1 //===- VPlan.cpp - Vectorizer Plan ----------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This is the LLVM vectorization plan. It represents a candidate for 11 /// vectorization, allowing to plan and optimize how to vectorize a given loop 12 /// before generating LLVM-IR. 13 /// The vectorizer uses vectorization plans to estimate the costs of potential 14 /// candidates and if profitable to execute the desired plan, generating vector 15 /// LLVM-IR code. 16 /// 17 //===----------------------------------------------------------------------===// 18 19 #include "VPlan.h" 20 #include "VPlanCFG.h" 21 #include "VPlanDominatorTree.h" 22 #include "VPlanPatternMatch.h" 23 #include "llvm/ADT/PostOrderIterator.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/StringExtras.h" 27 #include "llvm/ADT/Twine.h" 28 #include "llvm/Analysis/DomTreeUpdater.h" 29 #include "llvm/Analysis/LoopInfo.h" 30 #include "llvm/IR/BasicBlock.h" 31 #include "llvm/IR/CFG.h" 32 #include "llvm/IR/IRBuilder.h" 33 #include "llvm/IR/Instruction.h" 34 #include "llvm/IR/Instructions.h" 35 #include "llvm/IR/Type.h" 36 #include "llvm/IR/Value.h" 37 #include "llvm/Support/Casting.h" 38 #include "llvm/Support/CommandLine.h" 39 #include "llvm/Support/Debug.h" 40 #include "llvm/Support/GenericDomTreeConstruction.h" 41 #include "llvm/Support/GraphWriter.h" 42 #include "llvm/Support/raw_ostream.h" 43 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 44 #include "llvm/Transforms/Utils/LoopVersioning.h" 45 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 46 #include <cassert> 47 #include <string> 48 #include <vector> 49 50 using namespace llvm; 51 using namespace llvm::VPlanPatternMatch; 52 53 namespace llvm { 54 extern cl::opt<bool> EnableVPlanNativePath; 55 } 56 57 #define DEBUG_TYPE "vplan" 58 59 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 60 raw_ostream &llvm::operator<<(raw_ostream &OS, const VPValue &V) { 61 const VPInstruction *Instr = dyn_cast<VPInstruction>(&V); 62 VPSlotTracker SlotTracker( 63 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr); 64 V.print(OS, SlotTracker); 65 return OS; 66 } 67 #endif 68 69 Value *VPLane::getAsRuntimeExpr(IRBuilderBase &Builder, 70 const ElementCount &VF) const { 71 switch (LaneKind) { 72 case VPLane::Kind::ScalableLast: 73 // Lane = RuntimeVF - VF.getKnownMinValue() + Lane 74 return Builder.CreateSub(getRuntimeVF(Builder, Builder.getInt32Ty(), VF), 75 Builder.getInt32(VF.getKnownMinValue() - Lane)); 76 case VPLane::Kind::First: 77 return Builder.getInt32(Lane); 78 } 79 llvm_unreachable("Unknown lane kind"); 80 } 81 82 VPValue::VPValue(const unsigned char SC, Value *UV, VPDef *Def) 83 : SubclassID(SC), UnderlyingVal(UV), Def(Def) { 84 if (Def) 85 Def->addDefinedValue(this); 86 } 87 88 VPValue::~VPValue() { 89 assert(Users.empty() && "trying to delete a VPValue with remaining users"); 90 if (Def) 91 Def->removeDefinedValue(this); 92 } 93 94 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 95 void VPValue::print(raw_ostream &OS, VPSlotTracker &SlotTracker) const { 96 if (const VPRecipeBase *R = dyn_cast_or_null<VPRecipeBase>(Def)) 97 R->print(OS, "", SlotTracker); 98 else 99 printAsOperand(OS, SlotTracker); 100 } 101 102 void VPValue::dump() const { 103 const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this->Def); 104 VPSlotTracker SlotTracker( 105 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr); 106 print(dbgs(), SlotTracker); 107 dbgs() << "\n"; 108 } 109 110 void VPDef::dump() const { 111 const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this); 112 VPSlotTracker SlotTracker( 113 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr); 114 print(dbgs(), "", SlotTracker); 115 dbgs() << "\n"; 116 } 117 #endif 118 119 VPRecipeBase *VPValue::getDefiningRecipe() { 120 return cast_or_null<VPRecipeBase>(Def); 121 } 122 123 const VPRecipeBase *VPValue::getDefiningRecipe() const { 124 return cast_or_null<VPRecipeBase>(Def); 125 } 126 127 // Get the top-most entry block of \p Start. This is the entry block of the 128 // containing VPlan. This function is templated to support both const and non-const blocks 129 template <typename T> static T *getPlanEntry(T *Start) { 130 T *Next = Start; 131 T *Current = Start; 132 while ((Next = Next->getParent())) 133 Current = Next; 134 135 SmallSetVector<T *, 8> WorkList; 136 WorkList.insert(Current); 137 138 for (unsigned i = 0; i < WorkList.size(); i++) { 139 T *Current = WorkList[i]; 140 if (Current->getNumPredecessors() == 0) 141 return Current; 142 auto &Predecessors = Current->getPredecessors(); 143 WorkList.insert(Predecessors.begin(), Predecessors.end()); 144 } 145 146 llvm_unreachable("VPlan without any entry node without predecessors"); 147 } 148 149 VPlan *VPBlockBase::getPlan() { return getPlanEntry(this)->Plan; } 150 151 const VPlan *VPBlockBase::getPlan() const { return getPlanEntry(this)->Plan; } 152 153 /// \return the VPBasicBlock that is the entry of Block, possibly indirectly. 154 const VPBasicBlock *VPBlockBase::getEntryBasicBlock() const { 155 const VPBlockBase *Block = this; 156 while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 157 Block = Region->getEntry(); 158 return cast<VPBasicBlock>(Block); 159 } 160 161 VPBasicBlock *VPBlockBase::getEntryBasicBlock() { 162 VPBlockBase *Block = this; 163 while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 164 Block = Region->getEntry(); 165 return cast<VPBasicBlock>(Block); 166 } 167 168 void VPBlockBase::setPlan(VPlan *ParentPlan) { 169 assert( 170 (ParentPlan->getEntry() == this || ParentPlan->getPreheader() == this) && 171 "Can only set plan on its entry or preheader block."); 172 Plan = ParentPlan; 173 } 174 175 /// \return the VPBasicBlock that is the exit of Block, possibly indirectly. 176 const VPBasicBlock *VPBlockBase::getExitingBasicBlock() const { 177 const VPBlockBase *Block = this; 178 while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 179 Block = Region->getExiting(); 180 return cast<VPBasicBlock>(Block); 181 } 182 183 VPBasicBlock *VPBlockBase::getExitingBasicBlock() { 184 VPBlockBase *Block = this; 185 while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 186 Block = Region->getExiting(); 187 return cast<VPBasicBlock>(Block); 188 } 189 190 VPBlockBase *VPBlockBase::getEnclosingBlockWithSuccessors() { 191 if (!Successors.empty() || !Parent) 192 return this; 193 assert(Parent->getExiting() == this && 194 "Block w/o successors not the exiting block of its parent."); 195 return Parent->getEnclosingBlockWithSuccessors(); 196 } 197 198 VPBlockBase *VPBlockBase::getEnclosingBlockWithPredecessors() { 199 if (!Predecessors.empty() || !Parent) 200 return this; 201 assert(Parent->getEntry() == this && 202 "Block w/o predecessors not the entry of its parent."); 203 return Parent->getEnclosingBlockWithPredecessors(); 204 } 205 206 void VPBlockBase::deleteCFG(VPBlockBase *Entry) { 207 for (VPBlockBase *Block : to_vector(vp_depth_first_shallow(Entry))) 208 delete Block; 209 } 210 211 VPBasicBlock::iterator VPBasicBlock::getFirstNonPhi() { 212 iterator It = begin(); 213 while (It != end() && It->isPhi()) 214 It++; 215 return It; 216 } 217 218 VPTransformState::VPTransformState(ElementCount VF, unsigned UF, LoopInfo *LI, 219 DominatorTree *DT, IRBuilderBase &Builder, 220 InnerLoopVectorizer *ILV, VPlan *Plan, 221 LLVMContext &Ctx) 222 : VF(VF), UF(UF), CFG(DT), LI(LI), Builder(Builder), ILV(ILV), Plan(Plan), 223 LVer(nullptr), 224 TypeAnalysis(Plan->getCanonicalIV()->getScalarType(), Ctx) {} 225 226 Value *VPTransformState::get(VPValue *Def, const VPIteration &Instance) { 227 if (Def->isLiveIn()) 228 return Def->getLiveInIRValue(); 229 230 if (hasScalarValue(Def, Instance)) { 231 return Data 232 .PerPartScalars[Def][Instance.Part][Instance.Lane.mapToCacheIndex(VF)]; 233 } 234 235 assert(hasVectorValue(Def, Instance.Part)); 236 auto *VecPart = Data.PerPartOutput[Def][Instance.Part]; 237 if (!VecPart->getType()->isVectorTy()) { 238 assert(Instance.Lane.isFirstLane() && "cannot get lane > 0 for scalar"); 239 return VecPart; 240 } 241 // TODO: Cache created scalar values. 242 Value *Lane = Instance.Lane.getAsRuntimeExpr(Builder, VF); 243 auto *Extract = Builder.CreateExtractElement(VecPart, Lane); 244 // set(Def, Extract, Instance); 245 return Extract; 246 } 247 248 Value *VPTransformState::get(VPValue *Def, unsigned Part, bool NeedsScalar) { 249 if (NeedsScalar) { 250 assert((VF.isScalar() || Def->isLiveIn() || hasVectorValue(Def, Part) || 251 (hasScalarValue(Def, VPIteration(Part, 0)) && 252 Data.PerPartScalars[Def][Part].size() == 1)) && 253 "Trying to access a single scalar per part but has multiple scalars " 254 "per part."); 255 return get(Def, VPIteration(Part, 0)); 256 } 257 258 // If Values have been set for this Def return the one relevant for \p Part. 259 if (hasVectorValue(Def, Part)) 260 return Data.PerPartOutput[Def][Part]; 261 262 auto GetBroadcastInstrs = [this, Def](Value *V) { 263 bool SafeToHoist = Def->isDefinedOutsideVectorRegions(); 264 if (VF.isScalar()) 265 return V; 266 // Place the code for broadcasting invariant variables in the new preheader. 267 IRBuilder<>::InsertPointGuard Guard(Builder); 268 if (SafeToHoist) { 269 BasicBlock *LoopVectorPreHeader = CFG.VPBB2IRBB[cast<VPBasicBlock>( 270 Plan->getVectorLoopRegion()->getSinglePredecessor())]; 271 if (LoopVectorPreHeader) 272 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 273 } 274 275 // Place the code for broadcasting invariant variables in the new preheader. 276 // Broadcast the scalar into all locations in the vector. 277 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 278 279 return Shuf; 280 }; 281 282 if (!hasScalarValue(Def, {Part, 0})) { 283 assert(Def->isLiveIn() && "expected a live-in"); 284 if (Part != 0) 285 return get(Def, 0); 286 Value *IRV = Def->getLiveInIRValue(); 287 Value *B = GetBroadcastInstrs(IRV); 288 set(Def, B, Part); 289 return B; 290 } 291 292 Value *ScalarValue = get(Def, {Part, 0}); 293 // If we aren't vectorizing, we can just copy the scalar map values over 294 // to the vector map. 295 if (VF.isScalar()) { 296 set(Def, ScalarValue, Part); 297 return ScalarValue; 298 } 299 300 bool IsUniform = vputils::isUniformAfterVectorization(Def); 301 302 unsigned LastLane = IsUniform ? 0 : VF.getKnownMinValue() - 1; 303 // Check if there is a scalar value for the selected lane. 304 if (!hasScalarValue(Def, {Part, LastLane})) { 305 // At the moment, VPWidenIntOrFpInductionRecipes, VPScalarIVStepsRecipes and 306 // VPExpandSCEVRecipes can also be uniform. 307 assert((isa<VPWidenIntOrFpInductionRecipe>(Def->getDefiningRecipe()) || 308 isa<VPScalarIVStepsRecipe>(Def->getDefiningRecipe()) || 309 isa<VPExpandSCEVRecipe>(Def->getDefiningRecipe())) && 310 "unexpected recipe found to be invariant"); 311 IsUniform = true; 312 LastLane = 0; 313 } 314 315 auto *LastInst = cast<Instruction>(get(Def, {Part, LastLane})); 316 // Set the insert point after the last scalarized instruction or after the 317 // last PHI, if LastInst is a PHI. This ensures the insertelement sequence 318 // will directly follow the scalar definitions. 319 auto OldIP = Builder.saveIP(); 320 auto NewIP = 321 isa<PHINode>(LastInst) 322 ? BasicBlock::iterator(LastInst->getParent()->getFirstNonPHI()) 323 : std::next(BasicBlock::iterator(LastInst)); 324 Builder.SetInsertPoint(&*NewIP); 325 326 // However, if we are vectorizing, we need to construct the vector values. 327 // If the value is known to be uniform after vectorization, we can just 328 // broadcast the scalar value corresponding to lane zero for each unroll 329 // iteration. Otherwise, we construct the vector values using 330 // insertelement instructions. Since the resulting vectors are stored in 331 // State, we will only generate the insertelements once. 332 Value *VectorValue = nullptr; 333 if (IsUniform) { 334 VectorValue = GetBroadcastInstrs(ScalarValue); 335 set(Def, VectorValue, Part); 336 } else { 337 // Initialize packing with insertelements to start from undef. 338 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 339 Value *Undef = PoisonValue::get(VectorType::get(LastInst->getType(), VF)); 340 set(Def, Undef, Part); 341 for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane) 342 packScalarIntoVectorValue(Def, {Part, Lane}); 343 VectorValue = get(Def, Part); 344 } 345 Builder.restoreIP(OldIP); 346 return VectorValue; 347 } 348 349 BasicBlock *VPTransformState::CFGState::getPreheaderBBFor(VPRecipeBase *R) { 350 VPRegionBlock *LoopRegion = R->getParent()->getEnclosingLoopRegion(); 351 return VPBB2IRBB[LoopRegion->getPreheaderVPBB()]; 352 } 353 354 void VPTransformState::addNewMetadata(Instruction *To, 355 const Instruction *Orig) { 356 // If the loop was versioned with memchecks, add the corresponding no-alias 357 // metadata. 358 if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig))) 359 LVer->annotateInstWithNoAlias(To, Orig); 360 } 361 362 void VPTransformState::addMetadata(Value *To, Instruction *From) { 363 // No source instruction to transfer metadata from? 364 if (!From) 365 return; 366 367 if (Instruction *ToI = dyn_cast<Instruction>(To)) { 368 propagateMetadata(ToI, From); 369 addNewMetadata(ToI, From); 370 } 371 } 372 373 void VPTransformState::setDebugLocFrom(DebugLoc DL) { 374 const DILocation *DIL = DL; 375 // When a FSDiscriminator is enabled, we don't need to add the multiply 376 // factors to the discriminators. 377 if (DIL && 378 Builder.GetInsertBlock() 379 ->getParent() 380 ->shouldEmitDebugInfoForProfiling() && 381 !EnableFSDiscriminator) { 382 // FIXME: For scalable vectors, assume vscale=1. 383 auto NewDIL = 384 DIL->cloneByMultiplyingDuplicationFactor(UF * VF.getKnownMinValue()); 385 if (NewDIL) 386 Builder.SetCurrentDebugLocation(*NewDIL); 387 else 388 LLVM_DEBUG(dbgs() << "Failed to create new discriminator: " 389 << DIL->getFilename() << " Line: " << DIL->getLine()); 390 } else 391 Builder.SetCurrentDebugLocation(DIL); 392 } 393 394 void VPTransformState::packScalarIntoVectorValue(VPValue *Def, 395 const VPIteration &Instance) { 396 Value *ScalarInst = get(Def, Instance); 397 Value *VectorValue = get(Def, Instance.Part); 398 VectorValue = Builder.CreateInsertElement( 399 VectorValue, ScalarInst, Instance.Lane.getAsRuntimeExpr(Builder, VF)); 400 set(Def, VectorValue, Instance.Part); 401 } 402 403 BasicBlock * 404 VPBasicBlock::createEmptyBasicBlock(VPTransformState::CFGState &CFG) { 405 // BB stands for IR BasicBlocks. VPBB stands for VPlan VPBasicBlocks. 406 // Pred stands for Predessor. Prev stands for Previous - last visited/created. 407 BasicBlock *PrevBB = CFG.PrevBB; 408 BasicBlock *NewBB = BasicBlock::Create(PrevBB->getContext(), getName(), 409 PrevBB->getParent(), CFG.ExitBB); 410 LLVM_DEBUG(dbgs() << "LV: created " << NewBB->getName() << '\n'); 411 412 // Hook up the new basic block to its predecessors. 413 for (VPBlockBase *PredVPBlock : getHierarchicalPredecessors()) { 414 VPBasicBlock *PredVPBB = PredVPBlock->getExitingBasicBlock(); 415 auto &PredVPSuccessors = PredVPBB->getHierarchicalSuccessors(); 416 BasicBlock *PredBB = CFG.VPBB2IRBB[PredVPBB]; 417 418 assert(PredBB && "Predecessor basic-block not found building successor."); 419 auto *PredBBTerminator = PredBB->getTerminator(); 420 LLVM_DEBUG(dbgs() << "LV: draw edge from" << PredBB->getName() << '\n'); 421 422 auto *TermBr = dyn_cast<BranchInst>(PredBBTerminator); 423 if (isa<UnreachableInst>(PredBBTerminator)) { 424 assert(PredVPSuccessors.size() == 1 && 425 "Predecessor ending w/o branch must have single successor."); 426 DebugLoc DL = PredBBTerminator->getDebugLoc(); 427 PredBBTerminator->eraseFromParent(); 428 auto *Br = BranchInst::Create(NewBB, PredBB); 429 Br->setDebugLoc(DL); 430 } else if (TermBr && !TermBr->isConditional()) { 431 TermBr->setSuccessor(0, NewBB); 432 } else { 433 // Set each forward successor here when it is created, excluding 434 // backedges. A backward successor is set when the branch is created. 435 unsigned idx = PredVPSuccessors.front() == this ? 0 : 1; 436 assert(!TermBr->getSuccessor(idx) && 437 "Trying to reset an existing successor block."); 438 TermBr->setSuccessor(idx, NewBB); 439 } 440 CFG.DTU.applyUpdates({{DominatorTree::Insert, PredBB, NewBB}}); 441 } 442 return NewBB; 443 } 444 445 void VPBasicBlock::execute(VPTransformState *State) { 446 bool Replica = State->Instance && !State->Instance->isFirstIteration(); 447 VPBasicBlock *PrevVPBB = State->CFG.PrevVPBB; 448 VPBlockBase *SingleHPred = nullptr; 449 BasicBlock *NewBB = State->CFG.PrevBB; // Reuse it if possible. 450 451 auto IsLoopRegion = [](VPBlockBase *BB) { 452 auto *R = dyn_cast<VPRegionBlock>(BB); 453 return R && !R->isReplicator(); 454 }; 455 456 // 1. Create an IR basic block, or reuse the last one or ExitBB if possible. 457 if (getPlan()->getVectorLoopRegion()->getSingleSuccessor() == this) { 458 // ExitBB can be re-used for the exit block of the Plan. 459 NewBB = State->CFG.ExitBB; 460 State->CFG.PrevBB = NewBB; 461 State->Builder.SetInsertPoint(NewBB->getFirstNonPHI()); 462 463 // Update the branch instruction in the predecessor to branch to ExitBB. 464 VPBlockBase *PredVPB = getSingleHierarchicalPredecessor(); 465 VPBasicBlock *ExitingVPBB = PredVPB->getExitingBasicBlock(); 466 assert(PredVPB->getSingleSuccessor() == this && 467 "predecessor must have the current block as only successor"); 468 BasicBlock *ExitingBB = State->CFG.VPBB2IRBB[ExitingVPBB]; 469 // The Exit block of a loop is always set to be successor 0 of the Exiting 470 // block. 471 cast<BranchInst>(ExitingBB->getTerminator())->setSuccessor(0, NewBB); 472 State->CFG.DTU.applyUpdates({{DominatorTree::Insert, ExitingBB, NewBB}}); 473 } else if (PrevVPBB && /* A */ 474 !((SingleHPred = getSingleHierarchicalPredecessor()) && 475 SingleHPred->getExitingBasicBlock() == PrevVPBB && 476 PrevVPBB->getSingleHierarchicalSuccessor() && 477 (SingleHPred->getParent() == getEnclosingLoopRegion() && 478 !IsLoopRegion(SingleHPred))) && /* B */ 479 !(Replica && getPredecessors().empty())) { /* C */ 480 // The last IR basic block is reused, as an optimization, in three cases: 481 // A. the first VPBB reuses the loop pre-header BB - when PrevVPBB is null; 482 // B. when the current VPBB has a single (hierarchical) predecessor which 483 // is PrevVPBB and the latter has a single (hierarchical) successor which 484 // both are in the same non-replicator region; and 485 // C. when the current VPBB is an entry of a region replica - where PrevVPBB 486 // is the exiting VPBB of this region from a previous instance, or the 487 // predecessor of this region. 488 489 NewBB = createEmptyBasicBlock(State->CFG); 490 State->Builder.SetInsertPoint(NewBB); 491 // Temporarily terminate with unreachable until CFG is rewired. 492 UnreachableInst *Terminator = State->Builder.CreateUnreachable(); 493 // Register NewBB in its loop. In innermost loops its the same for all 494 // BB's. 495 if (State->CurrentVectorLoop) 496 State->CurrentVectorLoop->addBasicBlockToLoop(NewBB, *State->LI); 497 State->Builder.SetInsertPoint(Terminator); 498 State->CFG.PrevBB = NewBB; 499 } 500 501 // 2. Fill the IR basic block with IR instructions. 502 LLVM_DEBUG(dbgs() << "LV: vectorizing VPBB:" << getName() 503 << " in BB:" << NewBB->getName() << '\n'); 504 505 State->CFG.VPBB2IRBB[this] = NewBB; 506 State->CFG.PrevVPBB = this; 507 508 for (VPRecipeBase &Recipe : Recipes) 509 Recipe.execute(*State); 510 511 LLVM_DEBUG(dbgs() << "LV: filled BB:" << *NewBB); 512 } 513 514 void VPBasicBlock::dropAllReferences(VPValue *NewValue) { 515 for (VPRecipeBase &R : Recipes) { 516 for (auto *Def : R.definedValues()) 517 Def->replaceAllUsesWith(NewValue); 518 519 for (unsigned I = 0, E = R.getNumOperands(); I != E; I++) 520 R.setOperand(I, NewValue); 521 } 522 } 523 524 VPBasicBlock *VPBasicBlock::splitAt(iterator SplitAt) { 525 assert((SplitAt == end() || SplitAt->getParent() == this) && 526 "can only split at a position in the same block"); 527 528 SmallVector<VPBlockBase *, 2> Succs(successors()); 529 // First, disconnect the current block from its successors. 530 for (VPBlockBase *Succ : Succs) 531 VPBlockUtils::disconnectBlocks(this, Succ); 532 533 // Create new empty block after the block to split. 534 auto *SplitBlock = new VPBasicBlock(getName() + ".split"); 535 VPBlockUtils::insertBlockAfter(SplitBlock, this); 536 537 // Add successors for block to split to new block. 538 for (VPBlockBase *Succ : Succs) 539 VPBlockUtils::connectBlocks(SplitBlock, Succ); 540 541 // Finally, move the recipes starting at SplitAt to new block. 542 for (VPRecipeBase &ToMove : 543 make_early_inc_range(make_range(SplitAt, this->end()))) 544 ToMove.moveBefore(*SplitBlock, SplitBlock->end()); 545 546 return SplitBlock; 547 } 548 549 VPRegionBlock *VPBasicBlock::getEnclosingLoopRegion() { 550 VPRegionBlock *P = getParent(); 551 if (P && P->isReplicator()) { 552 P = P->getParent(); 553 assert(!cast<VPRegionBlock>(P)->isReplicator() && 554 "unexpected nested replicate regions"); 555 } 556 return P; 557 } 558 559 static bool hasConditionalTerminator(const VPBasicBlock *VPBB) { 560 if (VPBB->empty()) { 561 assert( 562 VPBB->getNumSuccessors() < 2 && 563 "block with multiple successors doesn't have a recipe as terminator"); 564 return false; 565 } 566 567 const VPRecipeBase *R = &VPBB->back(); 568 bool IsCondBranch = isa<VPBranchOnMaskRecipe>(R) || 569 match(R, m_BranchOnCond(m_VPValue())) || 570 match(R, m_BranchOnCount(m_VPValue(), m_VPValue())); 571 (void)IsCondBranch; 572 573 if (VPBB->getNumSuccessors() >= 2 || 574 (VPBB->isExiting() && !VPBB->getParent()->isReplicator())) { 575 assert(IsCondBranch && "block with multiple successors not terminated by " 576 "conditional branch recipe"); 577 578 return true; 579 } 580 581 assert( 582 !IsCondBranch && 583 "block with 0 or 1 successors terminated by conditional branch recipe"); 584 return false; 585 } 586 587 VPRecipeBase *VPBasicBlock::getTerminator() { 588 if (hasConditionalTerminator(this)) 589 return &back(); 590 return nullptr; 591 } 592 593 const VPRecipeBase *VPBasicBlock::getTerminator() const { 594 if (hasConditionalTerminator(this)) 595 return &back(); 596 return nullptr; 597 } 598 599 bool VPBasicBlock::isExiting() const { 600 return getParent() && getParent()->getExitingBasicBlock() == this; 601 } 602 603 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 604 void VPBlockBase::printSuccessors(raw_ostream &O, const Twine &Indent) const { 605 if (getSuccessors().empty()) { 606 O << Indent << "No successors\n"; 607 } else { 608 O << Indent << "Successor(s): "; 609 ListSeparator LS; 610 for (auto *Succ : getSuccessors()) 611 O << LS << Succ->getName(); 612 O << '\n'; 613 } 614 } 615 616 void VPBasicBlock::print(raw_ostream &O, const Twine &Indent, 617 VPSlotTracker &SlotTracker) const { 618 O << Indent << getName() << ":\n"; 619 620 auto RecipeIndent = Indent + " "; 621 for (const VPRecipeBase &Recipe : *this) { 622 Recipe.print(O, RecipeIndent, SlotTracker); 623 O << '\n'; 624 } 625 626 printSuccessors(O, Indent); 627 } 628 #endif 629 630 static std::pair<VPBlockBase *, VPBlockBase *> cloneSESE(VPBlockBase *Entry); 631 632 // Clone the CFG for all nodes in the single-entry-single-exit region reachable 633 // from \p Entry, this includes cloning the blocks and their recipes. Operands 634 // of cloned recipes will NOT be updated. Remapping of operands must be done 635 // separately. Returns a pair with the the new entry and exiting blocks of the 636 // cloned region. 637 static std::pair<VPBlockBase *, VPBlockBase *> cloneSESE(VPBlockBase *Entry) { 638 DenseMap<VPBlockBase *, VPBlockBase *> Old2NewVPBlocks; 639 ReversePostOrderTraversal<VPBlockShallowTraversalWrapper<VPBlockBase *>> RPOT( 640 Entry); 641 for (VPBlockBase *BB : RPOT) { 642 VPBlockBase *NewBB = BB->clone(); 643 for (VPBlockBase *Pred : BB->getPredecessors()) 644 VPBlockUtils::connectBlocks(Old2NewVPBlocks[Pred], NewBB); 645 646 Old2NewVPBlocks[BB] = NewBB; 647 } 648 649 #if !defined(NDEBUG) 650 // Verify that the order of predecessors and successors matches in the cloned 651 // version. 652 ReversePostOrderTraversal<VPBlockShallowTraversalWrapper<VPBlockBase *>> 653 NewRPOT(Old2NewVPBlocks[Entry]); 654 for (const auto &[OldBB, NewBB] : zip(RPOT, NewRPOT)) { 655 for (const auto &[OldPred, NewPred] : 656 zip(OldBB->getPredecessors(), NewBB->getPredecessors())) 657 assert(NewPred == Old2NewVPBlocks[OldPred] && "Different predecessors"); 658 659 for (const auto &[OldSucc, NewSucc] : 660 zip(OldBB->successors(), NewBB->successors())) 661 assert(NewSucc == Old2NewVPBlocks[OldSucc] && "Different successors"); 662 } 663 #endif 664 665 return std::make_pair(Old2NewVPBlocks[Entry], 666 Old2NewVPBlocks[*reverse(RPOT).begin()]); 667 } 668 669 VPRegionBlock *VPRegionBlock::clone() { 670 const auto &[NewEntry, NewExiting] = cloneSESE(getEntry()); 671 auto *NewRegion = 672 new VPRegionBlock(NewEntry, NewExiting, getName(), isReplicator()); 673 for (VPBlockBase *Block : vp_depth_first_shallow(NewEntry)) 674 Block->setParent(NewRegion); 675 return NewRegion; 676 } 677 678 void VPRegionBlock::dropAllReferences(VPValue *NewValue) { 679 for (VPBlockBase *Block : vp_depth_first_shallow(Entry)) 680 // Drop all references in VPBasicBlocks and replace all uses with 681 // DummyValue. 682 Block->dropAllReferences(NewValue); 683 } 684 685 void VPRegionBlock::execute(VPTransformState *State) { 686 ReversePostOrderTraversal<VPBlockShallowTraversalWrapper<VPBlockBase *>> 687 RPOT(Entry); 688 689 if (!isReplicator()) { 690 // Create and register the new vector loop. 691 Loop *PrevLoop = State->CurrentVectorLoop; 692 State->CurrentVectorLoop = State->LI->AllocateLoop(); 693 BasicBlock *VectorPH = State->CFG.VPBB2IRBB[getPreheaderVPBB()]; 694 Loop *ParentLoop = State->LI->getLoopFor(VectorPH); 695 696 // Insert the new loop into the loop nest and register the new basic blocks 697 // before calling any utilities such as SCEV that require valid LoopInfo. 698 if (ParentLoop) 699 ParentLoop->addChildLoop(State->CurrentVectorLoop); 700 else 701 State->LI->addTopLevelLoop(State->CurrentVectorLoop); 702 703 // Visit the VPBlocks connected to "this", starting from it. 704 for (VPBlockBase *Block : RPOT) { 705 LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n'); 706 Block->execute(State); 707 } 708 709 State->CurrentVectorLoop = PrevLoop; 710 return; 711 } 712 713 assert(!State->Instance && "Replicating a Region with non-null instance."); 714 715 // Enter replicating mode. 716 State->Instance = VPIteration(0, 0); 717 718 for (unsigned Part = 0, UF = State->UF; Part < UF; ++Part) { 719 State->Instance->Part = Part; 720 assert(!State->VF.isScalable() && "VF is assumed to be non scalable."); 721 for (unsigned Lane = 0, VF = State->VF.getKnownMinValue(); Lane < VF; 722 ++Lane) { 723 State->Instance->Lane = VPLane(Lane, VPLane::Kind::First); 724 // Visit the VPBlocks connected to \p this, starting from it. 725 for (VPBlockBase *Block : RPOT) { 726 LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n'); 727 Block->execute(State); 728 } 729 } 730 } 731 732 // Exit replicating mode. 733 State->Instance.reset(); 734 } 735 736 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 737 void VPRegionBlock::print(raw_ostream &O, const Twine &Indent, 738 VPSlotTracker &SlotTracker) const { 739 O << Indent << (isReplicator() ? "<xVFxUF> " : "<x1> ") << getName() << ": {"; 740 auto NewIndent = Indent + " "; 741 for (auto *BlockBase : vp_depth_first_shallow(Entry)) { 742 O << '\n'; 743 BlockBase->print(O, NewIndent, SlotTracker); 744 } 745 O << Indent << "}\n"; 746 747 printSuccessors(O, Indent); 748 } 749 #endif 750 751 VPlan::~VPlan() { 752 for (auto &KV : LiveOuts) 753 delete KV.second; 754 LiveOuts.clear(); 755 756 if (Entry) { 757 VPValue DummyValue; 758 for (VPBlockBase *Block : vp_depth_first_shallow(Entry)) 759 Block->dropAllReferences(&DummyValue); 760 761 VPBlockBase::deleteCFG(Entry); 762 763 Preheader->dropAllReferences(&DummyValue); 764 delete Preheader; 765 } 766 for (VPValue *VPV : VPLiveInsToFree) 767 delete VPV; 768 if (BackedgeTakenCount) 769 delete BackedgeTakenCount; 770 } 771 772 VPlanPtr VPlan::createInitialVPlan(const SCEV *TripCount, ScalarEvolution &SE) { 773 VPBasicBlock *Preheader = new VPBasicBlock("ph"); 774 VPBasicBlock *VecPreheader = new VPBasicBlock("vector.ph"); 775 auto Plan = std::make_unique<VPlan>(Preheader, VecPreheader); 776 Plan->TripCount = 777 vputils::getOrCreateVPValueForSCEVExpr(*Plan, TripCount, SE); 778 // Create empty VPRegionBlock, to be filled during processing later. 779 auto *TopRegion = new VPRegionBlock("vector loop", false /*isReplicator*/); 780 VPBlockUtils::insertBlockAfter(TopRegion, VecPreheader); 781 VPBasicBlock *MiddleVPBB = new VPBasicBlock("middle.block"); 782 VPBlockUtils::insertBlockAfter(MiddleVPBB, TopRegion); 783 return Plan; 784 } 785 786 void VPlan::prepareToExecute(Value *TripCountV, Value *VectorTripCountV, 787 Value *CanonicalIVStartValue, 788 VPTransformState &State) { 789 // Check if the backedge taken count is needed, and if so build it. 790 if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) { 791 IRBuilder<> Builder(State.CFG.PrevBB->getTerminator()); 792 auto *TCMO = Builder.CreateSub(TripCountV, 793 ConstantInt::get(TripCountV->getType(), 1), 794 "trip.count.minus.1"); 795 BackedgeTakenCount->setUnderlyingValue(TCMO); 796 } 797 798 VectorTripCount.setUnderlyingValue(VectorTripCountV); 799 800 IRBuilder<> Builder(State.CFG.PrevBB->getTerminator()); 801 // FIXME: Model VF * UF computation completely in VPlan. 802 VFxUF.setUnderlyingValue( 803 createStepForVF(Builder, TripCountV->getType(), State.VF, State.UF)); 804 805 // When vectorizing the epilogue loop, the canonical induction start value 806 // needs to be changed from zero to the value after the main vector loop. 807 // FIXME: Improve modeling for canonical IV start values in the epilogue loop. 808 if (CanonicalIVStartValue) { 809 VPValue *VPV = getOrAddLiveIn(CanonicalIVStartValue); 810 auto *IV = getCanonicalIV(); 811 assert(all_of(IV->users(), 812 [](const VPUser *U) { 813 return isa<VPScalarIVStepsRecipe>(U) || 814 isa<VPScalarCastRecipe>(U) || 815 isa<VPDerivedIVRecipe>(U) || 816 cast<VPInstruction>(U)->getOpcode() == 817 Instruction::Add; 818 }) && 819 "the canonical IV should only be used by its increment or " 820 "ScalarIVSteps when resetting the start value"); 821 IV->setOperand(0, VPV); 822 } 823 } 824 825 /// Generate the code inside the preheader and body of the vectorized loop. 826 /// Assumes a single pre-header basic-block was created for this. Introduce 827 /// additional basic-blocks as needed, and fill them all. 828 void VPlan::execute(VPTransformState *State) { 829 // Initialize CFG state. 830 State->CFG.PrevVPBB = nullptr; 831 State->CFG.ExitBB = State->CFG.PrevBB->getSingleSuccessor(); 832 BasicBlock *VectorPreHeader = State->CFG.PrevBB; 833 State->Builder.SetInsertPoint(VectorPreHeader->getTerminator()); 834 835 // Disconnect VectorPreHeader from ExitBB in both the CFG and DT. 836 cast<BranchInst>(VectorPreHeader->getTerminator())->setSuccessor(0, nullptr); 837 State->CFG.DTU.applyUpdates( 838 {{DominatorTree::Delete, VectorPreHeader, State->CFG.ExitBB}}); 839 840 // Generate code in the loop pre-header and body. 841 for (VPBlockBase *Block : vp_depth_first_shallow(Entry)) 842 Block->execute(State); 843 844 VPBasicBlock *LatchVPBB = getVectorLoopRegion()->getExitingBasicBlock(); 845 BasicBlock *VectorLatchBB = State->CFG.VPBB2IRBB[LatchVPBB]; 846 847 // Fix the latch value of canonical, reduction and first-order recurrences 848 // phis in the vector loop. 849 VPBasicBlock *Header = getVectorLoopRegion()->getEntryBasicBlock(); 850 for (VPRecipeBase &R : Header->phis()) { 851 // Skip phi-like recipes that generate their backedege values themselves. 852 if (isa<VPWidenPHIRecipe>(&R)) 853 continue; 854 855 if (isa<VPWidenPointerInductionRecipe>(&R) || 856 isa<VPWidenIntOrFpInductionRecipe>(&R)) { 857 PHINode *Phi = nullptr; 858 if (isa<VPWidenIntOrFpInductionRecipe>(&R)) { 859 Phi = cast<PHINode>(State->get(R.getVPSingleValue(), 0)); 860 } else { 861 auto *WidenPhi = cast<VPWidenPointerInductionRecipe>(&R); 862 assert(!WidenPhi->onlyScalarsGenerated(State->VF.isScalable()) && 863 "recipe generating only scalars should have been replaced"); 864 auto *GEP = cast<GetElementPtrInst>(State->get(WidenPhi, 0)); 865 Phi = cast<PHINode>(GEP->getPointerOperand()); 866 } 867 868 Phi->setIncomingBlock(1, VectorLatchBB); 869 870 // Move the last step to the end of the latch block. This ensures 871 // consistent placement of all induction updates. 872 Instruction *Inc = cast<Instruction>(Phi->getIncomingValue(1)); 873 Inc->moveBefore(VectorLatchBB->getTerminator()->getPrevNode()); 874 continue; 875 } 876 877 auto *PhiR = cast<VPHeaderPHIRecipe>(&R); 878 // For canonical IV, first-order recurrences and in-order reduction phis, 879 // only a single part is generated, which provides the last part from the 880 // previous iteration. For non-ordered reductions all UF parts are 881 // generated. 882 bool SinglePartNeeded = 883 isa<VPCanonicalIVPHIRecipe>(PhiR) || 884 isa<VPFirstOrderRecurrencePHIRecipe, VPEVLBasedIVPHIRecipe>(PhiR) || 885 (isa<VPReductionPHIRecipe>(PhiR) && 886 cast<VPReductionPHIRecipe>(PhiR)->isOrdered()); 887 bool NeedsScalar = 888 isa<VPCanonicalIVPHIRecipe, VPEVLBasedIVPHIRecipe>(PhiR) || 889 (isa<VPReductionPHIRecipe>(PhiR) && 890 cast<VPReductionPHIRecipe>(PhiR)->isInLoop()); 891 unsigned LastPartForNewPhi = SinglePartNeeded ? 1 : State->UF; 892 893 for (unsigned Part = 0; Part < LastPartForNewPhi; ++Part) { 894 Value *Phi = State->get(PhiR, Part, NeedsScalar); 895 Value *Val = 896 State->get(PhiR->getBackedgeValue(), 897 SinglePartNeeded ? State->UF - 1 : Part, NeedsScalar); 898 cast<PHINode>(Phi)->addIncoming(Val, VectorLatchBB); 899 } 900 } 901 902 State->CFG.DTU.flush(); 903 // DT is currently updated for non-native path only. 904 assert(EnableVPlanNativePath || State->CFG.DTU.getDomTree().verify( 905 DominatorTree::VerificationLevel::Fast)); 906 } 907 908 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 909 void VPlan::printLiveIns(raw_ostream &O) const { 910 VPSlotTracker SlotTracker(this); 911 912 if (VFxUF.getNumUsers() > 0) { 913 O << "\nLive-in "; 914 VFxUF.printAsOperand(O, SlotTracker); 915 O << " = VF * UF"; 916 } 917 918 if (VectorTripCount.getNumUsers() > 0) { 919 O << "\nLive-in "; 920 VectorTripCount.printAsOperand(O, SlotTracker); 921 O << " = vector-trip-count"; 922 } 923 924 if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) { 925 O << "\nLive-in "; 926 BackedgeTakenCount->printAsOperand(O, SlotTracker); 927 O << " = backedge-taken count"; 928 } 929 930 O << "\n"; 931 if (TripCount->isLiveIn()) 932 O << "Live-in "; 933 TripCount->printAsOperand(O, SlotTracker); 934 O << " = original trip-count"; 935 O << "\n"; 936 } 937 938 LLVM_DUMP_METHOD 939 void VPlan::print(raw_ostream &O) const { 940 VPSlotTracker SlotTracker(this); 941 942 O << "VPlan '" << getName() << "' {"; 943 944 printLiveIns(O); 945 946 if (!getPreheader()->empty()) { 947 O << "\n"; 948 getPreheader()->print(O, "", SlotTracker); 949 } 950 951 for (const VPBlockBase *Block : vp_depth_first_shallow(getEntry())) { 952 O << '\n'; 953 Block->print(O, "", SlotTracker); 954 } 955 956 if (!LiveOuts.empty()) 957 O << "\n"; 958 for (const auto &KV : LiveOuts) { 959 KV.second->print(O, SlotTracker); 960 } 961 962 O << "}\n"; 963 } 964 965 std::string VPlan::getName() const { 966 std::string Out; 967 raw_string_ostream RSO(Out); 968 RSO << Name << " for "; 969 if (!VFs.empty()) { 970 RSO << "VF={" << VFs[0]; 971 for (ElementCount VF : drop_begin(VFs)) 972 RSO << "," << VF; 973 RSO << "},"; 974 } 975 976 if (UFs.empty()) { 977 RSO << "UF>=1"; 978 } else { 979 RSO << "UF={" << UFs[0]; 980 for (unsigned UF : drop_begin(UFs)) 981 RSO << "," << UF; 982 RSO << "}"; 983 } 984 985 return Out; 986 } 987 988 LLVM_DUMP_METHOD 989 void VPlan::printDOT(raw_ostream &O) const { 990 VPlanPrinter Printer(O, *this); 991 Printer.dump(); 992 } 993 994 LLVM_DUMP_METHOD 995 void VPlan::dump() const { print(dbgs()); } 996 #endif 997 998 void VPlan::addLiveOut(PHINode *PN, VPValue *V) { 999 assert(LiveOuts.count(PN) == 0 && "an exit value for PN already exists"); 1000 LiveOuts.insert({PN, new VPLiveOut(PN, V)}); 1001 } 1002 1003 static void remapOperands(VPBlockBase *Entry, VPBlockBase *NewEntry, 1004 DenseMap<VPValue *, VPValue *> &Old2NewVPValues) { 1005 // Update the operands of all cloned recipes starting at NewEntry. This 1006 // traverses all reachable blocks. This is done in two steps, to handle cycles 1007 // in PHI recipes. 1008 ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<VPBlockBase *>> 1009 OldDeepRPOT(Entry); 1010 ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<VPBlockBase *>> 1011 NewDeepRPOT(NewEntry); 1012 // First, collect all mappings from old to new VPValues defined by cloned 1013 // recipes. 1014 for (const auto &[OldBB, NewBB] : 1015 zip(VPBlockUtils::blocksOnly<VPBasicBlock>(OldDeepRPOT), 1016 VPBlockUtils::blocksOnly<VPBasicBlock>(NewDeepRPOT))) { 1017 assert(OldBB->getRecipeList().size() == NewBB->getRecipeList().size() && 1018 "blocks must have the same number of recipes"); 1019 for (const auto &[OldR, NewR] : zip(*OldBB, *NewBB)) { 1020 assert(OldR.getNumOperands() == NewR.getNumOperands() && 1021 "recipes must have the same number of operands"); 1022 assert(OldR.getNumDefinedValues() == NewR.getNumDefinedValues() && 1023 "recipes must define the same number of operands"); 1024 for (const auto &[OldV, NewV] : 1025 zip(OldR.definedValues(), NewR.definedValues())) 1026 Old2NewVPValues[OldV] = NewV; 1027 } 1028 } 1029 1030 // Update all operands to use cloned VPValues. 1031 for (VPBasicBlock *NewBB : 1032 VPBlockUtils::blocksOnly<VPBasicBlock>(NewDeepRPOT)) { 1033 for (VPRecipeBase &NewR : *NewBB) 1034 for (unsigned I = 0, E = NewR.getNumOperands(); I != E; ++I) { 1035 VPValue *NewOp = Old2NewVPValues.lookup(NewR.getOperand(I)); 1036 NewR.setOperand(I, NewOp); 1037 } 1038 } 1039 } 1040 1041 VPlan *VPlan::duplicate() { 1042 // Clone blocks. 1043 VPBasicBlock *NewPreheader = Preheader->clone(); 1044 const auto &[NewEntry, __] = cloneSESE(Entry); 1045 1046 // Create VPlan, clone live-ins and remap operands in the cloned blocks. 1047 auto *NewPlan = new VPlan(NewPreheader, cast<VPBasicBlock>(NewEntry)); 1048 DenseMap<VPValue *, VPValue *> Old2NewVPValues; 1049 for (VPValue *OldLiveIn : VPLiveInsToFree) { 1050 Old2NewVPValues[OldLiveIn] = 1051 NewPlan->getOrAddLiveIn(OldLiveIn->getLiveInIRValue()); 1052 } 1053 Old2NewVPValues[&VectorTripCount] = &NewPlan->VectorTripCount; 1054 Old2NewVPValues[&VFxUF] = &NewPlan->VFxUF; 1055 if (BackedgeTakenCount) { 1056 NewPlan->BackedgeTakenCount = new VPValue(); 1057 Old2NewVPValues[BackedgeTakenCount] = NewPlan->BackedgeTakenCount; 1058 } 1059 assert(TripCount && "trip count must be set"); 1060 if (TripCount->isLiveIn()) 1061 Old2NewVPValues[TripCount] = 1062 NewPlan->getOrAddLiveIn(TripCount->getLiveInIRValue()); 1063 // else NewTripCount will be created and inserted into Old2NewVPValues when 1064 // TripCount is cloned. In any case NewPlan->TripCount is updated below. 1065 1066 remapOperands(Preheader, NewPreheader, Old2NewVPValues); 1067 remapOperands(Entry, NewEntry, Old2NewVPValues); 1068 1069 // Clone live-outs. 1070 for (const auto &[_, LO] : LiveOuts) 1071 NewPlan->addLiveOut(LO->getPhi(), Old2NewVPValues[LO->getOperand(0)]); 1072 1073 // Initialize remaining fields of cloned VPlan. 1074 NewPlan->VFs = VFs; 1075 NewPlan->UFs = UFs; 1076 // TODO: Adjust names. 1077 NewPlan->Name = Name; 1078 assert(Old2NewVPValues.contains(TripCount) && 1079 "TripCount must have been added to Old2NewVPValues"); 1080 NewPlan->TripCount = Old2NewVPValues[TripCount]; 1081 return NewPlan; 1082 } 1083 1084 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1085 1086 Twine VPlanPrinter::getUID(const VPBlockBase *Block) { 1087 return (isa<VPRegionBlock>(Block) ? "cluster_N" : "N") + 1088 Twine(getOrCreateBID(Block)); 1089 } 1090 1091 Twine VPlanPrinter::getOrCreateName(const VPBlockBase *Block) { 1092 const std::string &Name = Block->getName(); 1093 if (!Name.empty()) 1094 return Name; 1095 return "VPB" + Twine(getOrCreateBID(Block)); 1096 } 1097 1098 void VPlanPrinter::dump() { 1099 Depth = 1; 1100 bumpIndent(0); 1101 OS << "digraph VPlan {\n"; 1102 OS << "graph [labelloc=t, fontsize=30; label=\"Vectorization Plan"; 1103 if (!Plan.getName().empty()) 1104 OS << "\\n" << DOT::EscapeString(Plan.getName()); 1105 1106 { 1107 // Print live-ins. 1108 std::string Str; 1109 raw_string_ostream SS(Str); 1110 Plan.printLiveIns(SS); 1111 SmallVector<StringRef, 0> Lines; 1112 StringRef(Str).rtrim('\n').split(Lines, "\n"); 1113 for (auto Line : Lines) 1114 OS << DOT::EscapeString(Line.str()) << "\\n"; 1115 } 1116 1117 OS << "\"]\n"; 1118 OS << "node [shape=rect, fontname=Courier, fontsize=30]\n"; 1119 OS << "edge [fontname=Courier, fontsize=30]\n"; 1120 OS << "compound=true\n"; 1121 1122 dumpBlock(Plan.getPreheader()); 1123 1124 for (const VPBlockBase *Block : vp_depth_first_shallow(Plan.getEntry())) 1125 dumpBlock(Block); 1126 1127 OS << "}\n"; 1128 } 1129 1130 void VPlanPrinter::dumpBlock(const VPBlockBase *Block) { 1131 if (const VPBasicBlock *BasicBlock = dyn_cast<VPBasicBlock>(Block)) 1132 dumpBasicBlock(BasicBlock); 1133 else if (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 1134 dumpRegion(Region); 1135 else 1136 llvm_unreachable("Unsupported kind of VPBlock."); 1137 } 1138 1139 void VPlanPrinter::drawEdge(const VPBlockBase *From, const VPBlockBase *To, 1140 bool Hidden, const Twine &Label) { 1141 // Due to "dot" we print an edge between two regions as an edge between the 1142 // exiting basic block and the entry basic of the respective regions. 1143 const VPBlockBase *Tail = From->getExitingBasicBlock(); 1144 const VPBlockBase *Head = To->getEntryBasicBlock(); 1145 OS << Indent << getUID(Tail) << " -> " << getUID(Head); 1146 OS << " [ label=\"" << Label << '\"'; 1147 if (Tail != From) 1148 OS << " ltail=" << getUID(From); 1149 if (Head != To) 1150 OS << " lhead=" << getUID(To); 1151 if (Hidden) 1152 OS << "; splines=none"; 1153 OS << "]\n"; 1154 } 1155 1156 void VPlanPrinter::dumpEdges(const VPBlockBase *Block) { 1157 auto &Successors = Block->getSuccessors(); 1158 if (Successors.size() == 1) 1159 drawEdge(Block, Successors.front(), false, ""); 1160 else if (Successors.size() == 2) { 1161 drawEdge(Block, Successors.front(), false, "T"); 1162 drawEdge(Block, Successors.back(), false, "F"); 1163 } else { 1164 unsigned SuccessorNumber = 0; 1165 for (auto *Successor : Successors) 1166 drawEdge(Block, Successor, false, Twine(SuccessorNumber++)); 1167 } 1168 } 1169 1170 void VPlanPrinter::dumpBasicBlock(const VPBasicBlock *BasicBlock) { 1171 // Implement dot-formatted dump by performing plain-text dump into the 1172 // temporary storage followed by some post-processing. 1173 OS << Indent << getUID(BasicBlock) << " [label =\n"; 1174 bumpIndent(1); 1175 std::string Str; 1176 raw_string_ostream SS(Str); 1177 // Use no indentation as we need to wrap the lines into quotes ourselves. 1178 BasicBlock->print(SS, "", SlotTracker); 1179 1180 // We need to process each line of the output separately, so split 1181 // single-string plain-text dump. 1182 SmallVector<StringRef, 0> Lines; 1183 StringRef(Str).rtrim('\n').split(Lines, "\n"); 1184 1185 auto EmitLine = [&](StringRef Line, StringRef Suffix) { 1186 OS << Indent << '"' << DOT::EscapeString(Line.str()) << "\\l\"" << Suffix; 1187 }; 1188 1189 // Don't need the "+" after the last line. 1190 for (auto Line : make_range(Lines.begin(), Lines.end() - 1)) 1191 EmitLine(Line, " +\n"); 1192 EmitLine(Lines.back(), "\n"); 1193 1194 bumpIndent(-1); 1195 OS << Indent << "]\n"; 1196 1197 dumpEdges(BasicBlock); 1198 } 1199 1200 void VPlanPrinter::dumpRegion(const VPRegionBlock *Region) { 1201 OS << Indent << "subgraph " << getUID(Region) << " {\n"; 1202 bumpIndent(1); 1203 OS << Indent << "fontname=Courier\n" 1204 << Indent << "label=\"" 1205 << DOT::EscapeString(Region->isReplicator() ? "<xVFxUF> " : "<x1> ") 1206 << DOT::EscapeString(Region->getName()) << "\"\n"; 1207 // Dump the blocks of the region. 1208 assert(Region->getEntry() && "Region contains no inner blocks."); 1209 for (const VPBlockBase *Block : vp_depth_first_shallow(Region->getEntry())) 1210 dumpBlock(Block); 1211 bumpIndent(-1); 1212 OS << Indent << "}\n"; 1213 dumpEdges(Region); 1214 } 1215 1216 void VPlanIngredient::print(raw_ostream &O) const { 1217 if (auto *Inst = dyn_cast<Instruction>(V)) { 1218 if (!Inst->getType()->isVoidTy()) { 1219 Inst->printAsOperand(O, false); 1220 O << " = "; 1221 } 1222 O << Inst->getOpcodeName() << " "; 1223 unsigned E = Inst->getNumOperands(); 1224 if (E > 0) { 1225 Inst->getOperand(0)->printAsOperand(O, false); 1226 for (unsigned I = 1; I < E; ++I) 1227 Inst->getOperand(I)->printAsOperand(O << ", ", false); 1228 } 1229 } else // !Inst 1230 V->printAsOperand(O, false); 1231 } 1232 1233 #endif 1234 1235 template void DomTreeBuilder::Calculate<VPDominatorTree>(VPDominatorTree &DT); 1236 1237 void VPValue::replaceAllUsesWith(VPValue *New) { 1238 replaceUsesWithIf(New, [](VPUser &, unsigned) { return true; }); 1239 } 1240 1241 void VPValue::replaceUsesWithIf( 1242 VPValue *New, 1243 llvm::function_ref<bool(VPUser &U, unsigned Idx)> ShouldReplace) { 1244 // Note that this early exit is required for correctness; the implementation 1245 // below relies on the number of users for this VPValue to decrease, which 1246 // isn't the case if this == New. 1247 if (this == New) 1248 return; 1249 1250 for (unsigned J = 0; J < getNumUsers();) { 1251 VPUser *User = Users[J]; 1252 bool RemovedUser = false; 1253 for (unsigned I = 0, E = User->getNumOperands(); I < E; ++I) { 1254 if (User->getOperand(I) != this || !ShouldReplace(*User, I)) 1255 continue; 1256 1257 RemovedUser = true; 1258 User->setOperand(I, New); 1259 } 1260 // If a user got removed after updating the current user, the next user to 1261 // update will be moved to the current position, so we only need to 1262 // increment the index if the number of users did not change. 1263 if (!RemovedUser) 1264 J++; 1265 } 1266 } 1267 1268 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1269 void VPValue::printAsOperand(raw_ostream &OS, VPSlotTracker &Tracker) const { 1270 OS << Tracker.getOrCreateName(this); 1271 } 1272 1273 void VPUser::printOperands(raw_ostream &O, VPSlotTracker &SlotTracker) const { 1274 interleaveComma(operands(), O, [&O, &SlotTracker](VPValue *Op) { 1275 Op->printAsOperand(O, SlotTracker); 1276 }); 1277 } 1278 #endif 1279 1280 void VPInterleavedAccessInfo::visitRegion(VPRegionBlock *Region, 1281 Old2NewTy &Old2New, 1282 InterleavedAccessInfo &IAI) { 1283 ReversePostOrderTraversal<VPBlockShallowTraversalWrapper<VPBlockBase *>> 1284 RPOT(Region->getEntry()); 1285 for (VPBlockBase *Base : RPOT) { 1286 visitBlock(Base, Old2New, IAI); 1287 } 1288 } 1289 1290 void VPInterleavedAccessInfo::visitBlock(VPBlockBase *Block, Old2NewTy &Old2New, 1291 InterleavedAccessInfo &IAI) { 1292 if (VPBasicBlock *VPBB = dyn_cast<VPBasicBlock>(Block)) { 1293 for (VPRecipeBase &VPI : *VPBB) { 1294 if (isa<VPWidenPHIRecipe>(&VPI)) 1295 continue; 1296 assert(isa<VPInstruction>(&VPI) && "Can only handle VPInstructions"); 1297 auto *VPInst = cast<VPInstruction>(&VPI); 1298 1299 auto *Inst = dyn_cast_or_null<Instruction>(VPInst->getUnderlyingValue()); 1300 if (!Inst) 1301 continue; 1302 auto *IG = IAI.getInterleaveGroup(Inst); 1303 if (!IG) 1304 continue; 1305 1306 auto NewIGIter = Old2New.find(IG); 1307 if (NewIGIter == Old2New.end()) 1308 Old2New[IG] = new InterleaveGroup<VPInstruction>( 1309 IG->getFactor(), IG->isReverse(), IG->getAlign()); 1310 1311 if (Inst == IG->getInsertPos()) 1312 Old2New[IG]->setInsertPos(VPInst); 1313 1314 InterleaveGroupMap[VPInst] = Old2New[IG]; 1315 InterleaveGroupMap[VPInst]->insertMember( 1316 VPInst, IG->getIndex(Inst), 1317 Align(IG->isReverse() ? (-1) * int(IG->getFactor()) 1318 : IG->getFactor())); 1319 } 1320 } else if (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 1321 visitRegion(Region, Old2New, IAI); 1322 else 1323 llvm_unreachable("Unsupported kind of VPBlock."); 1324 } 1325 1326 VPInterleavedAccessInfo::VPInterleavedAccessInfo(VPlan &Plan, 1327 InterleavedAccessInfo &IAI) { 1328 Old2NewTy Old2New; 1329 visitRegion(Plan.getVectorLoopRegion(), Old2New, IAI); 1330 } 1331 1332 void VPSlotTracker::assignName(const VPValue *V) { 1333 assert(!VPValue2Name.contains(V) && "VPValue already has a name!"); 1334 auto *UV = V->getUnderlyingValue(); 1335 if (!UV) { 1336 VPValue2Name[V] = (Twine("vp<%") + Twine(NextSlot) + ">").str(); 1337 NextSlot++; 1338 return; 1339 } 1340 1341 // Use the name of the underlying Value, wrapped in "ir<>", and versioned by 1342 // appending ".Number" to the name if there are multiple uses. 1343 std::string Name; 1344 raw_string_ostream S(Name); 1345 UV->printAsOperand(S, false); 1346 assert(!Name.empty() && "Name cannot be empty."); 1347 std::string BaseName = (Twine("ir<") + Name + Twine(">")).str(); 1348 1349 // First assign the base name for V. 1350 const auto &[A, _] = VPValue2Name.insert({V, BaseName}); 1351 // Integer or FP constants with different types will result in he same string 1352 // due to stripping types. 1353 if (V->isLiveIn() && isa<ConstantInt, ConstantFP>(UV)) 1354 return; 1355 1356 // If it is already used by C > 0 other VPValues, increase the version counter 1357 // C and use it for V. 1358 const auto &[C, UseInserted] = BaseName2Version.insert({BaseName, 0}); 1359 if (!UseInserted) { 1360 C->second++; 1361 A->second = (BaseName + Twine(".") + Twine(C->second)).str(); 1362 } 1363 } 1364 1365 void VPSlotTracker::assignNames(const VPlan &Plan) { 1366 if (Plan.VFxUF.getNumUsers() > 0) 1367 assignName(&Plan.VFxUF); 1368 assignName(&Plan.VectorTripCount); 1369 if (Plan.BackedgeTakenCount) 1370 assignName(Plan.BackedgeTakenCount); 1371 for (VPValue *LI : Plan.VPLiveInsToFree) 1372 assignName(LI); 1373 assignNames(Plan.getPreheader()); 1374 1375 ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<const VPBlockBase *>> 1376 RPOT(VPBlockDeepTraversalWrapper<const VPBlockBase *>(Plan.getEntry())); 1377 for (const VPBasicBlock *VPBB : 1378 VPBlockUtils::blocksOnly<const VPBasicBlock>(RPOT)) 1379 assignNames(VPBB); 1380 } 1381 1382 void VPSlotTracker::assignNames(const VPBasicBlock *VPBB) { 1383 for (const VPRecipeBase &Recipe : *VPBB) 1384 for (VPValue *Def : Recipe.definedValues()) 1385 assignName(Def); 1386 } 1387 1388 std::string VPSlotTracker::getOrCreateName(const VPValue *V) const { 1389 std::string Name = VPValue2Name.lookup(V); 1390 if (!Name.empty()) 1391 return Name; 1392 1393 // If no name was assigned, no VPlan was provided when creating the slot 1394 // tracker or it is not reachable from the provided VPlan. This can happen, 1395 // e.g. when trying to print a recipe that has not been inserted into a VPlan 1396 // in a debugger. 1397 // TODO: Update VPSlotTracker constructor to assign names to recipes & 1398 // VPValues not associated with a VPlan, instead of constructing names ad-hoc 1399 // here. 1400 const VPRecipeBase *DefR = V->getDefiningRecipe(); 1401 (void)DefR; 1402 assert((!DefR || !DefR->getParent() || !DefR->getParent()->getPlan()) && 1403 "VPValue defined by a recipe in a VPlan?"); 1404 1405 // Use the underlying value's name, if there is one. 1406 if (auto *UV = V->getUnderlyingValue()) { 1407 std::string Name; 1408 raw_string_ostream S(Name); 1409 UV->printAsOperand(S, false); 1410 return (Twine("ir<") + Name + ">").str(); 1411 } 1412 1413 return "<badref>"; 1414 } 1415 1416 bool vputils::onlyFirstLaneUsed(const VPValue *Def) { 1417 return all_of(Def->users(), 1418 [Def](const VPUser *U) { return U->onlyFirstLaneUsed(Def); }); 1419 } 1420 1421 bool vputils::onlyFirstPartUsed(const VPValue *Def) { 1422 return all_of(Def->users(), 1423 [Def](const VPUser *U) { return U->onlyFirstPartUsed(Def); }); 1424 } 1425 1426 VPValue *vputils::getOrCreateVPValueForSCEVExpr(VPlan &Plan, const SCEV *Expr, 1427 ScalarEvolution &SE) { 1428 if (auto *Expanded = Plan.getSCEVExpansion(Expr)) 1429 return Expanded; 1430 VPValue *Expanded = nullptr; 1431 if (auto *E = dyn_cast<SCEVConstant>(Expr)) 1432 Expanded = Plan.getOrAddLiveIn(E->getValue()); 1433 else if (auto *E = dyn_cast<SCEVUnknown>(Expr)) 1434 Expanded = Plan.getOrAddLiveIn(E->getValue()); 1435 else { 1436 Expanded = new VPExpandSCEVRecipe(Expr, SE); 1437 Plan.getPreheader()->appendRecipe(Expanded->getDefiningRecipe()); 1438 } 1439 Plan.addSCEVExpansion(Expr, Expanded); 1440 return Expanded; 1441 } 1442