1 //===- VPlan.cpp - Vectorizer Plan ----------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 /// 10 /// \file 11 /// This is the LLVM vectorization plan. It represents a candidate for 12 /// vectorization, allowing to plan and optimize how to vectorize a given loop 13 /// before generating LLVM-IR. 14 /// The vectorizer uses vectorization plans to estimate the costs of potential 15 /// candidates and if profitable to execute the desired plan, generating vector 16 /// LLVM-IR code. 17 /// 18 //===----------------------------------------------------------------------===// 19 20 #include "VPlan.h" 21 #include "VPlanDominatorTree.h" 22 #include "llvm/ADT/DepthFirstIterator.h" 23 #include "llvm/ADT/PostOrderIterator.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/Twine.h" 26 #include "llvm/Analysis/LoopInfo.h" 27 #include "llvm/IR/BasicBlock.h" 28 #include "llvm/IR/CFG.h" 29 #include "llvm/IR/InstrTypes.h" 30 #include "llvm/IR/Instruction.h" 31 #include "llvm/IR/Instructions.h" 32 #include "llvm/IR/Type.h" 33 #include "llvm/IR/Value.h" 34 #include "llvm/Support/Casting.h" 35 #include "llvm/Support/Debug.h" 36 #include "llvm/Support/ErrorHandling.h" 37 #include "llvm/Support/GenericDomTreeConstruction.h" 38 #include "llvm/Support/GraphWriter.h" 39 #include "llvm/Support/raw_ostream.h" 40 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 41 #include <cassert> 42 #include <iterator> 43 #include <string> 44 #include <vector> 45 46 using namespace llvm; 47 extern cl::opt<bool> EnableVPlanNativePath; 48 49 #define DEBUG_TYPE "vplan" 50 51 raw_ostream &llvm::operator<<(raw_ostream &OS, const VPValue &V) { 52 if (const VPInstruction *Instr = dyn_cast<VPInstruction>(&V)) 53 Instr->print(OS); 54 else 55 V.printAsOperand(OS); 56 return OS; 57 } 58 59 /// \return the VPBasicBlock that is the entry of Block, possibly indirectly. 60 const VPBasicBlock *VPBlockBase::getEntryBasicBlock() const { 61 const VPBlockBase *Block = this; 62 while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 63 Block = Region->getEntry(); 64 return cast<VPBasicBlock>(Block); 65 } 66 67 VPBasicBlock *VPBlockBase::getEntryBasicBlock() { 68 VPBlockBase *Block = this; 69 while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 70 Block = Region->getEntry(); 71 return cast<VPBasicBlock>(Block); 72 } 73 74 /// \return the VPBasicBlock that is the exit of Block, possibly indirectly. 75 const VPBasicBlock *VPBlockBase::getExitBasicBlock() const { 76 const VPBlockBase *Block = this; 77 while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 78 Block = Region->getExit(); 79 return cast<VPBasicBlock>(Block); 80 } 81 82 VPBasicBlock *VPBlockBase::getExitBasicBlock() { 83 VPBlockBase *Block = this; 84 while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 85 Block = Region->getExit(); 86 return cast<VPBasicBlock>(Block); 87 } 88 89 VPBlockBase *VPBlockBase::getEnclosingBlockWithSuccessors() { 90 if (!Successors.empty() || !Parent) 91 return this; 92 assert(Parent->getExit() == this && 93 "Block w/o successors not the exit of its parent."); 94 return Parent->getEnclosingBlockWithSuccessors(); 95 } 96 97 VPBlockBase *VPBlockBase::getEnclosingBlockWithPredecessors() { 98 if (!Predecessors.empty() || !Parent) 99 return this; 100 assert(Parent->getEntry() == this && 101 "Block w/o predecessors not the entry of its parent."); 102 return Parent->getEnclosingBlockWithPredecessors(); 103 } 104 105 void VPBlockBase::deleteCFG(VPBlockBase *Entry) { 106 SmallVector<VPBlockBase *, 8> Blocks; 107 for (VPBlockBase *Block : depth_first(Entry)) 108 Blocks.push_back(Block); 109 110 for (VPBlockBase *Block : Blocks) 111 delete Block; 112 } 113 114 BasicBlock * 115 VPBasicBlock::createEmptyBasicBlock(VPTransformState::CFGState &CFG) { 116 // BB stands for IR BasicBlocks. VPBB stands for VPlan VPBasicBlocks. 117 // Pred stands for Predessor. Prev stands for Previous - last visited/created. 118 BasicBlock *PrevBB = CFG.PrevBB; 119 BasicBlock *NewBB = BasicBlock::Create(PrevBB->getContext(), getName(), 120 PrevBB->getParent(), CFG.LastBB); 121 LLVM_DEBUG(dbgs() << "LV: created " << NewBB->getName() << '\n'); 122 123 // Hook up the new basic block to its predecessors. 124 for (VPBlockBase *PredVPBlock : getHierarchicalPredecessors()) { 125 VPBasicBlock *PredVPBB = PredVPBlock->getExitBasicBlock(); 126 auto &PredVPSuccessors = PredVPBB->getSuccessors(); 127 BasicBlock *PredBB = CFG.VPBB2IRBB[PredVPBB]; 128 129 // In outer loop vectorization scenario, the predecessor BBlock may not yet 130 // be visited(backedge). Mark the VPBasicBlock for fixup at the end of 131 // vectorization. We do not encounter this case in inner loop vectorization 132 // as we start out by building a loop skeleton with the vector loop header 133 // and latch blocks. As a result, we never enter this function for the 134 // header block in the non VPlan-native path. 135 if (!PredBB) { 136 assert(EnableVPlanNativePath && 137 "Unexpected null predecessor in non VPlan-native path"); 138 CFG.VPBBsToFix.push_back(PredVPBB); 139 continue; 140 } 141 142 assert(PredBB && "Predecessor basic-block not found building successor."); 143 auto *PredBBTerminator = PredBB->getTerminator(); 144 LLVM_DEBUG(dbgs() << "LV: draw edge from" << PredBB->getName() << '\n'); 145 if (isa<UnreachableInst>(PredBBTerminator)) { 146 assert(PredVPSuccessors.size() == 1 && 147 "Predecessor ending w/o branch must have single successor."); 148 PredBBTerminator->eraseFromParent(); 149 BranchInst::Create(NewBB, PredBB); 150 } else { 151 assert(PredVPSuccessors.size() == 2 && 152 "Predecessor ending with branch must have two successors."); 153 unsigned idx = PredVPSuccessors.front() == this ? 0 : 1; 154 assert(!PredBBTerminator->getSuccessor(idx) && 155 "Trying to reset an existing successor block."); 156 PredBBTerminator->setSuccessor(idx, NewBB); 157 } 158 } 159 return NewBB; 160 } 161 162 void VPBasicBlock::execute(VPTransformState *State) { 163 bool Replica = State->Instance && 164 !(State->Instance->Part == 0 && State->Instance->Lane == 0); 165 VPBasicBlock *PrevVPBB = State->CFG.PrevVPBB; 166 VPBlockBase *SingleHPred = nullptr; 167 BasicBlock *NewBB = State->CFG.PrevBB; // Reuse it if possible. 168 169 // 1. Create an IR basic block, or reuse the last one if possible. 170 // The last IR basic block is reused, as an optimization, in three cases: 171 // A. the first VPBB reuses the loop header BB - when PrevVPBB is null; 172 // B. when the current VPBB has a single (hierarchical) predecessor which 173 // is PrevVPBB and the latter has a single (hierarchical) successor; and 174 // C. when the current VPBB is an entry of a region replica - where PrevVPBB 175 // is the exit of this region from a previous instance, or the predecessor 176 // of this region. 177 if (PrevVPBB && /* A */ 178 !((SingleHPred = getSingleHierarchicalPredecessor()) && 179 SingleHPred->getExitBasicBlock() == PrevVPBB && 180 PrevVPBB->getSingleHierarchicalSuccessor()) && /* B */ 181 !(Replica && getPredecessors().empty())) { /* C */ 182 NewBB = createEmptyBasicBlock(State->CFG); 183 State->Builder.SetInsertPoint(NewBB); 184 // Temporarily terminate with unreachable until CFG is rewired. 185 UnreachableInst *Terminator = State->Builder.CreateUnreachable(); 186 State->Builder.SetInsertPoint(Terminator); 187 // Register NewBB in its loop. In innermost loops its the same for all BB's. 188 Loop *L = State->LI->getLoopFor(State->CFG.LastBB); 189 L->addBasicBlockToLoop(NewBB, *State->LI); 190 State->CFG.PrevBB = NewBB; 191 } 192 193 // 2. Fill the IR basic block with IR instructions. 194 LLVM_DEBUG(dbgs() << "LV: vectorizing VPBB:" << getName() 195 << " in BB:" << NewBB->getName() << '\n'); 196 197 State->CFG.VPBB2IRBB[this] = NewBB; 198 State->CFG.PrevVPBB = this; 199 200 for (VPRecipeBase &Recipe : Recipes) 201 Recipe.execute(*State); 202 203 VPValue *CBV; 204 if (EnableVPlanNativePath && (CBV = getCondBit())) { 205 Value *IRCBV = CBV->getUnderlyingValue(); 206 assert(IRCBV && "Unexpected null underlying value for condition bit"); 207 208 // Condition bit value in a VPBasicBlock is used as the branch selector. In 209 // the VPlan-native path case, since all branches are uniform we generate a 210 // branch instruction using the condition value from vector lane 0 and dummy 211 // successors. The successors are fixed later when the successor blocks are 212 // visited. 213 Value *NewCond = State->Callback.getOrCreateVectorValues(IRCBV, 0); 214 NewCond = State->Builder.CreateExtractElement(NewCond, 215 State->Builder.getInt32(0)); 216 217 // Replace the temporary unreachable terminator with the new conditional 218 // branch. 219 auto *CurrentTerminator = NewBB->getTerminator(); 220 assert(isa<UnreachableInst>(CurrentTerminator) && 221 "Expected to replace unreachable terminator with conditional " 222 "branch."); 223 auto *CondBr = BranchInst::Create(NewBB, nullptr, NewCond); 224 CondBr->setSuccessor(0, nullptr); 225 ReplaceInstWithInst(CurrentTerminator, CondBr); 226 } 227 228 LLVM_DEBUG(dbgs() << "LV: filled BB:" << *NewBB); 229 } 230 231 void VPRegionBlock::execute(VPTransformState *State) { 232 ReversePostOrderTraversal<VPBlockBase *> RPOT(Entry); 233 234 if (!isReplicator()) { 235 // Visit the VPBlocks connected to "this", starting from it. 236 for (VPBlockBase *Block : RPOT) { 237 if (EnableVPlanNativePath) { 238 // The inner loop vectorization path does not represent loop preheader 239 // and exit blocks as part of the VPlan. In the VPlan-native path, skip 240 // vectorizing loop preheader block. In future, we may replace this 241 // check with the check for loop preheader. 242 if (Block->getNumPredecessors() == 0) 243 continue; 244 245 // Skip vectorizing loop exit block. In future, we may replace this 246 // check with the check for loop exit. 247 if (Block->getNumSuccessors() == 0) 248 continue; 249 } 250 251 LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n'); 252 Block->execute(State); 253 } 254 return; 255 } 256 257 assert(!State->Instance && "Replicating a Region with non-null instance."); 258 259 // Enter replicating mode. 260 State->Instance = {0, 0}; 261 262 for (unsigned Part = 0, UF = State->UF; Part < UF; ++Part) { 263 State->Instance->Part = Part; 264 for (unsigned Lane = 0, VF = State->VF; Lane < VF; ++Lane) { 265 State->Instance->Lane = Lane; 266 // Visit the VPBlocks connected to \p this, starting from it. 267 for (VPBlockBase *Block : RPOT) { 268 LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n'); 269 Block->execute(State); 270 } 271 } 272 } 273 274 // Exit replicating mode. 275 State->Instance.reset(); 276 } 277 278 void VPRecipeBase::insertBefore(VPRecipeBase *InsertPos) { 279 Parent = InsertPos->getParent(); 280 Parent->getRecipeList().insert(InsertPos->getIterator(), this); 281 } 282 283 iplist<VPRecipeBase>::iterator VPRecipeBase::eraseFromParent() { 284 return getParent()->getRecipeList().erase(getIterator()); 285 } 286 287 void VPInstruction::generateInstruction(VPTransformState &State, 288 unsigned Part) { 289 IRBuilder<> &Builder = State.Builder; 290 291 if (Instruction::isBinaryOp(getOpcode())) { 292 Value *A = State.get(getOperand(0), Part); 293 Value *B = State.get(getOperand(1), Part); 294 Value *V = Builder.CreateBinOp((Instruction::BinaryOps)getOpcode(), A, B); 295 State.set(this, V, Part); 296 return; 297 } 298 299 switch (getOpcode()) { 300 case VPInstruction::Not: { 301 Value *A = State.get(getOperand(0), Part); 302 Value *V = Builder.CreateNot(A); 303 State.set(this, V, Part); 304 break; 305 } 306 case VPInstruction::ICmpULE: { 307 Value *IV = State.get(getOperand(0), Part); 308 Value *TC = State.get(getOperand(1), Part); 309 Value *V = Builder.CreateICmpULE(IV, TC); 310 State.set(this, V, Part); 311 break; 312 } 313 default: 314 llvm_unreachable("Unsupported opcode for instruction"); 315 } 316 } 317 318 void VPInstruction::execute(VPTransformState &State) { 319 assert(!State.Instance && "VPInstruction executing an Instance"); 320 for (unsigned Part = 0; Part < State.UF; ++Part) 321 generateInstruction(State, Part); 322 } 323 324 void VPInstruction::print(raw_ostream &O, const Twine &Indent) const { 325 O << " +\n" << Indent << "\"EMIT "; 326 print(O); 327 O << "\\l\""; 328 } 329 330 void VPInstruction::print(raw_ostream &O) const { 331 printAsOperand(O); 332 O << " = "; 333 334 switch (getOpcode()) { 335 case VPInstruction::Not: 336 O << "not"; 337 break; 338 case VPInstruction::ICmpULE: 339 O << "icmp ule"; 340 break; 341 default: 342 O << Instruction::getOpcodeName(getOpcode()); 343 } 344 345 for (const VPValue *Operand : operands()) { 346 O << " "; 347 Operand->printAsOperand(O); 348 } 349 } 350 351 /// Generate the code inside the body of the vectorized loop. Assumes a single 352 /// LoopVectorBody basic-block was created for this. Introduce additional 353 /// basic-blocks as needed, and fill them all. 354 void VPlan::execute(VPTransformState *State) { 355 // -1. Check if the backedge taken count is needed, and if so build it. 356 if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) { 357 Value *TC = State->TripCount; 358 IRBuilder<> Builder(State->CFG.PrevBB->getTerminator()); 359 auto *TCMO = Builder.CreateSub(TC, ConstantInt::get(TC->getType(), 1), 360 "trip.count.minus.1"); 361 Value2VPValue[TCMO] = BackedgeTakenCount; 362 } 363 364 // 0. Set the reverse mapping from VPValues to Values for code generation. 365 for (auto &Entry : Value2VPValue) 366 State->VPValue2Value[Entry.second] = Entry.first; 367 368 BasicBlock *VectorPreHeaderBB = State->CFG.PrevBB; 369 BasicBlock *VectorHeaderBB = VectorPreHeaderBB->getSingleSuccessor(); 370 assert(VectorHeaderBB && "Loop preheader does not have a single successor."); 371 BasicBlock *VectorLatchBB = VectorHeaderBB; 372 373 // 1. Make room to generate basic-blocks inside loop body if needed. 374 VectorLatchBB = VectorHeaderBB->splitBasicBlock( 375 VectorHeaderBB->getFirstInsertionPt(), "vector.body.latch"); 376 Loop *L = State->LI->getLoopFor(VectorHeaderBB); 377 L->addBasicBlockToLoop(VectorLatchBB, *State->LI); 378 // Remove the edge between Header and Latch to allow other connections. 379 // Temporarily terminate with unreachable until CFG is rewired. 380 // Note: this asserts the generated code's assumption that 381 // getFirstInsertionPt() can be dereferenced into an Instruction. 382 VectorHeaderBB->getTerminator()->eraseFromParent(); 383 State->Builder.SetInsertPoint(VectorHeaderBB); 384 UnreachableInst *Terminator = State->Builder.CreateUnreachable(); 385 State->Builder.SetInsertPoint(Terminator); 386 387 // 2. Generate code in loop body. 388 State->CFG.PrevVPBB = nullptr; 389 State->CFG.PrevBB = VectorHeaderBB; 390 State->CFG.LastBB = VectorLatchBB; 391 392 for (VPBlockBase *Block : depth_first(Entry)) 393 Block->execute(State); 394 395 // Setup branch terminator successors for VPBBs in VPBBsToFix based on 396 // VPBB's successors. 397 for (auto VPBB : State->CFG.VPBBsToFix) { 398 assert(EnableVPlanNativePath && 399 "Unexpected VPBBsToFix in non VPlan-native path"); 400 BasicBlock *BB = State->CFG.VPBB2IRBB[VPBB]; 401 assert(BB && "Unexpected null basic block for VPBB"); 402 403 unsigned Idx = 0; 404 auto *BBTerminator = BB->getTerminator(); 405 406 for (VPBlockBase *SuccVPBlock : VPBB->getHierarchicalSuccessors()) { 407 VPBasicBlock *SuccVPBB = SuccVPBlock->getEntryBasicBlock(); 408 BBTerminator->setSuccessor(Idx, State->CFG.VPBB2IRBB[SuccVPBB]); 409 ++Idx; 410 } 411 } 412 413 // 3. Merge the temporary latch created with the last basic-block filled. 414 BasicBlock *LastBB = State->CFG.PrevBB; 415 // Connect LastBB to VectorLatchBB to facilitate their merge. 416 assert((EnableVPlanNativePath || 417 isa<UnreachableInst>(LastBB->getTerminator())) && 418 "Expected InnerLoop VPlan CFG to terminate with unreachable"); 419 assert((!EnableVPlanNativePath || isa<BranchInst>(LastBB->getTerminator())) && 420 "Expected VPlan CFG to terminate with branch in NativePath"); 421 LastBB->getTerminator()->eraseFromParent(); 422 BranchInst::Create(VectorLatchBB, LastBB); 423 424 // Merge LastBB with Latch. 425 bool Merged = MergeBlockIntoPredecessor(VectorLatchBB, nullptr, State->LI); 426 (void)Merged; 427 assert(Merged && "Could not merge last basic block with latch."); 428 VectorLatchBB = LastBB; 429 430 // We do not attempt to preserve DT for outer loop vectorization currently. 431 if (!EnableVPlanNativePath) 432 updateDominatorTree(State->DT, VectorPreHeaderBB, VectorLatchBB); 433 } 434 435 void VPlan::updateDominatorTree(DominatorTree *DT, BasicBlock *LoopPreHeaderBB, 436 BasicBlock *LoopLatchBB) { 437 BasicBlock *LoopHeaderBB = LoopPreHeaderBB->getSingleSuccessor(); 438 assert(LoopHeaderBB && "Loop preheader does not have a single successor."); 439 DT->addNewBlock(LoopHeaderBB, LoopPreHeaderBB); 440 // The vector body may be more than a single basic-block by this point. 441 // Update the dominator tree information inside the vector body by propagating 442 // it from header to latch, expecting only triangular control-flow, if any. 443 BasicBlock *PostDomSucc = nullptr; 444 for (auto *BB = LoopHeaderBB; BB != LoopLatchBB; BB = PostDomSucc) { 445 // Get the list of successors of this block. 446 std::vector<BasicBlock *> Succs(succ_begin(BB), succ_end(BB)); 447 assert(Succs.size() <= 2 && 448 "Basic block in vector loop has more than 2 successors."); 449 PostDomSucc = Succs[0]; 450 if (Succs.size() == 1) { 451 assert(PostDomSucc->getSinglePredecessor() && 452 "PostDom successor has more than one predecessor."); 453 DT->addNewBlock(PostDomSucc, BB); 454 continue; 455 } 456 BasicBlock *InterimSucc = Succs[1]; 457 if (PostDomSucc->getSingleSuccessor() == InterimSucc) { 458 PostDomSucc = Succs[1]; 459 InterimSucc = Succs[0]; 460 } 461 assert(InterimSucc->getSingleSuccessor() == PostDomSucc && 462 "One successor of a basic block does not lead to the other."); 463 assert(InterimSucc->getSinglePredecessor() && 464 "Interim successor has more than one predecessor."); 465 assert(pred_size(PostDomSucc) == 2 && 466 "PostDom successor has more than two predecessors."); 467 DT->addNewBlock(InterimSucc, BB); 468 DT->addNewBlock(PostDomSucc, BB); 469 } 470 } 471 472 const Twine VPlanPrinter::getUID(const VPBlockBase *Block) { 473 return (isa<VPRegionBlock>(Block) ? "cluster_N" : "N") + 474 Twine(getOrCreateBID(Block)); 475 } 476 477 const Twine VPlanPrinter::getOrCreateName(const VPBlockBase *Block) { 478 const std::string &Name = Block->getName(); 479 if (!Name.empty()) 480 return Name; 481 return "VPB" + Twine(getOrCreateBID(Block)); 482 } 483 484 void VPlanPrinter::dump() { 485 Depth = 1; 486 bumpIndent(0); 487 OS << "digraph VPlan {\n"; 488 OS << "graph [labelloc=t, fontsize=30; label=\"Vectorization Plan"; 489 if (!Plan.getName().empty()) 490 OS << "\\n" << DOT::EscapeString(Plan.getName()); 491 if (!Plan.Value2VPValue.empty() || Plan.BackedgeTakenCount) { 492 OS << ", where:"; 493 if (Plan.BackedgeTakenCount) 494 OS << "\\n" 495 << *Plan.getOrCreateBackedgeTakenCount() << " := BackedgeTakenCount"; 496 for (auto Entry : Plan.Value2VPValue) { 497 OS << "\\n" << *Entry.second; 498 OS << DOT::EscapeString(" := "); 499 Entry.first->printAsOperand(OS, false); 500 } 501 } 502 OS << "\"]\n"; 503 OS << "node [shape=rect, fontname=Courier, fontsize=30]\n"; 504 OS << "edge [fontname=Courier, fontsize=30]\n"; 505 OS << "compound=true\n"; 506 507 for (VPBlockBase *Block : depth_first(Plan.getEntry())) 508 dumpBlock(Block); 509 510 OS << "}\n"; 511 } 512 513 void VPlanPrinter::dumpBlock(const VPBlockBase *Block) { 514 if (const VPBasicBlock *BasicBlock = dyn_cast<VPBasicBlock>(Block)) 515 dumpBasicBlock(BasicBlock); 516 else if (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 517 dumpRegion(Region); 518 else 519 llvm_unreachable("Unsupported kind of VPBlock."); 520 } 521 522 void VPlanPrinter::drawEdge(const VPBlockBase *From, const VPBlockBase *To, 523 bool Hidden, const Twine &Label) { 524 // Due to "dot" we print an edge between two regions as an edge between the 525 // exit basic block and the entry basic of the respective regions. 526 const VPBlockBase *Tail = From->getExitBasicBlock(); 527 const VPBlockBase *Head = To->getEntryBasicBlock(); 528 OS << Indent << getUID(Tail) << " -> " << getUID(Head); 529 OS << " [ label=\"" << Label << '\"'; 530 if (Tail != From) 531 OS << " ltail=" << getUID(From); 532 if (Head != To) 533 OS << " lhead=" << getUID(To); 534 if (Hidden) 535 OS << "; splines=none"; 536 OS << "]\n"; 537 } 538 539 void VPlanPrinter::dumpEdges(const VPBlockBase *Block) { 540 auto &Successors = Block->getSuccessors(); 541 if (Successors.size() == 1) 542 drawEdge(Block, Successors.front(), false, ""); 543 else if (Successors.size() == 2) { 544 drawEdge(Block, Successors.front(), false, "T"); 545 drawEdge(Block, Successors.back(), false, "F"); 546 } else { 547 unsigned SuccessorNumber = 0; 548 for (auto *Successor : Successors) 549 drawEdge(Block, Successor, false, Twine(SuccessorNumber++)); 550 } 551 } 552 553 void VPlanPrinter::dumpBasicBlock(const VPBasicBlock *BasicBlock) { 554 OS << Indent << getUID(BasicBlock) << " [label =\n"; 555 bumpIndent(1); 556 OS << Indent << "\"" << DOT::EscapeString(BasicBlock->getName()) << ":\\n\""; 557 bumpIndent(1); 558 for (const VPRecipeBase &Recipe : *BasicBlock) 559 Recipe.print(OS, Indent); 560 561 // Dump the condition bit. 562 const VPValue *CBV = BasicBlock->getCondBit(); 563 if (CBV) { 564 OS << " +\n" << Indent << " \"CondBit: "; 565 if (const VPInstruction *CBI = dyn_cast<VPInstruction>(CBV)) { 566 CBI->printAsOperand(OS); 567 OS << " (" << DOT::EscapeString(CBI->getParent()->getName()) << ")\\l\""; 568 } else { 569 CBV->printAsOperand(OS); 570 OS << "\""; 571 } 572 } 573 574 bumpIndent(-2); 575 OS << "\n" << Indent << "]\n"; 576 dumpEdges(BasicBlock); 577 } 578 579 void VPlanPrinter::dumpRegion(const VPRegionBlock *Region) { 580 OS << Indent << "subgraph " << getUID(Region) << " {\n"; 581 bumpIndent(1); 582 OS << Indent << "fontname=Courier\n" 583 << Indent << "label=\"" 584 << DOT::EscapeString(Region->isReplicator() ? "<xVFxUF> " : "<x1> ") 585 << DOT::EscapeString(Region->getName()) << "\"\n"; 586 // Dump the blocks of the region. 587 assert(Region->getEntry() && "Region contains no inner blocks."); 588 for (const VPBlockBase *Block : depth_first(Region->getEntry())) 589 dumpBlock(Block); 590 bumpIndent(-1); 591 OS << Indent << "}\n"; 592 dumpEdges(Region); 593 } 594 595 void VPlanPrinter::printAsIngredient(raw_ostream &O, Value *V) { 596 std::string IngredientString; 597 raw_string_ostream RSO(IngredientString); 598 if (auto *Inst = dyn_cast<Instruction>(V)) { 599 if (!Inst->getType()->isVoidTy()) { 600 Inst->printAsOperand(RSO, false); 601 RSO << " = "; 602 } 603 RSO << Inst->getOpcodeName() << " "; 604 unsigned E = Inst->getNumOperands(); 605 if (E > 0) { 606 Inst->getOperand(0)->printAsOperand(RSO, false); 607 for (unsigned I = 1; I < E; ++I) 608 Inst->getOperand(I)->printAsOperand(RSO << ", ", false); 609 } 610 } else // !Inst 611 V->printAsOperand(RSO, false); 612 RSO.flush(); 613 O << DOT::EscapeString(IngredientString); 614 } 615 616 void VPWidenRecipe::print(raw_ostream &O, const Twine &Indent) const { 617 O << " +\n" << Indent << "\"WIDEN\\l\""; 618 for (auto &Instr : make_range(Begin, End)) 619 O << " +\n" << Indent << "\" " << VPlanIngredient(&Instr) << "\\l\""; 620 } 621 622 void VPWidenIntOrFpInductionRecipe::print(raw_ostream &O, 623 const Twine &Indent) const { 624 O << " +\n" << Indent << "\"WIDEN-INDUCTION"; 625 if (Trunc) { 626 O << "\\l\""; 627 O << " +\n" << Indent << "\" " << VPlanIngredient(IV) << "\\l\""; 628 O << " +\n" << Indent << "\" " << VPlanIngredient(Trunc) << "\\l\""; 629 } else 630 O << " " << VPlanIngredient(IV) << "\\l\""; 631 } 632 633 void VPWidenPHIRecipe::print(raw_ostream &O, const Twine &Indent) const { 634 O << " +\n" << Indent << "\"WIDEN-PHI " << VPlanIngredient(Phi) << "\\l\""; 635 } 636 637 void VPBlendRecipe::print(raw_ostream &O, const Twine &Indent) const { 638 O << " +\n" << Indent << "\"BLEND "; 639 Phi->printAsOperand(O, false); 640 O << " ="; 641 if (!User) { 642 // Not a User of any mask: not really blending, this is a 643 // single-predecessor phi. 644 O << " "; 645 Phi->getIncomingValue(0)->printAsOperand(O, false); 646 } else { 647 for (unsigned I = 0, E = User->getNumOperands(); I < E; ++I) { 648 O << " "; 649 Phi->getIncomingValue(I)->printAsOperand(O, false); 650 O << "/"; 651 User->getOperand(I)->printAsOperand(O); 652 } 653 } 654 O << "\\l\""; 655 } 656 657 void VPReplicateRecipe::print(raw_ostream &O, const Twine &Indent) const { 658 O << " +\n" 659 << Indent << "\"" << (IsUniform ? "CLONE " : "REPLICATE ") 660 << VPlanIngredient(Ingredient); 661 if (AlsoPack) 662 O << " (S->V)"; 663 O << "\\l\""; 664 } 665 666 void VPPredInstPHIRecipe::print(raw_ostream &O, const Twine &Indent) const { 667 O << " +\n" 668 << Indent << "\"PHI-PREDICATED-INSTRUCTION " << VPlanIngredient(PredInst) 669 << "\\l\""; 670 } 671 672 void VPWidenMemoryInstructionRecipe::print(raw_ostream &O, 673 const Twine &Indent) const { 674 O << " +\n" << Indent << "\"WIDEN " << VPlanIngredient(&Instr); 675 if (User) { 676 O << ", "; 677 User->getOperand(0)->printAsOperand(O); 678 } 679 O << "\\l\""; 680 } 681 682 template void DomTreeBuilder::Calculate<VPDominatorTree>(VPDominatorTree &DT); 683