1 //===- VPlan.cpp - Vectorizer Plan ----------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This is the LLVM vectorization plan. It represents a candidate for 11 /// vectorization, allowing to plan and optimize how to vectorize a given loop 12 /// before generating LLVM-IR. 13 /// The vectorizer uses vectorization plans to estimate the costs of potential 14 /// candidates and if profitable to execute the desired plan, generating vector 15 /// LLVM-IR code. 16 /// 17 //===----------------------------------------------------------------------===// 18 19 #include "VPlan.h" 20 #include "VPlanDominatorTree.h" 21 #include "llvm/ADT/DepthFirstIterator.h" 22 #include "llvm/ADT/PostOrderIterator.h" 23 #include "llvm/ADT/STLExtras.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/Twine.h" 26 #include "llvm/Analysis/IVDescriptors.h" 27 #include "llvm/Analysis/LoopInfo.h" 28 #include "llvm/IR/BasicBlock.h" 29 #include "llvm/IR/CFG.h" 30 #include "llvm/IR/InstrTypes.h" 31 #include "llvm/IR/Instruction.h" 32 #include "llvm/IR/Instructions.h" 33 #include "llvm/IR/Type.h" 34 #include "llvm/IR/Value.h" 35 #include "llvm/Support/Casting.h" 36 #include "llvm/Support/CommandLine.h" 37 #include "llvm/Support/Debug.h" 38 #include "llvm/Support/ErrorHandling.h" 39 #include "llvm/Support/GenericDomTreeConstruction.h" 40 #include "llvm/Support/GraphWriter.h" 41 #include "llvm/Support/raw_ostream.h" 42 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 43 #include <cassert> 44 #include <iterator> 45 #include <string> 46 #include <vector> 47 48 using namespace llvm; 49 extern cl::opt<bool> EnableVPlanNativePath; 50 51 #define DEBUG_TYPE "vplan" 52 53 raw_ostream &llvm::operator<<(raw_ostream &OS, const VPValue &V) { 54 const VPInstruction *Instr = dyn_cast<VPInstruction>(&V); 55 VPSlotTracker SlotTracker( 56 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr); 57 V.print(OS, SlotTracker); 58 return OS; 59 } 60 61 VPValue::VPValue(const unsigned char SC, Value *UV, VPDef *Def) 62 : SubclassID(SC), UnderlyingVal(UV), Def(Def) { 63 if (Def) 64 Def->addDefinedValue(this); 65 } 66 67 VPValue::~VPValue() { 68 assert(Users.empty() && "trying to delete a VPValue with remaining users"); 69 if (Def) 70 Def->removeDefinedValue(this); 71 } 72 73 void VPValue::print(raw_ostream &OS, VPSlotTracker &SlotTracker) const { 74 if (const VPInstruction *Instr = dyn_cast<VPInstruction>(this)) 75 Instr->print(OS, SlotTracker); 76 else 77 printAsOperand(OS, SlotTracker); 78 } 79 80 void VPValue::dump() const { 81 const VPInstruction *Instr = dyn_cast<VPInstruction>(this); 82 VPSlotTracker SlotTracker( 83 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr); 84 print(dbgs(), SlotTracker); 85 dbgs() << "\n"; 86 } 87 88 void VPRecipeBase::dump() const { 89 VPSlotTracker SlotTracker(nullptr); 90 print(dbgs(), "", SlotTracker); 91 dbgs() << "\n"; 92 } 93 94 VPUser *VPRecipeBase::toVPUser() { 95 if (auto *U = dyn_cast<VPInstruction>(this)) 96 return U; 97 if (auto *U = dyn_cast<VPWidenRecipe>(this)) 98 return U; 99 if (auto *U = dyn_cast<VPWidenCallRecipe>(this)) 100 return U; 101 if (auto *U = dyn_cast<VPWidenSelectRecipe>(this)) 102 return U; 103 if (auto *U = dyn_cast<VPWidenGEPRecipe>(this)) 104 return U; 105 if (auto *U = dyn_cast<VPBlendRecipe>(this)) 106 return U; 107 if (auto *U = dyn_cast<VPInterleaveRecipe>(this)) 108 return U; 109 if (auto *U = dyn_cast<VPReplicateRecipe>(this)) 110 return U; 111 if (auto *U = dyn_cast<VPBranchOnMaskRecipe>(this)) 112 return U; 113 if (auto *U = dyn_cast<VPWidenMemoryInstructionRecipe>(this)) 114 return U; 115 if (auto *U = dyn_cast<VPReductionRecipe>(this)) 116 return U; 117 if (auto *U = dyn_cast<VPPredInstPHIRecipe>(this)) 118 return U; 119 return nullptr; 120 } 121 122 // Get the top-most entry block of \p Start. This is the entry block of the 123 // containing VPlan. This function is templated to support both const and non-const blocks 124 template <typename T> static T *getPlanEntry(T *Start) { 125 T *Next = Start; 126 T *Current = Start; 127 while ((Next = Next->getParent())) 128 Current = Next; 129 130 SmallSetVector<T *, 8> WorkList; 131 WorkList.insert(Current); 132 133 for (unsigned i = 0; i < WorkList.size(); i++) { 134 T *Current = WorkList[i]; 135 if (Current->getNumPredecessors() == 0) 136 return Current; 137 auto &Predecessors = Current->getPredecessors(); 138 WorkList.insert(Predecessors.begin(), Predecessors.end()); 139 } 140 141 llvm_unreachable("VPlan without any entry node without predecessors"); 142 } 143 144 VPlan *VPBlockBase::getPlan() { return getPlanEntry(this)->Plan; } 145 146 const VPlan *VPBlockBase::getPlan() const { return getPlanEntry(this)->Plan; } 147 148 /// \return the VPBasicBlock that is the entry of Block, possibly indirectly. 149 const VPBasicBlock *VPBlockBase::getEntryBasicBlock() const { 150 const VPBlockBase *Block = this; 151 while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 152 Block = Region->getEntry(); 153 return cast<VPBasicBlock>(Block); 154 } 155 156 VPBasicBlock *VPBlockBase::getEntryBasicBlock() { 157 VPBlockBase *Block = this; 158 while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 159 Block = Region->getEntry(); 160 return cast<VPBasicBlock>(Block); 161 } 162 163 void VPBlockBase::setPlan(VPlan *ParentPlan) { 164 assert(ParentPlan->getEntry() == this && 165 "Can only set plan on its entry block."); 166 Plan = ParentPlan; 167 } 168 169 /// \return the VPBasicBlock that is the exit of Block, possibly indirectly. 170 const VPBasicBlock *VPBlockBase::getExitBasicBlock() const { 171 const VPBlockBase *Block = this; 172 while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 173 Block = Region->getExit(); 174 return cast<VPBasicBlock>(Block); 175 } 176 177 VPBasicBlock *VPBlockBase::getExitBasicBlock() { 178 VPBlockBase *Block = this; 179 while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 180 Block = Region->getExit(); 181 return cast<VPBasicBlock>(Block); 182 } 183 184 VPBlockBase *VPBlockBase::getEnclosingBlockWithSuccessors() { 185 if (!Successors.empty() || !Parent) 186 return this; 187 assert(Parent->getExit() == this && 188 "Block w/o successors not the exit of its parent."); 189 return Parent->getEnclosingBlockWithSuccessors(); 190 } 191 192 VPBlockBase *VPBlockBase::getEnclosingBlockWithPredecessors() { 193 if (!Predecessors.empty() || !Parent) 194 return this; 195 assert(Parent->getEntry() == this && 196 "Block w/o predecessors not the entry of its parent."); 197 return Parent->getEnclosingBlockWithPredecessors(); 198 } 199 200 void VPBlockBase::deleteCFG(VPBlockBase *Entry) { 201 SmallVector<VPBlockBase *, 8> Blocks; 202 203 for (VPBlockBase *Block : depth_first(Entry)) 204 Blocks.push_back(Block); 205 206 for (VPBlockBase *Block : Blocks) 207 delete Block; 208 } 209 210 VPBasicBlock::iterator VPBasicBlock::getFirstNonPhi() { 211 iterator It = begin(); 212 while (It != end() && (isa<VPWidenPHIRecipe>(&*It) || 213 isa<VPWidenIntOrFpInductionRecipe>(&*It) || 214 isa<VPPredInstPHIRecipe>(&*It) || 215 isa<VPWidenCanonicalIVRecipe>(&*It))) 216 It++; 217 return It; 218 } 219 220 BasicBlock * 221 VPBasicBlock::createEmptyBasicBlock(VPTransformState::CFGState &CFG) { 222 // BB stands for IR BasicBlocks. VPBB stands for VPlan VPBasicBlocks. 223 // Pred stands for Predessor. Prev stands for Previous - last visited/created. 224 BasicBlock *PrevBB = CFG.PrevBB; 225 BasicBlock *NewBB = BasicBlock::Create(PrevBB->getContext(), getName(), 226 PrevBB->getParent(), CFG.LastBB); 227 LLVM_DEBUG(dbgs() << "LV: created " << NewBB->getName() << '\n'); 228 229 // Hook up the new basic block to its predecessors. 230 for (VPBlockBase *PredVPBlock : getHierarchicalPredecessors()) { 231 VPBasicBlock *PredVPBB = PredVPBlock->getExitBasicBlock(); 232 auto &PredVPSuccessors = PredVPBB->getSuccessors(); 233 BasicBlock *PredBB = CFG.VPBB2IRBB[PredVPBB]; 234 235 // In outer loop vectorization scenario, the predecessor BBlock may not yet 236 // be visited(backedge). Mark the VPBasicBlock for fixup at the end of 237 // vectorization. We do not encounter this case in inner loop vectorization 238 // as we start out by building a loop skeleton with the vector loop header 239 // and latch blocks. As a result, we never enter this function for the 240 // header block in the non VPlan-native path. 241 if (!PredBB) { 242 assert(EnableVPlanNativePath && 243 "Unexpected null predecessor in non VPlan-native path"); 244 CFG.VPBBsToFix.push_back(PredVPBB); 245 continue; 246 } 247 248 assert(PredBB && "Predecessor basic-block not found building successor."); 249 auto *PredBBTerminator = PredBB->getTerminator(); 250 LLVM_DEBUG(dbgs() << "LV: draw edge from" << PredBB->getName() << '\n'); 251 if (isa<UnreachableInst>(PredBBTerminator)) { 252 assert(PredVPSuccessors.size() == 1 && 253 "Predecessor ending w/o branch must have single successor."); 254 PredBBTerminator->eraseFromParent(); 255 BranchInst::Create(NewBB, PredBB); 256 } else { 257 assert(PredVPSuccessors.size() == 2 && 258 "Predecessor ending with branch must have two successors."); 259 unsigned idx = PredVPSuccessors.front() == this ? 0 : 1; 260 assert(!PredBBTerminator->getSuccessor(idx) && 261 "Trying to reset an existing successor block."); 262 PredBBTerminator->setSuccessor(idx, NewBB); 263 } 264 } 265 return NewBB; 266 } 267 268 void VPBasicBlock::execute(VPTransformState *State) { 269 bool Replica = State->Instance && 270 !(State->Instance->Part == 0 && State->Instance->Lane == 0); 271 VPBasicBlock *PrevVPBB = State->CFG.PrevVPBB; 272 VPBlockBase *SingleHPred = nullptr; 273 BasicBlock *NewBB = State->CFG.PrevBB; // Reuse it if possible. 274 275 // 1. Create an IR basic block, or reuse the last one if possible. 276 // The last IR basic block is reused, as an optimization, in three cases: 277 // A. the first VPBB reuses the loop header BB - when PrevVPBB is null; 278 // B. when the current VPBB has a single (hierarchical) predecessor which 279 // is PrevVPBB and the latter has a single (hierarchical) successor; and 280 // C. when the current VPBB is an entry of a region replica - where PrevVPBB 281 // is the exit of this region from a previous instance, or the predecessor 282 // of this region. 283 if (PrevVPBB && /* A */ 284 !((SingleHPred = getSingleHierarchicalPredecessor()) && 285 SingleHPred->getExitBasicBlock() == PrevVPBB && 286 PrevVPBB->getSingleHierarchicalSuccessor()) && /* B */ 287 !(Replica && getPredecessors().empty())) { /* C */ 288 NewBB = createEmptyBasicBlock(State->CFG); 289 State->Builder.SetInsertPoint(NewBB); 290 // Temporarily terminate with unreachable until CFG is rewired. 291 UnreachableInst *Terminator = State->Builder.CreateUnreachable(); 292 State->Builder.SetInsertPoint(Terminator); 293 // Register NewBB in its loop. In innermost loops its the same for all BB's. 294 Loop *L = State->LI->getLoopFor(State->CFG.LastBB); 295 L->addBasicBlockToLoop(NewBB, *State->LI); 296 State->CFG.PrevBB = NewBB; 297 } 298 299 // 2. Fill the IR basic block with IR instructions. 300 LLVM_DEBUG(dbgs() << "LV: vectorizing VPBB:" << getName() 301 << " in BB:" << NewBB->getName() << '\n'); 302 303 State->CFG.VPBB2IRBB[this] = NewBB; 304 State->CFG.PrevVPBB = this; 305 306 for (VPRecipeBase &Recipe : Recipes) 307 Recipe.execute(*State); 308 309 VPValue *CBV; 310 if (EnableVPlanNativePath && (CBV = getCondBit())) { 311 Value *IRCBV = CBV->getUnderlyingValue(); 312 assert(IRCBV && "Unexpected null underlying value for condition bit"); 313 314 // Condition bit value in a VPBasicBlock is used as the branch selector. In 315 // the VPlan-native path case, since all branches are uniform we generate a 316 // branch instruction using the condition value from vector lane 0 and dummy 317 // successors. The successors are fixed later when the successor blocks are 318 // visited. 319 Value *NewCond = State->Callback.getOrCreateVectorValues(IRCBV, 0); 320 NewCond = State->Builder.CreateExtractElement(NewCond, 321 State->Builder.getInt32(0)); 322 323 // Replace the temporary unreachable terminator with the new conditional 324 // branch. 325 auto *CurrentTerminator = NewBB->getTerminator(); 326 assert(isa<UnreachableInst>(CurrentTerminator) && 327 "Expected to replace unreachable terminator with conditional " 328 "branch."); 329 auto *CondBr = BranchInst::Create(NewBB, nullptr, NewCond); 330 CondBr->setSuccessor(0, nullptr); 331 ReplaceInstWithInst(CurrentTerminator, CondBr); 332 } 333 334 LLVM_DEBUG(dbgs() << "LV: filled BB:" << *NewBB); 335 } 336 337 void VPBasicBlock::dropAllReferences(VPValue *NewValue) { 338 for (VPRecipeBase &R : Recipes) { 339 for (auto *Def : R.definedValues()) 340 Def->replaceAllUsesWith(NewValue); 341 342 if (auto *User = R.toVPUser()) 343 for (unsigned I = 0, E = User->getNumOperands(); I != E; I++) 344 User->setOperand(I, NewValue); 345 } 346 } 347 348 void VPRegionBlock::dropAllReferences(VPValue *NewValue) { 349 for (VPBlockBase *Block : depth_first(Entry)) 350 // Drop all references in VPBasicBlocks and replace all uses with 351 // DummyValue. 352 Block->dropAllReferences(NewValue); 353 } 354 355 void VPRegionBlock::execute(VPTransformState *State) { 356 ReversePostOrderTraversal<VPBlockBase *> RPOT(Entry); 357 358 if (!isReplicator()) { 359 // Visit the VPBlocks connected to "this", starting from it. 360 for (VPBlockBase *Block : RPOT) { 361 if (EnableVPlanNativePath) { 362 // The inner loop vectorization path does not represent loop preheader 363 // and exit blocks as part of the VPlan. In the VPlan-native path, skip 364 // vectorizing loop preheader block. In future, we may replace this 365 // check with the check for loop preheader. 366 if (Block->getNumPredecessors() == 0) 367 continue; 368 369 // Skip vectorizing loop exit block. In future, we may replace this 370 // check with the check for loop exit. 371 if (Block->getNumSuccessors() == 0) 372 continue; 373 } 374 375 LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n'); 376 Block->execute(State); 377 } 378 return; 379 } 380 381 assert(!State->Instance && "Replicating a Region with non-null instance."); 382 383 // Enter replicating mode. 384 State->Instance = {0, 0}; 385 386 for (unsigned Part = 0, UF = State->UF; Part < UF; ++Part) { 387 State->Instance->Part = Part; 388 assert(!State->VF.isScalable() && "VF is assumed to be non scalable."); 389 for (unsigned Lane = 0, VF = State->VF.getKnownMinValue(); Lane < VF; 390 ++Lane) { 391 State->Instance->Lane = Lane; 392 // Visit the VPBlocks connected to \p this, starting from it. 393 for (VPBlockBase *Block : RPOT) { 394 LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n'); 395 Block->execute(State); 396 } 397 } 398 } 399 400 // Exit replicating mode. 401 State->Instance.reset(); 402 } 403 404 void VPRecipeBase::insertBefore(VPRecipeBase *InsertPos) { 405 assert(!Parent && "Recipe already in some VPBasicBlock"); 406 assert(InsertPos->getParent() && 407 "Insertion position not in any VPBasicBlock"); 408 Parent = InsertPos->getParent(); 409 Parent->getRecipeList().insert(InsertPos->getIterator(), this); 410 } 411 412 void VPRecipeBase::insertAfter(VPRecipeBase *InsertPos) { 413 assert(!Parent && "Recipe already in some VPBasicBlock"); 414 assert(InsertPos->getParent() && 415 "Insertion position not in any VPBasicBlock"); 416 Parent = InsertPos->getParent(); 417 Parent->getRecipeList().insertAfter(InsertPos->getIterator(), this); 418 } 419 420 void VPRecipeBase::removeFromParent() { 421 assert(getParent() && "Recipe not in any VPBasicBlock"); 422 getParent()->getRecipeList().remove(getIterator()); 423 Parent = nullptr; 424 } 425 426 iplist<VPRecipeBase>::iterator VPRecipeBase::eraseFromParent() { 427 assert(getParent() && "Recipe not in any VPBasicBlock"); 428 return getParent()->getRecipeList().erase(getIterator()); 429 } 430 431 void VPRecipeBase::moveAfter(VPRecipeBase *InsertPos) { 432 removeFromParent(); 433 insertAfter(InsertPos); 434 } 435 436 void VPRecipeBase::moveBefore(VPBasicBlock &BB, 437 iplist<VPRecipeBase>::iterator I) { 438 assert(I == BB.end() || I->getParent() == &BB); 439 removeFromParent(); 440 Parent = &BB; 441 BB.getRecipeList().insert(I, this); 442 } 443 444 void VPInstruction::generateInstruction(VPTransformState &State, 445 unsigned Part) { 446 IRBuilder<> &Builder = State.Builder; 447 448 if (Instruction::isBinaryOp(getOpcode())) { 449 Value *A = State.get(getOperand(0), Part); 450 Value *B = State.get(getOperand(1), Part); 451 Value *V = Builder.CreateBinOp((Instruction::BinaryOps)getOpcode(), A, B); 452 State.set(this, V, Part); 453 return; 454 } 455 456 switch (getOpcode()) { 457 case VPInstruction::Not: { 458 Value *A = State.get(getOperand(0), Part); 459 Value *V = Builder.CreateNot(A); 460 State.set(this, V, Part); 461 break; 462 } 463 case VPInstruction::ICmpULE: { 464 Value *IV = State.get(getOperand(0), Part); 465 Value *TC = State.get(getOperand(1), Part); 466 Value *V = Builder.CreateICmpULE(IV, TC); 467 State.set(this, V, Part); 468 break; 469 } 470 case Instruction::Select: { 471 Value *Cond = State.get(getOperand(0), Part); 472 Value *Op1 = State.get(getOperand(1), Part); 473 Value *Op2 = State.get(getOperand(2), Part); 474 Value *V = Builder.CreateSelect(Cond, Op1, Op2); 475 State.set(this, V, Part); 476 break; 477 } 478 case VPInstruction::ActiveLaneMask: { 479 // Get first lane of vector induction variable. 480 Value *VIVElem0 = State.get(getOperand(0), {Part, 0}); 481 // Get the original loop tripcount. 482 Value *ScalarTC = State.TripCount; 483 484 auto *Int1Ty = Type::getInt1Ty(Builder.getContext()); 485 auto *PredTy = FixedVectorType::get(Int1Ty, State.VF.getKnownMinValue()); 486 Instruction *Call = Builder.CreateIntrinsic( 487 Intrinsic::get_active_lane_mask, {PredTy, ScalarTC->getType()}, 488 {VIVElem0, ScalarTC}, nullptr, "active.lane.mask"); 489 State.set(this, Call, Part); 490 break; 491 } 492 default: 493 llvm_unreachable("Unsupported opcode for instruction"); 494 } 495 } 496 497 void VPInstruction::execute(VPTransformState &State) { 498 assert(!State.Instance && "VPInstruction executing an Instance"); 499 for (unsigned Part = 0; Part < State.UF; ++Part) 500 generateInstruction(State, Part); 501 } 502 503 void VPInstruction::print(raw_ostream &O, const Twine &Indent, 504 VPSlotTracker &SlotTracker) const { 505 O << "EMIT "; 506 print(O, SlotTracker); 507 } 508 509 void VPInstruction::print(raw_ostream &O) const { 510 VPSlotTracker SlotTracker(getParent()->getPlan()); 511 print(O, SlotTracker); 512 } 513 514 void VPInstruction::print(raw_ostream &O, VPSlotTracker &SlotTracker) const { 515 if (hasResult()) { 516 printAsOperand(O, SlotTracker); 517 O << " = "; 518 } 519 520 switch (getOpcode()) { 521 case VPInstruction::Not: 522 O << "not"; 523 break; 524 case VPInstruction::ICmpULE: 525 O << "icmp ule"; 526 break; 527 case VPInstruction::SLPLoad: 528 O << "combined load"; 529 break; 530 case VPInstruction::SLPStore: 531 O << "combined store"; 532 break; 533 case VPInstruction::ActiveLaneMask: 534 O << "active lane mask"; 535 break; 536 537 default: 538 O << Instruction::getOpcodeName(getOpcode()); 539 } 540 541 for (const VPValue *Operand : operands()) { 542 O << " "; 543 Operand->printAsOperand(O, SlotTracker); 544 } 545 } 546 547 /// Generate the code inside the body of the vectorized loop. Assumes a single 548 /// LoopVectorBody basic-block was created for this. Introduce additional 549 /// basic-blocks as needed, and fill them all. 550 void VPlan::execute(VPTransformState *State) { 551 // -1. Check if the backedge taken count is needed, and if so build it. 552 if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) { 553 Value *TC = State->TripCount; 554 IRBuilder<> Builder(State->CFG.PrevBB->getTerminator()); 555 auto *TCMO = Builder.CreateSub(TC, ConstantInt::get(TC->getType(), 1), 556 "trip.count.minus.1"); 557 auto VF = State->VF; 558 Value *VTCMO = 559 VF.isScalar() ? TCMO : Builder.CreateVectorSplat(VF, TCMO, "broadcast"); 560 for (unsigned Part = 0, UF = State->UF; Part < UF; ++Part) 561 State->set(BackedgeTakenCount, VTCMO, Part); 562 } 563 564 // 0. Set the reverse mapping from VPValues to Values for code generation. 565 for (auto &Entry : Value2VPValue) 566 State->VPValue2Value[Entry.second] = Entry.first; 567 568 BasicBlock *VectorPreHeaderBB = State->CFG.PrevBB; 569 BasicBlock *VectorHeaderBB = VectorPreHeaderBB->getSingleSuccessor(); 570 assert(VectorHeaderBB && "Loop preheader does not have a single successor."); 571 572 // 1. Make room to generate basic-blocks inside loop body if needed. 573 BasicBlock *VectorLatchBB = VectorHeaderBB->splitBasicBlock( 574 VectorHeaderBB->getFirstInsertionPt(), "vector.body.latch"); 575 Loop *L = State->LI->getLoopFor(VectorHeaderBB); 576 L->addBasicBlockToLoop(VectorLatchBB, *State->LI); 577 // Remove the edge between Header and Latch to allow other connections. 578 // Temporarily terminate with unreachable until CFG is rewired. 579 // Note: this asserts the generated code's assumption that 580 // getFirstInsertionPt() can be dereferenced into an Instruction. 581 VectorHeaderBB->getTerminator()->eraseFromParent(); 582 State->Builder.SetInsertPoint(VectorHeaderBB); 583 UnreachableInst *Terminator = State->Builder.CreateUnreachable(); 584 State->Builder.SetInsertPoint(Terminator); 585 586 // 2. Generate code in loop body. 587 State->CFG.PrevVPBB = nullptr; 588 State->CFG.PrevBB = VectorHeaderBB; 589 State->CFG.LastBB = VectorLatchBB; 590 591 for (VPBlockBase *Block : depth_first(Entry)) 592 Block->execute(State); 593 594 // Setup branch terminator successors for VPBBs in VPBBsToFix based on 595 // VPBB's successors. 596 for (auto VPBB : State->CFG.VPBBsToFix) { 597 assert(EnableVPlanNativePath && 598 "Unexpected VPBBsToFix in non VPlan-native path"); 599 BasicBlock *BB = State->CFG.VPBB2IRBB[VPBB]; 600 assert(BB && "Unexpected null basic block for VPBB"); 601 602 unsigned Idx = 0; 603 auto *BBTerminator = BB->getTerminator(); 604 605 for (VPBlockBase *SuccVPBlock : VPBB->getHierarchicalSuccessors()) { 606 VPBasicBlock *SuccVPBB = SuccVPBlock->getEntryBasicBlock(); 607 BBTerminator->setSuccessor(Idx, State->CFG.VPBB2IRBB[SuccVPBB]); 608 ++Idx; 609 } 610 } 611 612 // 3. Merge the temporary latch created with the last basic-block filled. 613 BasicBlock *LastBB = State->CFG.PrevBB; 614 // Connect LastBB to VectorLatchBB to facilitate their merge. 615 assert((EnableVPlanNativePath || 616 isa<UnreachableInst>(LastBB->getTerminator())) && 617 "Expected InnerLoop VPlan CFG to terminate with unreachable"); 618 assert((!EnableVPlanNativePath || isa<BranchInst>(LastBB->getTerminator())) && 619 "Expected VPlan CFG to terminate with branch in NativePath"); 620 LastBB->getTerminator()->eraseFromParent(); 621 BranchInst::Create(VectorLatchBB, LastBB); 622 623 // Merge LastBB with Latch. 624 bool Merged = MergeBlockIntoPredecessor(VectorLatchBB, nullptr, State->LI); 625 (void)Merged; 626 assert(Merged && "Could not merge last basic block with latch."); 627 VectorLatchBB = LastBB; 628 629 // We do not attempt to preserve DT for outer loop vectorization currently. 630 if (!EnableVPlanNativePath) 631 updateDominatorTree(State->DT, VectorPreHeaderBB, VectorLatchBB, 632 L->getExitBlock()); 633 } 634 635 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 636 LLVM_DUMP_METHOD 637 void VPlan::dump() const { dbgs() << *this << '\n'; } 638 #endif 639 640 void VPlan::updateDominatorTree(DominatorTree *DT, BasicBlock *LoopPreHeaderBB, 641 BasicBlock *LoopLatchBB, 642 BasicBlock *LoopExitBB) { 643 BasicBlock *LoopHeaderBB = LoopPreHeaderBB->getSingleSuccessor(); 644 assert(LoopHeaderBB && "Loop preheader does not have a single successor."); 645 // The vector body may be more than a single basic-block by this point. 646 // Update the dominator tree information inside the vector body by propagating 647 // it from header to latch, expecting only triangular control-flow, if any. 648 BasicBlock *PostDomSucc = nullptr; 649 for (auto *BB = LoopHeaderBB; BB != LoopLatchBB; BB = PostDomSucc) { 650 // Get the list of successors of this block. 651 std::vector<BasicBlock *> Succs(succ_begin(BB), succ_end(BB)); 652 assert(Succs.size() <= 2 && 653 "Basic block in vector loop has more than 2 successors."); 654 PostDomSucc = Succs[0]; 655 if (Succs.size() == 1) { 656 assert(PostDomSucc->getSinglePredecessor() && 657 "PostDom successor has more than one predecessor."); 658 DT->addNewBlock(PostDomSucc, BB); 659 continue; 660 } 661 BasicBlock *InterimSucc = Succs[1]; 662 if (PostDomSucc->getSingleSuccessor() == InterimSucc) { 663 PostDomSucc = Succs[1]; 664 InterimSucc = Succs[0]; 665 } 666 assert(InterimSucc->getSingleSuccessor() == PostDomSucc && 667 "One successor of a basic block does not lead to the other."); 668 assert(InterimSucc->getSinglePredecessor() && 669 "Interim successor has more than one predecessor."); 670 assert(PostDomSucc->hasNPredecessors(2) && 671 "PostDom successor has more than two predecessors."); 672 DT->addNewBlock(InterimSucc, BB); 673 DT->addNewBlock(PostDomSucc, BB); 674 } 675 // Latch block is a new dominator for the loop exit. 676 DT->changeImmediateDominator(LoopExitBB, LoopLatchBB); 677 assert(DT->verify(DominatorTree::VerificationLevel::Fast)); 678 } 679 680 const Twine VPlanPrinter::getUID(const VPBlockBase *Block) { 681 return (isa<VPRegionBlock>(Block) ? "cluster_N" : "N") + 682 Twine(getOrCreateBID(Block)); 683 } 684 685 const Twine VPlanPrinter::getOrCreateName(const VPBlockBase *Block) { 686 const std::string &Name = Block->getName(); 687 if (!Name.empty()) 688 return Name; 689 return "VPB" + Twine(getOrCreateBID(Block)); 690 } 691 692 void VPlanPrinter::dump() { 693 Depth = 1; 694 bumpIndent(0); 695 OS << "digraph VPlan {\n"; 696 OS << "graph [labelloc=t, fontsize=30; label=\"Vectorization Plan"; 697 if (!Plan.getName().empty()) 698 OS << "\\n" << DOT::EscapeString(Plan.getName()); 699 if (Plan.BackedgeTakenCount) { 700 OS << ", where:\\n"; 701 Plan.BackedgeTakenCount->print(OS, SlotTracker); 702 OS << " := BackedgeTakenCount"; 703 } 704 OS << "\"]\n"; 705 OS << "node [shape=rect, fontname=Courier, fontsize=30]\n"; 706 OS << "edge [fontname=Courier, fontsize=30]\n"; 707 OS << "compound=true\n"; 708 709 for (const VPBlockBase *Block : depth_first(Plan.getEntry())) 710 dumpBlock(Block); 711 712 OS << "}\n"; 713 } 714 715 void VPlanPrinter::dumpBlock(const VPBlockBase *Block) { 716 if (const VPBasicBlock *BasicBlock = dyn_cast<VPBasicBlock>(Block)) 717 dumpBasicBlock(BasicBlock); 718 else if (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 719 dumpRegion(Region); 720 else 721 llvm_unreachable("Unsupported kind of VPBlock."); 722 } 723 724 void VPlanPrinter::drawEdge(const VPBlockBase *From, const VPBlockBase *To, 725 bool Hidden, const Twine &Label) { 726 // Due to "dot" we print an edge between two regions as an edge between the 727 // exit basic block and the entry basic of the respective regions. 728 const VPBlockBase *Tail = From->getExitBasicBlock(); 729 const VPBlockBase *Head = To->getEntryBasicBlock(); 730 OS << Indent << getUID(Tail) << " -> " << getUID(Head); 731 OS << " [ label=\"" << Label << '\"'; 732 if (Tail != From) 733 OS << " ltail=" << getUID(From); 734 if (Head != To) 735 OS << " lhead=" << getUID(To); 736 if (Hidden) 737 OS << "; splines=none"; 738 OS << "]\n"; 739 } 740 741 void VPlanPrinter::dumpEdges(const VPBlockBase *Block) { 742 auto &Successors = Block->getSuccessors(); 743 if (Successors.size() == 1) 744 drawEdge(Block, Successors.front(), false, ""); 745 else if (Successors.size() == 2) { 746 drawEdge(Block, Successors.front(), false, "T"); 747 drawEdge(Block, Successors.back(), false, "F"); 748 } else { 749 unsigned SuccessorNumber = 0; 750 for (auto *Successor : Successors) 751 drawEdge(Block, Successor, false, Twine(SuccessorNumber++)); 752 } 753 } 754 755 void VPlanPrinter::dumpBasicBlock(const VPBasicBlock *BasicBlock) { 756 OS << Indent << getUID(BasicBlock) << " [label =\n"; 757 bumpIndent(1); 758 OS << Indent << "\"" << DOT::EscapeString(BasicBlock->getName()) << ":\\n\""; 759 bumpIndent(1); 760 761 // Dump the block predicate. 762 const VPValue *Pred = BasicBlock->getPredicate(); 763 if (Pred) { 764 OS << " +\n" << Indent << " \"BlockPredicate: \""; 765 if (const VPInstruction *PredI = dyn_cast<VPInstruction>(Pred)) { 766 PredI->printAsOperand(OS, SlotTracker); 767 OS << " (" << DOT::EscapeString(PredI->getParent()->getName()) 768 << ")\\l\""; 769 } else 770 Pred->printAsOperand(OS, SlotTracker); 771 } 772 773 for (const VPRecipeBase &Recipe : *BasicBlock) { 774 OS << " +\n" << Indent << "\""; 775 Recipe.print(OS, Indent, SlotTracker); 776 OS << "\\l\""; 777 } 778 779 // Dump the condition bit. 780 const VPValue *CBV = BasicBlock->getCondBit(); 781 if (CBV) { 782 OS << " +\n" << Indent << " \"CondBit: "; 783 if (const VPInstruction *CBI = dyn_cast<VPInstruction>(CBV)) { 784 CBI->printAsOperand(OS, SlotTracker); 785 OS << " (" << DOT::EscapeString(CBI->getParent()->getName()) << ")\\l\""; 786 } else { 787 CBV->printAsOperand(OS, SlotTracker); 788 OS << "\""; 789 } 790 } 791 792 bumpIndent(-2); 793 OS << "\n" << Indent << "]\n"; 794 dumpEdges(BasicBlock); 795 } 796 797 void VPlanPrinter::dumpRegion(const VPRegionBlock *Region) { 798 OS << Indent << "subgraph " << getUID(Region) << " {\n"; 799 bumpIndent(1); 800 OS << Indent << "fontname=Courier\n" 801 << Indent << "label=\"" 802 << DOT::EscapeString(Region->isReplicator() ? "<xVFxUF> " : "<x1> ") 803 << DOT::EscapeString(Region->getName()) << "\"\n"; 804 // Dump the blocks of the region. 805 assert(Region->getEntry() && "Region contains no inner blocks."); 806 for (const VPBlockBase *Block : depth_first(Region->getEntry())) 807 dumpBlock(Block); 808 bumpIndent(-1); 809 OS << Indent << "}\n"; 810 dumpEdges(Region); 811 } 812 813 void VPlanPrinter::printAsIngredient(raw_ostream &O, const Value *V) { 814 std::string IngredientString; 815 raw_string_ostream RSO(IngredientString); 816 if (auto *Inst = dyn_cast<Instruction>(V)) { 817 if (!Inst->getType()->isVoidTy()) { 818 Inst->printAsOperand(RSO, false); 819 RSO << " = "; 820 } 821 RSO << Inst->getOpcodeName() << " "; 822 unsigned E = Inst->getNumOperands(); 823 if (E > 0) { 824 Inst->getOperand(0)->printAsOperand(RSO, false); 825 for (unsigned I = 1; I < E; ++I) 826 Inst->getOperand(I)->printAsOperand(RSO << ", ", false); 827 } 828 } else // !Inst 829 V->printAsOperand(RSO, false); 830 RSO.flush(); 831 O << DOT::EscapeString(IngredientString); 832 } 833 834 void VPWidenCallRecipe::print(raw_ostream &O, const Twine &Indent, 835 VPSlotTracker &SlotTracker) const { 836 O << "WIDEN-CALL "; 837 838 auto *CI = cast<CallInst>(getUnderlyingInstr()); 839 if (CI->getType()->isVoidTy()) 840 O << "void "; 841 else { 842 printAsOperand(O, SlotTracker); 843 O << " = "; 844 } 845 846 O << "call @" << CI->getCalledFunction()->getName() << "("; 847 printOperands(O, SlotTracker); 848 O << ")"; 849 } 850 851 void VPWidenSelectRecipe::print(raw_ostream &O, const Twine &Indent, 852 VPSlotTracker &SlotTracker) const { 853 O << "WIDEN-SELECT "; 854 printAsOperand(O, SlotTracker); 855 O << " = select "; 856 getOperand(0)->printAsOperand(O, SlotTracker); 857 O << ", "; 858 getOperand(1)->printAsOperand(O, SlotTracker); 859 O << ", "; 860 getOperand(2)->printAsOperand(O, SlotTracker); 861 O << (InvariantCond ? " (condition is loop invariant)" : ""); 862 } 863 864 void VPWidenRecipe::print(raw_ostream &O, const Twine &Indent, 865 VPSlotTracker &SlotTracker) const { 866 O << "WIDEN "; 867 printAsOperand(O, SlotTracker); 868 O << " = " << getUnderlyingInstr()->getOpcodeName() << " "; 869 printOperands(O, SlotTracker); 870 } 871 872 void VPWidenIntOrFpInductionRecipe::print(raw_ostream &O, const Twine &Indent, 873 VPSlotTracker &SlotTracker) const { 874 O << "WIDEN-INDUCTION"; 875 if (Trunc) { 876 O << "\\l\""; 877 O << " +\n" << Indent << "\" " << VPlanIngredient(IV) << "\\l\""; 878 O << " +\n" << Indent << "\" " << VPlanIngredient(Trunc); 879 } else 880 O << " " << VPlanIngredient(IV); 881 } 882 883 void VPWidenGEPRecipe::print(raw_ostream &O, const Twine &Indent, 884 VPSlotTracker &SlotTracker) const { 885 O << "WIDEN-GEP "; 886 O << (IsPtrLoopInvariant ? "Inv" : "Var"); 887 size_t IndicesNumber = IsIndexLoopInvariant.size(); 888 for (size_t I = 0; I < IndicesNumber; ++I) 889 O << "[" << (IsIndexLoopInvariant[I] ? "Inv" : "Var") << "]"; 890 891 O << " "; 892 printAsOperand(O, SlotTracker); 893 O << " = getelementptr "; 894 printOperands(O, SlotTracker); 895 } 896 897 void VPWidenPHIRecipe::print(raw_ostream &O, const Twine &Indent, 898 VPSlotTracker &SlotTracker) const { 899 O << "WIDEN-PHI " << VPlanIngredient(Phi); 900 } 901 902 void VPBlendRecipe::print(raw_ostream &O, const Twine &Indent, 903 VPSlotTracker &SlotTracker) const { 904 O << "BLEND "; 905 Phi->printAsOperand(O, false); 906 O << " ="; 907 if (getNumIncomingValues() == 1) { 908 // Not a User of any mask: not really blending, this is a 909 // single-predecessor phi. 910 O << " "; 911 getIncomingValue(0)->printAsOperand(O, SlotTracker); 912 } else { 913 for (unsigned I = 0, E = getNumIncomingValues(); I < E; ++I) { 914 O << " "; 915 getIncomingValue(I)->printAsOperand(O, SlotTracker); 916 O << "/"; 917 getMask(I)->printAsOperand(O, SlotTracker); 918 } 919 } 920 } 921 922 void VPReductionRecipe::print(raw_ostream &O, const Twine &Indent, 923 VPSlotTracker &SlotTracker) const { 924 O << "REDUCE "; 925 printAsOperand(O, SlotTracker); 926 O << " = "; 927 getChainOp()->printAsOperand(O, SlotTracker); 928 O << " + reduce." << Instruction::getOpcodeName(RdxDesc->getOpcode()) 929 << " ("; 930 getVecOp()->printAsOperand(O, SlotTracker); 931 if (getCondOp()) { 932 O << ", "; 933 getCondOp()->printAsOperand(O, SlotTracker); 934 } 935 O << ")"; 936 } 937 938 void VPReplicateRecipe::print(raw_ostream &O, const Twine &Indent, 939 VPSlotTracker &SlotTracker) const { 940 O << (IsUniform ? "CLONE " : "REPLICATE "); 941 942 if (!getUnderlyingInstr()->getType()->isVoidTy()) { 943 printAsOperand(O, SlotTracker); 944 O << " = "; 945 } 946 O << Instruction::getOpcodeName(getUnderlyingInstr()->getOpcode()) << " "; 947 printOperands(O, SlotTracker); 948 949 if (AlsoPack) 950 O << " (S->V)"; 951 } 952 953 void VPPredInstPHIRecipe::print(raw_ostream &O, const Twine &Indent, 954 VPSlotTracker &SlotTracker) const { 955 O << "PHI-PREDICATED-INSTRUCTION "; 956 printOperands(O, SlotTracker); 957 } 958 959 void VPWidenMemoryInstructionRecipe::print(raw_ostream &O, const Twine &Indent, 960 VPSlotTracker &SlotTracker) const { 961 O << "WIDEN "; 962 963 if (!isStore()) { 964 getVPValue()->printAsOperand(O, SlotTracker); 965 O << " = "; 966 } 967 O << Instruction::getOpcodeName(Ingredient.getOpcode()) << " "; 968 969 printOperands(O, SlotTracker); 970 } 971 972 void VPWidenCanonicalIVRecipe::execute(VPTransformState &State) { 973 Value *CanonicalIV = State.CanonicalIV; 974 Type *STy = CanonicalIV->getType(); 975 IRBuilder<> Builder(State.CFG.PrevBB->getTerminator()); 976 ElementCount VF = State.VF; 977 assert(!VF.isScalable() && "the code following assumes non scalables ECs"); 978 Value *VStart = VF.isScalar() 979 ? CanonicalIV 980 : Builder.CreateVectorSplat(VF.getKnownMinValue(), 981 CanonicalIV, "broadcast"); 982 for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part) { 983 SmallVector<Constant *, 8> Indices; 984 for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane) 985 Indices.push_back( 986 ConstantInt::get(STy, Part * VF.getKnownMinValue() + Lane)); 987 // If VF == 1, there is only one iteration in the loop above, thus the 988 // element pushed back into Indices is ConstantInt::get(STy, Part) 989 Constant *VStep = 990 VF.isScalar() ? Indices.back() : ConstantVector::get(Indices); 991 // Add the consecutive indices to the vector value. 992 Value *CanonicalVectorIV = Builder.CreateAdd(VStart, VStep, "vec.iv"); 993 State.set(getVPValue(), CanonicalVectorIV, Part); 994 } 995 } 996 997 void VPWidenCanonicalIVRecipe::print(raw_ostream &O, const Twine &Indent, 998 VPSlotTracker &SlotTracker) const { 999 O << "EMIT "; 1000 getVPValue()->printAsOperand(O, SlotTracker); 1001 O << " = WIDEN-CANONICAL-INDUCTION"; 1002 } 1003 1004 template void DomTreeBuilder::Calculate<VPDominatorTree>(VPDominatorTree &DT); 1005 1006 void VPValue::replaceAllUsesWith(VPValue *New) { 1007 for (unsigned J = 0; J < getNumUsers();) { 1008 VPUser *User = Users[J]; 1009 unsigned NumUsers = getNumUsers(); 1010 for (unsigned I = 0, E = User->getNumOperands(); I < E; ++I) 1011 if (User->getOperand(I) == this) 1012 User->setOperand(I, New); 1013 // If a user got removed after updating the current user, the next user to 1014 // update will be moved to the current position, so we only need to 1015 // increment the index if the number of users did not change. 1016 if (NumUsers == getNumUsers()) 1017 J++; 1018 } 1019 } 1020 1021 void VPValue::printAsOperand(raw_ostream &OS, VPSlotTracker &Tracker) const { 1022 if (const Value *UV = getUnderlyingValue()) { 1023 OS << "ir<"; 1024 UV->printAsOperand(OS, false); 1025 OS << ">"; 1026 return; 1027 } 1028 1029 unsigned Slot = Tracker.getSlot(this); 1030 if (Slot == unsigned(-1)) 1031 OS << "<badref>"; 1032 else 1033 OS << "vp<%" << Tracker.getSlot(this) << ">"; 1034 } 1035 1036 void VPUser::printOperands(raw_ostream &O, VPSlotTracker &SlotTracker) const { 1037 interleaveComma(operands(), O, [&O, &SlotTracker](VPValue *Op) { 1038 Op->printAsOperand(O, SlotTracker); 1039 }); 1040 } 1041 1042 void VPInterleavedAccessInfo::visitRegion(VPRegionBlock *Region, 1043 Old2NewTy &Old2New, 1044 InterleavedAccessInfo &IAI) { 1045 ReversePostOrderTraversal<VPBlockBase *> RPOT(Region->getEntry()); 1046 for (VPBlockBase *Base : RPOT) { 1047 visitBlock(Base, Old2New, IAI); 1048 } 1049 } 1050 1051 void VPInterleavedAccessInfo::visitBlock(VPBlockBase *Block, Old2NewTy &Old2New, 1052 InterleavedAccessInfo &IAI) { 1053 if (VPBasicBlock *VPBB = dyn_cast<VPBasicBlock>(Block)) { 1054 for (VPRecipeBase &VPI : *VPBB) { 1055 assert(isa<VPInstruction>(&VPI) && "Can only handle VPInstructions"); 1056 auto *VPInst = cast<VPInstruction>(&VPI); 1057 auto *Inst = cast<Instruction>(VPInst->getUnderlyingValue()); 1058 auto *IG = IAI.getInterleaveGroup(Inst); 1059 if (!IG) 1060 continue; 1061 1062 auto NewIGIter = Old2New.find(IG); 1063 if (NewIGIter == Old2New.end()) 1064 Old2New[IG] = new InterleaveGroup<VPInstruction>( 1065 IG->getFactor(), IG->isReverse(), IG->getAlign()); 1066 1067 if (Inst == IG->getInsertPos()) 1068 Old2New[IG]->setInsertPos(VPInst); 1069 1070 InterleaveGroupMap[VPInst] = Old2New[IG]; 1071 InterleaveGroupMap[VPInst]->insertMember( 1072 VPInst, IG->getIndex(Inst), 1073 Align(IG->isReverse() ? (-1) * int(IG->getFactor()) 1074 : IG->getFactor())); 1075 } 1076 } else if (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 1077 visitRegion(Region, Old2New, IAI); 1078 else 1079 llvm_unreachable("Unsupported kind of VPBlock."); 1080 } 1081 1082 VPInterleavedAccessInfo::VPInterleavedAccessInfo(VPlan &Plan, 1083 InterleavedAccessInfo &IAI) { 1084 Old2NewTy Old2New; 1085 visitRegion(cast<VPRegionBlock>(Plan.getEntry()), Old2New, IAI); 1086 } 1087 1088 void VPSlotTracker::assignSlot(const VPValue *V) { 1089 assert(Slots.find(V) == Slots.end() && "VPValue already has a slot!"); 1090 const Value *UV = V->getUnderlyingValue(); 1091 if (UV) 1092 return; 1093 const auto *VPI = dyn_cast<VPInstruction>(V); 1094 if (VPI && !VPI->hasResult()) 1095 return; 1096 1097 Slots[V] = NextSlot++; 1098 } 1099 1100 void VPSlotTracker::assignSlots(const VPBlockBase *VPBB) { 1101 if (auto *Region = dyn_cast<VPRegionBlock>(VPBB)) 1102 assignSlots(Region); 1103 else 1104 assignSlots(cast<VPBasicBlock>(VPBB)); 1105 } 1106 1107 void VPSlotTracker::assignSlots(const VPRegionBlock *Region) { 1108 ReversePostOrderTraversal<const VPBlockBase *> RPOT(Region->getEntry()); 1109 for (const VPBlockBase *Block : RPOT) 1110 assignSlots(Block); 1111 } 1112 1113 void VPSlotTracker::assignSlots(const VPBasicBlock *VPBB) { 1114 for (const VPRecipeBase &Recipe : *VPBB) { 1115 if (const auto *VPI = dyn_cast<VPInstruction>(&Recipe)) 1116 assignSlot(VPI); 1117 else if (const auto *VPIV = dyn_cast<VPWidenCanonicalIVRecipe>(&Recipe)) 1118 assignSlot(VPIV->getVPValue()); 1119 } 1120 } 1121 1122 void VPSlotTracker::assignSlots(const VPlan &Plan) { 1123 1124 for (const VPValue *V : Plan.VPExternalDefs) 1125 assignSlot(V); 1126 1127 for (auto &E : Plan.Value2VPValue) 1128 if (!isa<VPInstruction>(E.second)) 1129 assignSlot(E.second); 1130 1131 for (const VPValue *V : Plan.VPCBVs) 1132 assignSlot(V); 1133 1134 if (Plan.BackedgeTakenCount) 1135 assignSlot(Plan.BackedgeTakenCount); 1136 1137 ReversePostOrderTraversal<const VPBlockBase *> RPOT(Plan.getEntry()); 1138 for (const VPBlockBase *Block : RPOT) 1139 assignSlots(Block); 1140 } 1141