xref: /llvm-project/llvm/lib/Transforms/Vectorize/VPlan.cpp (revision aa825b74af6b4278ab22a25a8dee3a60fe7ed2b7)
1 //===- VPlan.cpp - Vectorizer Plan ----------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This is the LLVM vectorization plan. It represents a candidate for
11 /// vectorization, allowing to plan and optimize how to vectorize a given loop
12 /// before generating LLVM-IR.
13 /// The vectorizer uses vectorization plans to estimate the costs of potential
14 /// candidates and if profitable to execute the desired plan, generating vector
15 /// LLVM-IR code.
16 ///
17 //===----------------------------------------------------------------------===//
18 
19 #include "VPlan.h"
20 #include "LoopVectorizationPlanner.h"
21 #include "VPlanCFG.h"
22 #include "VPlanPatternMatch.h"
23 #include "VPlanTransforms.h"
24 #include "VPlanUtils.h"
25 #include "llvm/ADT/PostOrderIterator.h"
26 #include "llvm/ADT/STLExtras.h"
27 #include "llvm/ADT/SmallVector.h"
28 #include "llvm/ADT/StringExtras.h"
29 #include "llvm/ADT/Twine.h"
30 #include "llvm/Analysis/DomTreeUpdater.h"
31 #include "llvm/Analysis/LoopInfo.h"
32 #include "llvm/IR/BasicBlock.h"
33 #include "llvm/IR/CFG.h"
34 #include "llvm/IR/IRBuilder.h"
35 #include "llvm/IR/Instruction.h"
36 #include "llvm/IR/Instructions.h"
37 #include "llvm/IR/Type.h"
38 #include "llvm/IR/Value.h"
39 #include "llvm/Support/Casting.h"
40 #include "llvm/Support/CommandLine.h"
41 #include "llvm/Support/Debug.h"
42 #include "llvm/Support/GraphWriter.h"
43 #include "llvm/Support/raw_ostream.h"
44 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
45 #include "llvm/Transforms/Utils/LoopVersioning.h"
46 #include <cassert>
47 #include <string>
48 
49 using namespace llvm;
50 using namespace llvm::VPlanPatternMatch;
51 
52 namespace llvm {
53 extern cl::opt<bool> EnableVPlanNativePath;
54 }
55 extern cl::opt<unsigned> ForceTargetInstructionCost;
56 
57 static cl::opt<bool> PrintVPlansInDotFormat(
58     "vplan-print-in-dot-format", cl::Hidden,
59     cl::desc("Use dot format instead of plain text when dumping VPlans"));
60 
61 #define DEBUG_TYPE "vplan"
62 
63 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
64 raw_ostream &llvm::operator<<(raw_ostream &OS, const VPValue &V) {
65   const VPInstruction *Instr = dyn_cast<VPInstruction>(&V);
66   VPSlotTracker SlotTracker(
67       (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr);
68   V.print(OS, SlotTracker);
69   return OS;
70 }
71 #endif
72 
73 Value *VPLane::getAsRuntimeExpr(IRBuilderBase &Builder,
74                                 const ElementCount &VF) const {
75   switch (LaneKind) {
76   case VPLane::Kind::ScalableLast:
77     // Lane = RuntimeVF - VF.getKnownMinValue() + Lane
78     return Builder.CreateSub(getRuntimeVF(Builder, Builder.getInt32Ty(), VF),
79                              Builder.getInt32(VF.getKnownMinValue() - Lane));
80   case VPLane::Kind::First:
81     return Builder.getInt32(Lane);
82   }
83   llvm_unreachable("Unknown lane kind");
84 }
85 
86 VPValue::VPValue(const unsigned char SC, Value *UV, VPDef *Def)
87     : SubclassID(SC), UnderlyingVal(UV), Def(Def) {
88   if (Def)
89     Def->addDefinedValue(this);
90 }
91 
92 VPValue::~VPValue() {
93   assert(Users.empty() && "trying to delete a VPValue with remaining users");
94   if (Def)
95     Def->removeDefinedValue(this);
96 }
97 
98 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
99 void VPValue::print(raw_ostream &OS, VPSlotTracker &SlotTracker) const {
100   if (const VPRecipeBase *R = dyn_cast_or_null<VPRecipeBase>(Def))
101     R->print(OS, "", SlotTracker);
102   else
103     printAsOperand(OS, SlotTracker);
104 }
105 
106 void VPValue::dump() const {
107   const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this->Def);
108   VPSlotTracker SlotTracker(
109       (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr);
110   print(dbgs(), SlotTracker);
111   dbgs() << "\n";
112 }
113 
114 void VPDef::dump() const {
115   const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this);
116   VPSlotTracker SlotTracker(
117       (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr);
118   print(dbgs(), "", SlotTracker);
119   dbgs() << "\n";
120 }
121 #endif
122 
123 VPRecipeBase *VPValue::getDefiningRecipe() {
124   return cast_or_null<VPRecipeBase>(Def);
125 }
126 
127 const VPRecipeBase *VPValue::getDefiningRecipe() const {
128   return cast_or_null<VPRecipeBase>(Def);
129 }
130 
131 // Get the top-most entry block of \p Start. This is the entry block of the
132 // containing VPlan. This function is templated to support both const and non-const blocks
133 template <typename T> static T *getPlanEntry(T *Start) {
134   T *Next = Start;
135   T *Current = Start;
136   while ((Next = Next->getParent()))
137     Current = Next;
138 
139   SmallSetVector<T *, 8> WorkList;
140   WorkList.insert(Current);
141 
142   for (unsigned i = 0; i < WorkList.size(); i++) {
143     T *Current = WorkList[i];
144     if (Current->getNumPredecessors() == 0)
145       return Current;
146     auto &Predecessors = Current->getPredecessors();
147     WorkList.insert(Predecessors.begin(), Predecessors.end());
148   }
149 
150   llvm_unreachable("VPlan without any entry node without predecessors");
151 }
152 
153 VPlan *VPBlockBase::getPlan() { return getPlanEntry(this)->Plan; }
154 
155 const VPlan *VPBlockBase::getPlan() const { return getPlanEntry(this)->Plan; }
156 
157 /// \return the VPBasicBlock that is the entry of Block, possibly indirectly.
158 const VPBasicBlock *VPBlockBase::getEntryBasicBlock() const {
159   const VPBlockBase *Block = this;
160   while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
161     Block = Region->getEntry();
162   return cast<VPBasicBlock>(Block);
163 }
164 
165 VPBasicBlock *VPBlockBase::getEntryBasicBlock() {
166   VPBlockBase *Block = this;
167   while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
168     Block = Region->getEntry();
169   return cast<VPBasicBlock>(Block);
170 }
171 
172 void VPBlockBase::setPlan(VPlan *ParentPlan) {
173   assert(
174       (ParentPlan->getEntry() == this || ParentPlan->getPreheader() == this) &&
175       "Can only set plan on its entry or preheader block.");
176   Plan = ParentPlan;
177 }
178 
179 /// \return the VPBasicBlock that is the exit of Block, possibly indirectly.
180 const VPBasicBlock *VPBlockBase::getExitingBasicBlock() const {
181   const VPBlockBase *Block = this;
182   while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
183     Block = Region->getExiting();
184   return cast<VPBasicBlock>(Block);
185 }
186 
187 VPBasicBlock *VPBlockBase::getExitingBasicBlock() {
188   VPBlockBase *Block = this;
189   while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
190     Block = Region->getExiting();
191   return cast<VPBasicBlock>(Block);
192 }
193 
194 VPBlockBase *VPBlockBase::getEnclosingBlockWithSuccessors() {
195   if (!Successors.empty() || !Parent)
196     return this;
197   assert(Parent->getExiting() == this &&
198          "Block w/o successors not the exiting block of its parent.");
199   return Parent->getEnclosingBlockWithSuccessors();
200 }
201 
202 VPBlockBase *VPBlockBase::getEnclosingBlockWithPredecessors() {
203   if (!Predecessors.empty() || !Parent)
204     return this;
205   assert(Parent->getEntry() == this &&
206          "Block w/o predecessors not the entry of its parent.");
207   return Parent->getEnclosingBlockWithPredecessors();
208 }
209 
210 void VPBlockBase::deleteCFG(VPBlockBase *Entry) {
211   for (VPBlockBase *Block : to_vector(vp_depth_first_shallow(Entry)))
212     delete Block;
213 }
214 
215 VPBasicBlock::iterator VPBasicBlock::getFirstNonPhi() {
216   iterator It = begin();
217   while (It != end() && It->isPhi())
218     It++;
219   return It;
220 }
221 
222 VPTransformState::VPTransformState(ElementCount VF, unsigned UF, LoopInfo *LI,
223                                    DominatorTree *DT, IRBuilderBase &Builder,
224                                    InnerLoopVectorizer *ILV, VPlan *Plan)
225     : VF(VF), CFG(DT), LI(LI), Builder(Builder), ILV(ILV), Plan(Plan),
226       LVer(nullptr), TypeAnalysis(Plan->getCanonicalIV()->getScalarType()) {}
227 
228 Value *VPTransformState::get(VPValue *Def, const VPLane &Lane) {
229   if (Def->isLiveIn())
230     return Def->getLiveInIRValue();
231 
232   if (hasScalarValue(Def, Lane))
233     return Data.VPV2Scalars[Def][Lane.mapToCacheIndex(VF)];
234 
235   if (!Lane.isFirstLane() && vputils::isUniformAfterVectorization(Def) &&
236       hasScalarValue(Def, VPLane::getFirstLane())) {
237     return Data.VPV2Scalars[Def][0];
238   }
239 
240   assert(hasVectorValue(Def));
241   auto *VecPart = Data.VPV2Vector[Def];
242   if (!VecPart->getType()->isVectorTy()) {
243     assert(Lane.isFirstLane() && "cannot get lane > 0 for scalar");
244     return VecPart;
245   }
246   // TODO: Cache created scalar values.
247   Value *LaneV = Lane.getAsRuntimeExpr(Builder, VF);
248   auto *Extract = Builder.CreateExtractElement(VecPart, LaneV);
249   // set(Def, Extract, Instance);
250   return Extract;
251 }
252 
253 Value *VPTransformState::get(VPValue *Def, bool NeedsScalar) {
254   if (NeedsScalar) {
255     assert((VF.isScalar() || Def->isLiveIn() || hasVectorValue(Def) ||
256             !vputils::onlyFirstLaneUsed(Def) ||
257             (hasScalarValue(Def, VPLane(0)) &&
258              Data.VPV2Scalars[Def].size() == 1)) &&
259            "Trying to access a single scalar per part but has multiple scalars "
260            "per part.");
261     return get(Def, VPLane(0));
262   }
263 
264   // If Values have been set for this Def return the one relevant for \p Part.
265   if (hasVectorValue(Def))
266     return Data.VPV2Vector[Def];
267 
268   auto GetBroadcastInstrs = [this, Def](Value *V) {
269     bool SafeToHoist = Def->isDefinedOutsideLoopRegions();
270     if (VF.isScalar())
271       return V;
272     // Place the code for broadcasting invariant variables in the new preheader.
273     IRBuilder<>::InsertPointGuard Guard(Builder);
274     if (SafeToHoist) {
275       BasicBlock *LoopVectorPreHeader =
276           CFG.VPBB2IRBB[Plan->getVectorPreheader()];
277       if (LoopVectorPreHeader)
278         Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
279     }
280 
281     // Place the code for broadcasting invariant variables in the new preheader.
282     // Broadcast the scalar into all locations in the vector.
283     Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast");
284 
285     return Shuf;
286   };
287 
288   if (!hasScalarValue(Def, {0})) {
289     assert(Def->isLiveIn() && "expected a live-in");
290     Value *IRV = Def->getLiveInIRValue();
291     Value *B = GetBroadcastInstrs(IRV);
292     set(Def, B);
293     return B;
294   }
295 
296   Value *ScalarValue = get(Def, VPLane(0));
297   // If we aren't vectorizing, we can just copy the scalar map values over
298   // to the vector map.
299   if (VF.isScalar()) {
300     set(Def, ScalarValue);
301     return ScalarValue;
302   }
303 
304   bool IsUniform = vputils::isUniformAfterVectorization(Def);
305 
306   VPLane LastLane(IsUniform ? 0 : VF.getKnownMinValue() - 1);
307   // Check if there is a scalar value for the selected lane.
308   if (!hasScalarValue(Def, LastLane)) {
309     // At the moment, VPWidenIntOrFpInductionRecipes, VPScalarIVStepsRecipes and
310     // VPExpandSCEVRecipes can also be uniform.
311     assert((isa<VPWidenIntOrFpInductionRecipe>(Def->getDefiningRecipe()) ||
312             isa<VPScalarIVStepsRecipe>(Def->getDefiningRecipe()) ||
313             isa<VPExpandSCEVRecipe>(Def->getDefiningRecipe())) &&
314            "unexpected recipe found to be invariant");
315     IsUniform = true;
316     LastLane = 0;
317   }
318 
319   auto *LastInst = cast<Instruction>(get(Def, LastLane));
320   // Set the insert point after the last scalarized instruction or after the
321   // last PHI, if LastInst is a PHI. This ensures the insertelement sequence
322   // will directly follow the scalar definitions.
323   auto OldIP = Builder.saveIP();
324   auto NewIP =
325       isa<PHINode>(LastInst)
326           ? BasicBlock::iterator(LastInst->getParent()->getFirstNonPHI())
327           : std::next(BasicBlock::iterator(LastInst));
328   Builder.SetInsertPoint(&*NewIP);
329 
330   // However, if we are vectorizing, we need to construct the vector values.
331   // If the value is known to be uniform after vectorization, we can just
332   // broadcast the scalar value corresponding to lane zero. Otherwise, we
333   // construct the vector values using insertelement instructions. Since the
334   // resulting vectors are stored in State, we will only generate the
335   // insertelements once.
336   Value *VectorValue = nullptr;
337   if (IsUniform) {
338     VectorValue = GetBroadcastInstrs(ScalarValue);
339     set(Def, VectorValue);
340   } else {
341     // Initialize packing with insertelements to start from undef.
342     assert(!VF.isScalable() && "VF is assumed to be non scalable.");
343     Value *Undef = PoisonValue::get(VectorType::get(LastInst->getType(), VF));
344     set(Def, Undef);
345     for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane)
346       packScalarIntoVectorValue(Def, Lane);
347     VectorValue = get(Def);
348   }
349   Builder.restoreIP(OldIP);
350   return VectorValue;
351 }
352 
353 BasicBlock *VPTransformState::CFGState::getPreheaderBBFor(VPRecipeBase *R) {
354   VPRegionBlock *LoopRegion = R->getParent()->getEnclosingLoopRegion();
355   return VPBB2IRBB[LoopRegion->getPreheaderVPBB()];
356 }
357 
358 void VPTransformState::addNewMetadata(Instruction *To,
359                                       const Instruction *Orig) {
360   // If the loop was versioned with memchecks, add the corresponding no-alias
361   // metadata.
362   if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig)))
363     LVer->annotateInstWithNoAlias(To, Orig);
364 }
365 
366 void VPTransformState::addMetadata(Value *To, Instruction *From) {
367   // No source instruction to transfer metadata from?
368   if (!From)
369     return;
370 
371   if (Instruction *ToI = dyn_cast<Instruction>(To)) {
372     propagateMetadata(ToI, From);
373     addNewMetadata(ToI, From);
374   }
375 }
376 
377 void VPTransformState::setDebugLocFrom(DebugLoc DL) {
378   const DILocation *DIL = DL;
379   // When a FSDiscriminator is enabled, we don't need to add the multiply
380   // factors to the discriminators.
381   if (DIL &&
382       Builder.GetInsertBlock()
383           ->getParent()
384           ->shouldEmitDebugInfoForProfiling() &&
385       !EnableFSDiscriminator) {
386     // FIXME: For scalable vectors, assume vscale=1.
387     unsigned UF = Plan->getUF();
388     auto NewDIL =
389         DIL->cloneByMultiplyingDuplicationFactor(UF * VF.getKnownMinValue());
390     if (NewDIL)
391       Builder.SetCurrentDebugLocation(*NewDIL);
392     else
393       LLVM_DEBUG(dbgs() << "Failed to create new discriminator: "
394                         << DIL->getFilename() << " Line: " << DIL->getLine());
395   } else
396     Builder.SetCurrentDebugLocation(DIL);
397 }
398 
399 void VPTransformState::packScalarIntoVectorValue(VPValue *Def,
400                                                  const VPLane &Lane) {
401   Value *ScalarInst = get(Def, Lane);
402   Value *VectorValue = get(Def);
403   VectorValue = Builder.CreateInsertElement(VectorValue, ScalarInst,
404                                             Lane.getAsRuntimeExpr(Builder, VF));
405   set(Def, VectorValue);
406 }
407 
408 BasicBlock *
409 VPBasicBlock::createEmptyBasicBlock(VPTransformState::CFGState &CFG) {
410   // BB stands for IR BasicBlocks. VPBB stands for VPlan VPBasicBlocks.
411   // Pred stands for Predessor. Prev stands for Previous - last visited/created.
412   BasicBlock *PrevBB = CFG.PrevBB;
413   BasicBlock *NewBB = BasicBlock::Create(PrevBB->getContext(), getName(),
414                                          PrevBB->getParent(), CFG.ExitBB);
415   LLVM_DEBUG(dbgs() << "LV: created " << NewBB->getName() << '\n');
416 
417   // Hook up the new basic block to its predecessors.
418   for (VPBlockBase *PredVPBlock : getHierarchicalPredecessors()) {
419     VPBasicBlock *PredVPBB = PredVPBlock->getExitingBasicBlock();
420     auto &PredVPSuccessors = PredVPBB->getHierarchicalSuccessors();
421     BasicBlock *PredBB = CFG.VPBB2IRBB[PredVPBB];
422 
423     assert(PredBB && "Predecessor basic-block not found building successor.");
424     auto *PredBBTerminator = PredBB->getTerminator();
425     LLVM_DEBUG(dbgs() << "LV: draw edge from" << PredBB->getName() << '\n');
426 
427     auto *TermBr = dyn_cast<BranchInst>(PredBBTerminator);
428     if (isa<UnreachableInst>(PredBBTerminator)) {
429       assert(PredVPSuccessors.size() == 1 &&
430              "Predecessor ending w/o branch must have single successor.");
431       DebugLoc DL = PredBBTerminator->getDebugLoc();
432       PredBBTerminator->eraseFromParent();
433       auto *Br = BranchInst::Create(NewBB, PredBB);
434       Br->setDebugLoc(DL);
435     } else if (TermBr && !TermBr->isConditional()) {
436       TermBr->setSuccessor(0, NewBB);
437     } else {
438       // Set each forward successor here when it is created, excluding
439       // backedges. A backward successor is set when the branch is created.
440       unsigned idx = PredVPSuccessors.front() == this ? 0 : 1;
441       assert(!TermBr->getSuccessor(idx) &&
442              "Trying to reset an existing successor block.");
443       TermBr->setSuccessor(idx, NewBB);
444     }
445     CFG.DTU.applyUpdates({{DominatorTree::Insert, PredBB, NewBB}});
446   }
447   return NewBB;
448 }
449 
450 void VPIRBasicBlock::execute(VPTransformState *State) {
451   assert(getHierarchicalSuccessors().size() <= 2 &&
452          "VPIRBasicBlock can have at most two successors at the moment!");
453   State->Builder.SetInsertPoint(IRBB->getTerminator());
454   executeRecipes(State, IRBB);
455   // Create a branch instruction to terminate IRBB if one was not created yet
456   // and is needed.
457   if (getSingleSuccessor() && isa<UnreachableInst>(IRBB->getTerminator())) {
458     auto *Br = State->Builder.CreateBr(IRBB);
459     Br->setOperand(0, nullptr);
460     IRBB->getTerminator()->eraseFromParent();
461   } else {
462     assert(
463         (getNumSuccessors() == 0 || isa<BranchInst>(IRBB->getTerminator())) &&
464         "other blocks must be terminated by a branch");
465   }
466 
467   for (VPBlockBase *PredVPBlock : getHierarchicalPredecessors()) {
468     VPBasicBlock *PredVPBB = PredVPBlock->getExitingBasicBlock();
469     BasicBlock *PredBB = State->CFG.VPBB2IRBB[PredVPBB];
470     assert(PredBB && "Predecessor basic-block not found building successor.");
471     LLVM_DEBUG(dbgs() << "LV: draw edge from" << PredBB->getName() << '\n');
472 
473     auto *PredBBTerminator = PredBB->getTerminator();
474     auto *TermBr = cast<BranchInst>(PredBBTerminator);
475     // Set each forward successor here when it is created, excluding
476     // backedges. A backward successor is set when the branch is created.
477     const auto &PredVPSuccessors = PredVPBB->getHierarchicalSuccessors();
478     unsigned idx = PredVPSuccessors.front() == this ? 0 : 1;
479     assert((!TermBr->getSuccessor(idx) || TermBr->getSuccessor(idx) == IRBB) &&
480            "Trying to reset an existing successor block.");
481     TermBr->setSuccessor(idx, IRBB);
482     State->CFG.DTU.applyUpdates({{DominatorTree::Insert, PredBB, IRBB}});
483   }
484 }
485 
486 void VPBasicBlock::execute(VPTransformState *State) {
487   bool Replica = bool(State->Lane);
488   VPBasicBlock *PrevVPBB = State->CFG.PrevVPBB;
489   VPBlockBase *SingleHPred = nullptr;
490   BasicBlock *NewBB = State->CFG.PrevBB; // Reuse it if possible.
491 
492   auto IsLoopRegion = [](VPBlockBase *BB) {
493     auto *R = dyn_cast<VPRegionBlock>(BB);
494     return R && !R->isReplicator();
495   };
496 
497   // 1. Create an IR basic block.
498   if (PrevVPBB && /* A */
499       !((SingleHPred = getSingleHierarchicalPredecessor()) &&
500         SingleHPred->getExitingBasicBlock() == PrevVPBB &&
501         PrevVPBB->getSingleHierarchicalSuccessor() &&
502         (SingleHPred->getParent() == getEnclosingLoopRegion() &&
503          !IsLoopRegion(SingleHPred))) &&         /* B */
504       !(Replica && getPredecessors().empty())) { /* C */
505     // The last IR basic block is reused, as an optimization, in three cases:
506     // A. the first VPBB reuses the loop pre-header BB - when PrevVPBB is null;
507     // B. when the current VPBB has a single (hierarchical) predecessor which
508     //    is PrevVPBB and the latter has a single (hierarchical) successor which
509     //    both are in the same non-replicator region; and
510     // C. when the current VPBB is an entry of a region replica - where PrevVPBB
511     //    is the exiting VPBB of this region from a previous instance, or the
512     //    predecessor of this region.
513 
514     NewBB = createEmptyBasicBlock(State->CFG);
515     State->Builder.SetInsertPoint(NewBB);
516     // Temporarily terminate with unreachable until CFG is rewired.
517     UnreachableInst *Terminator = State->Builder.CreateUnreachable();
518     // Register NewBB in its loop. In innermost loops its the same for all
519     // BB's.
520     if (State->CurrentVectorLoop)
521       State->CurrentVectorLoop->addBasicBlockToLoop(NewBB, *State->LI);
522     State->Builder.SetInsertPoint(Terminator);
523     State->CFG.PrevBB = NewBB;
524   }
525 
526   // 2. Fill the IR basic block with IR instructions.
527   executeRecipes(State, NewBB);
528 }
529 
530 void VPBasicBlock::dropAllReferences(VPValue *NewValue) {
531   for (VPRecipeBase &R : Recipes) {
532     for (auto *Def : R.definedValues())
533       Def->replaceAllUsesWith(NewValue);
534 
535     for (unsigned I = 0, E = R.getNumOperands(); I != E; I++)
536       R.setOperand(I, NewValue);
537   }
538 }
539 
540 void VPBasicBlock::executeRecipes(VPTransformState *State, BasicBlock *BB) {
541   LLVM_DEBUG(dbgs() << "LV: vectorizing VPBB:" << getName()
542                     << " in BB:" << BB->getName() << '\n');
543 
544   State->CFG.VPBB2IRBB[this] = BB;
545   State->CFG.PrevVPBB = this;
546 
547   for (VPRecipeBase &Recipe : Recipes)
548     Recipe.execute(*State);
549 
550   LLVM_DEBUG(dbgs() << "LV: filled BB:" << *BB);
551 }
552 
553 VPBasicBlock *VPBasicBlock::splitAt(iterator SplitAt) {
554   assert((SplitAt == end() || SplitAt->getParent() == this) &&
555          "can only split at a position in the same block");
556 
557   SmallVector<VPBlockBase *, 2> Succs(successors());
558   // First, disconnect the current block from its successors.
559   for (VPBlockBase *Succ : Succs)
560     VPBlockUtils::disconnectBlocks(this, Succ);
561 
562   // Create new empty block after the block to split.
563   auto *SplitBlock = new VPBasicBlock(getName() + ".split");
564   VPBlockUtils::insertBlockAfter(SplitBlock, this);
565 
566   // Add successors for block to split to new block.
567   for (VPBlockBase *Succ : Succs)
568     VPBlockUtils::connectBlocks(SplitBlock, Succ);
569 
570   // Finally, move the recipes starting at SplitAt to new block.
571   for (VPRecipeBase &ToMove :
572        make_early_inc_range(make_range(SplitAt, this->end())))
573     ToMove.moveBefore(*SplitBlock, SplitBlock->end());
574 
575   return SplitBlock;
576 }
577 
578 /// Return the enclosing loop region for region \p P. The templated version is
579 /// used to support both const and non-const block arguments.
580 template <typename T> static T *getEnclosingLoopRegionForRegion(T *P) {
581   if (P && P->isReplicator()) {
582     P = P->getParent();
583     assert(!cast<VPRegionBlock>(P)->isReplicator() &&
584            "unexpected nested replicate regions");
585   }
586   return P;
587 }
588 
589 VPRegionBlock *VPBasicBlock::getEnclosingLoopRegion() {
590   return getEnclosingLoopRegionForRegion(getParent());
591 }
592 
593 const VPRegionBlock *VPBasicBlock::getEnclosingLoopRegion() const {
594   return getEnclosingLoopRegionForRegion(getParent());
595 }
596 
597 static bool hasConditionalTerminator(const VPBasicBlock *VPBB) {
598   if (VPBB->empty()) {
599     assert(
600         VPBB->getNumSuccessors() < 2 &&
601         "block with multiple successors doesn't have a recipe as terminator");
602     return false;
603   }
604 
605   const VPRecipeBase *R = &VPBB->back();
606   bool IsCondBranch = isa<VPBranchOnMaskRecipe>(R) ||
607                       match(R, m_BranchOnCond(m_VPValue())) ||
608                       match(R, m_BranchOnCount(m_VPValue(), m_VPValue()));
609   (void)IsCondBranch;
610 
611   if (VPBB->getNumSuccessors() >= 2 ||
612       (VPBB->isExiting() && !VPBB->getParent()->isReplicator())) {
613     assert(IsCondBranch && "block with multiple successors not terminated by "
614                            "conditional branch recipe");
615 
616     return true;
617   }
618 
619   assert(
620       !IsCondBranch &&
621       "block with 0 or 1 successors terminated by conditional branch recipe");
622   return false;
623 }
624 
625 VPRecipeBase *VPBasicBlock::getTerminator() {
626   if (hasConditionalTerminator(this))
627     return &back();
628   return nullptr;
629 }
630 
631 const VPRecipeBase *VPBasicBlock::getTerminator() const {
632   if (hasConditionalTerminator(this))
633     return &back();
634   return nullptr;
635 }
636 
637 bool VPBasicBlock::isExiting() const {
638   return getParent() && getParent()->getExitingBasicBlock() == this;
639 }
640 
641 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
642 void VPBlockBase::printSuccessors(raw_ostream &O, const Twine &Indent) const {
643   if (getSuccessors().empty()) {
644     O << Indent << "No successors\n";
645   } else {
646     O << Indent << "Successor(s): ";
647     ListSeparator LS;
648     for (auto *Succ : getSuccessors())
649       O << LS << Succ->getName();
650     O << '\n';
651   }
652 }
653 
654 void VPBasicBlock::print(raw_ostream &O, const Twine &Indent,
655                          VPSlotTracker &SlotTracker) const {
656   O << Indent << getName() << ":\n";
657 
658   auto RecipeIndent = Indent + "  ";
659   for (const VPRecipeBase &Recipe : *this) {
660     Recipe.print(O, RecipeIndent, SlotTracker);
661     O << '\n';
662   }
663 
664   printSuccessors(O, Indent);
665 }
666 #endif
667 
668 static std::pair<VPBlockBase *, VPBlockBase *> cloneFrom(VPBlockBase *Entry);
669 
670 // Clone the CFG for all nodes reachable from \p Entry, this includes cloning
671 // the blocks and their recipes. Operands of cloned recipes will NOT be updated.
672 // Remapping of operands must be done separately. Returns a pair with the new
673 // entry and exiting blocks of the cloned region. If \p Entry isn't part of a
674 // region, return nullptr for the exiting block.
675 static std::pair<VPBlockBase *, VPBlockBase *> cloneFrom(VPBlockBase *Entry) {
676   DenseMap<VPBlockBase *, VPBlockBase *> Old2NewVPBlocks;
677   VPBlockBase *Exiting = nullptr;
678   bool InRegion = Entry->getParent();
679   // First, clone blocks reachable from Entry.
680   for (VPBlockBase *BB : vp_depth_first_shallow(Entry)) {
681     VPBlockBase *NewBB = BB->clone();
682     Old2NewVPBlocks[BB] = NewBB;
683     if (InRegion && BB->getNumSuccessors() == 0) {
684       assert(!Exiting && "Multiple exiting blocks?");
685       Exiting = BB;
686     }
687   }
688   assert((!InRegion || Exiting) && "regions must have a single exiting block");
689 
690   // Second, update the predecessors & successors of the cloned blocks.
691   for (VPBlockBase *BB : vp_depth_first_shallow(Entry)) {
692     VPBlockBase *NewBB = Old2NewVPBlocks[BB];
693     SmallVector<VPBlockBase *> NewPreds;
694     for (VPBlockBase *Pred : BB->getPredecessors()) {
695       NewPreds.push_back(Old2NewVPBlocks[Pred]);
696     }
697     NewBB->setPredecessors(NewPreds);
698     SmallVector<VPBlockBase *> NewSuccs;
699     for (VPBlockBase *Succ : BB->successors()) {
700       NewSuccs.push_back(Old2NewVPBlocks[Succ]);
701     }
702     NewBB->setSuccessors(NewSuccs);
703   }
704 
705 #if !defined(NDEBUG)
706   // Verify that the order of predecessors and successors matches in the cloned
707   // version.
708   for (const auto &[OldBB, NewBB] :
709        zip(vp_depth_first_shallow(Entry),
710            vp_depth_first_shallow(Old2NewVPBlocks[Entry]))) {
711     for (const auto &[OldPred, NewPred] :
712          zip(OldBB->getPredecessors(), NewBB->getPredecessors()))
713       assert(NewPred == Old2NewVPBlocks[OldPred] && "Different predecessors");
714 
715     for (const auto &[OldSucc, NewSucc] :
716          zip(OldBB->successors(), NewBB->successors()))
717       assert(NewSucc == Old2NewVPBlocks[OldSucc] && "Different successors");
718   }
719 #endif
720 
721   return std::make_pair(Old2NewVPBlocks[Entry],
722                         Exiting ? Old2NewVPBlocks[Exiting] : nullptr);
723 }
724 
725 VPRegionBlock *VPRegionBlock::clone() {
726   const auto &[NewEntry, NewExiting] = cloneFrom(getEntry());
727   auto *NewRegion =
728       new VPRegionBlock(NewEntry, NewExiting, getName(), isReplicator());
729   for (VPBlockBase *Block : vp_depth_first_shallow(NewEntry))
730     Block->setParent(NewRegion);
731   return NewRegion;
732 }
733 
734 void VPRegionBlock::dropAllReferences(VPValue *NewValue) {
735   for (VPBlockBase *Block : vp_depth_first_shallow(Entry))
736     // Drop all references in VPBasicBlocks and replace all uses with
737     // DummyValue.
738     Block->dropAllReferences(NewValue);
739 }
740 
741 void VPRegionBlock::execute(VPTransformState *State) {
742   ReversePostOrderTraversal<VPBlockShallowTraversalWrapper<VPBlockBase *>>
743       RPOT(Entry);
744 
745   if (!isReplicator()) {
746     // Create and register the new vector loop.
747     Loop *PrevLoop = State->CurrentVectorLoop;
748     State->CurrentVectorLoop = State->LI->AllocateLoop();
749     BasicBlock *VectorPH = State->CFG.VPBB2IRBB[getPreheaderVPBB()];
750     Loop *ParentLoop = State->LI->getLoopFor(VectorPH);
751 
752     // Insert the new loop into the loop nest and register the new basic blocks
753     // before calling any utilities such as SCEV that require valid LoopInfo.
754     if (ParentLoop)
755       ParentLoop->addChildLoop(State->CurrentVectorLoop);
756     else
757       State->LI->addTopLevelLoop(State->CurrentVectorLoop);
758 
759     // Visit the VPBlocks connected to "this", starting from it.
760     for (VPBlockBase *Block : RPOT) {
761       LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n');
762       Block->execute(State);
763     }
764 
765     State->CurrentVectorLoop = PrevLoop;
766     return;
767   }
768 
769   assert(!State->Lane && "Replicating a Region with non-null instance.");
770 
771   // Enter replicating mode.
772   assert(!State->VF.isScalable() && "VF is assumed to be non scalable.");
773   State->Lane = VPLane(0);
774   for (unsigned Lane = 0, VF = State->VF.getKnownMinValue(); Lane < VF;
775        ++Lane) {
776     State->Lane = VPLane(Lane, VPLane::Kind::First);
777     // Visit the VPBlocks connected to \p this, starting from it.
778     for (VPBlockBase *Block : RPOT) {
779       LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n');
780       Block->execute(State);
781     }
782   }
783 
784   // Exit replicating mode.
785   State->Lane.reset();
786 }
787 
788 InstructionCost VPBasicBlock::cost(ElementCount VF, VPCostContext &Ctx) {
789   InstructionCost Cost = 0;
790   for (VPRecipeBase &R : Recipes)
791     Cost += R.cost(VF, Ctx);
792   return Cost;
793 }
794 
795 InstructionCost VPRegionBlock::cost(ElementCount VF, VPCostContext &Ctx) {
796   if (!isReplicator()) {
797     InstructionCost Cost = 0;
798     for (VPBlockBase *Block : vp_depth_first_shallow(getEntry()))
799       Cost += Block->cost(VF, Ctx);
800     InstructionCost BackedgeCost =
801         ForceTargetInstructionCost.getNumOccurrences()
802             ? InstructionCost(ForceTargetInstructionCost.getNumOccurrences())
803             : Ctx.TTI.getCFInstrCost(Instruction::Br, TTI::TCK_RecipThroughput);
804     LLVM_DEBUG(dbgs() << "Cost of " << BackedgeCost << " for VF " << VF
805                       << ": vector loop backedge\n");
806     Cost += BackedgeCost;
807     return Cost;
808   }
809 
810   // Compute the cost of a replicate region. Replicating isn't supported for
811   // scalable vectors, return an invalid cost for them.
812   // TODO: Discard scalable VPlans with replicate recipes earlier after
813   // construction.
814   if (VF.isScalable())
815     return InstructionCost::getInvalid();
816 
817   // First compute the cost of the conditionally executed recipes, followed by
818   // account for the branching cost, except if the mask is a header mask or
819   // uniform condition.
820   using namespace llvm::VPlanPatternMatch;
821   VPBasicBlock *Then = cast<VPBasicBlock>(getEntry()->getSuccessors()[0]);
822   InstructionCost ThenCost = Then->cost(VF, Ctx);
823 
824   // For the scalar case, we may not always execute the original predicated
825   // block, Thus, scale the block's cost by the probability of executing it.
826   if (VF.isScalar())
827     return ThenCost / getReciprocalPredBlockProb();
828 
829   return ThenCost;
830 }
831 
832 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
833 void VPRegionBlock::print(raw_ostream &O, const Twine &Indent,
834                           VPSlotTracker &SlotTracker) const {
835   O << Indent << (isReplicator() ? "<xVFxUF> " : "<x1> ") << getName() << ": {";
836   auto NewIndent = Indent + "  ";
837   for (auto *BlockBase : vp_depth_first_shallow(Entry)) {
838     O << '\n';
839     BlockBase->print(O, NewIndent, SlotTracker);
840   }
841   O << Indent << "}\n";
842 
843   printSuccessors(O, Indent);
844 }
845 #endif
846 
847 VPlan::~VPlan() {
848   if (Entry) {
849     VPValue DummyValue;
850     for (VPBlockBase *Block : vp_depth_first_shallow(Entry))
851       Block->dropAllReferences(&DummyValue);
852 
853     VPBlockBase::deleteCFG(Entry);
854 
855     Preheader->dropAllReferences(&DummyValue);
856     delete Preheader;
857   }
858   for (VPValue *VPV : VPLiveInsToFree)
859     delete VPV;
860   if (BackedgeTakenCount)
861     delete BackedgeTakenCount;
862 }
863 
864 VPIRBasicBlock *VPIRBasicBlock::fromBasicBlock(BasicBlock *IRBB) {
865   auto *VPIRBB = new VPIRBasicBlock(IRBB);
866   for (Instruction &I :
867        make_range(IRBB->begin(), IRBB->getTerminator()->getIterator()))
868     VPIRBB->appendRecipe(new VPIRInstruction(I));
869   return VPIRBB;
870 }
871 
872 VPlanPtr VPlan::createInitialVPlan(Type *InductionTy,
873                                    PredicatedScalarEvolution &PSE,
874                                    bool RequiresScalarEpilogueCheck,
875                                    bool TailFolded, Loop *TheLoop) {
876   VPIRBasicBlock *Entry =
877       VPIRBasicBlock::fromBasicBlock(TheLoop->getLoopPreheader());
878   VPBasicBlock *VecPreheader = new VPBasicBlock("vector.ph");
879   VPIRBasicBlock *ScalarHeader =
880       VPIRBasicBlock::fromBasicBlock(TheLoop->getHeader());
881   auto Plan = std::make_unique<VPlan>(Entry, VecPreheader, ScalarHeader);
882 
883   // Create SCEV and VPValue for the trip count.
884 
885   // Currently only loops with countable exits are vectorized, but calling
886   // getSymbolicMaxBackedgeTakenCount allows enablement work for loops with
887   // uncountable exits whilst also ensuring the symbolic maximum and known
888   // back-edge taken count remain identical for loops with countable exits.
889   const SCEV *BackedgeTakenCountSCEV = PSE.getSymbolicMaxBackedgeTakenCount();
890   assert((!isa<SCEVCouldNotCompute>(BackedgeTakenCountSCEV) &&
891           BackedgeTakenCountSCEV == PSE.getBackedgeTakenCount()) &&
892          "Invalid loop count");
893   ScalarEvolution &SE = *PSE.getSE();
894   const SCEV *TripCount = SE.getTripCountFromExitCount(BackedgeTakenCountSCEV,
895                                                        InductionTy, TheLoop);
896   Plan->TripCount =
897       vputils::getOrCreateVPValueForSCEVExpr(*Plan, TripCount, SE);
898 
899   // Create VPRegionBlock, with empty header and latch blocks, to be filled
900   // during processing later.
901   VPBasicBlock *HeaderVPBB = new VPBasicBlock("vector.body");
902   VPBasicBlock *LatchVPBB = new VPBasicBlock("vector.latch");
903   VPBlockUtils::insertBlockAfter(LatchVPBB, HeaderVPBB);
904   auto *TopRegion = new VPRegionBlock(HeaderVPBB, LatchVPBB, "vector loop",
905                                       false /*isReplicator*/);
906 
907   VPBlockUtils::insertBlockAfter(TopRegion, VecPreheader);
908   VPBasicBlock *MiddleVPBB = new VPBasicBlock("middle.block");
909   VPBlockUtils::insertBlockAfter(MiddleVPBB, TopRegion);
910 
911   VPBasicBlock *ScalarPH = new VPBasicBlock("scalar.ph");
912   VPBlockUtils::connectBlocks(ScalarPH, ScalarHeader);
913   if (!RequiresScalarEpilogueCheck) {
914     VPBlockUtils::connectBlocks(MiddleVPBB, ScalarPH);
915     return Plan;
916   }
917 
918   // If needed, add a check in the middle block to see if we have completed
919   // all of the iterations in the first vector loop.  Three cases:
920   // 1) If (N - N%VF) == N, then we *don't* need to run the remainder.
921   //    Thus if tail is to be folded, we know we don't need to run the
922   //    remainder and we can set the condition to true.
923   // 2) If we require a scalar epilogue, there is no conditional branch as
924   //    we unconditionally branch to the scalar preheader.  Do nothing.
925   // 3) Otherwise, construct a runtime check.
926   BasicBlock *IRExitBlock = TheLoop->getUniqueExitBlock();
927   auto *VPExitBlock = VPIRBasicBlock::fromBasicBlock(IRExitBlock);
928   // The connection order corresponds to the operands of the conditional branch.
929   VPBlockUtils::insertBlockAfter(VPExitBlock, MiddleVPBB);
930   VPBlockUtils::connectBlocks(MiddleVPBB, ScalarPH);
931 
932   auto *ScalarLatchTerm = TheLoop->getLoopLatch()->getTerminator();
933   // Here we use the same DebugLoc as the scalar loop latch terminator instead
934   // of the corresponding compare because they may have ended up with
935   // different line numbers and we want to avoid awkward line stepping while
936   // debugging. Eg. if the compare has got a line number inside the loop.
937   VPBuilder Builder(MiddleVPBB);
938   VPValue *Cmp =
939       TailFolded
940           ? Plan->getOrAddLiveIn(ConstantInt::getTrue(
941                 IntegerType::getInt1Ty(TripCount->getType()->getContext())))
942           : Builder.createICmp(CmpInst::ICMP_EQ, Plan->getTripCount(),
943                                &Plan->getVectorTripCount(),
944                                ScalarLatchTerm->getDebugLoc(), "cmp.n");
945   Builder.createNaryOp(VPInstruction::BranchOnCond, {Cmp},
946                        ScalarLatchTerm->getDebugLoc());
947   return Plan;
948 }
949 
950 void VPlan::prepareToExecute(Value *TripCountV, Value *VectorTripCountV,
951                              Value *CanonicalIVStartValue,
952                              VPTransformState &State) {
953   Type *TCTy = TripCountV->getType();
954   // Check if the backedge taken count is needed, and if so build it.
955   if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) {
956     IRBuilder<> Builder(State.CFG.PrevBB->getTerminator());
957     auto *TCMO = Builder.CreateSub(TripCountV, ConstantInt::get(TCTy, 1),
958                                    "trip.count.minus.1");
959     BackedgeTakenCount->setUnderlyingValue(TCMO);
960   }
961 
962   VectorTripCount.setUnderlyingValue(VectorTripCountV);
963 
964   IRBuilder<> Builder(State.CFG.PrevBB->getTerminator());
965   // FIXME: Model VF * UF computation completely in VPlan.
966   assert(VFxUF.getNumUsers() && "VFxUF expected to always have users");
967   unsigned UF = getUF();
968   if (VF.getNumUsers()) {
969     Value *RuntimeVF = getRuntimeVF(Builder, TCTy, State.VF);
970     VF.setUnderlyingValue(RuntimeVF);
971     VFxUF.setUnderlyingValue(
972         UF > 1 ? Builder.CreateMul(RuntimeVF, ConstantInt::get(TCTy, UF))
973                : RuntimeVF);
974   } else {
975     VFxUF.setUnderlyingValue(createStepForVF(Builder, TCTy, State.VF, UF));
976   }
977 
978   // When vectorizing the epilogue loop, the canonical induction start value
979   // needs to be changed from zero to the value after the main vector loop.
980   // FIXME: Improve modeling for canonical IV start values in the epilogue loop.
981   if (CanonicalIVStartValue) {
982     VPValue *VPV = getOrAddLiveIn(CanonicalIVStartValue);
983     auto *IV = getCanonicalIV();
984     assert(all_of(IV->users(),
985                   [](const VPUser *U) {
986                     return isa<VPScalarIVStepsRecipe>(U) ||
987                            isa<VPScalarCastRecipe>(U) ||
988                            isa<VPDerivedIVRecipe>(U) ||
989                            cast<VPInstruction>(U)->getOpcode() ==
990                                Instruction::Add;
991                   }) &&
992            "the canonical IV should only be used by its increment or "
993            "ScalarIVSteps when resetting the start value");
994     IV->setOperand(0, VPV);
995   }
996 }
997 
998 /// Replace \p VPBB with a VPIRBasicBlock wrapping \p IRBB. All recipes from \p
999 /// VPBB are moved to the end of the newly created VPIRBasicBlock. VPBB must
1000 /// have a single predecessor, which is rewired to the new VPIRBasicBlock. All
1001 /// successors of VPBB, if any, are rewired to the new VPIRBasicBlock.
1002 static void replaceVPBBWithIRVPBB(VPBasicBlock *VPBB, BasicBlock *IRBB) {
1003   VPIRBasicBlock *IRVPBB = VPIRBasicBlock::fromBasicBlock(IRBB);
1004   for (auto &R : make_early_inc_range(*VPBB)) {
1005     assert(!R.isPhi() && "Tried to move phi recipe to end of block");
1006     R.moveBefore(*IRVPBB, IRVPBB->end());
1007   }
1008 
1009   VPBlockUtils::reassociateBlocks(VPBB, IRVPBB);
1010 
1011   delete VPBB;
1012 }
1013 
1014 /// Generate the code inside the preheader and body of the vectorized loop.
1015 /// Assumes a single pre-header basic-block was created for this. Introduce
1016 /// additional basic-blocks as needed, and fill them all.
1017 void VPlan::execute(VPTransformState *State) {
1018   // Initialize CFG state.
1019   State->CFG.PrevVPBB = nullptr;
1020   State->CFG.ExitBB = State->CFG.PrevBB->getSingleSuccessor();
1021   BasicBlock *VectorPreHeader = State->CFG.PrevBB;
1022   State->Builder.SetInsertPoint(VectorPreHeader->getTerminator());
1023 
1024   // Disconnect VectorPreHeader from ExitBB in both the CFG and DT.
1025   cast<BranchInst>(VectorPreHeader->getTerminator())->setSuccessor(0, nullptr);
1026   State->CFG.DTU.applyUpdates(
1027       {{DominatorTree::Delete, VectorPreHeader, State->CFG.ExitBB}});
1028 
1029   // Replace regular VPBB's for the middle and scalar preheader blocks with
1030   // VPIRBasicBlocks wrapping their IR blocks. The IR blocks are created during
1031   // skeleton creation, so we can only create the VPIRBasicBlocks now during
1032   // VPlan execution rather than earlier during VPlan construction.
1033   BasicBlock *MiddleBB = State->CFG.ExitBB;
1034   VPBasicBlock *MiddleVPBB = getMiddleBlock();
1035   BasicBlock *ScalarPh = MiddleBB->getSingleSuccessor();
1036   replaceVPBBWithIRVPBB(getScalarPreheader(), ScalarPh);
1037   replaceVPBBWithIRVPBB(MiddleVPBB, MiddleBB);
1038 
1039   // Disconnect the middle block from its single successor (the scalar loop
1040   // header) in both the CFG and DT. The branch will be recreated during VPlan
1041   // execution.
1042   auto *BrInst = new UnreachableInst(MiddleBB->getContext());
1043   BrInst->insertBefore(MiddleBB->getTerminator());
1044   MiddleBB->getTerminator()->eraseFromParent();
1045   State->CFG.DTU.applyUpdates({{DominatorTree::Delete, MiddleBB, ScalarPh}});
1046   // Disconnect scalar preheader and scalar header, as the dominator tree edge
1047   // will be updated as part of VPlan execution. This allows keeping the DTU
1048   // logic generic during VPlan execution.
1049   State->CFG.DTU.applyUpdates(
1050       {{DominatorTree::Delete, ScalarPh, ScalarPh->getSingleSuccessor()}});
1051 
1052   // Generate code in the loop pre-header and body.
1053   for (VPBlockBase *Block : vp_depth_first_shallow(Entry))
1054     Block->execute(State);
1055 
1056   VPBasicBlock *LatchVPBB = getVectorLoopRegion()->getExitingBasicBlock();
1057   BasicBlock *VectorLatchBB = State->CFG.VPBB2IRBB[LatchVPBB];
1058 
1059   // Fix the latch value of canonical, reduction and first-order recurrences
1060   // phis in the vector loop.
1061   VPBasicBlock *Header = getVectorLoopRegion()->getEntryBasicBlock();
1062   for (VPRecipeBase &R : Header->phis()) {
1063     // Skip phi-like recipes that generate their backedege values themselves.
1064     if (isa<VPWidenPHIRecipe>(&R))
1065       continue;
1066 
1067     if (isa<VPWidenPointerInductionRecipe>(&R) ||
1068         isa<VPWidenIntOrFpInductionRecipe>(&R)) {
1069       PHINode *Phi = nullptr;
1070       if (isa<VPWidenIntOrFpInductionRecipe>(&R)) {
1071         Phi = cast<PHINode>(State->get(R.getVPSingleValue()));
1072       } else {
1073         auto *WidenPhi = cast<VPWidenPointerInductionRecipe>(&R);
1074         assert(!WidenPhi->onlyScalarsGenerated(State->VF.isScalable()) &&
1075                "recipe generating only scalars should have been replaced");
1076         auto *GEP = cast<GetElementPtrInst>(State->get(WidenPhi));
1077         Phi = cast<PHINode>(GEP->getPointerOperand());
1078       }
1079 
1080       Phi->setIncomingBlock(1, VectorLatchBB);
1081 
1082       // Move the last step to the end of the latch block. This ensures
1083       // consistent placement of all induction updates.
1084       Instruction *Inc = cast<Instruction>(Phi->getIncomingValue(1));
1085       Inc->moveBefore(VectorLatchBB->getTerminator()->getPrevNode());
1086 
1087       // Use the steps for the last part as backedge value for the induction.
1088       if (auto *IV = dyn_cast<VPWidenIntOrFpInductionRecipe>(&R))
1089         Inc->setOperand(0, State->get(IV->getLastUnrolledPartOperand()));
1090       continue;
1091     }
1092 
1093     auto *PhiR = cast<VPHeaderPHIRecipe>(&R);
1094     bool NeedsScalar =
1095         isa<VPCanonicalIVPHIRecipe, VPEVLBasedIVPHIRecipe>(PhiR) ||
1096         (isa<VPReductionPHIRecipe>(PhiR) &&
1097          cast<VPReductionPHIRecipe>(PhiR)->isInLoop());
1098     Value *Phi = State->get(PhiR, NeedsScalar);
1099     Value *Val = State->get(PhiR->getBackedgeValue(), NeedsScalar);
1100     cast<PHINode>(Phi)->addIncoming(Val, VectorLatchBB);
1101   }
1102 
1103   State->CFG.DTU.flush();
1104   assert(State->CFG.DTU.getDomTree().verify(
1105              DominatorTree::VerificationLevel::Fast) &&
1106          "DT not preserved correctly");
1107 }
1108 
1109 InstructionCost VPlan::cost(ElementCount VF, VPCostContext &Ctx) {
1110   // For now only return the cost of the vector loop region, ignoring any other
1111   // blocks, like the preheader or middle blocks.
1112   return getVectorLoopRegion()->cost(VF, Ctx);
1113 }
1114 
1115 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1116 void VPlan::printLiveIns(raw_ostream &O) const {
1117   VPSlotTracker SlotTracker(this);
1118 
1119   if (VF.getNumUsers() > 0) {
1120     O << "\nLive-in ";
1121     VF.printAsOperand(O, SlotTracker);
1122     O << " = VF";
1123   }
1124 
1125   if (VFxUF.getNumUsers() > 0) {
1126     O << "\nLive-in ";
1127     VFxUF.printAsOperand(O, SlotTracker);
1128     O << " = VF * UF";
1129   }
1130 
1131   if (VectorTripCount.getNumUsers() > 0) {
1132     O << "\nLive-in ";
1133     VectorTripCount.printAsOperand(O, SlotTracker);
1134     O << " = vector-trip-count";
1135   }
1136 
1137   if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) {
1138     O << "\nLive-in ";
1139     BackedgeTakenCount->printAsOperand(O, SlotTracker);
1140     O << " = backedge-taken count";
1141   }
1142 
1143   O << "\n";
1144   if (TripCount->isLiveIn())
1145     O << "Live-in ";
1146   TripCount->printAsOperand(O, SlotTracker);
1147   O << " = original trip-count";
1148   O << "\n";
1149 }
1150 
1151 LLVM_DUMP_METHOD
1152 void VPlan::print(raw_ostream &O) const {
1153   VPSlotTracker SlotTracker(this);
1154 
1155   O << "VPlan '" << getName() << "' {";
1156 
1157   printLiveIns(O);
1158 
1159   if (!getPreheader()->empty()) {
1160     O << "\n";
1161     getPreheader()->print(O, "", SlotTracker);
1162   }
1163 
1164   for (const VPBlockBase *Block : vp_depth_first_shallow(getEntry())) {
1165     O << '\n';
1166     Block->print(O, "", SlotTracker);
1167   }
1168 
1169   O << "}\n";
1170 }
1171 
1172 std::string VPlan::getName() const {
1173   std::string Out;
1174   raw_string_ostream RSO(Out);
1175   RSO << Name << " for ";
1176   if (!VFs.empty()) {
1177     RSO << "VF={" << VFs[0];
1178     for (ElementCount VF : drop_begin(VFs))
1179       RSO << "," << VF;
1180     RSO << "},";
1181   }
1182 
1183   if (UFs.empty()) {
1184     RSO << "UF>=1";
1185   } else {
1186     RSO << "UF={" << UFs[0];
1187     for (unsigned UF : drop_begin(UFs))
1188       RSO << "," << UF;
1189     RSO << "}";
1190   }
1191 
1192   return Out;
1193 }
1194 
1195 LLVM_DUMP_METHOD
1196 void VPlan::printDOT(raw_ostream &O) const {
1197   VPlanPrinter Printer(O, *this);
1198   Printer.dump();
1199 }
1200 
1201 LLVM_DUMP_METHOD
1202 void VPlan::dump() const { print(dbgs()); }
1203 #endif
1204 
1205 static void remapOperands(VPBlockBase *Entry, VPBlockBase *NewEntry,
1206                           DenseMap<VPValue *, VPValue *> &Old2NewVPValues) {
1207   // Update the operands of all cloned recipes starting at NewEntry. This
1208   // traverses all reachable blocks. This is done in two steps, to handle cycles
1209   // in PHI recipes.
1210   ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<VPBlockBase *>>
1211       OldDeepRPOT(Entry);
1212   ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<VPBlockBase *>>
1213       NewDeepRPOT(NewEntry);
1214   // First, collect all mappings from old to new VPValues defined by cloned
1215   // recipes.
1216   for (const auto &[OldBB, NewBB] :
1217        zip(VPBlockUtils::blocksOnly<VPBasicBlock>(OldDeepRPOT),
1218            VPBlockUtils::blocksOnly<VPBasicBlock>(NewDeepRPOT))) {
1219     assert(OldBB->getRecipeList().size() == NewBB->getRecipeList().size() &&
1220            "blocks must have the same number of recipes");
1221     for (const auto &[OldR, NewR] : zip(*OldBB, *NewBB)) {
1222       assert(OldR.getNumOperands() == NewR.getNumOperands() &&
1223              "recipes must have the same number of operands");
1224       assert(OldR.getNumDefinedValues() == NewR.getNumDefinedValues() &&
1225              "recipes must define the same number of operands");
1226       for (const auto &[OldV, NewV] :
1227            zip(OldR.definedValues(), NewR.definedValues()))
1228         Old2NewVPValues[OldV] = NewV;
1229     }
1230   }
1231 
1232   // Update all operands to use cloned VPValues.
1233   for (VPBasicBlock *NewBB :
1234        VPBlockUtils::blocksOnly<VPBasicBlock>(NewDeepRPOT)) {
1235     for (VPRecipeBase &NewR : *NewBB)
1236       for (unsigned I = 0, E = NewR.getNumOperands(); I != E; ++I) {
1237         VPValue *NewOp = Old2NewVPValues.lookup(NewR.getOperand(I));
1238         NewR.setOperand(I, NewOp);
1239       }
1240   }
1241 }
1242 
1243 VPlan *VPlan::duplicate() {
1244   // Clone blocks.
1245   VPBasicBlock *NewPreheader = Preheader->clone();
1246   const auto &[NewEntry, __] = cloneFrom(Entry);
1247 
1248   BasicBlock *ScalarHeaderIRBB = getScalarHeader()->getIRBasicBlock();
1249   VPIRBasicBlock *NewScalarHeader = cast<VPIRBasicBlock>(*find_if(
1250       vp_depth_first_shallow(NewEntry), [ScalarHeaderIRBB](VPBlockBase *VPB) {
1251         auto *VPIRBB = dyn_cast<VPIRBasicBlock>(VPB);
1252         return VPIRBB && VPIRBB->getIRBasicBlock() == ScalarHeaderIRBB;
1253       }));
1254   // Create VPlan, clone live-ins and remap operands in the cloned blocks.
1255   auto *NewPlan =
1256       new VPlan(NewPreheader, cast<VPBasicBlock>(NewEntry), NewScalarHeader);
1257   DenseMap<VPValue *, VPValue *> Old2NewVPValues;
1258   for (VPValue *OldLiveIn : VPLiveInsToFree) {
1259     Old2NewVPValues[OldLiveIn] =
1260         NewPlan->getOrAddLiveIn(OldLiveIn->getLiveInIRValue());
1261   }
1262   Old2NewVPValues[&VectorTripCount] = &NewPlan->VectorTripCount;
1263   Old2NewVPValues[&VF] = &NewPlan->VF;
1264   Old2NewVPValues[&VFxUF] = &NewPlan->VFxUF;
1265   if (BackedgeTakenCount) {
1266     NewPlan->BackedgeTakenCount = new VPValue();
1267     Old2NewVPValues[BackedgeTakenCount] = NewPlan->BackedgeTakenCount;
1268   }
1269   assert(TripCount && "trip count must be set");
1270   if (TripCount->isLiveIn())
1271     Old2NewVPValues[TripCount] =
1272         NewPlan->getOrAddLiveIn(TripCount->getLiveInIRValue());
1273   // else NewTripCount will be created and inserted into Old2NewVPValues when
1274   // TripCount is cloned. In any case NewPlan->TripCount is updated below.
1275 
1276   remapOperands(Preheader, NewPreheader, Old2NewVPValues);
1277   remapOperands(Entry, NewEntry, Old2NewVPValues);
1278 
1279   // Initialize remaining fields of cloned VPlan.
1280   NewPlan->VFs = VFs;
1281   NewPlan->UFs = UFs;
1282   // TODO: Adjust names.
1283   NewPlan->Name = Name;
1284   assert(Old2NewVPValues.contains(TripCount) &&
1285          "TripCount must have been added to Old2NewVPValues");
1286   NewPlan->TripCount = Old2NewVPValues[TripCount];
1287   return NewPlan;
1288 }
1289 
1290 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1291 
1292 Twine VPlanPrinter::getUID(const VPBlockBase *Block) {
1293   return (isa<VPRegionBlock>(Block) ? "cluster_N" : "N") +
1294          Twine(getOrCreateBID(Block));
1295 }
1296 
1297 Twine VPlanPrinter::getOrCreateName(const VPBlockBase *Block) {
1298   const std::string &Name = Block->getName();
1299   if (!Name.empty())
1300     return Name;
1301   return "VPB" + Twine(getOrCreateBID(Block));
1302 }
1303 
1304 void VPlanPrinter::dump() {
1305   Depth = 1;
1306   bumpIndent(0);
1307   OS << "digraph VPlan {\n";
1308   OS << "graph [labelloc=t, fontsize=30; label=\"Vectorization Plan";
1309   if (!Plan.getName().empty())
1310     OS << "\\n" << DOT::EscapeString(Plan.getName());
1311 
1312   {
1313     // Print live-ins.
1314   std::string Str;
1315   raw_string_ostream SS(Str);
1316   Plan.printLiveIns(SS);
1317   SmallVector<StringRef, 0> Lines;
1318   StringRef(Str).rtrim('\n').split(Lines, "\n");
1319   for (auto Line : Lines)
1320     OS << DOT::EscapeString(Line.str()) << "\\n";
1321   }
1322 
1323   OS << "\"]\n";
1324   OS << "node [shape=rect, fontname=Courier, fontsize=30]\n";
1325   OS << "edge [fontname=Courier, fontsize=30]\n";
1326   OS << "compound=true\n";
1327 
1328   dumpBlock(Plan.getPreheader());
1329 
1330   for (const VPBlockBase *Block : vp_depth_first_shallow(Plan.getEntry()))
1331     dumpBlock(Block);
1332 
1333   OS << "}\n";
1334 }
1335 
1336 void VPlanPrinter::dumpBlock(const VPBlockBase *Block) {
1337   if (const VPBasicBlock *BasicBlock = dyn_cast<VPBasicBlock>(Block))
1338     dumpBasicBlock(BasicBlock);
1339   else if (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
1340     dumpRegion(Region);
1341   else
1342     llvm_unreachable("Unsupported kind of VPBlock.");
1343 }
1344 
1345 void VPlanPrinter::drawEdge(const VPBlockBase *From, const VPBlockBase *To,
1346                             bool Hidden, const Twine &Label) {
1347   // Due to "dot" we print an edge between two regions as an edge between the
1348   // exiting basic block and the entry basic of the respective regions.
1349   const VPBlockBase *Tail = From->getExitingBasicBlock();
1350   const VPBlockBase *Head = To->getEntryBasicBlock();
1351   OS << Indent << getUID(Tail) << " -> " << getUID(Head);
1352   OS << " [ label=\"" << Label << '\"';
1353   if (Tail != From)
1354     OS << " ltail=" << getUID(From);
1355   if (Head != To)
1356     OS << " lhead=" << getUID(To);
1357   if (Hidden)
1358     OS << "; splines=none";
1359   OS << "]\n";
1360 }
1361 
1362 void VPlanPrinter::dumpEdges(const VPBlockBase *Block) {
1363   auto &Successors = Block->getSuccessors();
1364   if (Successors.size() == 1)
1365     drawEdge(Block, Successors.front(), false, "");
1366   else if (Successors.size() == 2) {
1367     drawEdge(Block, Successors.front(), false, "T");
1368     drawEdge(Block, Successors.back(), false, "F");
1369   } else {
1370     unsigned SuccessorNumber = 0;
1371     for (auto *Successor : Successors)
1372       drawEdge(Block, Successor, false, Twine(SuccessorNumber++));
1373   }
1374 }
1375 
1376 void VPlanPrinter::dumpBasicBlock(const VPBasicBlock *BasicBlock) {
1377   // Implement dot-formatted dump by performing plain-text dump into the
1378   // temporary storage followed by some post-processing.
1379   OS << Indent << getUID(BasicBlock) << " [label =\n";
1380   bumpIndent(1);
1381   std::string Str;
1382   raw_string_ostream SS(Str);
1383   // Use no indentation as we need to wrap the lines into quotes ourselves.
1384   BasicBlock->print(SS, "", SlotTracker);
1385 
1386   // We need to process each line of the output separately, so split
1387   // single-string plain-text dump.
1388   SmallVector<StringRef, 0> Lines;
1389   StringRef(Str).rtrim('\n').split(Lines, "\n");
1390 
1391   auto EmitLine = [&](StringRef Line, StringRef Suffix) {
1392     OS << Indent << '"' << DOT::EscapeString(Line.str()) << "\\l\"" << Suffix;
1393   };
1394 
1395   // Don't need the "+" after the last line.
1396   for (auto Line : make_range(Lines.begin(), Lines.end() - 1))
1397     EmitLine(Line, " +\n");
1398   EmitLine(Lines.back(), "\n");
1399 
1400   bumpIndent(-1);
1401   OS << Indent << "]\n";
1402 
1403   dumpEdges(BasicBlock);
1404 }
1405 
1406 void VPlanPrinter::dumpRegion(const VPRegionBlock *Region) {
1407   OS << Indent << "subgraph " << getUID(Region) << " {\n";
1408   bumpIndent(1);
1409   OS << Indent << "fontname=Courier\n"
1410      << Indent << "label=\""
1411      << DOT::EscapeString(Region->isReplicator() ? "<xVFxUF> " : "<x1> ")
1412      << DOT::EscapeString(Region->getName()) << "\"\n";
1413   // Dump the blocks of the region.
1414   assert(Region->getEntry() && "Region contains no inner blocks.");
1415   for (const VPBlockBase *Block : vp_depth_first_shallow(Region->getEntry()))
1416     dumpBlock(Block);
1417   bumpIndent(-1);
1418   OS << Indent << "}\n";
1419   dumpEdges(Region);
1420 }
1421 
1422 void VPlanIngredient::print(raw_ostream &O) const {
1423   if (auto *Inst = dyn_cast<Instruction>(V)) {
1424     if (!Inst->getType()->isVoidTy()) {
1425       Inst->printAsOperand(O, false);
1426       O << " = ";
1427     }
1428     O << Inst->getOpcodeName() << " ";
1429     unsigned E = Inst->getNumOperands();
1430     if (E > 0) {
1431       Inst->getOperand(0)->printAsOperand(O, false);
1432       for (unsigned I = 1; I < E; ++I)
1433         Inst->getOperand(I)->printAsOperand(O << ", ", false);
1434     }
1435   } else // !Inst
1436     V->printAsOperand(O, false);
1437 }
1438 
1439 #endif
1440 
1441 bool VPValue::isDefinedOutsideLoopRegions() const {
1442   return !hasDefiningRecipe() ||
1443          !getDefiningRecipe()->getParent()->getEnclosingLoopRegion();
1444 }
1445 
1446 void VPValue::replaceAllUsesWith(VPValue *New) {
1447   replaceUsesWithIf(New, [](VPUser &, unsigned) { return true; });
1448 }
1449 
1450 void VPValue::replaceUsesWithIf(
1451     VPValue *New,
1452     llvm::function_ref<bool(VPUser &U, unsigned Idx)> ShouldReplace) {
1453   // Note that this early exit is required for correctness; the implementation
1454   // below relies on the number of users for this VPValue to decrease, which
1455   // isn't the case if this == New.
1456   if (this == New)
1457     return;
1458 
1459   for (unsigned J = 0; J < getNumUsers();) {
1460     VPUser *User = Users[J];
1461     bool RemovedUser = false;
1462     for (unsigned I = 0, E = User->getNumOperands(); I < E; ++I) {
1463       if (User->getOperand(I) != this || !ShouldReplace(*User, I))
1464         continue;
1465 
1466       RemovedUser = true;
1467       User->setOperand(I, New);
1468     }
1469     // If a user got removed after updating the current user, the next user to
1470     // update will be moved to the current position, so we only need to
1471     // increment the index if the number of users did not change.
1472     if (!RemovedUser)
1473       J++;
1474   }
1475 }
1476 
1477 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1478 void VPValue::printAsOperand(raw_ostream &OS, VPSlotTracker &Tracker) const {
1479   OS << Tracker.getOrCreateName(this);
1480 }
1481 
1482 void VPUser::printOperands(raw_ostream &O, VPSlotTracker &SlotTracker) const {
1483   interleaveComma(operands(), O, [&O, &SlotTracker](VPValue *Op) {
1484     Op->printAsOperand(O, SlotTracker);
1485   });
1486 }
1487 #endif
1488 
1489 void VPInterleavedAccessInfo::visitRegion(VPRegionBlock *Region,
1490                                           Old2NewTy &Old2New,
1491                                           InterleavedAccessInfo &IAI) {
1492   ReversePostOrderTraversal<VPBlockShallowTraversalWrapper<VPBlockBase *>>
1493       RPOT(Region->getEntry());
1494   for (VPBlockBase *Base : RPOT) {
1495     visitBlock(Base, Old2New, IAI);
1496   }
1497 }
1498 
1499 void VPInterleavedAccessInfo::visitBlock(VPBlockBase *Block, Old2NewTy &Old2New,
1500                                          InterleavedAccessInfo &IAI) {
1501   if (VPBasicBlock *VPBB = dyn_cast<VPBasicBlock>(Block)) {
1502     for (VPRecipeBase &VPI : *VPBB) {
1503       if (isa<VPWidenPHIRecipe>(&VPI))
1504         continue;
1505       assert(isa<VPInstruction>(&VPI) && "Can only handle VPInstructions");
1506       auto *VPInst = cast<VPInstruction>(&VPI);
1507 
1508       auto *Inst = dyn_cast_or_null<Instruction>(VPInst->getUnderlyingValue());
1509       if (!Inst)
1510         continue;
1511       auto *IG = IAI.getInterleaveGroup(Inst);
1512       if (!IG)
1513         continue;
1514 
1515       auto NewIGIter = Old2New.find(IG);
1516       if (NewIGIter == Old2New.end())
1517         Old2New[IG] = new InterleaveGroup<VPInstruction>(
1518             IG->getFactor(), IG->isReverse(), IG->getAlign());
1519 
1520       if (Inst == IG->getInsertPos())
1521         Old2New[IG]->setInsertPos(VPInst);
1522 
1523       InterleaveGroupMap[VPInst] = Old2New[IG];
1524       InterleaveGroupMap[VPInst]->insertMember(
1525           VPInst, IG->getIndex(Inst),
1526           Align(IG->isReverse() ? (-1) * int(IG->getFactor())
1527                                 : IG->getFactor()));
1528     }
1529   } else if (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
1530     visitRegion(Region, Old2New, IAI);
1531   else
1532     llvm_unreachable("Unsupported kind of VPBlock.");
1533 }
1534 
1535 VPInterleavedAccessInfo::VPInterleavedAccessInfo(VPlan &Plan,
1536                                                  InterleavedAccessInfo &IAI) {
1537   Old2NewTy Old2New;
1538   visitRegion(Plan.getVectorLoopRegion(), Old2New, IAI);
1539 }
1540 
1541 void VPSlotTracker::assignName(const VPValue *V) {
1542   assert(!VPValue2Name.contains(V) && "VPValue already has a name!");
1543   auto *UV = V->getUnderlyingValue();
1544   auto *VPI = dyn_cast_or_null<VPInstruction>(V->getDefiningRecipe());
1545   if (!UV && !(VPI && !VPI->getName().empty())) {
1546     VPValue2Name[V] = (Twine("vp<%") + Twine(NextSlot) + ">").str();
1547     NextSlot++;
1548     return;
1549   }
1550 
1551   // Use the name of the underlying Value, wrapped in "ir<>", and versioned by
1552   // appending ".Number" to the name if there are multiple uses.
1553   std::string Name;
1554   if (UV) {
1555     raw_string_ostream S(Name);
1556     UV->printAsOperand(S, false);
1557   } else
1558     Name = VPI->getName();
1559 
1560   assert(!Name.empty() && "Name cannot be empty.");
1561   StringRef Prefix = UV ? "ir<" : "vp<%";
1562   std::string BaseName = (Twine(Prefix) + Name + Twine(">")).str();
1563 
1564   // First assign the base name for V.
1565   const auto &[A, _] = VPValue2Name.insert({V, BaseName});
1566   // Integer or FP constants with different types will result in he same string
1567   // due to stripping types.
1568   if (V->isLiveIn() && isa<ConstantInt, ConstantFP>(UV))
1569     return;
1570 
1571   // If it is already used by C > 0 other VPValues, increase the version counter
1572   // C and use it for V.
1573   const auto &[C, UseInserted] = BaseName2Version.insert({BaseName, 0});
1574   if (!UseInserted) {
1575     C->second++;
1576     A->second = (BaseName + Twine(".") + Twine(C->second)).str();
1577   }
1578 }
1579 
1580 void VPSlotTracker::assignNames(const VPlan &Plan) {
1581   if (Plan.VF.getNumUsers() > 0)
1582     assignName(&Plan.VF);
1583   if (Plan.VFxUF.getNumUsers() > 0)
1584     assignName(&Plan.VFxUF);
1585   assignName(&Plan.VectorTripCount);
1586   if (Plan.BackedgeTakenCount)
1587     assignName(Plan.BackedgeTakenCount);
1588   for (VPValue *LI : Plan.VPLiveInsToFree)
1589     assignName(LI);
1590   assignNames(Plan.getPreheader());
1591 
1592   ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<const VPBlockBase *>>
1593       RPOT(VPBlockDeepTraversalWrapper<const VPBlockBase *>(Plan.getEntry()));
1594   for (const VPBasicBlock *VPBB :
1595        VPBlockUtils::blocksOnly<const VPBasicBlock>(RPOT))
1596     assignNames(VPBB);
1597 }
1598 
1599 void VPSlotTracker::assignNames(const VPBasicBlock *VPBB) {
1600   for (const VPRecipeBase &Recipe : *VPBB)
1601     for (VPValue *Def : Recipe.definedValues())
1602       assignName(Def);
1603 }
1604 
1605 std::string VPSlotTracker::getOrCreateName(const VPValue *V) const {
1606   std::string Name = VPValue2Name.lookup(V);
1607   if (!Name.empty())
1608     return Name;
1609 
1610   // If no name was assigned, no VPlan was provided when creating the slot
1611   // tracker or it is not reachable from the provided VPlan. This can happen,
1612   // e.g. when trying to print a recipe that has not been inserted into a VPlan
1613   // in a debugger.
1614   // TODO: Update VPSlotTracker constructor to assign names to recipes &
1615   // VPValues not associated with a VPlan, instead of constructing names ad-hoc
1616   // here.
1617   const VPRecipeBase *DefR = V->getDefiningRecipe();
1618   (void)DefR;
1619   assert((!DefR || !DefR->getParent() || !DefR->getParent()->getPlan()) &&
1620          "VPValue defined by a recipe in a VPlan?");
1621 
1622   // Use the underlying value's name, if there is one.
1623   if (auto *UV = V->getUnderlyingValue()) {
1624     std::string Name;
1625     raw_string_ostream S(Name);
1626     UV->printAsOperand(S, false);
1627     return (Twine("ir<") + Name + ">").str();
1628   }
1629 
1630   return "<badref>";
1631 }
1632 
1633 bool LoopVectorizationPlanner::getDecisionAndClampRange(
1634     const std::function<bool(ElementCount)> &Predicate, VFRange &Range) {
1635   assert(!Range.isEmpty() && "Trying to test an empty VF range.");
1636   bool PredicateAtRangeStart = Predicate(Range.Start);
1637 
1638   for (ElementCount TmpVF : VFRange(Range.Start * 2, Range.End))
1639     if (Predicate(TmpVF) != PredicateAtRangeStart) {
1640       Range.End = TmpVF;
1641       break;
1642     }
1643 
1644   return PredicateAtRangeStart;
1645 }
1646 
1647 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF,
1648 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range
1649 /// of VF's starting at a given VF and extending it as much as possible. Each
1650 /// vectorization decision can potentially shorten this sub-range during
1651 /// buildVPlan().
1652 void LoopVectorizationPlanner::buildVPlans(ElementCount MinVF,
1653                                            ElementCount MaxVF) {
1654   auto MaxVFTimes2 = MaxVF * 2;
1655   for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFTimes2);) {
1656     VFRange SubRange = {VF, MaxVFTimes2};
1657     auto Plan = buildVPlan(SubRange);
1658     VPlanTransforms::optimize(*Plan);
1659     VPlans.push_back(std::move(Plan));
1660     VF = SubRange.End;
1661   }
1662 }
1663 
1664 VPlan &LoopVectorizationPlanner::getPlanFor(ElementCount VF) const {
1665   assert(count_if(VPlans,
1666                   [VF](const VPlanPtr &Plan) { return Plan->hasVF(VF); }) ==
1667              1 &&
1668          "Multiple VPlans for VF.");
1669 
1670   for (const VPlanPtr &Plan : VPlans) {
1671     if (Plan->hasVF(VF))
1672       return *Plan.get();
1673   }
1674   llvm_unreachable("No plan found!");
1675 }
1676 
1677 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1678 void LoopVectorizationPlanner::printPlans(raw_ostream &O) {
1679   if (VPlans.empty()) {
1680     O << "LV: No VPlans built.\n";
1681     return;
1682   }
1683   for (const auto &Plan : VPlans)
1684     if (PrintVPlansInDotFormat)
1685       Plan->printDOT(O);
1686     else
1687       Plan->print(O);
1688 }
1689 #endif
1690 
1691 TargetTransformInfo::OperandValueInfo
1692 VPCostContext::getOperandInfo(VPValue *V) const {
1693   if (!V->isLiveIn())
1694     return {};
1695 
1696   return TTI::getOperandInfo(V->getLiveInIRValue());
1697 }
1698