccessors = PredVPBB->getHierarchicalSuccessors(); 474 unsigned idx = PredVPSuccessors.front() == this ? 0 : 1; 475 assert(!TermBr->getSuccessor(idx) && 476 "Trying to reset an existing successor block."); 477 TermBr->setSuccessor(idx, IRBB); 478 State->CFG.DTU.applyUpdates({{DominatorTree::Insert, PredBB, IRBB}}); 479 } 480 } 481 482 void VPBasicBlock::execute(VPTransformState *State) { 483 bool Replica = State->Instance && !State->Instance->isFirstIteration(); 484 VPBasicBlock *PrevVPBB = State->CFG.PrevVPBB; 485 VPBlockBase *SingleHPred = nullptr; 486 BasicBlock *NewBB = State->CFG.PrevBB; // Reuse it if possible. 487 488 auto IsLoopRegion = [](VPBlockBase *BB) { 489 auto *R = dyn_cast<VPRegionBlock>(BB); 490 return R && !R->isReplicator(); 491 }; 492 493 // 1. Create an IR basic block. 494 if (PrevVPBB && /* A */ 495 !((SingleHPred = getSingleHierarchicalPredecessor()) && 496 SingleHPred->getExitingBasicBlock() == PrevVPBB && 497 PrevVPBB->getSingleHierarchicalSuccessor() && 498 (SingleHPred->getParent() == getEnclosingLoopRegion() && 499 !IsLoopRegion(SingleHPred))) && /* B */ 500 !(Replica && getPredecessors().empty())) { /* C */ 501 // The last IR basic block is reused, as an optimization, in three cases: 502 // A. the first VPBB reuses the loop pre-header BB - when PrevVPBB is null; 503 // B. when the current VPBB has a single (hierarchical) predecessor which 504 // is PrevVPBB and the latter has a single (hierarchical) successor which 505 // both are in the same non-replicator region; and 506 // C. when the current VPBB is an entry of a region replica - where PrevVPBB 507 // is the exiting VPBB of this region from a previous instance, or the 508 // predecessor of this region. 509 510 NewBB = createEmptyBasicBlock(State->CFG); 511 State->Builder.SetInsertPoint(NewBB); 512 // Temporarily terminate with unreachable until CFG is rewired. 513 UnreachableInst *Terminator = State->Builder.CreateUnreachable(); 514 // Register NewBB in its loop. In innermost loops its the same for all 515 // BB's. 516 if (State->CurrentVectorLoop) 517 State->CurrentVectorLoop->addBasicBlockToLoop(NewBB, *State->LI); 518 State->Builder.SetInsertPoint(Terminator); 519 State->CFG.PrevBB = NewBB; 520 } 521 522 // 2. Fill the IR basic block with IR instructions. 523 executeRecipes(State, NewBB); 524 } 525 526 void VPBasicBlock::dropAllReferences(VPValue *NewValue) { 527 for (VPRecipeBase &R : Recipes) { 528 for (auto *Def : R.definedValues()) 529 Def->replaceAllUsesWith(NewValue); 530 531 for (unsigned I = 0, E = R.getNumOperands(); I != E; I++) 532 R.setOperand(I, NewValue); 533 } 534 } 535 536 void VPBasicBlock::executeRecipes(VPTransformState *State, BasicBlock *BB) { 537 LLVM_DEBUG(dbgs() << "LV: vectorizing VPBB:" << getName() 538 << " in BB:" << BB->getName() << '\n'); 539 540 State->CFG.VPBB2IRBB[this] = BB; 541 State->CFG.PrevVPBB = this; 542 543 for (VPRecipeBase &Recipe : Recipes) 544 Recipe.execute(*State); 545 546 LLVM_DEBUG(dbgs() << "LV: filled BB:" << *BB); 547 } 548 549 VPBasicBlock *VPBasicBlock::splitAt(iterator SplitAt) { 550 assert((SplitAt == end() || SplitAt->getParent() == this) && 551 "can only split at a position in the same block"); 552 553 SmallVector<VPBlockBase *, 2> Succs(successors()); 554 // First, disconnect the current block from its successors. 555 for (VPBlockBase *Succ : Succs) 556 VPBlockUtils::disconnectBlocks(this, Succ); 557 558 // Create new empty block after the block to split. 559 auto *SplitBlock = new VPBasicBlock(getName() + ".split"); 560 VPBlockUtils::insertBlockAfter(SplitBlock, this); 561 562 // Add successors for block to split to new block. 563 for (VPBlockBase *Succ : Succs) 564 VPBlockUtils::connectBlocks(SplitBlock, Succ); 565 566 // Finally, move the recipes starting at SplitAt to new block. 567 for (VPRecipeBase &ToMove : 568 make_early_inc_range(make_range(SplitAt, this->end()))) 569 ToMove.moveBefore(*SplitBlock, SplitBlock->end()); 570 571 return SplitBlock; 572 } 573 574 VPRegionBlock *VPBasicBlock::getEnclosingLoopRegion() { 575 VPRegionBlock *P = getParent(); 576 if (P && P->isReplicator()) { 577 P = P->getParent(); 578 assert(!cast<VPRegionBlock>(P)->isReplicator() && 579 "unexpected nested replicate regions"); 580 } 581 return P; 582 } 583 584 static bool hasConditionalTerminator(const VPBasicBlock *VPBB) { 585 if (VPBB->empty()) { 586 assert( 587 VPBB->getNumSuccessors() < 2 && 588 "block with multiple successors doesn't have a recipe as terminator"); 589 return false; 590 } 591 592 const VPRecipeBase *R = &VPBB->back(); 593 bool IsCondBranch = isa<VPBranchOnMaskRecipe>(R) || 594 match(R, m_BranchOnCond(m_VPValue())) || 595 match(R, m_BranchOnCount(m_VPValue(), m_VPValue())); 596 (void)IsCondBranch; 597 598 if (VPBB->getNumSuccessors() >= 2 || 599 (VPBB->isExiting() && !VPBB->getParent()->isReplicator())) { 600 assert(IsCondBranch && "block with multiple successors not terminated by " 601 "conditional branch recipe"); 602 603 return true; 604 } 605 606 assert( 607 !IsCondBranch && 608 "block with 0 or 1 successors terminated by conditional branch recipe"); 609 return false; 610 } 611 612 VPRecipeBase *VPBasicBlock::getTerminator() { 613 if (hasConditionalTerminator(this)) 614 return &back(); 615 return nullptr; 616 } 617 618 const VPRecipeBase *VPBasicBlock::getTerminator() const { 619 if (hasConditionalTerminator(this)) 620 return &back(); 621 return nullptr; 622 } 623 624 bool VPBasicBlock::isExiting() const { 625 return getParent() && getParent()->getExitingBasicBlock() == this; 626 } 627 628 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 629 void VPBlockBase::printSuccessors(raw_ostream &O, const Twine &Indent) const { 630 if (getSuccessors().empty()) { 631 O << Indent << "No successors\n"; 632 } else { 633 O << Indent << "Successor(s): "; 634 ListSeparator LS; 635 for (auto *Succ : getSuccessors()) 636 O << LS << Succ->getName(); 637 O << '\n'; 638 } 639 } 640 641 void VPBasicBlock::print(raw_ostream &O, const Twine &Indent, 642 VPSlotTracker &SlotTracker) const { 643 O << Indent << getName() << ":\n"; 644 645 auto RecipeIndent = Indent + " "; 646 for (const VPRecipeBase &Recipe : *this) { 647 Recipe.print(O, RecipeIndent, SlotTracker); 648 O << '\n'; 649 } 650 651 printSuccessors(O, Indent); 652 } 653 #endif 654 655 static std::pair<VPBlockBase *, VPBlockBase *> cloneFrom(VPBlockBase *Entry); 656 657 // Clone the CFG for all nodes reachable from \p Entry, this includes cloning 658 // the blocks and their recipes. Operands of cloned recipes will NOT be updated. 659 // Remapping of operands must be done separately. Returns a pair with the new 660 // entry and exiting blocks of the cloned region. If \p Entry isn't part of a 661 // region, return nullptr for the exiting block. 662 static std::pair<VPBlockBase *, VPBlockBase *> cloneFrom(VPBlockBase *Entry) { 663 DenseMap<VPBlockBase *, VPBlockBase *> Old2NewVPBlocks; 664 VPBlockBase *Exiting = nullptr; 665 bool InRegion = Entry->getParent(); 666 // First, clone blocks reachable from Entry. 667 for (VPBlockBase *BB : vp_depth_first_shallow(Entry)) { 668 VPBlockBase *NewBB = BB->clone(); 669 Old2NewVPBlocks[BB] = NewBB; 670 if (InRegion && BB->getNumSuccessors() == 0) { 671 assert(!Exiting && "Multiple exiting blocks?"); 672 Exiting = BB; 673 } 674 } 675 assert((!InRegion || Exiting) && "regions must have a single exiting block"); 676 677 // Second, update the predecessors & successors of the cloned blocks. 678 for (VPBlockBase *BB : vp_depth_first_shallow(Entry)) { 679 VPBlockBase *NewBB = Old2NewVPBlocks[BB]; 680 SmallVector<VPBlockBase *> NewPreds; 681 for (VPBlockBase *Pred : BB->getPredecessors()) { 682 NewPreds.push_back(Old2NewVPBlocks[Pred]); 683 } 684 NewBB->setPredecessors(NewPreds); 685 SmallVector<VPBlockBase *> NewSuccs; 686 for (VPBlockBase *Succ : BB->successors()) { 687 NewSuccs.push_back(Old2NewVPBlocks[Succ]); 688 } 689 NewBB->setSuccessors(NewSuccs); 690 } 691 692 #if !defined(NDEBUG) 693 // Verify that the order of predecessors and successors matches in the cloned 694 // version. 695 for (const auto &[OldBB, NewBB] : 696 zip(vp_depth_first_shallow(Entry), 697 vp_depth_first_shallow(Old2NewVPBlocks[Entry]))) { 698 for (const auto &[OldPred, NewPred] : 699 zip(OldBB->getPredecessors(), NewBB->getPredecessors())) 700 assert(NewPred == Old2NewVPBlocks[OldPred] && "Different predecessors"); 701 702 for (const auto &[OldSucc, NewSucc] : 703 zip(OldBB->successors(), NewBB->successors())) 704 assert(NewSucc == Old2NewVPBlocks[OldSucc] && "Different successors"); 705 } 706 #endif 707 708 return std::make_pair(Old2NewVPBlocks[Entry], 709 Exiting ? Old2NewVPBlocks[Exiting] : nullptr); 710 } 711 712 VPRegionBlock *VPRegionBlock::clone() { 713 const auto &[NewEntry, NewExiting] = cloneFrom(getEntry()); 714 auto *NewRegion = 715 new VPRegionBlock(NewEntry, NewExiting, getName(), isReplicator()); 716 for (VPBlockBase *Block : vp_depth_first_shallow(NewEntry)) 717 Block->setParent(NewRegion); 718 return NewRegion; 719 } 720 721 void VPRegionBlock::dropAllReferences(VPValue *NewValue) { 722 for (VPBlockBase *Block : vp_depth_first_shallow(Entry)) 723 // Drop all references in VPBasicBlocks and replace all uses with 724 // DummyValue. 725 Block->dropAllReferences(NewValue); 726 } 727 728 void VPRegionBlock::execute(VPTransformState *State) { 729 ReversePostOrderTraversal<VPBlockShallowTraversalWrapper<VPBlockBase *>> 730 RPOT(Entry); 731 732 if (!isReplicator()) { 733 // Create and register the new vector loop. 734 Loop *PrevLoop = State->CurrentVectorLoop; 735 State->CurrentVectorLoop = State->LI->AllocateLoop(); 736 BasicBlock *VectorPH = State->CFG.VPBB2IRBB[getPreheaderVPBB()]; 737 Loop *ParentLoop = State->LI->getLoopFor(VectorPH); 738 739 // Insert the new loop into the loop nest and register the new basic blocks 740 // before calling any utilities such as SCEV that require valid LoopInfo. 741 if (ParentLoop) 742 ParentLoop->addChildLoop(State->CurrentVectorLoop); 743 else 744 State->LI->addTopLevelLoop(State->CurrentVectorLoop); 745 746 // Visit the VPBlocks connected to "this", starting from it. 747 for (VPBlockBase *Block : RPOT) { 748 LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n'); 749 Block->execute(State); 750 } 751 752 State->CurrentVectorLoop = PrevLoop; 753 return; 754 } 755 756 assert(!State->Instance && "Replicating a Region with non-null instance."); 757 758 // Enter replicating mode. 759 State->Instance = VPIteration(0, 0); 760 761 for (unsigned Part = 0, UF = State->UF; Part < UF; ++Part) { 762 State->Instance->Part = Part; 763 assert(!State->VF.isScalable() && "VF is assumed to be non scalable."); 764 for (unsigned Lane = 0, VF = State->VF.getKnownMinValue(); Lane < VF; 765 ++Lane) { 766 State->Instance->Lane = VPLane(Lane, VPLane::Kind::First); 767 // Visit the VPBlocks connected to \p this, starting from it. 768 for (VPBlockBase *Block : RPOT) { 769 LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n'); 770 Block->execute(State); 771 } 772 } 773 } 774 775 // Exit replicating mode. 776 State->Instance.reset(); 777 } 778 779 InstructionCost VPBasicBlock::cost(ElementCount VF, VPCostContext &Ctx) { 780 InstructionCost Cost = 0; 781 for (VPRecipeBase &R : Recipes) 782 Cost += R.cost(VF, Ctx); 783 return Cost; 784 } 785 786 InstructionCost VPRegionBlock::cost(ElementCount VF, VPCostContext &Ctx) { 787 if (!isReplicator()) { 788 InstructionCost Cost = 0; 789 for (VPBlockBase *Block : vp_depth_first_shallow(getEntry())) 790 Cost += Block->cost(VF, Ctx); 791 InstructionCost BackedgeCost = 792 Ctx.TTI.getCFInstrCost(Instruction::Br, TTI::TCK_RecipThroughput); 793 LLVM_DEBUG(dbgs() << "Cost of " << BackedgeCost << " for VF " << VF 794 << ": vector loop backedge\n"); 795 Cost += BackedgeCost; 796 return Cost; 797 } 798 799 // Compute the cost of a replicate region. Replicating isn't supported for 800 // scalable vectors, return an invalid cost for them. 801 // TODO: Discard scalable VPlans with replicate recipes earlier after 802 // construction. 803 if (VF.isScalable()) 804 return InstructionCost::getInvalid(); 805 806 // First compute the cost of the conditionally executed recipes, followed by 807 // account for the branching cost, except if the mask is a header mask or 808 // uniform condition. 809 using namespace llvm::VPlanPatternMatch; 810 VPBasicBlock *Then = cast<VPBasicBlock>(getEntry()->getSuccessors()[0]); 811 InstructionCost ThenCost = Then->cost(VF, Ctx); 812 813 // For the scalar case, we may not always execute the original predicated 814 // block, Thus, scale the block's cost by the probability of executing it. 815 if (VF.isScalar()) 816 return ThenCost / getReciprocalPredBlockProb(); 817 818 return ThenCost; 819 } 820 821 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 822 void VPRegionBlock::print(raw_ostream &O, const Twine &Indent, 823 VPSlotTracker &SlotTracker) const { 824 O << Indent << (isReplicator() ? "<xVFxUF> " : "<x1> ") << getName() << ": {"; 825 auto NewIndent = Indent + " "; 826 for (auto *BlockBase : vp_depth_first_shallow(Entry)) { 827 O << '\n'; 828 BlockBase->print(O, NewIndent, SlotTracker); 829 } 830 O << Indent << "}\n"; 831 832 printSuccessors(O, Indent); 833 } 834 #endif 835 836 VPlan::~VPlan() { 837 for (auto &KV : LiveOuts) 838 delete KV.second; 839 LiveOuts.clear(); 840 841 if (Entry) { 842 VPValue DummyValue; 843 for (VPBlockBase *Block : vp_depth_first_shallow(Entry)) 844 Block->dropAllReferences(&DummyValue); 845 846 VPBlockBase::deleteCFG(Entry); 847 848 Preheader->dropAllReferences(&DummyValue); 849 delete Preheader; 850 } 851 for (VPValue *VPV : VPLiveInsToFree) 852 delete VPV; 853 if (BackedgeTakenCount) 854 delete BackedgeTakenCount; 855 } 856 857 VPlanPtr VPlan::createInitialVPlan(const SCEV *TripCount, ScalarEvolution &SE, 858 bool RequiresScalarEpilogueCheck, 859 bool TailFolded, Loop *TheLoop) { 860 VPIRBasicBlock *Entry = new VPIRBasicBlock(TheLoop->getLoopPreheader()); 861 VPBasicBlock *VecPreheader = new VPBasicBlock("vector.ph"); 862 auto Plan = std::make_unique<VPlan>(Entry, VecPreheader); 863 Plan->TripCount = 864 vputils::getOrCreateVPValueForSCEVExpr(*Plan, TripCount, SE); 865 // Create VPRegionBlock, with empty header and latch blocks, to be filled 866 // during processing later. 867 VPBasicBlock *HeaderVPBB = new VPBasicBlock("vector.body"); 868 VPBasicBlock *LatchVPBB = new VPBasicBlock("vector.latch"); 869 VPBlockUtils::insertBlockAfter(LatchVPBB, HeaderVPBB); 870 auto *TopRegion = new VPRegionBlock(HeaderVPBB, LatchVPBB, "vector loop", 871 false /*isReplicator*/); 872 873 VPBlockUtils::insertBlockAfter(TopRegion, VecPreheader); 874 VPBasicBlock *MiddleVPBB = new VPBasicBlock("middle.block"); 875 VPBlockUtils::insertBlockAfter(MiddleVPBB, TopRegion); 876 877 VPBasicBlock *ScalarPH = new VPBasicBlock("scalar.ph"); 878 if (!RequiresScalarEpilogueCheck) { 879 VPBlockUtils::connectBlocks(MiddleVPBB, ScalarPH); 880 return Plan; 881 } 882 883 // If needed, add a check in the middle block to see if we have completed 884 // all of the iterations in the first vector loop. Three cases: 885 // 1) If (N - N%VF) == N, then we *don't* need to run the remainder. 886 // Thus if tail is to be folded, we know we don't need to run the 887 // remainder and we can set the condition to true. 888 // 2) If we require a scalar epilogue, there is no conditional branch as 889 // we unconditionally branch to the scalar preheader. Do nothing. 890 // 3) Otherwise, construct a runtime check. 891 BasicBlock *IRExitBlock = TheLoop->getUniqueExitBlock(); 892 auto *VPExitBlock = new VPIRBasicBlock(IRExitBlock); 893 // The connection order corresponds to the operands of the conditional branch. 894 VPBlockUtils::insertBlockAfter(VPExitBlock, MiddleVPBB); 895 VPBlockUtils::connectBlocks(MiddleVPBB, ScalarPH); 896 897 auto *ScalarLatchTerm = TheLoop->getLoopLatch()->getTerminator(); 898 // Here we use the same DebugLoc as the scalar loop latch terminator instead 899 // of the corresponding compare because they may have ended up with 900 // different line numbers and we want to avoid awkward line stepping while 901 // debugging. Eg. if the compare has got a line number inside the loop. 902 VPBuilder Builder(MiddleVPBB); 903 VPValue *Cmp = 904 TailFolded 905 ? Plan->getOrAddLiveIn(ConstantInt::getTrue( 906 IntegerType::getInt1Ty(TripCount->getType()->getContext()))) 907 : Builder.createICmp(CmpInst::ICMP_EQ, Plan->getTripCount(), 908 &Plan->getVectorTripCount(), 909 ScalarLatchTerm->getDebugLoc(), "cmp.n"); 910 Builder.createNaryOp(VPInstruction::BranchOnCond, {Cmp}, 911 ScalarLatchTerm->getDebugLoc()); 912 return Plan; 913 } 914 915 void VPlan::prepareToExecute(Value *TripCountV, Value *VectorTripCountV, 916 Value *CanonicalIVStartValue, 917 VPTransformState &State) { 918 // Check if the backedge taken count is needed, and if so build it. 919 if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) { 920 IRBuilder<> Builder(State.CFG.PrevBB->getTerminator()); 921 auto *TCMO = Builder.CreateSub(TripCountV, 922 ConstantInt::get(TripCountV->getType(), 1), 923 "trip.count.minus.1"); 924 BackedgeTakenCount->setUnderlyingValue(TCMO); 925 } 926 927 VectorTripCount.setUnderlyingValue(VectorTripCountV); 928 929 IRBuilder<> Builder(State.CFG.PrevBB->getTerminator()); 930 // FIXME: Model VF * UF computation completely in VPlan. 931 VFxUF.setUnderlyingValue( 932 createStepForVF(Builder, TripCountV->getType(), State.VF, State.UF)); 933 934 // When vectorizing the epilogue loop, the canonical induction start value 935 // needs to be changed from zero to the value after the main vector loop. 936 // FIXME: Improve modeling for canonical IV start values in the epilogue loop. 937 if (CanonicalIVStartValue) { 938 VPValue *VPV = getOrAddLiveIn(CanonicalIVStartValue); 939 auto *IV = getCanonicalIV(); 940 assert(all_of(IV->users(), 941 [](const VPUser *U) { 942 return isa<VPScalarIVStepsRecipe>(U) || 943 isa<VPScalarCastRecipe>(U) || 944 isa<VPDerivedIVRecipe>(U) || 945 cast<VPInstruction>(U)->getOpcode() == 946 Instruction::Add; 947 }) && 948 "the canonical IV should only be used by its increment or " 949 "ScalarIVSteps when resetting the start value"); 950 IV->setOperand(0, VPV); 951 } 952 } 953 954 /// Replace \p VPBB with a VPIRBasicBlock wrapping \p IRBB. All recipes from \p 955 /// VPBB are moved to the newly created VPIRBasicBlock. VPBB must have a single 956 /// predecessor, which is rewired to the new VPIRBasicBlock. All successors of 957 /// VPBB, if any, are rewired to the new VPIRBasicBlock. 958 static void replaceVPBBWithIRVPBB(VPBasicBlock *VPBB, BasicBlock *IRBB) { 959 VPIRBasicBlock *IRMiddleVPBB = new VPIRBasicBlock(IRBB); 960 for (auto &R : make_early_inc_range(*VPBB)) 961 R.moveBefore(*IRMiddleVPBB, IRMiddleVPBB->end()); 962 VPBlockBase *PredVPBB = VPBB->getSinglePredecessor(); 963 VPBlockUtils::disconnectBlocks(PredVPBB, VPBB); 964 VPBlockUtils::connectBlocks(PredVPBB, IRMiddleVPBB); 965 for (auto *Succ : to_vector(VPBB->getSuccessors())) { 966 VPBlockUtils::connectBlocks(IRMiddleVPBB, Succ); 967 VPBlockUtils::disconnectBlocks(VPBB, Succ); 968 } 969 delete VPBB; 970 } 971 972 /// Generate the code inside the preheader and body of the vectorized loop. 973 /// Assumes a single pre-header basic-block was created for this. Introduce 974 /// additional basic-blocks as needed, and fill them all. 975 void VPlan::execute(VPTransformState *State) { 976 // Initialize CFG state. 977 State->CFG.PrevVPBB = nullptr; 978 State->CFG.ExitBB = State->CFG.PrevBB->getSingleSuccessor(); 979 BasicBlock *VectorPreHeader = State->CFG.PrevBB; 980 State->Builder.SetInsertPoint(VectorPreHeader->getTerminator()); 981 982 // Disconnect VectorPreHeader from ExitBB in both the CFG and DT. 983 cast<BranchInst>(VectorPreHeader->getTerminator())->setSuccessor(0, nullptr); 984 State->CFG.DTU.applyUpdates( 985 {{DominatorTree::Delete, VectorPreHeader, State->CFG.ExitBB}}); 986 987 // Replace regular VPBB's for the middle and scalar preheader blocks with 988 // VPIRBasicBlocks wrapping their IR blocks. The IR blocks are created during 989 // skeleton creation, so we can only create the VPIRBasicBlocks now during 990 // VPlan execution rather than earlier during VPlan construction. 991 BasicBlock *MiddleBB = State->CFG.ExitBB; 992 VPBasicBlock *MiddleVPBB = 993 cast<VPBasicBlock>(getVectorLoopRegion()->getSingleSuccessor()); 994 // Find the VPBB for the scalar preheader, relying on the current structure 995 // when creating the middle block and its successrs: if there's a single 996 // predecessor, it must be the scalar preheader. Otherwise, the second 997 // successor is the scalar preheader. 998 BasicBlock *ScalarPh = MiddleBB->getSingleSuccessor(); 999 auto &MiddleSuccs = MiddleVPBB->getSuccessors(); 1000 assert((MiddleSuccs.size() == 1 || MiddleSuccs.size() == 2) && 1001 "middle block has unexpected successors"); 1002 VPBasicBlock *ScalarPhVPBB = cast<VPBasicBlock>( 1003 MiddleSuccs.size() == 1 ? MiddleSuccs[0] : MiddleSuccs[1]); 1004 assert(!isa<VPIRBasicBlock>(ScalarPhVPBB) && 1005 "scalar preheader cannot be wrapped already"); 1006 replaceVPBBWithIRVPBB(ScalarPhVPBB, ScalarPh); 1007 replaceVPBBWithIRVPBB(MiddleVPBB, MiddleBB); 1008 1009 // Disconnect the middle block from its single successor (the scalar loop 1010 // header) in both the CFG and DT. The branch will be recreated during VPlan 1011 // execution. 1012 auto *BrInst = new UnreachableInst(MiddleBB->getContext()); 1013 BrInst->insertBefore(MiddleBB->getTerminator()); 1014 MiddleBB->getTerminator()->eraseFromParent(); 1015 State->CFG.DTU.applyUpdates({{DominatorTree::Delete, MiddleBB, ScalarPh}}); 1016 1017 // Generate code in the loop pre-header and body. 1018 for (VPBlockBase *Block : vp_depth_first_shallow(Entry)) 1019 Block->execute(State); 1020 1021 VPBasicBlock *LatchVPBB = getVectorLoopRegion()->getExitingBasicBlock(); 1022 BasicBlock *VectorLatchBB = State->CFG.VPBB2IRBB[LatchVPBB]; 1023 1024 // Fix the latch value of canonical, reduction and first-order recurrences 1025 // phis in the vector loop. 1026 VPBasicBlock *Header = getVectorLoopRegion()->getEntryBasicBlock(); 1027 for (VPRecipeBase &R : Header->phis()) { 1028 // Skip phi-like recipes that generate their backedege values themselves. 1029 if (isa<VPWidenPHIRecipe>(&R)) 1030 continue; 1031 1032 if (isa<VPWidenPointerInductionRecipe>(&R) || 1033 isa<VPWidenIntOrFpInductionRecipe>(&R)) { 1034 PHINode *Phi = nullptr; 1035 if (isa<VPWidenIntOrFpInductionRecipe>(&R)) { 1036 Phi = cast<PHINode>(State->get(R.getVPSingleValue(), 0)); 1037 } else { 1038 auto *WidenPhi = cast<VPWidenPointerInductionRecipe>(&R); 1039 assert(!WidenPhi->onlyScalarsGenerated(State->VF.isScalable()) && 1040 "recipe generating only scalars should have been replaced"); 1041 auto *GEP = cast<GetElementPtrInst>(State->get(WidenPhi, 0)); 1042 Phi = cast<PHINode>(GEP->getPointerOperand()); 1043 } 1044 1045 Phi->setIncomingBlock(1, VectorLatchBB); 1046 1047 // Move the last step to the end of the latch block. This ensures 1048 // consistent placement of all induction updates. 1049 Instruction *Inc = cast<Instruction>(Phi->getIncomingValue(1)); 1050 Inc->moveBefore(VectorLatchBB->getTerminator()->getPrevNode()); 1051 continue; 1052 } 1053 1054 auto *PhiR = cast<VPHeaderPHIRecipe>(&R); 1055 // For canonical IV, first-order recurrences and in-order reduction phis, 1056 // only a single part is generated, which provides the last part from the 1057 // previous iteration. For non-ordered reductions all UF parts are 1058 // generated. 1059 bool SinglePartNeeded = 1060 isa<VPCanonicalIVPHIRecipe>(PhiR) || 1061 isa<VPFirstOrderRecurrencePHIRecipe, VPEVLBasedIVPHIRecipe>(PhiR) || 1062 (isa<VPReductionPHIRecipe>(PhiR) && 1063 cast<VPReductionPHIRecipe>(PhiR)->isOrdered()); 1064 bool NeedsScalar = 1065 isa<VPCanonicalIVPHIRecipe, VPEVLBasedIVPHIRecipe>(PhiR) || 1066 (isa<VPReductionPHIRecipe>(PhiR) && 1067 cast<VPReductionPHIRecipe>(PhiR)->isInLoop()); 1068 unsigned LastPartForNewPhi = SinglePartNeeded ? 1 : State->UF; 1069 1070 for (unsigned Part = 0; Part < LastPartForNewPhi; ++Part) { 1071 Value *Phi = State->get(PhiR, Part, NeedsScalar); 1072 Value *Val = 1073 State->get(PhiR->getBackedgeValue(), 1074 SinglePartNeeded ? State->UF - 1 : Part, NeedsScalar); 1075 cast<PHINode>(Phi)->addIncoming(Val, VectorLatchBB); 1076 } 1077 } 1078 1079 State->CFG.DTU.flush(); 1080 assert(State->CFG.DTU.getDomTree().verify( 1081 DominatorTree::VerificationLevel::Fast) && 1082 "DT not preserved correctly"); 1083 } 1084 1085 InstructionCost VPlan::cost(ElementCount VF, VPCostContext &Ctx) { 1086 // For now only return the cost of the vector loop region, ignoring any other 1087 // blocks, like the preheader or middle blocks. 1088 return getVectorLoopRegion()->cost(VF, Ctx); 1089 } 1090 1091 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1092 void VPlan::printLiveIns(raw_ostream &O) const { 1093 VPSlotTracker SlotTracker(this); 1094 1095 if (VFxUF.getNumUsers() > 0) { 1096 O << "\nLive-in "; 1097 VFxUF.printAsOperand(O, SlotTracker); 1098 O << " = VF * UF"; 1099 } 1100 1101 if (VectorTripCount.getNumUsers() > 0) { 1102 O << "\nLive-in "; 1103 VectorTripCount.printAsOperand(O, SlotTracker); 1104 O << " = vector-trip-count"; 1105 } 1106 1107 if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) { 1108 O << "\nLive-in "; 1109 BackedgeTakenCount->printAsOperand(O, SlotTracker); 1110 O << " = backedge-taken count"; 1111 } 1112 1113 O << "\n"; 1114 if (TripCount->isLiveIn()) 1115 O << "Live-in "; 1116 TripCount->printAsOperand(O, SlotTracker); 1117 O << " = original trip-count"; 1118 O << "\n"; 1119 } 1120 1121 LLVM_DUMP_METHOD 1122 void VPlan::print(raw_ostream &O) const { 1123 VPSlotTracker SlotTracker(this); 1124 1125 O << "VPlan '" << getName() << "' {"; 1126 1127 printLiveIns(O); 1128 1129 if (!getPreheader()->empty()) { 1130 O << "\n"; 1131 getPreheader()->print(O, "", SlotTracker); 1132 } 1133 1134 for (const VPBlockBase *Block : vp_depth_first_shallow(getEntry())) { 1135 O << '\n'; 1136 Block->print(O, "", SlotTracker); 1137 } 1138 1139 if (!LiveOuts.empty()) 1140 O << "\n"; 1141 for (const auto &KV : LiveOuts) { 1142 KV.second->print(O, SlotTracker); 1143 } 1144 1145 O << "}\n"; 1146 } 1147 1148 std::string VPlan::getName() const { 1149 std::string Out; 1150 raw_string_ostream RSO(Out); 1151 RSO << Name << " for "; 1152 if (!VFs.empty()) { 1153 RSO << "VF={" << VFs[0]; 1154 for (ElementCount VF : drop_begin(VFs)) 1155 RSO << "," << VF; 1156 RSO << "},"; 1157 } 1158 1159 if (UFs.empty()) { 1160 RSO << "UF>=1"; 1161 } else { 1162 RSO << "UF={" << UFs[0]; 1163 for (unsigned UF : drop_begin(UFs)) 1164 RSO << "," << UF; 1165 RSO << "}"; 1166 } 1167 1168 return Out; 1169 } 1170 1171 LLVM_DUMP_METHOD 1172 void VPlan::printDOT(raw_ostream &O) const { 1173 VPlanPrinter Printer(O, *this); 1174 Printer.dump(); 1175 } 1176 1177 LLVM_DUMP_METHOD 1178 void VPlan::dump() const { print(dbgs()); } 1179 #endif 1180 1181 void VPlan::addLiveOut(PHINode *PN, VPValue *V) { 1182 assert(LiveOuts.count(PN) == 0 && "an exit value for PN already exists"); 1183 LiveOuts.insert({PN, new VPLiveOut(PN, V)}); 1184 } 1185 1186 static void remapOperands(VPBlockBase *Entry, VPBlockBase *NewEntry, 1187 DenseMap<VPValue *, VPValue *> &Old2NewVPValues) { 1188 // Update the operands of all cloned recipes starting at NewEntry. This 1189 // traverses all reachable blocks. This is done in two steps, to handle cycles 1190 // in PHI recipes. 1191 ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<VPBlockBase *>> 1192 OldDeepRPOT(Entry); 1193 ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<VPBlockBase *>> 1194 NewDeepRPOT(NewEntry); 1195 // First, collect all mappings from old to new VPValues defined by cloned 1196 // recipes. 1197 for (const auto &[OldBB, NewBB] : 1198 zip(VPBlockUtils::blocksOnly<VPBasicBlock>(OldDeepRPOT), 1199 VPBlockUtils::blocksOnly<VPBasicBlock>(NewDeepRPOT))) { 1200 assert(OldBB->getRecipeList().size() == NewBB->getRecipeList().size() && 1201 "blocks must have the same number of recipes"); 1202 for (const auto &[OldR, NewR] : zip(*OldBB, *NewBB)) { 1203 assert(OldR.getNumOperands() == NewR.getNumOperands() && 1204 "recipes must have the same number of operands"); 1205 assert(OldR.getNumDefinedValues() == NewR.getNumDefinedValues() && 1206 "recipes must define the same number of operands"); 1207 for (const auto &[OldV, NewV] : 1208 zip(OldR.definedValues(), NewR.definedValues())) 1209 Old2NewVPValues[OldV] = NewV; 1210 } 1211 } 1212 1213 // Update all operands to use cloned VPValues. 1214 for (VPBasicBlock *NewBB : 1215 VPBlockUtils::blocksOnly<VPBasicBlock>(NewDeepRPOT)) { 1216 for (VPRecipeBase &NewR : *NewBB) 1217 for (unsigned I = 0, E = NewR.getNumOperands(); I != E; ++I) { 1218 VPValue *NewOp = Old2NewVPValues.lookup(NewR.getOperand(I)); 1219 NewR.setOperand(I, NewOp); 1220 } 1221 } 1222 } 1223 1224 VPlan *VPlan::duplicate() { 1225 // Clone blocks. 1226 VPBasicBlock *NewPreheader = Preheader->clone(); 1227 const auto &[NewEntry, __] = cloneFrom(Entry); 1228 1229 // Create VPlan, clone live-ins and remap operands in the cloned blocks. 1230 auto *NewPlan = new VPlan(NewPreheader, cast<VPBasicBlock>(NewEntry)); 1231 DenseMap<VPValue *, VPValue *> Old2NewVPValues; 1232 for (VPValue *OldLiveIn : VPLiveInsToFree) { 1233 Old2NewVPValues[OldLiveIn] = 1234 NewPlan->getOrAddLiveIn(OldLiveIn->getLiveInIRValue()); 1235 } 1236 Old2NewVPValues[&VectorTripCount] = &NewPlan->VectorTripCount; 1237 Old2NewVPValues[&VFxUF] = &NewPlan->VFxUF; 1238 if (BackedgeTakenCount) { 1239 NewPlan->BackedgeTakenCount = new VPValue(); 1240 Old2NewVPValues[BackedgeTakenCount] = NewPlan->BackedgeTakenCount; 1241 } 1242 assert(TripCount && "trip count must be set"); 1243 if (TripCount->isLiveIn()) 1244 Old2NewVPValues[TripCount] = 1245 NewPlan->getOrAddLiveIn(TripCount->getLiveInIRValue()); 1246 // else NewTripCount will be created and inserted into Old2NewVPValues when 1247 // TripCount is cloned. In any case NewPlan->TripCount is updated below. 1248 1249 remapOperands(Preheader, NewPreheader, Old2NewVPValues); 1250 remapOperands(Entry, NewEntry, Old2NewVPValues); 1251 1252 // Clone live-outs. 1253 for (const auto &[_, LO] : LiveOuts) 1254 NewPlan->addLiveOut(LO->getPhi(), Old2NewVPValues[LO->getOperand(0)]); 1255 1256 // Initialize remaining fields of cloned VPlan. 1257 NewPlan->VFs = VFs; 1258 NewPlan->UFs = UFs; 1259 // TODO: Adjust names. 1260 NewPlan->Name = Name; 1261 assert(Old2NewVPValues.contains(TripCount) && 1262 "TripCount must have been added to Old2NewVPValues"); 1263 NewPlan->TripCount = Old2NewVPValues[TripCount]; 1264 return NewPlan; 1265 } 1266 1267 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1268 1269 Twine VPlanPrinter::getUID(const VPBlockBase *Block) { 1270 return (isa<VPRegionBlock>(Block) ? "cluster_N" : "N") + 1271 Twine(getOrCreateBID(Block)); 1272 } 1273 1274 Twine VPlanPrinter::getOrCreateName(const VPBlockBase *Block) { 1275 const std::string &Name = Block->getName(); 1276 if (!Name.empty()) 1277 return Name; 1278 return "VPB" + Twine(getOrCreateBID(Block)); 1279 } 1280 1281 void VPlanPrinter::dump() { 1282 Depth = 1; 1283 bumpIndent(0); 1284 OS << "digraph VPlan {\n"; 1285 OS << "graph [labelloc=t, fontsize=30; label=\"Vectorization Plan"; 1286 if (!Plan.getName().empty()) 1287 OS << "\\n" << DOT::EscapeString(Plan.getName()); 1288 1289 { 1290 // Print live-ins. 1291 std::string Str; 1292 raw_string_ostream SS(Str); 1293 Plan.printLiveIns(SS); 1294 SmallVector<StringRef, 0> Lines; 1295 StringRef(Str).rtrim('\n').split(Lines, "\n"); 1296 for (auto Line : Lines) 1297 OS << DOT::EscapeString(Line.str()) << "\\n"; 1298 } 1299 1300 OS << "\"]\n"; 1301 OS << "node [shape=rect, fontname=Courier, fontsize=30]\n"; 1302 OS << "edge [fontname=Courier, fontsize=30]\n"; 1303 OS << "compound=true\n"; 1304 1305 dumpBlock(Plan.getPreheader()); 1306 1307 for (const VPBlockBase *Block : vp_depth_first_shallow(Plan.getEntry())) 1308 dumpBlock(Block); 1309 1310 OS << "}\n"; 1311 } 1312 1313 void VPlanPrinter::dumpBlock(const VPBlockBase *Block) { 1314 if (const VPBasicBlock *BasicBlock = dyn_cast<VPBasicBlock>(Block)) 1315 dumpBasicBlock(BasicBlock); 1316 else if (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 1317 dumpRegion(Region); 1318 else 1319 llvm_unreachable("Unsupported kind of VPBlock."); 1320 } 1321 1322 void VPlanPrinter::drawEdge(const VPBlockBase *From, const VPBlockBase *To, 1323 bool Hidden, const Twine &Label) { 1324 // Due to "dot" we print an edge between two regions as an edge between the 1325 // exiting basic block and the entry basic of the respective regions. 1326 const VPBlockBase *Tail = From->getExitingBasicBlock(); 1327 const VPBlockBase *Head = To->getEntryBasicBlock(); 1328 OS << Indent << getUID(Tail) << " -> " << getUID(Head); 1329 OS << " [ label=\"" << Label << '\"'; 1330 if (Tail != From) 1331 OS << " ltail=" << getUID(From); 1332 if (Head != To) 1333 OS << " lhead=" << getUID(To); 1334 if (Hidden) 1335 OS << "; splines=none"; 1336 OS << "]\n"; 1337 } 1338 1339 void VPlanPrinter::dumpEdges(const VPBlockBase *Block) { 1340 auto &Successors = Block->getSuccessors(); 1341 if (Successors.size() == 1) 1342 drawEdge(Block, Successors.front(), false, ""); 1343 else if (Successors.size() == 2) { 1344 drawEdge(Block, Successors.front(), false, "T"); 1345 drawEdge(Block, Successors.back(), false, "F"); 1346 } else { 1347 unsigned SuccessorNumber = 0; 1348 for (auto *Successor : Successors) 1349 drawEdge(Block, Successor, false, Twine(SuccessorNumber++)); 1350 } 1351 } 1352 1353 void VPlanPrinter::dumpBasicBlock(const VPBasicBlock *BasicBlock) { 1354 // Implement dot-formatted dump by performing plain-text dump into the 1355 // temporary storage followed by some post-processing. 1356 OS << Indent << getUID(BasicBlock) << " [label =\n"; 1357 bumpIndent(1); 1358 std::string Str; 1359 raw_string_ostream SS(Str); 1360 // Use no indentation as we need to wrap the lines into quotes ourselves. 1361 BasicBlock->print(SS, "", SlotTracker); 1362 1363 // We need to process each line of the output separately, so split 1364 // single-string plain-text dump. 1365 SmallVector<StringRef, 0> Lines; 1366 StringRef(Str).rtrim('\n').split(Lines, "\n"); 1367 1368 auto EmitLine = [&](StringRef Line, StringRef Suffix) { 1369 OS << Indent << '"' << DOT::EscapeString(Line.str()) << "\\l\"" << Suffix; 1370 }; 1371 1372 // Don't need the "+" after the last line. 1373 for (auto Line : make_range(Lines.begin(), Lines.end() - 1)) 1374 EmitLine(Line, " +\n"); 1375 EmitLine(Lines.back(), "\n"); 1376 1377 bumpIndent(-1); 1378 OS << Indent << "]\n"; 1379 1380 dumpEdges(BasicBlock); 1381 } 1382 1383 void VPlanPrinter::dumpRegion(const VPRegionBlock *Region) { 1384 OS << Indent << "subgraph " << getUID(Region) << " {\n"; 1385 bumpIndent(1); 1386 OS << Indent << "fontname=Courier\n" 1387 << Indent << "label=\"" 1388 << DOT::EscapeString(Region->isReplicator() ? "<xVFxUF> " : "<x1> ") 1389 << DOT::EscapeString(Region->getName()) << "\"\n"; 1390 // Dump the blocks of the region. 1391 assert(Region->getEntry() && "Region contains no inner blocks."); 1392 for (const VPBlockBase *Block : vp_depth_first_shallow(Region->getEntry())) 1393 dumpBlock(Block); 1394 bumpIndent(-1); 1395 OS << Indent << "}\n"; 1396 dumpEdges(Region); 1397 } 1398 1399 void VPlanIngredient::print(raw_ostream &O) const { 1400 if (auto *Inst = dyn_cast<Instruction>(V)) { 1401 if (!Inst->getType()->isVoidTy()) { 1402 Inst->printAsOperand(O, false); 1403 O << " = "; 1404 } 1405 O << Inst->getOpcodeName() << " "; 1406 unsigned E = Inst->getNumOperands(); 1407 if (E > 0) { 1408 Inst->getOperand(0)->printAsOperand(O, false); 1409 for (unsigned I = 1; I < E; ++I) 1410 Inst->getOperand(I)->printAsOperand(O << ", ", false); 1411 } 1412 } else // !Inst 1413 V->printAsOperand(O, false); 1414 } 1415 1416 #endif 1417 1418 template void DomTreeBuilder::Calculate<VPDominatorTree>(VPDominatorTree &DT); 1419 1420 void VPValue::replaceAllUsesWith(VPValue *New) { 1421 replaceUsesWithIf(New, [](VPUser &, unsigned) { return true; }); 1422 } 1423 1424 void VPValue::replaceUsesWithIf( 1425 VPValue *New, 1426 llvm::function_ref<bool(VPUser &U, unsigned Idx)> ShouldReplace) { 1427 // Note that this early exit is required for correctness; the implementation 1428 // below relies on the number of users for this VPValue to decrease, which 1429 // isn't the case if this == New. 1430 if (this == New) 1431 return; 1432 1433 for (unsigned J = 0; J < getNumUsers();) { 1434 VPUser *User = Users[J]; 1435 bool RemovedUser = false; 1436 for (unsigned I = 0, E = User->getNumOperands(); I < E; ++I) { 1437 if (User->getOperand(I) != this || !ShouldReplace(*User, I)) 1438 continue; 1439 1440 RemovedUser = true; 1441 User->setOperand(I, New); 1442 } 1443 // If a user got removed after updating the current user, the next user to 1444 // update will be moved to the current position, so we only need to 1445 // increment the index if the number of users did not change. 1446 if (!RemovedUser) 1447 J++; 1448 } 1449 } 1450 1451 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1452 void VPValue::printAsOperand(raw_ostream &OS, VPSlotTracker &Tracker) const { 1453 OS << Tracker.getOrCreateName(this); 1454 } 1455 1456 void VPUser::printOperands(raw_ostream &O, VPSlotTracker &SlotTracker) const { 1457 interleaveComma(operands(), O, [&O, &SlotTracker](VPValue *Op) { 1458 Op->printAsOperand(O, SlotTracker); 1459 }); 1460 } 1461 #endif 1462 1463 void VPInterleavedAccessInfo::visitRegion(VPRegionBlock *Region, 1464 Old2NewTy &Old2New, 1465 InterleavedAccessInfo &IAI) { 1466 ReversePostOrderTraversal<VPBlockShallowTraversalWrapper<VPBlockBase *>> 1467 RPOT(Region->getEntry()); 1468 for (VPBlockBase *Base : RPOT) { 1469 visitBlock(Base, Old2New, IAI); 1470 } 1471 } 1472 1473 void VPInterleavedAccessInfo::visitBlock(VPBlockBase *Block, Old2NewTy &Old2New, 1474 InterleavedAccessInfo &IAI) { 1475 if (VPBasicBlock *VPBB = dyn_cast<VPBasicBlock>(Block)) { 1476 for (VPRecipeBase &VPI : *VPBB) { 1477 if (isa<VPWidenPHIRecipe>(&VPI)) 1478 continue; 1479 assert(isa<VPInstruction>(&VPI) && "Can only handle VPInstructions"); 1480 auto *VPInst = cast<VPInstruction>(&VPI); 1481 1482 auto *Inst = dyn_cast_or_null<Instruction>(VPInst->getUnderlyingValue()); 1483 if (!Inst) 1484 continue; 1485 auto *IG = IAI.getInterleaveGroup(Inst); 1486 if (!IG) 1487 continue; 1488 1489 auto NewIGIter = Old2New.find(IG); 1490 if (NewIGIter == Old2New.end()) 1491 Old2New[IG] = new InterleaveGroup<VPInstruction>( 1492 IG->getFactor(), IG->isReverse(), IG->getAlign()); 1493 1494 if (Inst == IG->getInsertPos()) 1495 Old2New[IG]->setInsertPos(VPInst); 1496 1497 InterleaveGroupMap[VPInst] = Old2New[IG]; 1498 InterleaveGroupMap[VPInst]->insertMember( 1499 VPInst, IG->getIndex(Inst), 1500 Align(IG->isReverse() ? (-1) * int(IG->getFactor()) 1501 : IG->getFactor())); 1502 } 1503 } else if (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 1504 visitRegion(Region, Old2New, IAI); 1505 else 1506 llvm_unreachable("Unsupported kind of VPBlock."); 1507 } 1508 1509 VPInterleavedAccessInfo::VPInterleavedAccessInfo(VPlan &Plan, 1510 InterleavedAccessInfo &IAI) { 1511 Old2NewTy Old2New; 1512 visitRegion(Plan.getVectorLoopRegion(), Old2New, IAI); 1513 } 1514 1515 void VPSlotTracker::assignName(const VPValue *V) { 1516 assert(!VPValue2Name.contains(V) && "VPValue already has a name!"); 1517 auto *UV = V->getUnderlyingValue(); 1518 if (!UV) { 1519 VPValue2Name[V] = (Twine("vp<%") + Twine(NextSlot) + ">").str(); 1520 NextSlot++; 1521 return; 1522 } 1523 1524 // Use the name of the underlying Value, wrapped in "ir<>", and versioned by 1525 // appending ".Number" to the name if there are multiple uses. 1526 std::string Name; 1527 raw_string_ostream S(Name); 1528 UV->printAsOperand(S, false); 1529 assert(!Name.empty() && "Name cannot be empty."); 1530 std::string BaseName = (Twine("ir<") + Name + Twine(">")).str(); 1531 1532 // First assign the base name for V. 1533 const auto &[A, _] = VPValue2Name.insert({V, BaseName}); 1534 // Integer or FP constants with different types will result in he same string 1535 // due to stripping types. 1536 if (V->isLiveIn() && isa<ConstantInt, ConstantFP>(UV)) 1537 return; 1538 1539 // If it is already used by C > 0 other VPValues, increase the version counter 1540 // C and use it for V. 1541 const auto &[C, UseInserted] = BaseName2Version.insert({BaseName, 0}); 1542 if (!UseInserted) { 1543 C->second++; 1544 A->second = (BaseName + Twine(".") + Twine(C->second)).str(); 1545 } 1546 } 1547 1548 void VPSlotTracker::assignNames(const VPlan &Plan) { 1549 if (Plan.VFxUF.getNumUsers() > 0) 1550 assignName(&Plan.VFxUF); 1551 assignName(&Plan.VectorTripCount); 1552 if (Plan.BackedgeTakenCount) 1553 assignName(Plan.BackedgeTakenCount); 1554 for (VPValue *LI : Plan.VPLiveInsToFree) 1555 assignName(LI); 1556 assignNames(Plan.getPreheader()); 1557 1558 ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<const VPBlockBase *>> 1559 RPOT(VPBlockDeepTraversalWrapper<const VPBlockBase *>(Plan.getEntry())); 1560 for (const VPBasicBlock *VPBB : 1561 VPBlockUtils::blocksOnly<const VPBasicBlock>(RPOT)) 1562 assignNames(VPBB); 1563 } 1564 1565 void VPSlotTracker::assignNames(const VPBasicBlock *VPBB) { 1566 for (const VPRecipeBase &Recipe : *VPBB) 1567 for (VPValue *Def : Recipe.definedValues()) 1568 assignName(Def); 1569 } 1570 1571 std::string VPSlotTracker::getOrCreateName(const VPValue *V) const { 1572 std::string Name = VPValue2Name.lookup(V); 1573 if (!Name.empty()) 1574 return Name; 1575 1576 // If no name was assigned, no VPlan was provided when creating the slot 1577 // tracker or it is not reachable from the provided VPlan. This can happen, 1578 // e.g. when trying to print a recipe that has not been inserted into a VPlan 1579 // in a debugger. 1580 // TODO: Update VPSlotTracker constructor to assign names to recipes & 1581 // VPValues not associated with a VPlan, instead of constructing names ad-hoc 1582 // here. 1583 const VPRecipeBase *DefR = V->getDefiningRecipe(); 1584 (void)DefR; 1585 assert((!DefR || !DefR->getParent() || !DefR->getParent()->getPlan()) && 1586 "VPValue defined by a recipe in a VPlan?"); 1587 1588 // Use the underlying value's name, if there is one. 1589 if (auto *UV = V->getUnderlyingValue()) { 1590 std::string Name; 1591 raw_string_ostream S(Name); 1592 UV->printAsOperand(S, false); 1593 return (Twine("ir<") + Name + ">").str(); 1594 } 1595 1596 return "<badref>"; 1597 } 1598 1599 bool vputils::onlyFirstLaneUsed(const VPValue *Def) { 1600 return all_of(Def->users(), 1601 [Def](const VPUser *U) { return U->onlyFirstLaneUsed(Def); }); 1602 } 1603 1604 bool vputils::onlyFirstPartUsed(const VPValue *Def) { 1605 return all_of(Def->users(), 1606 [Def](const VPUser *U) { return U->onlyFirstPartUsed(Def); }); 1607 } 1608 1609 VPValue *vputils::getOrCreateVPValueForSCEVExpr(VPlan &Plan, const SCEV *Expr, 1610 ScalarEvolution &SE) { 1611 if (auto *Expanded = Plan.getSCEVExpansion(Expr)) 1612 return Expanded; 1613 VPValue *Expanded = nullptr; 1614 if (auto *E = dyn_cast<SCEVConstant>(Expr)) 1615 Expanded = Plan.getOrAddLiveIn(E->getValue()); 1616 else if (auto *E = dyn_cast<SCEVUnknown>(Expr)) 1617 Expanded = Plan.getOrAddLiveIn(E->getValue()); 1618 else { 1619 Expanded = new VPExpandSCEVRecipe(Expr, SE); 1620 Plan.getPreheader()->appendRecipe(Expanded->getDefiningRecipe()); 1621 } 1622 Plan.addSCEVExpansion(Expr, Expanded); 1623 return Expanded; 1624 } 1625 1626 bool vputils::isHeaderMask(VPValue *V, VPlan &Plan) { 1627 if (isa<VPActiveLaneMaskPHIRecipe>(V)) 1628 return true; 1629 1630 auto IsWideCanonicalIV = [](VPValue *A) { 1631 return isa<VPWidenCanonicalIVRecipe>(A) || 1632 (isa<VPWidenIntOrFpInductionRecipe>(A) && 1633 cast<VPWidenIntOrFpInductionRecipe>(A)->isCanonical()); 1634 }; 1635 1636 VPValue *A, *B; 1637 if (match(V, m_ActiveLaneMask(m_VPValue(A), m_VPValue(B)))) 1638 return B == Plan.getTripCount() && 1639 (match(A, m_ScalarIVSteps(m_CanonicalIV(), m_SpecificInt(1))) || 1640 IsWideCanonicalIV(A)); 1641 1642 return match(V, m_Binary<Instruction::ICmp>(m_VPValue(A), m_VPValue(B))) && 1643 IsWideCanonicalIV(A) && B == Plan.getOrCreateBackedgeTakenCount(); 1644 } 1645