1 //===- VPlan.cpp - Vectorizer Plan ----------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This is the LLVM vectorization plan. It represents a candidate for 11 /// vectorization, allowing to plan and optimize how to vectorize a given loop 12 /// before generating LLVM-IR. 13 /// The vectorizer uses vectorization plans to estimate the costs of potential 14 /// candidates and if profitable to execute the desired plan, generating vector 15 /// LLVM-IR code. 16 /// 17 //===----------------------------------------------------------------------===// 18 19 #include "VPlan.h" 20 #include "VPlanDominatorTree.h" 21 #include "llvm/ADT/DepthFirstIterator.h" 22 #include "llvm/ADT/PostOrderIterator.h" 23 #include "llvm/ADT/STLExtras.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/Twine.h" 26 #include "llvm/Analysis/LoopInfo.h" 27 #include "llvm/IR/BasicBlock.h" 28 #include "llvm/IR/CFG.h" 29 #include "llvm/IR/IRBuilder.h" 30 #include "llvm/IR/Instruction.h" 31 #include "llvm/IR/Instructions.h" 32 #include "llvm/IR/Type.h" 33 #include "llvm/IR/Value.h" 34 #include "llvm/Support/Casting.h" 35 #include "llvm/Support/CommandLine.h" 36 #include "llvm/Support/Debug.h" 37 #include "llvm/Support/GenericDomTreeConstruction.h" 38 #include "llvm/Support/GraphWriter.h" 39 #include "llvm/Support/raw_ostream.h" 40 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 41 #include "llvm/Transforms/Utils/LoopVersioning.h" 42 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 43 #include <cassert> 44 #include <string> 45 #include <vector> 46 47 using namespace llvm; 48 extern cl::opt<bool> EnableVPlanNativePath; 49 50 #define DEBUG_TYPE "vplan" 51 52 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 53 raw_ostream &llvm::operator<<(raw_ostream &OS, const VPValue &V) { 54 const VPInstruction *Instr = dyn_cast<VPInstruction>(&V); 55 VPSlotTracker SlotTracker( 56 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr); 57 V.print(OS, SlotTracker); 58 return OS; 59 } 60 #endif 61 62 Value *VPLane::getAsRuntimeExpr(IRBuilderBase &Builder, 63 const ElementCount &VF) const { 64 switch (LaneKind) { 65 case VPLane::Kind::ScalableLast: 66 // Lane = RuntimeVF - VF.getKnownMinValue() + Lane 67 return Builder.CreateSub(getRuntimeVF(Builder, Builder.getInt32Ty(), VF), 68 Builder.getInt32(VF.getKnownMinValue() - Lane)); 69 case VPLane::Kind::First: 70 return Builder.getInt32(Lane); 71 } 72 llvm_unreachable("Unknown lane kind"); 73 } 74 75 VPValue::VPValue(const unsigned char SC, Value *UV, VPDef *Def) 76 : SubclassID(SC), UnderlyingVal(UV), Def(Def) { 77 if (Def) 78 Def->addDefinedValue(this); 79 } 80 81 VPValue::~VPValue() { 82 assert(Users.empty() && "trying to delete a VPValue with remaining users"); 83 if (Def) 84 Def->removeDefinedValue(this); 85 } 86 87 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 88 void VPValue::print(raw_ostream &OS, VPSlotTracker &SlotTracker) const { 89 if (const VPRecipeBase *R = dyn_cast_or_null<VPRecipeBase>(Def)) 90 R->print(OS, "", SlotTracker); 91 else 92 printAsOperand(OS, SlotTracker); 93 } 94 95 void VPValue::dump() const { 96 const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this->Def); 97 VPSlotTracker SlotTracker( 98 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr); 99 print(dbgs(), SlotTracker); 100 dbgs() << "\n"; 101 } 102 103 void VPDef::dump() const { 104 const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this); 105 VPSlotTracker SlotTracker( 106 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr); 107 print(dbgs(), "", SlotTracker); 108 dbgs() << "\n"; 109 } 110 #endif 111 112 // Get the top-most entry block of \p Start. This is the entry block of the 113 // containing VPlan. This function is templated to support both const and non-const blocks 114 template <typename T> static T *getPlanEntry(T *Start) { 115 T *Next = Start; 116 T *Current = Start; 117 while ((Next = Next->getParent())) 118 Current = Next; 119 120 SmallSetVector<T *, 8> WorkList; 121 WorkList.insert(Current); 122 123 for (unsigned i = 0; i < WorkList.size(); i++) { 124 T *Current = WorkList[i]; 125 if (Current->getNumPredecessors() == 0) 126 return Current; 127 auto &Predecessors = Current->getPredecessors(); 128 WorkList.insert(Predecessors.begin(), Predecessors.end()); 129 } 130 131 llvm_unreachable("VPlan without any entry node without predecessors"); 132 } 133 134 VPlan *VPBlockBase::getPlan() { return getPlanEntry(this)->Plan; } 135 136 const VPlan *VPBlockBase::getPlan() const { return getPlanEntry(this)->Plan; } 137 138 /// \return the VPBasicBlock that is the entry of Block, possibly indirectly. 139 const VPBasicBlock *VPBlockBase::getEntryBasicBlock() const { 140 const VPBlockBase *Block = this; 141 while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 142 Block = Region->getEntry(); 143 return cast<VPBasicBlock>(Block); 144 } 145 146 VPBasicBlock *VPBlockBase::getEntryBasicBlock() { 147 VPBlockBase *Block = this; 148 while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 149 Block = Region->getEntry(); 150 return cast<VPBasicBlock>(Block); 151 } 152 153 void VPBlockBase::setPlan(VPlan *ParentPlan) { 154 assert(ParentPlan->getEntry() == this && 155 "Can only set plan on its entry block."); 156 Plan = ParentPlan; 157 } 158 159 /// \return the VPBasicBlock that is the exit of Block, possibly indirectly. 160 const VPBasicBlock *VPBlockBase::getExitingBasicBlock() const { 161 const VPBlockBase *Block = this; 162 while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 163 Block = Region->getExiting(); 164 return cast<VPBasicBlock>(Block); 165 } 166 167 VPBasicBlock *VPBlockBase::getExitingBasicBlock() { 168 VPBlockBase *Block = this; 169 while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 170 Block = Region->getExiting(); 171 return cast<VPBasicBlock>(Block); 172 } 173 174 VPBlockBase *VPBlockBase::getEnclosingBlockWithSuccessors() { 175 if (!Successors.empty() || !Parent) 176 return this; 177 assert(Parent->getExiting() == this && 178 "Block w/o successors not the exiting block of its parent."); 179 return Parent->getEnclosingBlockWithSuccessors(); 180 } 181 182 VPBlockBase *VPBlockBase::getEnclosingBlockWithPredecessors() { 183 if (!Predecessors.empty() || !Parent) 184 return this; 185 assert(Parent->getEntry() == this && 186 "Block w/o predecessors not the entry of its parent."); 187 return Parent->getEnclosingBlockWithPredecessors(); 188 } 189 190 void VPBlockBase::deleteCFG(VPBlockBase *Entry) { 191 SmallVector<VPBlockBase *, 8> Blocks(depth_first(Entry)); 192 193 for (VPBlockBase *Block : Blocks) 194 delete Block; 195 } 196 197 VPBasicBlock::iterator VPBasicBlock::getFirstNonPhi() { 198 iterator It = begin(); 199 while (It != end() && It->isPhi()) 200 It++; 201 return It; 202 } 203 204 Value *VPTransformState::get(VPValue *Def, const VPIteration &Instance) { 205 if (!Def->getDef()) 206 return Def->getLiveInIRValue(); 207 208 if (hasScalarValue(Def, Instance)) { 209 return Data 210 .PerPartScalars[Def][Instance.Part][Instance.Lane.mapToCacheIndex(VF)]; 211 } 212 213 assert(hasVectorValue(Def, Instance.Part)); 214 auto *VecPart = Data.PerPartOutput[Def][Instance.Part]; 215 if (!VecPart->getType()->isVectorTy()) { 216 assert(Instance.Lane.isFirstLane() && "cannot get lane > 0 for scalar"); 217 return VecPart; 218 } 219 // TODO: Cache created scalar values. 220 Value *Lane = Instance.Lane.getAsRuntimeExpr(Builder, VF); 221 auto *Extract = Builder.CreateExtractElement(VecPart, Lane); 222 // set(Def, Extract, Instance); 223 return Extract; 224 } 225 BasicBlock *VPTransformState::CFGState::getPreheaderBBFor(VPRecipeBase *R) { 226 VPRegionBlock *LoopRegion = R->getParent()->getEnclosingLoopRegion(); 227 return VPBB2IRBB[LoopRegion->getPreheaderVPBB()]; 228 } 229 230 void VPTransformState::addNewMetadata(Instruction *To, 231 const Instruction *Orig) { 232 // If the loop was versioned with memchecks, add the corresponding no-alias 233 // metadata. 234 if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig))) 235 LVer->annotateInstWithNoAlias(To, Orig); 236 } 237 238 void VPTransformState::addMetadata(Instruction *To, Instruction *From) { 239 propagateMetadata(To, From); 240 addNewMetadata(To, From); 241 } 242 243 void VPTransformState::addMetadata(ArrayRef<Value *> To, Instruction *From) { 244 for (Value *V : To) { 245 if (Instruction *I = dyn_cast<Instruction>(V)) 246 addMetadata(I, From); 247 } 248 } 249 250 void VPTransformState::setDebugLocFromInst(const Value *V) { 251 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(V)) { 252 const DILocation *DIL = Inst->getDebugLoc(); 253 254 // When a FSDiscriminator is enabled, we don't need to add the multiply 255 // factors to the discriminators. 256 if (DIL && Inst->getFunction()->isDebugInfoForProfiling() && 257 !isa<DbgInfoIntrinsic>(Inst) && !EnableFSDiscriminator) { 258 // FIXME: For scalable vectors, assume vscale=1. 259 auto NewDIL = 260 DIL->cloneByMultiplyingDuplicationFactor(UF * VF.getKnownMinValue()); 261 if (NewDIL) 262 Builder.SetCurrentDebugLocation(*NewDIL); 263 else 264 LLVM_DEBUG(dbgs() << "Failed to create new discriminator: " 265 << DIL->getFilename() << " Line: " << DIL->getLine()); 266 } else 267 Builder.SetCurrentDebugLocation(DIL); 268 } else 269 Builder.SetCurrentDebugLocation(DebugLoc()); 270 } 271 272 BasicBlock * 273 VPBasicBlock::createEmptyBasicBlock(VPTransformState::CFGState &CFG) { 274 // BB stands for IR BasicBlocks. VPBB stands for VPlan VPBasicBlocks. 275 // Pred stands for Predessor. Prev stands for Previous - last visited/created. 276 BasicBlock *PrevBB = CFG.PrevBB; 277 BasicBlock *NewBB = BasicBlock::Create(PrevBB->getContext(), getName(), 278 PrevBB->getParent(), CFG.ExitBB); 279 LLVM_DEBUG(dbgs() << "LV: created " << NewBB->getName() << '\n'); 280 281 // Hook up the new basic block to its predecessors. 282 for (VPBlockBase *PredVPBlock : getHierarchicalPredecessors()) { 283 VPBasicBlock *PredVPBB = PredVPBlock->getExitingBasicBlock(); 284 auto &PredVPSuccessors = PredVPBB->getHierarchicalSuccessors(); 285 BasicBlock *PredBB = CFG.VPBB2IRBB[PredVPBB]; 286 287 assert(PredBB && "Predecessor basic-block not found building successor."); 288 auto *PredBBTerminator = PredBB->getTerminator(); 289 LLVM_DEBUG(dbgs() << "LV: draw edge from" << PredBB->getName() << '\n'); 290 291 auto *TermBr = dyn_cast<BranchInst>(PredBBTerminator); 292 if (isa<UnreachableInst>(PredBBTerminator)) { 293 assert(PredVPSuccessors.size() == 1 && 294 "Predecessor ending w/o branch must have single successor."); 295 DebugLoc DL = PredBBTerminator->getDebugLoc(); 296 PredBBTerminator->eraseFromParent(); 297 auto *Br = BranchInst::Create(NewBB, PredBB); 298 Br->setDebugLoc(DL); 299 } else if (TermBr && !TermBr->isConditional()) { 300 TermBr->setSuccessor(0, NewBB); 301 } else { 302 // Set each forward successor here when it is created, excluding 303 // backedges. A backward successor is set when the branch is created. 304 unsigned idx = PredVPSuccessors.front() == this ? 0 : 1; 305 assert(!TermBr->getSuccessor(idx) && 306 "Trying to reset an existing successor block."); 307 TermBr->setSuccessor(idx, NewBB); 308 } 309 } 310 return NewBB; 311 } 312 313 void VPBasicBlock::execute(VPTransformState *State) { 314 bool Replica = State->Instance && !State->Instance->isFirstIteration(); 315 VPBasicBlock *PrevVPBB = State->CFG.PrevVPBB; 316 VPBlockBase *SingleHPred = nullptr; 317 BasicBlock *NewBB = State->CFG.PrevBB; // Reuse it if possible. 318 319 auto IsLoopRegion = [](VPBlockBase *BB) { 320 auto *R = dyn_cast<VPRegionBlock>(BB); 321 return R && !R->isReplicator(); 322 }; 323 324 // 1. Create an IR basic block, or reuse the last one or ExitBB if possible. 325 if (getPlan()->getVectorLoopRegion()->getSingleSuccessor() == this) { 326 // ExitBB can be re-used for the exit block of the Plan. 327 NewBB = State->CFG.ExitBB; 328 State->CFG.PrevBB = NewBB; 329 330 // Update the branch instruction in the predecessor to branch to ExitBB. 331 VPBlockBase *PredVPB = getSingleHierarchicalPredecessor(); 332 VPBasicBlock *ExitingVPBB = PredVPB->getExitingBasicBlock(); 333 assert(PredVPB->getSingleSuccessor() == this && 334 "predecessor must have the current block as only successor"); 335 BasicBlock *ExitingBB = State->CFG.VPBB2IRBB[ExitingVPBB]; 336 // The Exit block of a loop is always set to be successor 0 of the Exiting 337 // block. 338 cast<BranchInst>(ExitingBB->getTerminator())->setSuccessor(0, NewBB); 339 } else if (PrevVPBB && /* A */ 340 !((SingleHPred = getSingleHierarchicalPredecessor()) && 341 SingleHPred->getExitingBasicBlock() == PrevVPBB && 342 PrevVPBB->getSingleHierarchicalSuccessor() && 343 (SingleHPred->getParent() == getEnclosingLoopRegion() && 344 !IsLoopRegion(SingleHPred))) && /* B */ 345 !(Replica && getPredecessors().empty())) { /* C */ 346 // The last IR basic block is reused, as an optimization, in three cases: 347 // A. the first VPBB reuses the loop pre-header BB - when PrevVPBB is null; 348 // B. when the current VPBB has a single (hierarchical) predecessor which 349 // is PrevVPBB and the latter has a single (hierarchical) successor which 350 // both are in the same non-replicator region; and 351 // C. when the current VPBB is an entry of a region replica - where PrevVPBB 352 // is the exiting VPBB of this region from a previous instance, or the 353 // predecessor of this region. 354 355 NewBB = createEmptyBasicBlock(State->CFG); 356 State->Builder.SetInsertPoint(NewBB); 357 // Temporarily terminate with unreachable until CFG is rewired. 358 UnreachableInst *Terminator = State->Builder.CreateUnreachable(); 359 // Register NewBB in its loop. In innermost loops its the same for all 360 // BB's. 361 if (State->CurrentVectorLoop) 362 State->CurrentVectorLoop->addBasicBlockToLoop(NewBB, *State->LI); 363 State->Builder.SetInsertPoint(Terminator); 364 State->CFG.PrevBB = NewBB; 365 } 366 367 // 2. Fill the IR basic block with IR instructions. 368 LLVM_DEBUG(dbgs() << "LV: vectorizing VPBB:" << getName() 369 << " in BB:" << NewBB->getName() << '\n'); 370 371 State->CFG.VPBB2IRBB[this] = NewBB; 372 State->CFG.PrevVPBB = this; 373 374 for (VPRecipeBase &Recipe : Recipes) 375 Recipe.execute(*State); 376 377 LLVM_DEBUG(dbgs() << "LV: filled BB:" << *NewBB); 378 } 379 380 void VPBasicBlock::dropAllReferences(VPValue *NewValue) { 381 for (VPRecipeBase &R : Recipes) { 382 for (auto *Def : R.definedValues()) 383 Def->replaceAllUsesWith(NewValue); 384 385 for (unsigned I = 0, E = R.getNumOperands(); I != E; I++) 386 R.setOperand(I, NewValue); 387 } 388 } 389 390 VPBasicBlock *VPBasicBlock::splitAt(iterator SplitAt) { 391 assert((SplitAt == end() || SplitAt->getParent() == this) && 392 "can only split at a position in the same block"); 393 394 SmallVector<VPBlockBase *, 2> Succs(successors()); 395 // First, disconnect the current block from its successors. 396 for (VPBlockBase *Succ : Succs) 397 VPBlockUtils::disconnectBlocks(this, Succ); 398 399 // Create new empty block after the block to split. 400 auto *SplitBlock = new VPBasicBlock(getName() + ".split"); 401 VPBlockUtils::insertBlockAfter(SplitBlock, this); 402 403 // Add successors for block to split to new block. 404 for (VPBlockBase *Succ : Succs) 405 VPBlockUtils::connectBlocks(SplitBlock, Succ); 406 407 // Finally, move the recipes starting at SplitAt to new block. 408 for (VPRecipeBase &ToMove : 409 make_early_inc_range(make_range(SplitAt, this->end()))) 410 ToMove.moveBefore(*SplitBlock, SplitBlock->end()); 411 412 return SplitBlock; 413 } 414 415 VPRegionBlock *VPBasicBlock::getEnclosingLoopRegion() { 416 VPRegionBlock *P = getParent(); 417 if (P && P->isReplicator()) { 418 P = P->getParent(); 419 assert(!cast<VPRegionBlock>(P)->isReplicator() && 420 "unexpected nested replicate regions"); 421 } 422 return P; 423 } 424 425 static bool hasConditionalTerminator(const VPBasicBlock *VPBB) { 426 if (VPBB->empty()) { 427 assert( 428 VPBB->getNumSuccessors() < 2 && 429 "block with multiple successors doesn't have a recipe as terminator"); 430 return false; 431 } 432 433 const VPRecipeBase *R = &VPBB->back(); 434 auto *VPI = dyn_cast<VPInstruction>(R); 435 bool IsCondBranch = 436 isa<VPBranchOnMaskRecipe>(R) || 437 (VPI && (VPI->getOpcode() == VPInstruction::BranchOnCond || 438 VPI->getOpcode() == VPInstruction::BranchOnCount)); 439 (void)IsCondBranch; 440 441 if (VPBB->getNumSuccessors() >= 2 || VPBB->isExiting()) { 442 assert(IsCondBranch && "block with multiple successors not terminated by " 443 "conditional branch recipe"); 444 445 return true; 446 } 447 448 assert( 449 !IsCondBranch && 450 "block with 0 or 1 successors terminated by conditional branch recipe"); 451 return false; 452 } 453 454 VPRecipeBase *VPBasicBlock::getTerminator() { 455 if (hasConditionalTerminator(this)) 456 return &back(); 457 return nullptr; 458 } 459 460 const VPRecipeBase *VPBasicBlock::getTerminator() const { 461 if (hasConditionalTerminator(this)) 462 return &back(); 463 return nullptr; 464 } 465 466 bool VPBasicBlock::isExiting() const { 467 return getParent()->getExitingBasicBlock() == this; 468 } 469 470 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 471 void VPBlockBase::printSuccessors(raw_ostream &O, const Twine &Indent) const { 472 if (getSuccessors().empty()) { 473 O << Indent << "No successors\n"; 474 } else { 475 O << Indent << "Successor(s): "; 476 ListSeparator LS; 477 for (auto *Succ : getSuccessors()) 478 O << LS << Succ->getName(); 479 O << '\n'; 480 } 481 } 482 483 void VPBasicBlock::print(raw_ostream &O, const Twine &Indent, 484 VPSlotTracker &SlotTracker) const { 485 O << Indent << getName() << ":\n"; 486 487 auto RecipeIndent = Indent + " "; 488 for (const VPRecipeBase &Recipe : *this) { 489 Recipe.print(O, RecipeIndent, SlotTracker); 490 O << '\n'; 491 } 492 493 printSuccessors(O, Indent); 494 } 495 #endif 496 497 void VPRegionBlock::dropAllReferences(VPValue *NewValue) { 498 for (VPBlockBase *Block : depth_first(Entry)) 499 // Drop all references in VPBasicBlocks and replace all uses with 500 // DummyValue. 501 Block->dropAllReferences(NewValue); 502 } 503 504 void VPRegionBlock::execute(VPTransformState *State) { 505 ReversePostOrderTraversal<VPBlockBase *> RPOT(Entry); 506 507 if (!isReplicator()) { 508 // Create and register the new vector loop. 509 Loop *PrevLoop = State->CurrentVectorLoop; 510 State->CurrentVectorLoop = State->LI->AllocateLoop(); 511 BasicBlock *VectorPH = State->CFG.VPBB2IRBB[getPreheaderVPBB()]; 512 Loop *ParentLoop = State->LI->getLoopFor(VectorPH); 513 514 // Insert the new loop into the loop nest and register the new basic blocks 515 // before calling any utilities such as SCEV that require valid LoopInfo. 516 if (ParentLoop) 517 ParentLoop->addChildLoop(State->CurrentVectorLoop); 518 else 519 State->LI->addTopLevelLoop(State->CurrentVectorLoop); 520 521 // Visit the VPBlocks connected to "this", starting from it. 522 for (VPBlockBase *Block : RPOT) { 523 LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n'); 524 Block->execute(State); 525 } 526 527 State->CurrentVectorLoop = PrevLoop; 528 return; 529 } 530 531 assert(!State->Instance && "Replicating a Region with non-null instance."); 532 533 // Enter replicating mode. 534 State->Instance = VPIteration(0, 0); 535 536 for (unsigned Part = 0, UF = State->UF; Part < UF; ++Part) { 537 State->Instance->Part = Part; 538 assert(!State->VF.isScalable() && "VF is assumed to be non scalable."); 539 for (unsigned Lane = 0, VF = State->VF.getKnownMinValue(); Lane < VF; 540 ++Lane) { 541 State->Instance->Lane = VPLane(Lane, VPLane::Kind::First); 542 // Visit the VPBlocks connected to \p this, starting from it. 543 for (VPBlockBase *Block : RPOT) { 544 LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n'); 545 Block->execute(State); 546 } 547 } 548 } 549 550 // Exit replicating mode. 551 State->Instance.reset(); 552 } 553 554 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 555 void VPRegionBlock::print(raw_ostream &O, const Twine &Indent, 556 VPSlotTracker &SlotTracker) const { 557 O << Indent << (isReplicator() ? "<xVFxUF> " : "<x1> ") << getName() << ": {"; 558 auto NewIndent = Indent + " "; 559 for (auto *BlockBase : depth_first(Entry)) { 560 O << '\n'; 561 BlockBase->print(O, NewIndent, SlotTracker); 562 } 563 O << Indent << "}\n"; 564 565 printSuccessors(O, Indent); 566 } 567 #endif 568 569 void VPlan::prepareToExecute(Value *TripCountV, Value *VectorTripCountV, 570 Value *CanonicalIVStartValue, 571 VPTransformState &State, 572 bool IsEpilogueVectorization) { 573 574 VPBasicBlock *ExitingVPBB = getVectorLoopRegion()->getExitingBasicBlock(); 575 auto *Term = dyn_cast<VPInstruction>(&ExitingVPBB->back()); 576 // Try to simplify BranchOnCount to 'BranchOnCond true' if TC <= VF * UF when 577 // preparing to execute the plan for the main vector loop. 578 if (!IsEpilogueVectorization && Term && 579 Term->getOpcode() == VPInstruction::BranchOnCount && 580 isa<ConstantInt>(TripCountV)) { 581 ConstantInt *C = cast<ConstantInt>(TripCountV); 582 uint64_t TCVal = C->getZExtValue(); 583 if (TCVal && TCVal <= State.VF.getKnownMinValue() * State.UF) { 584 auto *BOC = 585 new VPInstruction(VPInstruction::BranchOnCond, 586 {getOrAddExternalDef(State.Builder.getTrue())}); 587 Term->eraseFromParent(); 588 ExitingVPBB->appendRecipe(BOC); 589 // TODO: Further simplifications are possible 590 // 1. Replace inductions with constants. 591 // 2. Replace vector loop region with VPBasicBlock. 592 } 593 } 594 595 // Check if the trip count is needed, and if so build it. 596 if (TripCount && TripCount->getNumUsers()) { 597 for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part) 598 State.set(TripCount, TripCountV, Part); 599 } 600 601 // Check if the backedge taken count is needed, and if so build it. 602 if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) { 603 IRBuilder<> Builder(State.CFG.PrevBB->getTerminator()); 604 auto *TCMO = Builder.CreateSub(TripCountV, 605 ConstantInt::get(TripCountV->getType(), 1), 606 "trip.count.minus.1"); 607 auto VF = State.VF; 608 Value *VTCMO = 609 VF.isScalar() ? TCMO : Builder.CreateVectorSplat(VF, TCMO, "broadcast"); 610 for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part) 611 State.set(BackedgeTakenCount, VTCMO, Part); 612 } 613 614 for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part) 615 State.set(&VectorTripCount, VectorTripCountV, Part); 616 617 // When vectorizing the epilogue loop, the canonical induction start value 618 // needs to be changed from zero to the value after the main vector loop. 619 if (CanonicalIVStartValue) { 620 VPValue *VPV = getOrAddExternalDef(CanonicalIVStartValue); 621 auto *IV = getCanonicalIV(); 622 assert(all_of(IV->users(), 623 [](const VPUser *U) { 624 if (isa<VPScalarIVStepsRecipe>(U)) 625 return true; 626 auto *VPI = cast<VPInstruction>(U); 627 return VPI->getOpcode() == 628 VPInstruction::CanonicalIVIncrement || 629 VPI->getOpcode() == 630 VPInstruction::CanonicalIVIncrementNUW; 631 }) && 632 "the canonical IV should only be used by its increments or " 633 "ScalarIVSteps when " 634 "resetting the start value"); 635 IV->setOperand(0, VPV); 636 } 637 } 638 639 /// Generate the code inside the preheader and body of the vectorized loop. 640 /// Assumes a single pre-header basic-block was created for this. Introduce 641 /// additional basic-blocks as needed, and fill them all. 642 void VPlan::execute(VPTransformState *State) { 643 // Set the reverse mapping from VPValues to Values for code generation. 644 for (auto &Entry : Value2VPValue) 645 State->VPValue2Value[Entry.second] = Entry.first; 646 647 // Initialize CFG state. 648 State->CFG.PrevVPBB = nullptr; 649 State->CFG.ExitBB = State->CFG.PrevBB->getSingleSuccessor(); 650 BasicBlock *VectorPreHeader = State->CFG.PrevBB; 651 State->Builder.SetInsertPoint(VectorPreHeader->getTerminator()); 652 653 // Generate code in the loop pre-header and body. 654 for (VPBlockBase *Block : depth_first(Entry)) 655 Block->execute(State); 656 657 VPBasicBlock *LatchVPBB = getVectorLoopRegion()->getExitingBasicBlock(); 658 BasicBlock *VectorLatchBB = State->CFG.VPBB2IRBB[LatchVPBB]; 659 660 // Fix the latch value of canonical, reduction and first-order recurrences 661 // phis in the vector loop. 662 VPBasicBlock *Header = getVectorLoopRegion()->getEntryBasicBlock(); 663 for (VPRecipeBase &R : Header->phis()) { 664 // Skip phi-like recipes that generate their backedege values themselves. 665 if (isa<VPWidenPHIRecipe>(&R)) 666 continue; 667 668 if (isa<VPWidenPointerInductionRecipe>(&R) || 669 isa<VPWidenIntOrFpInductionRecipe>(&R)) { 670 PHINode *Phi = nullptr; 671 if (isa<VPWidenIntOrFpInductionRecipe>(&R)) { 672 Phi = cast<PHINode>(State->get(R.getVPSingleValue(), 0)); 673 } else { 674 auto *WidenPhi = cast<VPWidenPointerInductionRecipe>(&R); 675 // TODO: Split off the case that all users of a pointer phi are scalar 676 // from the VPWidenPointerInductionRecipe. 677 if (WidenPhi->onlyScalarsGenerated(State->VF)) 678 continue; 679 680 auto *GEP = cast<GetElementPtrInst>(State->get(WidenPhi, 0)); 681 Phi = cast<PHINode>(GEP->getPointerOperand()); 682 } 683 684 Phi->setIncomingBlock(1, VectorLatchBB); 685 686 // Move the last step to the end of the latch block. This ensures 687 // consistent placement of all induction updates. 688 Instruction *Inc = cast<Instruction>(Phi->getIncomingValue(1)); 689 Inc->moveBefore(VectorLatchBB->getTerminator()->getPrevNode()); 690 continue; 691 } 692 693 auto *PhiR = cast<VPHeaderPHIRecipe>(&R); 694 // For canonical IV, first-order recurrences and in-order reduction phis, 695 // only a single part is generated, which provides the last part from the 696 // previous iteration. For non-ordered reductions all UF parts are 697 // generated. 698 bool SinglePartNeeded = isa<VPCanonicalIVPHIRecipe>(PhiR) || 699 isa<VPFirstOrderRecurrencePHIRecipe>(PhiR) || 700 cast<VPReductionPHIRecipe>(PhiR)->isOrdered(); 701 unsigned LastPartForNewPhi = SinglePartNeeded ? 1 : State->UF; 702 703 for (unsigned Part = 0; Part < LastPartForNewPhi; ++Part) { 704 Value *Phi = State->get(PhiR, Part); 705 Value *Val = State->get(PhiR->getBackedgeValue(), 706 SinglePartNeeded ? State->UF - 1 : Part); 707 cast<PHINode>(Phi)->addIncoming(Val, VectorLatchBB); 708 } 709 } 710 711 // We do not attempt to preserve DT for outer loop vectorization currently. 712 if (!EnableVPlanNativePath) { 713 BasicBlock *VectorHeaderBB = State->CFG.VPBB2IRBB[Header]; 714 State->DT->addNewBlock(VectorHeaderBB, VectorPreHeader); 715 updateDominatorTree(State->DT, VectorHeaderBB, VectorLatchBB, 716 State->CFG.ExitBB); 717 } 718 } 719 720 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 721 LLVM_DUMP_METHOD 722 void VPlan::print(raw_ostream &O) const { 723 VPSlotTracker SlotTracker(this); 724 725 O << "VPlan '" << Name << "' {"; 726 727 if (VectorTripCount.getNumUsers() > 0) { 728 O << "\nLive-in "; 729 VectorTripCount.printAsOperand(O, SlotTracker); 730 O << " = vector-trip-count\n"; 731 } 732 733 if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) { 734 O << "\nLive-in "; 735 BackedgeTakenCount->printAsOperand(O, SlotTracker); 736 O << " = backedge-taken count\n"; 737 } 738 739 for (const VPBlockBase *Block : depth_first(getEntry())) { 740 O << '\n'; 741 Block->print(O, "", SlotTracker); 742 } 743 744 if (!LiveOuts.empty()) 745 O << "\n"; 746 for (auto &KV : LiveOuts) { 747 O << "Live-out "; 748 KV.second->getPhi()->printAsOperand(O); 749 O << " = "; 750 KV.second->getOperand(0)->printAsOperand(O, SlotTracker); 751 O << "\n"; 752 } 753 754 O << "}\n"; 755 } 756 757 LLVM_DUMP_METHOD 758 void VPlan::printDOT(raw_ostream &O) const { 759 VPlanPrinter Printer(O, *this); 760 Printer.dump(); 761 } 762 763 LLVM_DUMP_METHOD 764 void VPlan::dump() const { print(dbgs()); } 765 #endif 766 767 void VPlan::addLiveOut(PHINode *PN, VPValue *V) { 768 assert(LiveOuts.count(PN) == 0 && "an exit value for PN already exists"); 769 LiveOuts.insert({PN, new VPLiveOut(PN, V)}); 770 } 771 772 void VPlan::updateDominatorTree(DominatorTree *DT, BasicBlock *LoopHeaderBB, 773 BasicBlock *LoopLatchBB, 774 BasicBlock *LoopExitBB) { 775 // The vector body may be more than a single basic-block by this point. 776 // Update the dominator tree information inside the vector body by propagating 777 // it from header to latch, expecting only triangular control-flow, if any. 778 BasicBlock *PostDomSucc = nullptr; 779 for (auto *BB = LoopHeaderBB; BB != LoopLatchBB; BB = PostDomSucc) { 780 // Get the list of successors of this block. 781 std::vector<BasicBlock *> Succs(succ_begin(BB), succ_end(BB)); 782 assert(Succs.size() <= 2 && 783 "Basic block in vector loop has more than 2 successors."); 784 PostDomSucc = Succs[0]; 785 if (Succs.size() == 1) { 786 assert(PostDomSucc->getSinglePredecessor() && 787 "PostDom successor has more than one predecessor."); 788 DT->addNewBlock(PostDomSucc, BB); 789 continue; 790 } 791 BasicBlock *InterimSucc = Succs[1]; 792 if (PostDomSucc->getSingleSuccessor() == InterimSucc) { 793 PostDomSucc = Succs[1]; 794 InterimSucc = Succs[0]; 795 } 796 assert(InterimSucc->getSingleSuccessor() == PostDomSucc && 797 "One successor of a basic block does not lead to the other."); 798 assert(InterimSucc->getSinglePredecessor() && 799 "Interim successor has more than one predecessor."); 800 assert(PostDomSucc->hasNPredecessors(2) && 801 "PostDom successor has more than two predecessors."); 802 DT->addNewBlock(InterimSucc, BB); 803 DT->addNewBlock(PostDomSucc, BB); 804 } 805 // Latch block is a new dominator for the loop exit. 806 DT->changeImmediateDominator(LoopExitBB, LoopLatchBB); 807 assert(DT->verify(DominatorTree::VerificationLevel::Fast)); 808 } 809 810 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 811 812 Twine VPlanPrinter::getUID(const VPBlockBase *Block) { 813 return (isa<VPRegionBlock>(Block) ? "cluster_N" : "N") + 814 Twine(getOrCreateBID(Block)); 815 } 816 817 Twine VPlanPrinter::getOrCreateName(const VPBlockBase *Block) { 818 const std::string &Name = Block->getName(); 819 if (!Name.empty()) 820 return Name; 821 return "VPB" + Twine(getOrCreateBID(Block)); 822 } 823 824 void VPlanPrinter::dump() { 825 Depth = 1; 826 bumpIndent(0); 827 OS << "digraph VPlan {\n"; 828 OS << "graph [labelloc=t, fontsize=30; label=\"Vectorization Plan"; 829 if (!Plan.getName().empty()) 830 OS << "\\n" << DOT::EscapeString(Plan.getName()); 831 if (Plan.BackedgeTakenCount) { 832 OS << ", where:\\n"; 833 Plan.BackedgeTakenCount->print(OS, SlotTracker); 834 OS << " := BackedgeTakenCount"; 835 } 836 OS << "\"]\n"; 837 OS << "node [shape=rect, fontname=Courier, fontsize=30]\n"; 838 OS << "edge [fontname=Courier, fontsize=30]\n"; 839 OS << "compound=true\n"; 840 841 for (const VPBlockBase *Block : depth_first(Plan.getEntry())) 842 dumpBlock(Block); 843 844 OS << "}\n"; 845 } 846 847 void VPlanPrinter::dumpBlock(const VPBlockBase *Block) { 848 if (const VPBasicBlock *BasicBlock = dyn_cast<VPBasicBlock>(Block)) 849 dumpBasicBlock(BasicBlock); 850 else if (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 851 dumpRegion(Region); 852 else 853 llvm_unreachable("Unsupported kind of VPBlock."); 854 } 855 856 void VPlanPrinter::drawEdge(const VPBlockBase *From, const VPBlockBase *To, 857 bool Hidden, const Twine &Label) { 858 // Due to "dot" we print an edge between two regions as an edge between the 859 // exiting basic block and the entry basic of the respective regions. 860 const VPBlockBase *Tail = From->getExitingBasicBlock(); 861 const VPBlockBase *Head = To->getEntryBasicBlock(); 862 OS << Indent << getUID(Tail) << " -> " << getUID(Head); 863 OS << " [ label=\"" << Label << '\"'; 864 if (Tail != From) 865 OS << " ltail=" << getUID(From); 866 if (Head != To) 867 OS << " lhead=" << getUID(To); 868 if (Hidden) 869 OS << "; splines=none"; 870 OS << "]\n"; 871 } 872 873 void VPlanPrinter::dumpEdges(const VPBlockBase *Block) { 874 auto &Successors = Block->getSuccessors(); 875 if (Successors.size() == 1) 876 drawEdge(Block, Successors.front(), false, ""); 877 else if (Successors.size() == 2) { 878 drawEdge(Block, Successors.front(), false, "T"); 879 drawEdge(Block, Successors.back(), false, "F"); 880 } else { 881 unsigned SuccessorNumber = 0; 882 for (auto *Successor : Successors) 883 drawEdge(Block, Successor, false, Twine(SuccessorNumber++)); 884 } 885 } 886 887 void VPlanPrinter::dumpBasicBlock(const VPBasicBlock *BasicBlock) { 888 // Implement dot-formatted dump by performing plain-text dump into the 889 // temporary storage followed by some post-processing. 890 OS << Indent << getUID(BasicBlock) << " [label =\n"; 891 bumpIndent(1); 892 std::string Str; 893 raw_string_ostream SS(Str); 894 // Use no indentation as we need to wrap the lines into quotes ourselves. 895 BasicBlock->print(SS, "", SlotTracker); 896 897 // We need to process each line of the output separately, so split 898 // single-string plain-text dump. 899 SmallVector<StringRef, 0> Lines; 900 StringRef(Str).rtrim('\n').split(Lines, "\n"); 901 902 auto EmitLine = [&](StringRef Line, StringRef Suffix) { 903 OS << Indent << '"' << DOT::EscapeString(Line.str()) << "\\l\"" << Suffix; 904 }; 905 906 // Don't need the "+" after the last line. 907 for (auto Line : make_range(Lines.begin(), Lines.end() - 1)) 908 EmitLine(Line, " +\n"); 909 EmitLine(Lines.back(), "\n"); 910 911 bumpIndent(-1); 912 OS << Indent << "]\n"; 913 914 dumpEdges(BasicBlock); 915 } 916 917 void VPlanPrinter::dumpRegion(const VPRegionBlock *Region) { 918 OS << Indent << "subgraph " << getUID(Region) << " {\n"; 919 bumpIndent(1); 920 OS << Indent << "fontname=Courier\n" 921 << Indent << "label=\"" 922 << DOT::EscapeString(Region->isReplicator() ? "<xVFxUF> " : "<x1> ") 923 << DOT::EscapeString(Region->getName()) << "\"\n"; 924 // Dump the blocks of the region. 925 assert(Region->getEntry() && "Region contains no inner blocks."); 926 for (const VPBlockBase *Block : depth_first(Region->getEntry())) 927 dumpBlock(Block); 928 bumpIndent(-1); 929 OS << Indent << "}\n"; 930 dumpEdges(Region); 931 } 932 933 void VPlanIngredient::print(raw_ostream &O) const { 934 if (auto *Inst = dyn_cast<Instruction>(V)) { 935 if (!Inst->getType()->isVoidTy()) { 936 Inst->printAsOperand(O, false); 937 O << " = "; 938 } 939 O << Inst->getOpcodeName() << " "; 940 unsigned E = Inst->getNumOperands(); 941 if (E > 0) { 942 Inst->getOperand(0)->printAsOperand(O, false); 943 for (unsigned I = 1; I < E; ++I) 944 Inst->getOperand(I)->printAsOperand(O << ", ", false); 945 } 946 } else // !Inst 947 V->printAsOperand(O, false); 948 } 949 950 #endif 951 952 template void DomTreeBuilder::Calculate<VPDominatorTree>(VPDominatorTree &DT); 953 954 void VPValue::replaceAllUsesWith(VPValue *New) { 955 for (unsigned J = 0; J < getNumUsers();) { 956 VPUser *User = Users[J]; 957 unsigned NumUsers = getNumUsers(); 958 for (unsigned I = 0, E = User->getNumOperands(); I < E; ++I) 959 if (User->getOperand(I) == this) 960 User->setOperand(I, New); 961 // If a user got removed after updating the current user, the next user to 962 // update will be moved to the current position, so we only need to 963 // increment the index if the number of users did not change. 964 if (NumUsers == getNumUsers()) 965 J++; 966 } 967 } 968 969 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 970 void VPValue::printAsOperand(raw_ostream &OS, VPSlotTracker &Tracker) const { 971 if (const Value *UV = getUnderlyingValue()) { 972 OS << "ir<"; 973 UV->printAsOperand(OS, false); 974 OS << ">"; 975 return; 976 } 977 978 unsigned Slot = Tracker.getSlot(this); 979 if (Slot == unsigned(-1)) 980 OS << "<badref>"; 981 else 982 OS << "vp<%" << Tracker.getSlot(this) << ">"; 983 } 984 985 void VPUser::printOperands(raw_ostream &O, VPSlotTracker &SlotTracker) const { 986 interleaveComma(operands(), O, [&O, &SlotTracker](VPValue *Op) { 987 Op->printAsOperand(O, SlotTracker); 988 }); 989 } 990 #endif 991 992 void VPInterleavedAccessInfo::visitRegion(VPRegionBlock *Region, 993 Old2NewTy &Old2New, 994 InterleavedAccessInfo &IAI) { 995 ReversePostOrderTraversal<VPBlockBase *> RPOT(Region->getEntry()); 996 for (VPBlockBase *Base : RPOT) { 997 visitBlock(Base, Old2New, IAI); 998 } 999 } 1000 1001 void VPInterleavedAccessInfo::visitBlock(VPBlockBase *Block, Old2NewTy &Old2New, 1002 InterleavedAccessInfo &IAI) { 1003 if (VPBasicBlock *VPBB = dyn_cast<VPBasicBlock>(Block)) { 1004 for (VPRecipeBase &VPI : *VPBB) { 1005 if (isa<VPHeaderPHIRecipe>(&VPI)) 1006 continue; 1007 assert(isa<VPInstruction>(&VPI) && "Can only handle VPInstructions"); 1008 auto *VPInst = cast<VPInstruction>(&VPI); 1009 1010 auto *Inst = dyn_cast_or_null<Instruction>(VPInst->getUnderlyingValue()); 1011 if (!Inst) 1012 continue; 1013 auto *IG = IAI.getInterleaveGroup(Inst); 1014 if (!IG) 1015 continue; 1016 1017 auto NewIGIter = Old2New.find(IG); 1018 if (NewIGIter == Old2New.end()) 1019 Old2New[IG] = new InterleaveGroup<VPInstruction>( 1020 IG->getFactor(), IG->isReverse(), IG->getAlign()); 1021 1022 if (Inst == IG->getInsertPos()) 1023 Old2New[IG]->setInsertPos(VPInst); 1024 1025 InterleaveGroupMap[VPInst] = Old2New[IG]; 1026 InterleaveGroupMap[VPInst]->insertMember( 1027 VPInst, IG->getIndex(Inst), 1028 Align(IG->isReverse() ? (-1) * int(IG->getFactor()) 1029 : IG->getFactor())); 1030 } 1031 } else if (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 1032 visitRegion(Region, Old2New, IAI); 1033 else 1034 llvm_unreachable("Unsupported kind of VPBlock."); 1035 } 1036 1037 VPInterleavedAccessInfo::VPInterleavedAccessInfo(VPlan &Plan, 1038 InterleavedAccessInfo &IAI) { 1039 Old2NewTy Old2New; 1040 visitRegion(Plan.getVectorLoopRegion(), Old2New, IAI); 1041 } 1042 1043 void VPSlotTracker::assignSlot(const VPValue *V) { 1044 assert(Slots.find(V) == Slots.end() && "VPValue already has a slot!"); 1045 Slots[V] = NextSlot++; 1046 } 1047 1048 void VPSlotTracker::assignSlots(const VPlan &Plan) { 1049 1050 for (const auto &P : Plan.VPExternalDefs) 1051 assignSlot(P.second); 1052 1053 assignSlot(&Plan.VectorTripCount); 1054 if (Plan.BackedgeTakenCount) 1055 assignSlot(Plan.BackedgeTakenCount); 1056 1057 ReversePostOrderTraversal< 1058 VPBlockRecursiveTraversalWrapper<const VPBlockBase *>> 1059 RPOT(VPBlockRecursiveTraversalWrapper<const VPBlockBase *>( 1060 Plan.getEntry())); 1061 for (const VPBasicBlock *VPBB : 1062 VPBlockUtils::blocksOnly<const VPBasicBlock>(RPOT)) 1063 for (const VPRecipeBase &Recipe : *VPBB) 1064 for (VPValue *Def : Recipe.definedValues()) 1065 assignSlot(Def); 1066 } 1067 1068 bool vputils::onlyFirstLaneUsed(VPValue *Def) { 1069 return all_of(Def->users(), 1070 [Def](VPUser *U) { return U->onlyFirstLaneUsed(Def); }); 1071 } 1072 1073 VPValue *vputils::getOrCreateVPValueForSCEVExpr(VPlan &Plan, const SCEV *Expr, 1074 ScalarEvolution &SE) { 1075 if (auto *E = dyn_cast<SCEVConstant>(Expr)) 1076 return Plan.getOrAddExternalDef(E->getValue()); 1077 if (auto *E = dyn_cast<SCEVUnknown>(Expr)) 1078 return Plan.getOrAddExternalDef(E->getValue()); 1079 1080 VPBasicBlock *Preheader = Plan.getEntry()->getEntryBasicBlock(); 1081 VPValue *Step = new VPExpandSCEVRecipe(Expr, SE); 1082 Preheader->appendRecipe(cast<VPRecipeBase>(Step->getDef())); 1083 return Step; 1084 } 1085