1 //===- VPlan.cpp - Vectorizer Plan ----------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This is the LLVM vectorization plan. It represents a candidate for 11 /// vectorization, allowing to plan and optimize how to vectorize a given loop 12 /// before generating LLVM-IR. 13 /// The vectorizer uses vectorization plans to estimate the costs of potential 14 /// candidates and if profitable to execute the desired plan, generating vector 15 /// LLVM-IR code. 16 /// 17 //===----------------------------------------------------------------------===// 18 19 #include "VPlan.h" 20 #include "LoopVectorizationPlanner.h" 21 #include "VPlanCFG.h" 22 #include "VPlanPatternMatch.h" 23 #include "VPlanTransforms.h" 24 #include "VPlanUtils.h" 25 #include "llvm/ADT/PostOrderIterator.h" 26 #include "llvm/ADT/STLExtras.h" 27 #include "llvm/ADT/SmallVector.h" 28 #include "llvm/ADT/StringExtras.h" 29 #include "llvm/ADT/Twine.h" 30 #include "llvm/Analysis/DomTreeUpdater.h" 31 #include "llvm/Analysis/LoopInfo.h" 32 #include "llvm/IR/BasicBlock.h" 33 #include "llvm/IR/CFG.h" 34 #include "llvm/IR/IRBuilder.h" 35 #include "llvm/IR/Instruction.h" 36 #include "llvm/IR/Instructions.h" 37 #include "llvm/IR/Type.h" 38 #include "llvm/IR/Value.h" 39 #include "llvm/Support/Casting.h" 40 #include "llvm/Support/CommandLine.h" 41 #include "llvm/Support/Debug.h" 42 #include "llvm/Support/GraphWriter.h" 43 #include "llvm/Support/raw_ostream.h" 44 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 45 #include "llvm/Transforms/Utils/LoopVersioning.h" 46 #include <cassert> 47 #include <string> 48 49 using namespace llvm; 50 using namespace llvm::VPlanPatternMatch; 51 52 namespace llvm { 53 extern cl::opt<bool> EnableVPlanNativePath; 54 } 55 extern cl::opt<unsigned> ForceTargetInstructionCost; 56 57 static cl::opt<bool> PrintVPlansInDotFormat( 58 "vplan-print-in-dot-format", cl::Hidden, 59 cl::desc("Use dot format instead of plain text when dumping VPlans")); 60 61 #define DEBUG_TYPE "loop-vectorize" 62 63 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 64 raw_ostream &llvm::operator<<(raw_ostream &OS, const VPValue &V) { 65 const VPInstruction *Instr = dyn_cast<VPInstruction>(&V); 66 VPSlotTracker SlotTracker( 67 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr); 68 V.print(OS, SlotTracker); 69 return OS; 70 } 71 #endif 72 73 Value *VPLane::getAsRuntimeExpr(IRBuilderBase &Builder, 74 const ElementCount &VF) const { 75 switch (LaneKind) { 76 case VPLane::Kind::ScalableLast: 77 // Lane = RuntimeVF - VF.getKnownMinValue() + Lane 78 return Builder.CreateSub(getRuntimeVF(Builder, Builder.getInt32Ty(), VF), 79 Builder.getInt32(VF.getKnownMinValue() - Lane)); 80 case VPLane::Kind::First: 81 return Builder.getInt32(Lane); 82 } 83 llvm_unreachable("Unknown lane kind"); 84 } 85 86 VPValue::VPValue(const unsigned char SC, Value *UV, VPDef *Def) 87 : SubclassID(SC), UnderlyingVal(UV), Def(Def) { 88 if (Def) 89 Def->addDefinedValue(this); 90 } 91 92 VPValue::~VPValue() { 93 assert(Users.empty() && "trying to delete a VPValue with remaining users"); 94 if (Def) 95 Def->removeDefinedValue(this); 96 } 97 98 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 99 void VPValue::print(raw_ostream &OS, VPSlotTracker &SlotTracker) const { 100 if (const VPRecipeBase *R = dyn_cast_or_null<VPRecipeBase>(Def)) 101 R->print(OS, "", SlotTracker); 102 else 103 printAsOperand(OS, SlotTracker); 104 } 105 106 void VPValue::dump() const { 107 const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this->Def); 108 VPSlotTracker SlotTracker( 109 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr); 110 print(dbgs(), SlotTracker); 111 dbgs() << "\n"; 112 } 113 114 void VPDef::dump() const { 115 const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this); 116 VPSlotTracker SlotTracker( 117 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr); 118 print(dbgs(), "", SlotTracker); 119 dbgs() << "\n"; 120 } 121 #endif 122 123 VPRecipeBase *VPValue::getDefiningRecipe() { 124 return cast_or_null<VPRecipeBase>(Def); 125 } 126 127 const VPRecipeBase *VPValue::getDefiningRecipe() const { 128 return cast_or_null<VPRecipeBase>(Def); 129 } 130 131 // Get the top-most entry block of \p Start. This is the entry block of the 132 // containing VPlan. This function is templated to support both const and non-const blocks 133 template <typename T> static T *getPlanEntry(T *Start) { 134 T *Next = Start; 135 T *Current = Start; 136 while ((Next = Next->getParent())) 137 Current = Next; 138 139 SmallSetVector<T *, 8> WorkList; 140 WorkList.insert(Current); 141 142 for (unsigned i = 0; i < WorkList.size(); i++) { 143 T *Current = WorkList[i]; 144 if (Current->getNumPredecessors() == 0) 145 return Current; 146 auto &Predecessors = Current->getPredecessors(); 147 WorkList.insert(Predecessors.begin(), Predecessors.end()); 148 } 149 150 llvm_unreachable("VPlan without any entry node without predecessors"); 151 } 152 153 VPlan *VPBlockBase::getPlan() { return getPlanEntry(this)->Plan; } 154 155 const VPlan *VPBlockBase::getPlan() const { return getPlanEntry(this)->Plan; } 156 157 /// \return the VPBasicBlock that is the entry of Block, possibly indirectly. 158 const VPBasicBlock *VPBlockBase::getEntryBasicBlock() const { 159 const VPBlockBase *Block = this; 160 while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 161 Block = Region->getEntry(); 162 return cast<VPBasicBlock>(Block); 163 } 164 165 VPBasicBlock *VPBlockBase::getEntryBasicBlock() { 166 VPBlockBase *Block = this; 167 while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 168 Block = Region->getEntry(); 169 return cast<VPBasicBlock>(Block); 170 } 171 172 void VPBlockBase::setPlan(VPlan *ParentPlan) { 173 assert(ParentPlan->getEntry() == this && "Can only set plan on its entry."); 174 Plan = ParentPlan; 175 } 176 177 /// \return the VPBasicBlock that is the exit of Block, possibly indirectly. 178 const VPBasicBlock *VPBlockBase::getExitingBasicBlock() const { 179 const VPBlockBase *Block = this; 180 while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 181 Block = Region->getExiting(); 182 return cast<VPBasicBlock>(Block); 183 } 184 185 VPBasicBlock *VPBlockBase::getExitingBasicBlock() { 186 VPBlockBase *Block = this; 187 while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 188 Block = Region->getExiting(); 189 return cast<VPBasicBlock>(Block); 190 } 191 192 VPBlockBase *VPBlockBase::getEnclosingBlockWithSuccessors() { 193 if (!Successors.empty() || !Parent) 194 return this; 195 assert(Parent->getExiting() == this && 196 "Block w/o successors not the exiting block of its parent."); 197 return Parent->getEnclosingBlockWithSuccessors(); 198 } 199 200 VPBlockBase *VPBlockBase::getEnclosingBlockWithPredecessors() { 201 if (!Predecessors.empty() || !Parent) 202 return this; 203 assert(Parent->getEntry() == this && 204 "Block w/o predecessors not the entry of its parent."); 205 return Parent->getEnclosingBlockWithPredecessors(); 206 } 207 208 VPBasicBlock::iterator VPBasicBlock::getFirstNonPhi() { 209 iterator It = begin(); 210 while (It != end() && It->isPhi()) 211 It++; 212 return It; 213 } 214 215 VPTransformState::VPTransformState(const TargetTransformInfo *TTI, 216 ElementCount VF, unsigned UF, LoopInfo *LI, 217 DominatorTree *DT, IRBuilderBase &Builder, 218 InnerLoopVectorizer *ILV, VPlan *Plan, 219 Loop *CurrentParentLoop, Type *CanonicalIVTy) 220 : TTI(TTI), VF(VF), CFG(DT), LI(LI), Builder(Builder), ILV(ILV), Plan(Plan), 221 CurrentParentLoop(CurrentParentLoop), LVer(nullptr), 222 TypeAnalysis(CanonicalIVTy) {} 223 224 Value *VPTransformState::get(VPValue *Def, const VPLane &Lane) { 225 if (Def->isLiveIn()) 226 return Def->getLiveInIRValue(); 227 228 if (hasScalarValue(Def, Lane)) 229 return Data.VPV2Scalars[Def][Lane.mapToCacheIndex(VF)]; 230 231 if (!Lane.isFirstLane() && vputils::isUniformAfterVectorization(Def) && 232 hasScalarValue(Def, VPLane::getFirstLane())) { 233 return Data.VPV2Scalars[Def][0]; 234 } 235 236 assert(hasVectorValue(Def)); 237 auto *VecPart = Data.VPV2Vector[Def]; 238 if (!VecPart->getType()->isVectorTy()) { 239 assert(Lane.isFirstLane() && "cannot get lane > 0 for scalar"); 240 return VecPart; 241 } 242 // TODO: Cache created scalar values. 243 Value *LaneV = Lane.getAsRuntimeExpr(Builder, VF); 244 auto *Extract = Builder.CreateExtractElement(VecPart, LaneV); 245 // set(Def, Extract, Instance); 246 return Extract; 247 } 248 249 Value *VPTransformState::get(VPValue *Def, bool NeedsScalar) { 250 if (NeedsScalar) { 251 assert((VF.isScalar() || Def->isLiveIn() || hasVectorValue(Def) || 252 !vputils::onlyFirstLaneUsed(Def) || 253 (hasScalarValue(Def, VPLane(0)) && 254 Data.VPV2Scalars[Def].size() == 1)) && 255 "Trying to access a single scalar per part but has multiple scalars " 256 "per part."); 257 return get(Def, VPLane(0)); 258 } 259 260 // If Values have been set for this Def return the one relevant for \p Part. 261 if (hasVectorValue(Def)) 262 return Data.VPV2Vector[Def]; 263 264 auto GetBroadcastInstrs = [this, Def](Value *V) { 265 bool SafeToHoist = Def->isDefinedOutsideLoopRegions(); 266 if (VF.isScalar()) 267 return V; 268 // Place the code for broadcasting invariant variables in the new preheader. 269 IRBuilder<>::InsertPointGuard Guard(Builder); 270 if (SafeToHoist) { 271 BasicBlock *LoopVectorPreHeader = 272 CFG.VPBB2IRBB[Plan->getVectorPreheader()]; 273 if (LoopVectorPreHeader) 274 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 275 } 276 277 // Place the code for broadcasting invariant variables in the new preheader. 278 // Broadcast the scalar into all locations in the vector. 279 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 280 281 return Shuf; 282 }; 283 284 if (!hasScalarValue(Def, {0})) { 285 assert(Def->isLiveIn() && "expected a live-in"); 286 Value *IRV = Def->getLiveInIRValue(); 287 Value *B = GetBroadcastInstrs(IRV); 288 set(Def, B); 289 return B; 290 } 291 292 Value *ScalarValue = get(Def, VPLane(0)); 293 // If we aren't vectorizing, we can just copy the scalar map values over 294 // to the vector map. 295 if (VF.isScalar()) { 296 set(Def, ScalarValue); 297 return ScalarValue; 298 } 299 300 bool IsUniform = vputils::isUniformAfterVectorization(Def); 301 302 VPLane LastLane(IsUniform ? 0 : VF.getKnownMinValue() - 1); 303 // Check if there is a scalar value for the selected lane. 304 if (!hasScalarValue(Def, LastLane)) { 305 // At the moment, VPWidenIntOrFpInductionRecipes, VPScalarIVStepsRecipes and 306 // VPExpandSCEVRecipes can also be uniform. 307 assert((isa<VPWidenIntOrFpInductionRecipe, VPScalarIVStepsRecipe, 308 VPExpandSCEVRecipe>(Def->getDefiningRecipe())) && 309 "unexpected recipe found to be invariant"); 310 IsUniform = true; 311 LastLane = 0; 312 } 313 314 auto *LastInst = cast<Instruction>(get(Def, LastLane)); 315 // Set the insert point after the last scalarized instruction or after the 316 // last PHI, if LastInst is a PHI. This ensures the insertelement sequence 317 // will directly follow the scalar definitions. 318 auto OldIP = Builder.saveIP(); 319 auto NewIP = 320 isa<PHINode>(LastInst) 321 ? BasicBlock::iterator(LastInst->getParent()->getFirstNonPHI()) 322 : std::next(BasicBlock::iterator(LastInst)); 323 Builder.SetInsertPoint(&*NewIP); 324 325 // However, if we are vectorizing, we need to construct the vector values. 326 // If the value is known to be uniform after vectorization, we can just 327 // broadcast the scalar value corresponding to lane zero. Otherwise, we 328 // construct the vector values using insertelement instructions. Since the 329 // resulting vectors are stored in State, we will only generate the 330 // insertelements once. 331 Value *VectorValue = nullptr; 332 if (IsUniform) { 333 VectorValue = GetBroadcastInstrs(ScalarValue); 334 set(Def, VectorValue); 335 } else { 336 // Initialize packing with insertelements to start from undef. 337 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 338 Value *Undef = PoisonValue::get(VectorType::get(LastInst->getType(), VF)); 339 set(Def, Undef); 340 for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane) 341 packScalarIntoVectorValue(Def, Lane); 342 VectorValue = get(Def); 343 } 344 Builder.restoreIP(OldIP); 345 return VectorValue; 346 } 347 348 BasicBlock *VPTransformState::CFGState::getPreheaderBBFor(VPRecipeBase *R) { 349 VPRegionBlock *LoopRegion = R->getParent()->getEnclosingLoopRegion(); 350 return VPBB2IRBB[LoopRegion->getPreheaderVPBB()]; 351 } 352 353 void VPTransformState::addNewMetadata(Instruction *To, 354 const Instruction *Orig) { 355 // If the loop was versioned with memchecks, add the corresponding no-alias 356 // metadata. 357 if (LVer && isa<LoadInst, StoreInst>(Orig)) 358 LVer->annotateInstWithNoAlias(To, Orig); 359 } 360 361 void VPTransformState::addMetadata(Value *To, Instruction *From) { 362 // No source instruction to transfer metadata from? 363 if (!From) 364 return; 365 366 if (Instruction *ToI = dyn_cast<Instruction>(To)) { 367 propagateMetadata(ToI, From); 368 addNewMetadata(ToI, From); 369 } 370 } 371 372 void VPTransformState::setDebugLocFrom(DebugLoc DL) { 373 const DILocation *DIL = DL; 374 // When a FSDiscriminator is enabled, we don't need to add the multiply 375 // factors to the discriminators. 376 if (DIL && 377 Builder.GetInsertBlock() 378 ->getParent() 379 ->shouldEmitDebugInfoForProfiling() && 380 !EnableFSDiscriminator) { 381 // FIXME: For scalable vectors, assume vscale=1. 382 unsigned UF = Plan->getUF(); 383 auto NewDIL = 384 DIL->cloneByMultiplyingDuplicationFactor(UF * VF.getKnownMinValue()); 385 if (NewDIL) 386 Builder.SetCurrentDebugLocation(*NewDIL); 387 else 388 LLVM_DEBUG(dbgs() << "Failed to create new discriminator: " 389 << DIL->getFilename() << " Line: " << DIL->getLine()); 390 } else 391 Builder.SetCurrentDebugLocation(DIL); 392 } 393 394 void VPTransformState::packScalarIntoVectorValue(VPValue *Def, 395 const VPLane &Lane) { 396 Value *ScalarInst = get(Def, Lane); 397 Value *VectorValue = get(Def); 398 VectorValue = Builder.CreateInsertElement(VectorValue, ScalarInst, 399 Lane.getAsRuntimeExpr(Builder, VF)); 400 set(Def, VectorValue); 401 } 402 403 BasicBlock * 404 VPBasicBlock::createEmptyBasicBlock(VPTransformState::CFGState &CFG) { 405 // BB stands for IR BasicBlocks. VPBB stands for VPlan VPBasicBlocks. 406 // Pred stands for Predessor. Prev stands for Previous - last visited/created. 407 BasicBlock *PrevBB = CFG.PrevBB; 408 BasicBlock *NewBB = BasicBlock::Create(PrevBB->getContext(), getName(), 409 PrevBB->getParent(), CFG.ExitBB); 410 LLVM_DEBUG(dbgs() << "LV: created " << NewBB->getName() << '\n'); 411 412 return NewBB; 413 } 414 415 void VPBasicBlock::connectToPredecessors(VPTransformState::CFGState &CFG) { 416 BasicBlock *NewBB = CFG.VPBB2IRBB[this]; 417 // Hook up the new basic block to its predecessors. 418 for (VPBlockBase *PredVPBlock : getHierarchicalPredecessors()) { 419 VPBasicBlock *PredVPBB = PredVPBlock->getExitingBasicBlock(); 420 auto &PredVPSuccessors = PredVPBB->getHierarchicalSuccessors(); 421 BasicBlock *PredBB = CFG.VPBB2IRBB[PredVPBB]; 422 423 assert(PredBB && "Predecessor basic-block not found building successor."); 424 auto *PredBBTerminator = PredBB->getTerminator(); 425 LLVM_DEBUG(dbgs() << "LV: draw edge from" << PredBB->getName() << '\n'); 426 427 auto *TermBr = dyn_cast<BranchInst>(PredBBTerminator); 428 if (isa<UnreachableInst>(PredBBTerminator)) { 429 assert(PredVPSuccessors.size() == 1 && 430 "Predecessor ending w/o branch must have single successor."); 431 DebugLoc DL = PredBBTerminator->getDebugLoc(); 432 PredBBTerminator->eraseFromParent(); 433 auto *Br = BranchInst::Create(NewBB, PredBB); 434 Br->setDebugLoc(DL); 435 } else if (TermBr && !TermBr->isConditional()) { 436 TermBr->setSuccessor(0, NewBB); 437 } else { 438 // Set each forward successor here when it is created, excluding 439 // backedges. A backward successor is set when the branch is created. 440 unsigned idx = PredVPSuccessors.front() == this ? 0 : 1; 441 assert( 442 (!TermBr->getSuccessor(idx) || 443 (isa<VPIRBasicBlock>(this) && TermBr->getSuccessor(idx) == NewBB)) && 444 "Trying to reset an existing successor block."); 445 TermBr->setSuccessor(idx, NewBB); 446 } 447 CFG.DTU.applyUpdates({{DominatorTree::Insert, PredBB, NewBB}}); 448 } 449 } 450 451 void VPIRBasicBlock::execute(VPTransformState *State) { 452 assert(getHierarchicalSuccessors().size() <= 2 && 453 "VPIRBasicBlock can have at most two successors at the moment!"); 454 State->Builder.SetInsertPoint(IRBB->getTerminator()); 455 State->CFG.PrevBB = IRBB; 456 State->CFG.VPBB2IRBB[this] = IRBB; 457 executeRecipes(State, IRBB); 458 // Create a branch instruction to terminate IRBB if one was not created yet 459 // and is needed. 460 if (getSingleSuccessor() && isa<UnreachableInst>(IRBB->getTerminator())) { 461 auto *Br = State->Builder.CreateBr(IRBB); 462 Br->setOperand(0, nullptr); 463 IRBB->getTerminator()->eraseFromParent(); 464 } else { 465 assert( 466 (getNumSuccessors() == 0 || isa<BranchInst>(IRBB->getTerminator())) && 467 "other blocks must be terminated by a branch"); 468 } 469 470 connectToPredecessors(State->CFG); 471 } 472 473 VPIRBasicBlock *VPIRBasicBlock::clone() { 474 auto *NewBlock = getPlan()->createEmptyVPIRBasicBlock(IRBB); 475 for (VPRecipeBase &R : Recipes) 476 NewBlock->appendRecipe(R.clone()); 477 return NewBlock; 478 } 479 480 void VPBasicBlock::execute(VPTransformState *State) { 481 bool Replica = bool(State->Lane); 482 BasicBlock *NewBB = State->CFG.PrevBB; // Reuse it if possible. 483 484 auto IsReplicateRegion = [](VPBlockBase *BB) { 485 auto *R = dyn_cast_or_null<VPRegionBlock>(BB); 486 return R && R->isReplicator(); 487 }; 488 489 // 1. Create an IR basic block. 490 if (this == getPlan()->getVectorPreheader() || 491 (Replica && this == getParent()->getEntry()) || 492 IsReplicateRegion(getSingleHierarchicalPredecessor())) { 493 // Reuse the previous basic block if the current VPBB is either 494 // * the vector preheader, 495 // * the entry to a replicate region, or 496 // * the exit of a replicate region. 497 State->CFG.VPBB2IRBB[this] = NewBB; 498 } else { 499 NewBB = createEmptyBasicBlock(State->CFG); 500 501 State->Builder.SetInsertPoint(NewBB); 502 // Temporarily terminate with unreachable until CFG is rewired. 503 UnreachableInst *Terminator = State->Builder.CreateUnreachable(); 504 // Register NewBB in its loop. In innermost loops its the same for all 505 // BB's. 506 if (State->CurrentParentLoop) 507 State->CurrentParentLoop->addBasicBlockToLoop(NewBB, *State->LI); 508 State->Builder.SetInsertPoint(Terminator); 509 510 State->CFG.PrevBB = NewBB; 511 State->CFG.VPBB2IRBB[this] = NewBB; 512 connectToPredecessors(State->CFG); 513 } 514 515 // 2. Fill the IR basic block with IR instructions. 516 executeRecipes(State, NewBB); 517 } 518 519 VPBasicBlock *VPBasicBlock::clone() { 520 auto *NewBlock = getPlan()->createVPBasicBlock(getName()); 521 for (VPRecipeBase &R : *this) 522 NewBlock->appendRecipe(R.clone()); 523 return NewBlock; 524 } 525 526 void VPBasicBlock::executeRecipes(VPTransformState *State, BasicBlock *BB) { 527 LLVM_DEBUG(dbgs() << "LV: vectorizing VPBB:" << getName() 528 << " in BB:" << BB->getName() << '\n'); 529 530 State->CFG.PrevVPBB = this; 531 532 for (VPRecipeBase &Recipe : Recipes) 533 Recipe.execute(*State); 534 535 LLVM_DEBUG(dbgs() << "LV: filled BB:" << *BB); 536 } 537 538 VPBasicBlock *VPBasicBlock::splitAt(iterator SplitAt) { 539 assert((SplitAt == end() || SplitAt->getParent() == this) && 540 "can only split at a position in the same block"); 541 542 SmallVector<VPBlockBase *, 2> Succs(successors()); 543 // Create new empty block after the block to split. 544 auto *SplitBlock = getPlan()->createVPBasicBlock(getName() + ".split"); 545 VPBlockUtils::insertBlockAfter(SplitBlock, this); 546 547 // Finally, move the recipes starting at SplitAt to new block. 548 for (VPRecipeBase &ToMove : 549 make_early_inc_range(make_range(SplitAt, this->end()))) 550 ToMove.moveBefore(*SplitBlock, SplitBlock->end()); 551 552 return SplitBlock; 553 } 554 555 /// Return the enclosing loop region for region \p P. The templated version is 556 /// used to support both const and non-const block arguments. 557 template <typename T> static T *getEnclosingLoopRegionForRegion(T *P) { 558 if (P && P->isReplicator()) { 559 P = P->getParent(); 560 assert(!cast<VPRegionBlock>(P)->isReplicator() && 561 "unexpected nested replicate regions"); 562 } 563 return P; 564 } 565 566 VPRegionBlock *VPBasicBlock::getEnclosingLoopRegion() { 567 return getEnclosingLoopRegionForRegion(getParent()); 568 } 569 570 const VPRegionBlock *VPBasicBlock::getEnclosingLoopRegion() const { 571 return getEnclosingLoopRegionForRegion(getParent()); 572 } 573 574 static bool hasConditionalTerminator(const VPBasicBlock *VPBB) { 575 if (VPBB->empty()) { 576 assert( 577 VPBB->getNumSuccessors() < 2 && 578 "block with multiple successors doesn't have a recipe as terminator"); 579 return false; 580 } 581 582 const VPRecipeBase *R = &VPBB->back(); 583 bool IsCondBranch = isa<VPBranchOnMaskRecipe>(R) || 584 match(R, m_BranchOnCond(m_VPValue())) || 585 match(R, m_BranchOnCount(m_VPValue(), m_VPValue())); 586 (void)IsCondBranch; 587 588 if (VPBB->getNumSuccessors() >= 2 || 589 (VPBB->isExiting() && !VPBB->getParent()->isReplicator())) { 590 assert(IsCondBranch && "block with multiple successors not terminated by " 591 "conditional branch recipe"); 592 593 return true; 594 } 595 596 assert( 597 !IsCondBranch && 598 "block with 0 or 1 successors terminated by conditional branch recipe"); 599 return false; 600 } 601 602 VPRecipeBase *VPBasicBlock::getTerminator() { 603 if (hasConditionalTerminator(this)) 604 return &back(); 605 return nullptr; 606 } 607 608 const VPRecipeBase *VPBasicBlock::getTerminator() const { 609 if (hasConditionalTerminator(this)) 610 return &back(); 611 return nullptr; 612 } 613 614 bool VPBasicBlock::isExiting() const { 615 return getParent() && getParent()->getExitingBasicBlock() == this; 616 } 617 618 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 619 void VPBlockBase::printSuccessors(raw_ostream &O, const Twine &Indent) const { 620 if (getSuccessors().empty()) { 621 O << Indent << "No successors\n"; 622 } else { 623 O << Indent << "Successor(s): "; 624 ListSeparator LS; 625 for (auto *Succ : getSuccessors()) 626 O << LS << Succ->getName(); 627 O << '\n'; 628 } 629 } 630 631 void VPBasicBlock::print(raw_ostream &O, const Twine &Indent, 632 VPSlotTracker &SlotTracker) const { 633 O << Indent << getName() << ":\n"; 634 635 auto RecipeIndent = Indent + " "; 636 for (const VPRecipeBase &Recipe : *this) { 637 Recipe.print(O, RecipeIndent, SlotTracker); 638 O << '\n'; 639 } 640 641 printSuccessors(O, Indent); 642 } 643 #endif 644 645 static std::pair<VPBlockBase *, VPBlockBase *> cloneFrom(VPBlockBase *Entry); 646 647 // Clone the CFG for all nodes reachable from \p Entry, this includes cloning 648 // the blocks and their recipes. Operands of cloned recipes will NOT be updated. 649 // Remapping of operands must be done separately. Returns a pair with the new 650 // entry and exiting blocks of the cloned region. If \p Entry isn't part of a 651 // region, return nullptr for the exiting block. 652 static std::pair<VPBlockBase *, VPBlockBase *> cloneFrom(VPBlockBase *Entry) { 653 DenseMap<VPBlockBase *, VPBlockBase *> Old2NewVPBlocks; 654 VPBlockBase *Exiting = nullptr; 655 bool InRegion = Entry->getParent(); 656 // First, clone blocks reachable from Entry. 657 for (VPBlockBase *BB : vp_depth_first_shallow(Entry)) { 658 VPBlockBase *NewBB = BB->clone(); 659 Old2NewVPBlocks[BB] = NewBB; 660 if (InRegion && BB->getNumSuccessors() == 0) { 661 assert(!Exiting && "Multiple exiting blocks?"); 662 Exiting = BB; 663 } 664 } 665 assert((!InRegion || Exiting) && "regions must have a single exiting block"); 666 667 // Second, update the predecessors & successors of the cloned blocks. 668 for (VPBlockBase *BB : vp_depth_first_shallow(Entry)) { 669 VPBlockBase *NewBB = Old2NewVPBlocks[BB]; 670 SmallVector<VPBlockBase *> NewPreds; 671 for (VPBlockBase *Pred : BB->getPredecessors()) { 672 NewPreds.push_back(Old2NewVPBlocks[Pred]); 673 } 674 NewBB->setPredecessors(NewPreds); 675 SmallVector<VPBlockBase *> NewSuccs; 676 for (VPBlockBase *Succ : BB->successors()) { 677 NewSuccs.push_back(Old2NewVPBlocks[Succ]); 678 } 679 NewBB->setSuccessors(NewSuccs); 680 } 681 682 #if !defined(NDEBUG) 683 // Verify that the order of predecessors and successors matches in the cloned 684 // version. 685 for (const auto &[OldBB, NewBB] : 686 zip(vp_depth_first_shallow(Entry), 687 vp_depth_first_shallow(Old2NewVPBlocks[Entry]))) { 688 for (const auto &[OldPred, NewPred] : 689 zip(OldBB->getPredecessors(), NewBB->getPredecessors())) 690 assert(NewPred == Old2NewVPBlocks[OldPred] && "Different predecessors"); 691 692 for (const auto &[OldSucc, NewSucc] : 693 zip(OldBB->successors(), NewBB->successors())) 694 assert(NewSucc == Old2NewVPBlocks[OldSucc] && "Different successors"); 695 } 696 #endif 697 698 return std::make_pair(Old2NewVPBlocks[Entry], 699 Exiting ? Old2NewVPBlocks[Exiting] : nullptr); 700 } 701 702 VPRegionBlock *VPRegionBlock::clone() { 703 const auto &[NewEntry, NewExiting] = cloneFrom(getEntry()); 704 auto *NewRegion = getPlan()->createVPRegionBlock(NewEntry, NewExiting, 705 getName(), isReplicator()); 706 for (VPBlockBase *Block : vp_depth_first_shallow(NewEntry)) 707 Block->setParent(NewRegion); 708 return NewRegion; 709 } 710 711 void VPRegionBlock::execute(VPTransformState *State) { 712 ReversePostOrderTraversal<VPBlockShallowTraversalWrapper<VPBlockBase *>> 713 RPOT(Entry); 714 715 if (!isReplicator()) { 716 // Create and register the new vector loop. 717 Loop *PrevLoop = State->CurrentParentLoop; 718 State->CurrentParentLoop = State->LI->AllocateLoop(); 719 BasicBlock *VectorPH = State->CFG.VPBB2IRBB[getPreheaderVPBB()]; 720 Loop *ParentLoop = State->LI->getLoopFor(VectorPH); 721 722 // Insert the new loop into the loop nest and register the new basic blocks 723 // before calling any utilities such as SCEV that require valid LoopInfo. 724 if (ParentLoop) 725 ParentLoop->addChildLoop(State->CurrentParentLoop); 726 else 727 State->LI->addTopLevelLoop(State->CurrentParentLoop); 728 729 // Visit the VPBlocks connected to "this", starting from it. 730 for (VPBlockBase *Block : RPOT) { 731 LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n'); 732 Block->execute(State); 733 } 734 735 State->CurrentParentLoop = PrevLoop; 736 return; 737 } 738 739 assert(!State->Lane && "Replicating a Region with non-null instance."); 740 741 // Enter replicating mode. 742 assert(!State->VF.isScalable() && "VF is assumed to be non scalable."); 743 State->Lane = VPLane(0); 744 for (unsigned Lane = 0, VF = State->VF.getKnownMinValue(); Lane < VF; 745 ++Lane) { 746 State->Lane = VPLane(Lane, VPLane::Kind::First); 747 // Visit the VPBlocks connected to \p this, starting from it. 748 for (VPBlockBase *Block : RPOT) { 749 LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n'); 750 Block->execute(State); 751 } 752 } 753 754 // Exit replicating mode. 755 State->Lane.reset(); 756 } 757 758 InstructionCost VPBasicBlock::cost(ElementCount VF, VPCostContext &Ctx) { 759 InstructionCost Cost = 0; 760 for (VPRecipeBase &R : Recipes) 761 Cost += R.cost(VF, Ctx); 762 return Cost; 763 } 764 765 InstructionCost VPRegionBlock::cost(ElementCount VF, VPCostContext &Ctx) { 766 if (!isReplicator()) { 767 InstructionCost Cost = 0; 768 for (VPBlockBase *Block : vp_depth_first_shallow(getEntry())) 769 Cost += Block->cost(VF, Ctx); 770 InstructionCost BackedgeCost = 771 ForceTargetInstructionCost.getNumOccurrences() 772 ? InstructionCost(ForceTargetInstructionCost.getNumOccurrences()) 773 : Ctx.TTI.getCFInstrCost(Instruction::Br, TTI::TCK_RecipThroughput); 774 LLVM_DEBUG(dbgs() << "Cost of " << BackedgeCost << " for VF " << VF 775 << ": vector loop backedge\n"); 776 Cost += BackedgeCost; 777 return Cost; 778 } 779 780 // Compute the cost of a replicate region. Replicating isn't supported for 781 // scalable vectors, return an invalid cost for them. 782 // TODO: Discard scalable VPlans with replicate recipes earlier after 783 // construction. 784 if (VF.isScalable()) 785 return InstructionCost::getInvalid(); 786 787 // First compute the cost of the conditionally executed recipes, followed by 788 // account for the branching cost, except if the mask is a header mask or 789 // uniform condition. 790 using namespace llvm::VPlanPatternMatch; 791 VPBasicBlock *Then = cast<VPBasicBlock>(getEntry()->getSuccessors()[0]); 792 InstructionCost ThenCost = Then->cost(VF, Ctx); 793 794 // For the scalar case, we may not always execute the original predicated 795 // block, Thus, scale the block's cost by the probability of executing it. 796 if (VF.isScalar()) 797 return ThenCost / getReciprocalPredBlockProb(); 798 799 return ThenCost; 800 } 801 802 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 803 void VPRegionBlock::print(raw_ostream &O, const Twine &Indent, 804 VPSlotTracker &SlotTracker) const { 805 O << Indent << (isReplicator() ? "<xVFxUF> " : "<x1> ") << getName() << ": {"; 806 auto NewIndent = Indent + " "; 807 for (auto *BlockBase : vp_depth_first_shallow(Entry)) { 808 O << '\n'; 809 BlockBase->print(O, NewIndent, SlotTracker); 810 } 811 O << Indent << "}\n"; 812 813 printSuccessors(O, Indent); 814 } 815 #endif 816 817 VPlan::VPlan(Loop *L) { 818 setEntry(createVPIRBasicBlock(L->getLoopPreheader())); 819 ScalarHeader = createVPIRBasicBlock(L->getHeader()); 820 } 821 822 VPlan::~VPlan() { 823 VPValue DummyValue; 824 825 for (auto *VPB : CreatedBlocks) { 826 if (auto *VPBB = dyn_cast<VPBasicBlock>(VPB)) { 827 // Replace all operands of recipes and all VPValues defined in VPBB with 828 // DummyValue so the block can be deleted. 829 for (VPRecipeBase &R : *VPBB) { 830 for (auto *Def : R.definedValues()) 831 Def->replaceAllUsesWith(&DummyValue); 832 833 for (unsigned I = 0, E = R.getNumOperands(); I != E; I++) 834 R.setOperand(I, &DummyValue); 835 } 836 } 837 delete VPB; 838 } 839 for (VPValue *VPV : VPLiveInsToFree) 840 delete VPV; 841 if (BackedgeTakenCount) 842 delete BackedgeTakenCount; 843 } 844 845 VPlanPtr VPlan::createInitialVPlan(Type *InductionTy, 846 PredicatedScalarEvolution &PSE, 847 bool RequiresScalarEpilogueCheck, 848 bool TailFolded, Loop *TheLoop) { 849 auto Plan = std::make_unique<VPlan>(TheLoop); 850 VPBlockBase *ScalarHeader = Plan->getScalarHeader(); 851 852 // Connect entry only to vector preheader initially. Entry will also be 853 // connected to the scalar preheader later, during skeleton creation when 854 // runtime guards are added as needed. Note that when executing the VPlan for 855 // an epilogue vector loop, the original entry block here will be replaced by 856 // a new VPIRBasicBlock wrapping the entry to the epilogue vector loop after 857 // generating code for the main vector loop. 858 VPBasicBlock *VecPreheader = Plan->createVPBasicBlock("vector.ph"); 859 VPBlockUtils::connectBlocks(Plan->getEntry(), VecPreheader); 860 861 // Create SCEV and VPValue for the trip count. 862 // We use the symbolic max backedge-taken-count, which works also when 863 // vectorizing loops with uncountable early exits. 864 const SCEV *BackedgeTakenCountSCEV = PSE.getSymbolicMaxBackedgeTakenCount(); 865 assert(!isa<SCEVCouldNotCompute>(BackedgeTakenCountSCEV) && 866 "Invalid loop count"); 867 ScalarEvolution &SE = *PSE.getSE(); 868 const SCEV *TripCount = SE.getTripCountFromExitCount(BackedgeTakenCountSCEV, 869 InductionTy, TheLoop); 870 Plan->TripCount = 871 vputils::getOrCreateVPValueForSCEVExpr(*Plan, TripCount, SE); 872 873 // Create VPRegionBlock, with empty header and latch blocks, to be filled 874 // during processing later. 875 VPBasicBlock *HeaderVPBB = Plan->createVPBasicBlock("vector.body"); 876 VPBasicBlock *LatchVPBB = Plan->createVPBasicBlock("vector.latch"); 877 VPBlockUtils::insertBlockAfter(LatchVPBB, HeaderVPBB); 878 auto *TopRegion = Plan->createVPRegionBlock( 879 HeaderVPBB, LatchVPBB, "vector loop", false /*isReplicator*/); 880 881 VPBlockUtils::insertBlockAfter(TopRegion, VecPreheader); 882 VPBasicBlock *MiddleVPBB = Plan->createVPBasicBlock("middle.block"); 883 VPBlockUtils::insertBlockAfter(MiddleVPBB, TopRegion); 884 885 VPBasicBlock *ScalarPH = Plan->createVPBasicBlock("scalar.ph"); 886 VPBlockUtils::connectBlocks(ScalarPH, ScalarHeader); 887 if (!RequiresScalarEpilogueCheck) { 888 VPBlockUtils::connectBlocks(MiddleVPBB, ScalarPH); 889 return Plan; 890 } 891 892 // If needed, add a check in the middle block to see if we have completed 893 // all of the iterations in the first vector loop. Three cases: 894 // 1) If (N - N%VF) == N, then we *don't* need to run the remainder. 895 // Thus if tail is to be folded, we know we don't need to run the 896 // remainder and we can set the condition to true. 897 // 2) If we require a scalar epilogue, there is no conditional branch as 898 // we unconditionally branch to the scalar preheader. Do nothing. 899 // 3) Otherwise, construct a runtime check. 900 BasicBlock *IRExitBlock = TheLoop->getUniqueLatchExitBlock(); 901 auto *VPExitBlock = Plan->createVPIRBasicBlock(IRExitBlock); 902 // The connection order corresponds to the operands of the conditional branch. 903 VPBlockUtils::insertBlockAfter(VPExitBlock, MiddleVPBB); 904 VPBlockUtils::connectBlocks(MiddleVPBB, ScalarPH); 905 906 auto *ScalarLatchTerm = TheLoop->getLoopLatch()->getTerminator(); 907 // Here we use the same DebugLoc as the scalar loop latch terminator instead 908 // of the corresponding compare because they may have ended up with 909 // different line numbers and we want to avoid awkward line stepping while 910 // debugging. Eg. if the compare has got a line number inside the loop. 911 VPBuilder Builder(MiddleVPBB); 912 VPValue *Cmp = 913 TailFolded 914 ? Plan->getOrAddLiveIn(ConstantInt::getTrue( 915 IntegerType::getInt1Ty(TripCount->getType()->getContext()))) 916 : Builder.createICmp(CmpInst::ICMP_EQ, Plan->getTripCount(), 917 &Plan->getVectorTripCount(), 918 ScalarLatchTerm->getDebugLoc(), "cmp.n"); 919 Builder.createNaryOp(VPInstruction::BranchOnCond, {Cmp}, 920 ScalarLatchTerm->getDebugLoc()); 921 return Plan; 922 } 923 924 void VPlan::prepareToExecute(Value *TripCountV, Value *VectorTripCountV, 925 VPTransformState &State) { 926 Type *TCTy = TripCountV->getType(); 927 // Check if the backedge taken count is needed, and if so build it. 928 if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) { 929 IRBuilder<> Builder(State.CFG.PrevBB->getTerminator()); 930 auto *TCMO = Builder.CreateSub(TripCountV, ConstantInt::get(TCTy, 1), 931 "trip.count.minus.1"); 932 BackedgeTakenCount->setUnderlyingValue(TCMO); 933 } 934 935 VectorTripCount.setUnderlyingValue(VectorTripCountV); 936 937 IRBuilder<> Builder(State.CFG.PrevBB->getTerminator()); 938 // FIXME: Model VF * UF computation completely in VPlan. 939 assert(VFxUF.getNumUsers() && "VFxUF expected to always have users"); 940 unsigned UF = getUF(); 941 if (VF.getNumUsers()) { 942 Value *RuntimeVF = getRuntimeVF(Builder, TCTy, State.VF); 943 VF.setUnderlyingValue(RuntimeVF); 944 VFxUF.setUnderlyingValue( 945 UF > 1 ? Builder.CreateMul(RuntimeVF, ConstantInt::get(TCTy, UF)) 946 : RuntimeVF); 947 } else { 948 VFxUF.setUnderlyingValue(createStepForVF(Builder, TCTy, State.VF, UF)); 949 } 950 } 951 952 /// Replace \p VPBB with a VPIRBasicBlock wrapping \p IRBB. All recipes from \p 953 /// VPBB are moved to the end of the newly created VPIRBasicBlock. VPBB must 954 /// have a single predecessor, which is rewired to the new VPIRBasicBlock. All 955 /// successors of VPBB, if any, are rewired to the new VPIRBasicBlock. 956 static void replaceVPBBWithIRVPBB(VPBasicBlock *VPBB, BasicBlock *IRBB) { 957 VPIRBasicBlock *IRVPBB = VPBB->getPlan()->createVPIRBasicBlock(IRBB); 958 for (auto &R : make_early_inc_range(*VPBB)) { 959 assert(!R.isPhi() && "Tried to move phi recipe to end of block"); 960 R.moveBefore(*IRVPBB, IRVPBB->end()); 961 } 962 963 VPBlockUtils::reassociateBlocks(VPBB, IRVPBB); 964 // VPBB is now dead and will be cleaned up when the plan gets destroyed. 965 } 966 967 /// Generate the code inside the preheader and body of the vectorized loop. 968 /// Assumes a single pre-header basic-block was created for this. Introduce 969 /// additional basic-blocks as needed, and fill them all. 970 void VPlan::execute(VPTransformState *State) { 971 // Initialize CFG state. 972 State->CFG.PrevVPBB = nullptr; 973 State->CFG.ExitBB = State->CFG.PrevBB->getSingleSuccessor(); 974 BasicBlock *VectorPreHeader = State->CFG.PrevBB; 975 State->Builder.SetInsertPoint(VectorPreHeader->getTerminator()); 976 977 // Disconnect VectorPreHeader from ExitBB in both the CFG and DT. 978 cast<BranchInst>(VectorPreHeader->getTerminator())->setSuccessor(0, nullptr); 979 State->CFG.DTU.applyUpdates( 980 {{DominatorTree::Delete, VectorPreHeader, State->CFG.ExitBB}}); 981 982 // Replace regular VPBB's for the vector preheader, middle and scalar 983 // preheader blocks with VPIRBasicBlocks wrapping their IR blocks. The IR 984 // blocks are created during skeleton creation, so we can only create the 985 // VPIRBasicBlocks now during VPlan execution rather than earlier during VPlan 986 // construction. 987 BasicBlock *MiddleBB = State->CFG.ExitBB; 988 BasicBlock *ScalarPh = MiddleBB->getSingleSuccessor(); 989 replaceVPBBWithIRVPBB(getVectorPreheader(), VectorPreHeader); 990 replaceVPBBWithIRVPBB(getMiddleBlock(), MiddleBB); 991 replaceVPBBWithIRVPBB(getScalarPreheader(), ScalarPh); 992 993 LLVM_DEBUG(dbgs() << "Executing best plan with VF=" << State->VF 994 << ", UF=" << getUF() << '\n'); 995 setName("Final VPlan"); 996 LLVM_DEBUG(dump()); 997 998 // Disconnect the middle block from its single successor (the scalar loop 999 // header) in both the CFG and DT. The branch will be recreated during VPlan 1000 // execution. 1001 auto *BrInst = new UnreachableInst(MiddleBB->getContext()); 1002 BrInst->insertBefore(MiddleBB->getTerminator()); 1003 MiddleBB->getTerminator()->eraseFromParent(); 1004 State->CFG.DTU.applyUpdates({{DominatorTree::Delete, MiddleBB, ScalarPh}}); 1005 // Disconnect scalar preheader and scalar header, as the dominator tree edge 1006 // will be updated as part of VPlan execution. This allows keeping the DTU 1007 // logic generic during VPlan execution. 1008 State->CFG.DTU.applyUpdates( 1009 {{DominatorTree::Delete, ScalarPh, ScalarPh->getSingleSuccessor()}}); 1010 1011 ReversePostOrderTraversal<VPBlockShallowTraversalWrapper<VPBlockBase *>> RPOT( 1012 Entry); 1013 // Generate code for the VPlan, in parts of the vector skeleton, loop body and 1014 // successor blocks including the middle, exit and scalar preheader blocks. 1015 for (VPBlockBase *Block : RPOT) 1016 Block->execute(State); 1017 1018 VPBasicBlock *LatchVPBB = getVectorLoopRegion()->getExitingBasicBlock(); 1019 BasicBlock *VectorLatchBB = State->CFG.VPBB2IRBB[LatchVPBB]; 1020 1021 // Fix the latch value of canonical, reduction and first-order recurrences 1022 // phis in the vector loop. 1023 VPBasicBlock *Header = getVectorLoopRegion()->getEntryBasicBlock(); 1024 for (VPRecipeBase &R : Header->phis()) { 1025 // Skip phi-like recipes that generate their backedege values themselves. 1026 if (isa<VPWidenPHIRecipe>(&R)) 1027 continue; 1028 1029 if (isa<VPWidenInductionRecipe>(&R)) { 1030 PHINode *Phi = nullptr; 1031 if (isa<VPWidenIntOrFpInductionRecipe>(&R)) { 1032 Phi = cast<PHINode>(State->get(R.getVPSingleValue())); 1033 } else { 1034 auto *WidenPhi = cast<VPWidenPointerInductionRecipe>(&R); 1035 assert(!WidenPhi->onlyScalarsGenerated(State->VF.isScalable()) && 1036 "recipe generating only scalars should have been replaced"); 1037 auto *GEP = cast<GetElementPtrInst>(State->get(WidenPhi)); 1038 Phi = cast<PHINode>(GEP->getPointerOperand()); 1039 } 1040 1041 Phi->setIncomingBlock(1, VectorLatchBB); 1042 1043 // Move the last step to the end of the latch block. This ensures 1044 // consistent placement of all induction updates. 1045 Instruction *Inc = cast<Instruction>(Phi->getIncomingValue(1)); 1046 Inc->moveBefore(VectorLatchBB->getTerminator()->getPrevNode()); 1047 1048 // Use the steps for the last part as backedge value for the induction. 1049 if (auto *IV = dyn_cast<VPWidenIntOrFpInductionRecipe>(&R)) 1050 Inc->setOperand(0, State->get(IV->getLastUnrolledPartOperand())); 1051 continue; 1052 } 1053 1054 auto *PhiR = cast<VPHeaderPHIRecipe>(&R); 1055 bool NeedsScalar = isa<VPScalarPHIRecipe>(PhiR) || 1056 (isa<VPReductionPHIRecipe>(PhiR) && 1057 cast<VPReductionPHIRecipe>(PhiR)->isInLoop()); 1058 Value *Phi = State->get(PhiR, NeedsScalar); 1059 Value *Val = State->get(PhiR->getBackedgeValue(), NeedsScalar); 1060 cast<PHINode>(Phi)->addIncoming(Val, VectorLatchBB); 1061 } 1062 1063 State->CFG.DTU.flush(); 1064 } 1065 1066 InstructionCost VPlan::cost(ElementCount VF, VPCostContext &Ctx) { 1067 // For now only return the cost of the vector loop region, ignoring any other 1068 // blocks, like the preheader or middle blocks. 1069 return getVectorLoopRegion()->cost(VF, Ctx); 1070 } 1071 1072 VPRegionBlock *VPlan::getVectorLoopRegion() { 1073 // TODO: Cache if possible. 1074 for (VPBlockBase *B : vp_depth_first_shallow(getEntry())) 1075 if (auto *R = dyn_cast<VPRegionBlock>(B)) 1076 return R; 1077 return nullptr; 1078 } 1079 1080 const VPRegionBlock *VPlan::getVectorLoopRegion() const { 1081 for (const VPBlockBase *B : vp_depth_first_shallow(getEntry())) 1082 if (auto *R = dyn_cast<VPRegionBlock>(B)) 1083 return R; 1084 return nullptr; 1085 } 1086 1087 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1088 void VPlan::printLiveIns(raw_ostream &O) const { 1089 VPSlotTracker SlotTracker(this); 1090 1091 if (VF.getNumUsers() > 0) { 1092 O << "\nLive-in "; 1093 VF.printAsOperand(O, SlotTracker); 1094 O << " = VF"; 1095 } 1096 1097 if (VFxUF.getNumUsers() > 0) { 1098 O << "\nLive-in "; 1099 VFxUF.printAsOperand(O, SlotTracker); 1100 O << " = VF * UF"; 1101 } 1102 1103 if (VectorTripCount.getNumUsers() > 0) { 1104 O << "\nLive-in "; 1105 VectorTripCount.printAsOperand(O, SlotTracker); 1106 O << " = vector-trip-count"; 1107 } 1108 1109 if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) { 1110 O << "\nLive-in "; 1111 BackedgeTakenCount->printAsOperand(O, SlotTracker); 1112 O << " = backedge-taken count"; 1113 } 1114 1115 O << "\n"; 1116 if (TripCount->isLiveIn()) 1117 O << "Live-in "; 1118 TripCount->printAsOperand(O, SlotTracker); 1119 O << " = original trip-count"; 1120 O << "\n"; 1121 } 1122 1123 LLVM_DUMP_METHOD 1124 void VPlan::print(raw_ostream &O) const { 1125 VPSlotTracker SlotTracker(this); 1126 1127 O << "VPlan '" << getName() << "' {"; 1128 1129 printLiveIns(O); 1130 1131 ReversePostOrderTraversal<VPBlockShallowTraversalWrapper<const VPBlockBase *>> 1132 RPOT(getEntry()); 1133 for (const VPBlockBase *Block : RPOT) { 1134 O << '\n'; 1135 Block->print(O, "", SlotTracker); 1136 } 1137 1138 O << "}\n"; 1139 } 1140 1141 std::string VPlan::getName() const { 1142 std::string Out; 1143 raw_string_ostream RSO(Out); 1144 RSO << Name << " for "; 1145 if (!VFs.empty()) { 1146 RSO << "VF={" << VFs[0]; 1147 for (ElementCount VF : drop_begin(VFs)) 1148 RSO << "," << VF; 1149 RSO << "},"; 1150 } 1151 1152 if (UFs.empty()) { 1153 RSO << "UF>=1"; 1154 } else { 1155 RSO << "UF={" << UFs[0]; 1156 for (unsigned UF : drop_begin(UFs)) 1157 RSO << "," << UF; 1158 RSO << "}"; 1159 } 1160 1161 return Out; 1162 } 1163 1164 LLVM_DUMP_METHOD 1165 void VPlan::printDOT(raw_ostream &O) const { 1166 VPlanPrinter Printer(O, *this); 1167 Printer.dump(); 1168 } 1169 1170 LLVM_DUMP_METHOD 1171 void VPlan::dump() const { print(dbgs()); } 1172 #endif 1173 1174 static void remapOperands(VPBlockBase *Entry, VPBlockBase *NewEntry, 1175 DenseMap<VPValue *, VPValue *> &Old2NewVPValues) { 1176 // Update the operands of all cloned recipes starting at NewEntry. This 1177 // traverses all reachable blocks. This is done in two steps, to handle cycles 1178 // in PHI recipes. 1179 ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<VPBlockBase *>> 1180 OldDeepRPOT(Entry); 1181 ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<VPBlockBase *>> 1182 NewDeepRPOT(NewEntry); 1183 // First, collect all mappings from old to new VPValues defined by cloned 1184 // recipes. 1185 for (const auto &[OldBB, NewBB] : 1186 zip(VPBlockUtils::blocksOnly<VPBasicBlock>(OldDeepRPOT), 1187 VPBlockUtils::blocksOnly<VPBasicBlock>(NewDeepRPOT))) { 1188 assert(OldBB->getRecipeList().size() == NewBB->getRecipeList().size() && 1189 "blocks must have the same number of recipes"); 1190 for (const auto &[OldR, NewR] : zip(*OldBB, *NewBB)) { 1191 assert(OldR.getNumOperands() == NewR.getNumOperands() && 1192 "recipes must have the same number of operands"); 1193 assert(OldR.getNumDefinedValues() == NewR.getNumDefinedValues() && 1194 "recipes must define the same number of operands"); 1195 for (const auto &[OldV, NewV] : 1196 zip(OldR.definedValues(), NewR.definedValues())) 1197 Old2NewVPValues[OldV] = NewV; 1198 } 1199 } 1200 1201 // Update all operands to use cloned VPValues. 1202 for (VPBasicBlock *NewBB : 1203 VPBlockUtils::blocksOnly<VPBasicBlock>(NewDeepRPOT)) { 1204 for (VPRecipeBase &NewR : *NewBB) 1205 for (unsigned I = 0, E = NewR.getNumOperands(); I != E; ++I) { 1206 VPValue *NewOp = Old2NewVPValues.lookup(NewR.getOperand(I)); 1207 NewR.setOperand(I, NewOp); 1208 } 1209 } 1210 } 1211 1212 VPlan *VPlan::duplicate() { 1213 unsigned NumBlocksBeforeCloning = CreatedBlocks.size(); 1214 // Clone blocks. 1215 const auto &[NewEntry, __] = cloneFrom(Entry); 1216 1217 BasicBlock *ScalarHeaderIRBB = getScalarHeader()->getIRBasicBlock(); 1218 VPIRBasicBlock *NewScalarHeader = cast<VPIRBasicBlock>(*find_if( 1219 vp_depth_first_shallow(NewEntry), [ScalarHeaderIRBB](VPBlockBase *VPB) { 1220 auto *VPIRBB = dyn_cast<VPIRBasicBlock>(VPB); 1221 return VPIRBB && VPIRBB->getIRBasicBlock() == ScalarHeaderIRBB; 1222 })); 1223 // Create VPlan, clone live-ins and remap operands in the cloned blocks. 1224 auto *NewPlan = new VPlan(cast<VPBasicBlock>(NewEntry), NewScalarHeader); 1225 DenseMap<VPValue *, VPValue *> Old2NewVPValues; 1226 for (VPValue *OldLiveIn : VPLiveInsToFree) { 1227 Old2NewVPValues[OldLiveIn] = 1228 NewPlan->getOrAddLiveIn(OldLiveIn->getLiveInIRValue()); 1229 } 1230 Old2NewVPValues[&VectorTripCount] = &NewPlan->VectorTripCount; 1231 Old2NewVPValues[&VF] = &NewPlan->VF; 1232 Old2NewVPValues[&VFxUF] = &NewPlan->VFxUF; 1233 if (BackedgeTakenCount) { 1234 NewPlan->BackedgeTakenCount = new VPValue(); 1235 Old2NewVPValues[BackedgeTakenCount] = NewPlan->BackedgeTakenCount; 1236 } 1237 assert(TripCount && "trip count must be set"); 1238 if (TripCount->isLiveIn()) 1239 Old2NewVPValues[TripCount] = 1240 NewPlan->getOrAddLiveIn(TripCount->getLiveInIRValue()); 1241 // else NewTripCount will be created and inserted into Old2NewVPValues when 1242 // TripCount is cloned. In any case NewPlan->TripCount is updated below. 1243 1244 remapOperands(Entry, NewEntry, Old2NewVPValues); 1245 1246 // Initialize remaining fields of cloned VPlan. 1247 NewPlan->VFs = VFs; 1248 NewPlan->UFs = UFs; 1249 // TODO: Adjust names. 1250 NewPlan->Name = Name; 1251 assert(Old2NewVPValues.contains(TripCount) && 1252 "TripCount must have been added to Old2NewVPValues"); 1253 NewPlan->TripCount = Old2NewVPValues[TripCount]; 1254 1255 // Transfer all cloned blocks (the second half of all current blocks) from 1256 // current to new VPlan. 1257 unsigned NumBlocksAfterCloning = CreatedBlocks.size(); 1258 for (unsigned I : 1259 seq<unsigned>(NumBlocksBeforeCloning, NumBlocksAfterCloning)) 1260 NewPlan->CreatedBlocks.push_back(this->CreatedBlocks[I]); 1261 CreatedBlocks.truncate(NumBlocksBeforeCloning); 1262 1263 return NewPlan; 1264 } 1265 1266 VPIRBasicBlock *VPlan::createEmptyVPIRBasicBlock(BasicBlock *IRBB) { 1267 auto *VPIRBB = new VPIRBasicBlock(IRBB); 1268 CreatedBlocks.push_back(VPIRBB); 1269 return VPIRBB; 1270 } 1271 1272 VPIRBasicBlock *VPlan::createVPIRBasicBlock(BasicBlock *IRBB) { 1273 auto *VPIRBB = createEmptyVPIRBasicBlock(IRBB); 1274 for (Instruction &I : 1275 make_range(IRBB->begin(), IRBB->getTerminator()->getIterator())) 1276 VPIRBB->appendRecipe(new VPIRInstruction(I)); 1277 return VPIRBB; 1278 } 1279 1280 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1281 1282 Twine VPlanPrinter::getUID(const VPBlockBase *Block) { 1283 return (isa<VPRegionBlock>(Block) ? "cluster_N" : "N") + 1284 Twine(getOrCreateBID(Block)); 1285 } 1286 1287 Twine VPlanPrinter::getOrCreateName(const VPBlockBase *Block) { 1288 const std::string &Name = Block->getName(); 1289 if (!Name.empty()) 1290 return Name; 1291 return "VPB" + Twine(getOrCreateBID(Block)); 1292 } 1293 1294 void VPlanPrinter::dump() { 1295 Depth = 1; 1296 bumpIndent(0); 1297 OS << "digraph VPlan {\n"; 1298 OS << "graph [labelloc=t, fontsize=30; label=\"Vectorization Plan"; 1299 if (!Plan.getName().empty()) 1300 OS << "\\n" << DOT::EscapeString(Plan.getName()); 1301 1302 { 1303 // Print live-ins. 1304 std::string Str; 1305 raw_string_ostream SS(Str); 1306 Plan.printLiveIns(SS); 1307 SmallVector<StringRef, 0> Lines; 1308 StringRef(Str).rtrim('\n').split(Lines, "\n"); 1309 for (auto Line : Lines) 1310 OS << DOT::EscapeString(Line.str()) << "\\n"; 1311 } 1312 1313 OS << "\"]\n"; 1314 OS << "node [shape=rect, fontname=Courier, fontsize=30]\n"; 1315 OS << "edge [fontname=Courier, fontsize=30]\n"; 1316 OS << "compound=true\n"; 1317 1318 for (const VPBlockBase *Block : vp_depth_first_shallow(Plan.getEntry())) 1319 dumpBlock(Block); 1320 1321 OS << "}\n"; 1322 } 1323 1324 void VPlanPrinter::dumpBlock(const VPBlockBase *Block) { 1325 if (const VPBasicBlock *BasicBlock = dyn_cast<VPBasicBlock>(Block)) 1326 dumpBasicBlock(BasicBlock); 1327 else if (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 1328 dumpRegion(Region); 1329 else 1330 llvm_unreachable("Unsupported kind of VPBlock."); 1331 } 1332 1333 void VPlanPrinter::drawEdge(const VPBlockBase *From, const VPBlockBase *To, 1334 bool Hidden, const Twine &Label) { 1335 // Due to "dot" we print an edge between two regions as an edge between the 1336 // exiting basic block and the entry basic of the respective regions. 1337 const VPBlockBase *Tail = From->getExitingBasicBlock(); 1338 const VPBlockBase *Head = To->getEntryBasicBlock(); 1339 OS << Indent << getUID(Tail) << " -> " << getUID(Head); 1340 OS << " [ label=\"" << Label << '\"'; 1341 if (Tail != From) 1342 OS << " ltail=" << getUID(From); 1343 if (Head != To) 1344 OS << " lhead=" << getUID(To); 1345 if (Hidden) 1346 OS << "; splines=none"; 1347 OS << "]\n"; 1348 } 1349 1350 void VPlanPrinter::dumpEdges(const VPBlockBase *Block) { 1351 auto &Successors = Block->getSuccessors(); 1352 if (Successors.size() == 1) 1353 drawEdge(Block, Successors.front(), false, ""); 1354 else if (Successors.size() == 2) { 1355 drawEdge(Block, Successors.front(), false, "T"); 1356 drawEdge(Block, Successors.back(), false, "F"); 1357 } else { 1358 unsigned SuccessorNumber = 0; 1359 for (auto *Successor : Successors) 1360 drawEdge(Block, Successor, false, Twine(SuccessorNumber++)); 1361 } 1362 } 1363 1364 void VPlanPrinter::dumpBasicBlock(const VPBasicBlock *BasicBlock) { 1365 // Implement dot-formatted dump by performing plain-text dump into the 1366 // temporary storage followed by some post-processing. 1367 OS << Indent << getUID(BasicBlock) << " [label =\n"; 1368 bumpIndent(1); 1369 std::string Str; 1370 raw_string_ostream SS(Str); 1371 // Use no indentation as we need to wrap the lines into quotes ourselves. 1372 BasicBlock->print(SS, "", SlotTracker); 1373 1374 // We need to process each line of the output separately, so split 1375 // single-string plain-text dump. 1376 SmallVector<StringRef, 0> Lines; 1377 StringRef(Str).rtrim('\n').split(Lines, "\n"); 1378 1379 auto EmitLine = [&](StringRef Line, StringRef Suffix) { 1380 OS << Indent << '"' << DOT::EscapeString(Line.str()) << "\\l\"" << Suffix; 1381 }; 1382 1383 // Don't need the "+" after the last line. 1384 for (auto Line : make_range(Lines.begin(), Lines.end() - 1)) 1385 EmitLine(Line, " +\n"); 1386 EmitLine(Lines.back(), "\n"); 1387 1388 bumpIndent(-1); 1389 OS << Indent << "]\n"; 1390 1391 dumpEdges(BasicBlock); 1392 } 1393 1394 void VPlanPrinter::dumpRegion(const VPRegionBlock *Region) { 1395 OS << Indent << "subgraph " << getUID(Region) << " {\n"; 1396 bumpIndent(1); 1397 OS << Indent << "fontname=Courier\n" 1398 << Indent << "label=\"" 1399 << DOT::EscapeString(Region->isReplicator() ? "<xVFxUF> " : "<x1> ") 1400 << DOT::EscapeString(Region->getName()) << "\"\n"; 1401 // Dump the blocks of the region. 1402 assert(Region->getEntry() && "Region contains no inner blocks."); 1403 for (const VPBlockBase *Block : vp_depth_first_shallow(Region->getEntry())) 1404 dumpBlock(Block); 1405 bumpIndent(-1); 1406 OS << Indent << "}\n"; 1407 dumpEdges(Region); 1408 } 1409 1410 void VPlanIngredient::print(raw_ostream &O) const { 1411 if (auto *Inst = dyn_cast<Instruction>(V)) { 1412 if (!Inst->getType()->isVoidTy()) { 1413 Inst->printAsOperand(O, false); 1414 O << " = "; 1415 } 1416 O << Inst->getOpcodeName() << " "; 1417 unsigned E = Inst->getNumOperands(); 1418 if (E > 0) { 1419 Inst->getOperand(0)->printAsOperand(O, false); 1420 for (unsigned I = 1; I < E; ++I) 1421 Inst->getOperand(I)->printAsOperand(O << ", ", false); 1422 } 1423 } else // !Inst 1424 V->printAsOperand(O, false); 1425 } 1426 1427 #endif 1428 1429 bool VPValue::isDefinedOutsideLoopRegions() const { 1430 return !hasDefiningRecipe() || 1431 !getDefiningRecipe()->getParent()->getEnclosingLoopRegion(); 1432 } 1433 1434 void VPValue::replaceAllUsesWith(VPValue *New) { 1435 replaceUsesWithIf(New, [](VPUser &, unsigned) { return true; }); 1436 } 1437 1438 void VPValue::replaceUsesWithIf( 1439 VPValue *New, 1440 llvm::function_ref<bool(VPUser &U, unsigned Idx)> ShouldReplace) { 1441 // Note that this early exit is required for correctness; the implementation 1442 // below relies on the number of users for this VPValue to decrease, which 1443 // isn't the case if this == New. 1444 if (this == New) 1445 return; 1446 1447 for (unsigned J = 0; J < getNumUsers();) { 1448 VPUser *User = Users[J]; 1449 bool RemovedUser = false; 1450 for (unsigned I = 0, E = User->getNumOperands(); I < E; ++I) { 1451 if (User->getOperand(I) != this || !ShouldReplace(*User, I)) 1452 continue; 1453 1454 RemovedUser = true; 1455 User->setOperand(I, New); 1456 } 1457 // If a user got removed after updating the current user, the next user to 1458 // update will be moved to the current position, so we only need to 1459 // increment the index if the number of users did not change. 1460 if (!RemovedUser) 1461 J++; 1462 } 1463 } 1464 1465 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1466 void VPValue::printAsOperand(raw_ostream &OS, VPSlotTracker &Tracker) const { 1467 OS << Tracker.getOrCreateName(this); 1468 } 1469 1470 void VPUser::printOperands(raw_ostream &O, VPSlotTracker &SlotTracker) const { 1471 interleaveComma(operands(), O, [&O, &SlotTracker](VPValue *Op) { 1472 Op->printAsOperand(O, SlotTracker); 1473 }); 1474 } 1475 #endif 1476 1477 void VPInterleavedAccessInfo::visitRegion(VPRegionBlock *Region, 1478 Old2NewTy &Old2New, 1479 InterleavedAccessInfo &IAI) { 1480 ReversePostOrderTraversal<VPBlockShallowTraversalWrapper<VPBlockBase *>> 1481 RPOT(Region->getEntry()); 1482 for (VPBlockBase *Base : RPOT) { 1483 visitBlock(Base, Old2New, IAI); 1484 } 1485 } 1486 1487 void VPInterleavedAccessInfo::visitBlock(VPBlockBase *Block, Old2NewTy &Old2New, 1488 InterleavedAccessInfo &IAI) { 1489 if (VPBasicBlock *VPBB = dyn_cast<VPBasicBlock>(Block)) { 1490 for (VPRecipeBase &VPI : *VPBB) { 1491 if (isa<VPWidenPHIRecipe>(&VPI)) 1492 continue; 1493 assert(isa<VPInstruction>(&VPI) && "Can only handle VPInstructions"); 1494 auto *VPInst = cast<VPInstruction>(&VPI); 1495 1496 auto *Inst = dyn_cast_or_null<Instruction>(VPInst->getUnderlyingValue()); 1497 if (!Inst) 1498 continue; 1499 auto *IG = IAI.getInterleaveGroup(Inst); 1500 if (!IG) 1501 continue; 1502 1503 auto NewIGIter = Old2New.find(IG); 1504 if (NewIGIter == Old2New.end()) 1505 Old2New[IG] = new InterleaveGroup<VPInstruction>( 1506 IG->getFactor(), IG->isReverse(), IG->getAlign()); 1507 1508 if (Inst == IG->getInsertPos()) 1509 Old2New[IG]->setInsertPos(VPInst); 1510 1511 InterleaveGroupMap[VPInst] = Old2New[IG]; 1512 InterleaveGroupMap[VPInst]->insertMember( 1513 VPInst, IG->getIndex(Inst), 1514 Align(IG->isReverse() ? (-1) * int(IG->getFactor()) 1515 : IG->getFactor())); 1516 } 1517 } else if (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 1518 visitRegion(Region, Old2New, IAI); 1519 else 1520 llvm_unreachable("Unsupported kind of VPBlock."); 1521 } 1522 1523 VPInterleavedAccessInfo::VPInterleavedAccessInfo(VPlan &Plan, 1524 InterleavedAccessInfo &IAI) { 1525 Old2NewTy Old2New; 1526 visitRegion(Plan.getVectorLoopRegion(), Old2New, IAI); 1527 } 1528 1529 void VPSlotTracker::assignName(const VPValue *V) { 1530 assert(!VPValue2Name.contains(V) && "VPValue already has a name!"); 1531 auto *UV = V->getUnderlyingValue(); 1532 auto *VPI = dyn_cast_or_null<VPInstruction>(V->getDefiningRecipe()); 1533 if (!UV && !(VPI && !VPI->getName().empty())) { 1534 VPValue2Name[V] = (Twine("vp<%") + Twine(NextSlot) + ">").str(); 1535 NextSlot++; 1536 return; 1537 } 1538 1539 // Use the name of the underlying Value, wrapped in "ir<>", and versioned by 1540 // appending ".Number" to the name if there are multiple uses. 1541 std::string Name; 1542 if (UV) { 1543 raw_string_ostream S(Name); 1544 UV->printAsOperand(S, false); 1545 } else 1546 Name = VPI->getName(); 1547 1548 assert(!Name.empty() && "Name cannot be empty."); 1549 StringRef Prefix = UV ? "ir<" : "vp<%"; 1550 std::string BaseName = (Twine(Prefix) + Name + Twine(">")).str(); 1551 1552 // First assign the base name for V. 1553 const auto &[A, _] = VPValue2Name.insert({V, BaseName}); 1554 // Integer or FP constants with different types will result in he same string 1555 // due to stripping types. 1556 if (V->isLiveIn() && isa<ConstantInt, ConstantFP>(UV)) 1557 return; 1558 1559 // If it is already used by C > 0 other VPValues, increase the version counter 1560 // C and use it for V. 1561 const auto &[C, UseInserted] = BaseName2Version.insert({BaseName, 0}); 1562 if (!UseInserted) { 1563 C->second++; 1564 A->second = (BaseName + Twine(".") + Twine(C->second)).str(); 1565 } 1566 } 1567 1568 void VPSlotTracker::assignNames(const VPlan &Plan) { 1569 if (Plan.VF.getNumUsers() > 0) 1570 assignName(&Plan.VF); 1571 if (Plan.VFxUF.getNumUsers() > 0) 1572 assignName(&Plan.VFxUF); 1573 assignName(&Plan.VectorTripCount); 1574 if (Plan.BackedgeTakenCount) 1575 assignName(Plan.BackedgeTakenCount); 1576 for (VPValue *LI : Plan.VPLiveInsToFree) 1577 assignName(LI); 1578 1579 ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<const VPBlockBase *>> 1580 RPOT(VPBlockDeepTraversalWrapper<const VPBlockBase *>(Plan.getEntry())); 1581 for (const VPBasicBlock *VPBB : 1582 VPBlockUtils::blocksOnly<const VPBasicBlock>(RPOT)) 1583 assignNames(VPBB); 1584 } 1585 1586 void VPSlotTracker::assignNames(const VPBasicBlock *VPBB) { 1587 for (const VPRecipeBase &Recipe : *VPBB) 1588 for (VPValue *Def : Recipe.definedValues()) 1589 assignName(Def); 1590 } 1591 1592 std::string VPSlotTracker::getOrCreateName(const VPValue *V) const { 1593 std::string Name = VPValue2Name.lookup(V); 1594 if (!Name.empty()) 1595 return Name; 1596 1597 // If no name was assigned, no VPlan was provided when creating the slot 1598 // tracker or it is not reachable from the provided VPlan. This can happen, 1599 // e.g. when trying to print a recipe that has not been inserted into a VPlan 1600 // in a debugger. 1601 // TODO: Update VPSlotTracker constructor to assign names to recipes & 1602 // VPValues not associated with a VPlan, instead of constructing names ad-hoc 1603 // here. 1604 const VPRecipeBase *DefR = V->getDefiningRecipe(); 1605 (void)DefR; 1606 assert((!DefR || !DefR->getParent() || !DefR->getParent()->getPlan()) && 1607 "VPValue defined by a recipe in a VPlan?"); 1608 1609 // Use the underlying value's name, if there is one. 1610 if (auto *UV = V->getUnderlyingValue()) { 1611 std::string Name; 1612 raw_string_ostream S(Name); 1613 UV->printAsOperand(S, false); 1614 return (Twine("ir<") + Name + ">").str(); 1615 } 1616 1617 return "<badref>"; 1618 } 1619 1620 bool LoopVectorizationPlanner::getDecisionAndClampRange( 1621 const std::function<bool(ElementCount)> &Predicate, VFRange &Range) { 1622 assert(!Range.isEmpty() && "Trying to test an empty VF range."); 1623 bool PredicateAtRangeStart = Predicate(Range.Start); 1624 1625 for (ElementCount TmpVF : VFRange(Range.Start * 2, Range.End)) 1626 if (Predicate(TmpVF) != PredicateAtRangeStart) { 1627 Range.End = TmpVF; 1628 break; 1629 } 1630 1631 return PredicateAtRangeStart; 1632 } 1633 1634 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF, 1635 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range 1636 /// of VF's starting at a given VF and extending it as much as possible. Each 1637 /// vectorization decision can potentially shorten this sub-range during 1638 /// buildVPlan(). 1639 void LoopVectorizationPlanner::buildVPlans(ElementCount MinVF, 1640 ElementCount MaxVF) { 1641 auto MaxVFTimes2 = MaxVF * 2; 1642 for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFTimes2);) { 1643 VFRange SubRange = {VF, MaxVFTimes2}; 1644 auto Plan = buildVPlan(SubRange); 1645 VPlanTransforms::optimize(*Plan); 1646 VPlans.push_back(std::move(Plan)); 1647 VF = SubRange.End; 1648 } 1649 } 1650 1651 VPlan &LoopVectorizationPlanner::getPlanFor(ElementCount VF) const { 1652 assert(count_if(VPlans, 1653 [VF](const VPlanPtr &Plan) { return Plan->hasVF(VF); }) == 1654 1 && 1655 "Multiple VPlans for VF."); 1656 1657 for (const VPlanPtr &Plan : VPlans) { 1658 if (Plan->hasVF(VF)) 1659 return *Plan.get(); 1660 } 1661 llvm_unreachable("No plan found!"); 1662 } 1663 1664 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1665 void LoopVectorizationPlanner::printPlans(raw_ostream &O) { 1666 if (VPlans.empty()) { 1667 O << "LV: No VPlans built.\n"; 1668 return; 1669 } 1670 for (const auto &Plan : VPlans) 1671 if (PrintVPlansInDotFormat) 1672 Plan->printDOT(O); 1673 else 1674 Plan->print(O); 1675 } 1676 #endif 1677 1678 TargetTransformInfo::OperandValueInfo 1679 VPCostContext::getOperandInfo(VPValue *V) const { 1680 if (!V->isLiveIn()) 1681 return {}; 1682 1683 return TTI::getOperandInfo(V->getLiveInIRValue()); 1684 } 1685