1 //===- VPlan.cpp - Vectorizer Plan ----------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This is the LLVM vectorization plan. It represents a candidate for 11 /// vectorization, allowing to plan and optimize how to vectorize a given loop 12 /// before generating LLVM-IR. 13 /// The vectorizer uses vectorization plans to estimate the costs of potential 14 /// candidates and if profitable to execute the desired plan, generating vector 15 /// LLVM-IR code. 16 /// 17 //===----------------------------------------------------------------------===// 18 19 #include "VPlan.h" 20 #include "VPlanDominatorTree.h" 21 #include "llvm/ADT/DepthFirstIterator.h" 22 #include "llvm/ADT/PostOrderIterator.h" 23 #include "llvm/ADT/STLExtras.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/Twine.h" 26 #include "llvm/Analysis/IVDescriptors.h" 27 #include "llvm/Analysis/LoopInfo.h" 28 #include "llvm/IR/BasicBlock.h" 29 #include "llvm/IR/CFG.h" 30 #include "llvm/IR/IRBuilder.h" 31 #include "llvm/IR/Instruction.h" 32 #include "llvm/IR/Instructions.h" 33 #include "llvm/IR/Type.h" 34 #include "llvm/IR/Value.h" 35 #include "llvm/Support/Casting.h" 36 #include "llvm/Support/CommandLine.h" 37 #include "llvm/Support/Debug.h" 38 #include "llvm/Support/ErrorHandling.h" 39 #include "llvm/Support/GenericDomTreeConstruction.h" 40 #include "llvm/Support/GraphWriter.h" 41 #include "llvm/Support/raw_ostream.h" 42 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 43 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 44 #include <cassert> 45 #include <string> 46 #include <vector> 47 48 using namespace llvm; 49 extern cl::opt<bool> EnableVPlanNativePath; 50 51 #define DEBUG_TYPE "vplan" 52 53 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 54 raw_ostream &llvm::operator<<(raw_ostream &OS, const VPValue &V) { 55 const VPInstruction *Instr = dyn_cast<VPInstruction>(&V); 56 VPSlotTracker SlotTracker( 57 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr); 58 V.print(OS, SlotTracker); 59 return OS; 60 } 61 #endif 62 63 Value *VPLane::getAsRuntimeExpr(IRBuilderBase &Builder, 64 const ElementCount &VF) const { 65 switch (LaneKind) { 66 case VPLane::Kind::ScalableLast: 67 // Lane = RuntimeVF - VF.getKnownMinValue() + Lane 68 return Builder.CreateSub(getRuntimeVF(Builder, Builder.getInt32Ty(), VF), 69 Builder.getInt32(VF.getKnownMinValue() - Lane)); 70 case VPLane::Kind::First: 71 return Builder.getInt32(Lane); 72 } 73 llvm_unreachable("Unknown lane kind"); 74 } 75 76 VPValue::VPValue(const unsigned char SC, Value *UV, VPDef *Def) 77 : SubclassID(SC), UnderlyingVal(UV), Def(Def) { 78 if (Def) 79 Def->addDefinedValue(this); 80 } 81 82 VPValue::~VPValue() { 83 assert(Users.empty() && "trying to delete a VPValue with remaining users"); 84 if (Def) 85 Def->removeDefinedValue(this); 86 } 87 88 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 89 void VPValue::print(raw_ostream &OS, VPSlotTracker &SlotTracker) const { 90 if (const VPRecipeBase *R = dyn_cast_or_null<VPRecipeBase>(Def)) 91 R->print(OS, "", SlotTracker); 92 else 93 printAsOperand(OS, SlotTracker); 94 } 95 96 void VPValue::dump() const { 97 const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this->Def); 98 VPSlotTracker SlotTracker( 99 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr); 100 print(dbgs(), SlotTracker); 101 dbgs() << "\n"; 102 } 103 104 void VPDef::dump() const { 105 const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this); 106 VPSlotTracker SlotTracker( 107 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr); 108 print(dbgs(), "", SlotTracker); 109 dbgs() << "\n"; 110 } 111 #endif 112 113 // Get the top-most entry block of \p Start. This is the entry block of the 114 // containing VPlan. This function is templated to support both const and non-const blocks 115 template <typename T> static T *getPlanEntry(T *Start) { 116 T *Next = Start; 117 T *Current = Start; 118 while ((Next = Next->getParent())) 119 Current = Next; 120 121 SmallSetVector<T *, 8> WorkList; 122 WorkList.insert(Current); 123 124 for (unsigned i = 0; i < WorkList.size(); i++) { 125 T *Current = WorkList[i]; 126 if (Current->getNumPredecessors() == 0) 127 return Current; 128 auto &Predecessors = Current->getPredecessors(); 129 WorkList.insert(Predecessors.begin(), Predecessors.end()); 130 } 131 132 llvm_unreachable("VPlan without any entry node without predecessors"); 133 } 134 135 VPlan *VPBlockBase::getPlan() { return getPlanEntry(this)->Plan; } 136 137 const VPlan *VPBlockBase::getPlan() const { return getPlanEntry(this)->Plan; } 138 139 /// \return the VPBasicBlock that is the entry of Block, possibly indirectly. 140 const VPBasicBlock *VPBlockBase::getEntryBasicBlock() const { 141 const VPBlockBase *Block = this; 142 while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 143 Block = Region->getEntry(); 144 return cast<VPBasicBlock>(Block); 145 } 146 147 VPBasicBlock *VPBlockBase::getEntryBasicBlock() { 148 VPBlockBase *Block = this; 149 while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 150 Block = Region->getEntry(); 151 return cast<VPBasicBlock>(Block); 152 } 153 154 void VPBlockBase::setPlan(VPlan *ParentPlan) { 155 assert(ParentPlan->getEntry() == this && 156 "Can only set plan on its entry block."); 157 Plan = ParentPlan; 158 } 159 160 /// \return the VPBasicBlock that is the exit of Block, possibly indirectly. 161 const VPBasicBlock *VPBlockBase::getExitingBasicBlock() const { 162 const VPBlockBase *Block = this; 163 while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 164 Block = Region->getExiting(); 165 return cast<VPBasicBlock>(Block); 166 } 167 168 VPBasicBlock *VPBlockBase::getExitingBasicBlock() { 169 VPBlockBase *Block = this; 170 while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 171 Block = Region->getExiting(); 172 return cast<VPBasicBlock>(Block); 173 } 174 175 VPBlockBase *VPBlockBase::getEnclosingBlockWithSuccessors() { 176 if (!Successors.empty() || !Parent) 177 return this; 178 assert(Parent->getExiting() == this && 179 "Block w/o successors not the exiting block of its parent."); 180 return Parent->getEnclosingBlockWithSuccessors(); 181 } 182 183 VPBlockBase *VPBlockBase::getEnclosingBlockWithPredecessors() { 184 if (!Predecessors.empty() || !Parent) 185 return this; 186 assert(Parent->getEntry() == this && 187 "Block w/o predecessors not the entry of its parent."); 188 return Parent->getEnclosingBlockWithPredecessors(); 189 } 190 191 void VPBlockBase::deleteCFG(VPBlockBase *Entry) { 192 SmallVector<VPBlockBase *, 8> Blocks(depth_first(Entry)); 193 194 for (VPBlockBase *Block : Blocks) 195 delete Block; 196 } 197 198 VPBasicBlock::iterator VPBasicBlock::getFirstNonPhi() { 199 iterator It = begin(); 200 while (It != end() && It->isPhi()) 201 It++; 202 return It; 203 } 204 205 Value *VPTransformState::get(VPValue *Def, const VPIteration &Instance) { 206 if (!Def->getDef()) 207 return Def->getLiveInIRValue(); 208 209 if (hasScalarValue(Def, Instance)) { 210 return Data 211 .PerPartScalars[Def][Instance.Part][Instance.Lane.mapToCacheIndex(VF)]; 212 } 213 214 assert(hasVectorValue(Def, Instance.Part)); 215 auto *VecPart = Data.PerPartOutput[Def][Instance.Part]; 216 if (!VecPart->getType()->isVectorTy()) { 217 assert(Instance.Lane.isFirstLane() && "cannot get lane > 0 for scalar"); 218 return VecPart; 219 } 220 // TODO: Cache created scalar values. 221 Value *Lane = Instance.Lane.getAsRuntimeExpr(Builder, VF); 222 auto *Extract = Builder.CreateExtractElement(VecPart, Lane); 223 // set(Def, Extract, Instance); 224 return Extract; 225 } 226 BasicBlock *VPTransformState::CFGState::getPreheaderBBFor(VPRecipeBase *R) { 227 VPRegionBlock *LoopRegion = R->getParent()->getEnclosingLoopRegion(); 228 return VPBB2IRBB[LoopRegion->getPreheaderVPBB()]; 229 } 230 231 BasicBlock * 232 VPBasicBlock::createEmptyBasicBlock(VPTransformState::CFGState &CFG) { 233 // BB stands for IR BasicBlocks. VPBB stands for VPlan VPBasicBlocks. 234 // Pred stands for Predessor. Prev stands for Previous - last visited/created. 235 BasicBlock *PrevBB = CFG.PrevBB; 236 BasicBlock *NewBB = BasicBlock::Create(PrevBB->getContext(), getName(), 237 PrevBB->getParent(), CFG.ExitBB); 238 LLVM_DEBUG(dbgs() << "LV: created " << NewBB->getName() << '\n'); 239 240 // Hook up the new basic block to its predecessors. 241 for (VPBlockBase *PredVPBlock : getHierarchicalPredecessors()) { 242 VPBasicBlock *PredVPBB = PredVPBlock->getExitingBasicBlock(); 243 auto &PredVPSuccessors = PredVPBB->getSuccessors(); 244 BasicBlock *PredBB = CFG.VPBB2IRBB[PredVPBB]; 245 246 assert(PredBB && "Predecessor basic-block not found building successor."); 247 auto *PredBBTerminator = PredBB->getTerminator(); 248 LLVM_DEBUG(dbgs() << "LV: draw edge from" << PredBB->getName() << '\n'); 249 250 auto *TermBr = dyn_cast<BranchInst>(PredBBTerminator); 251 if (isa<UnreachableInst>(PredBBTerminator)) { 252 assert(PredVPSuccessors.size() == 1 && 253 "Predecessor ending w/o branch must have single successor."); 254 DebugLoc DL = PredBBTerminator->getDebugLoc(); 255 PredBBTerminator->eraseFromParent(); 256 auto *Br = BranchInst::Create(NewBB, PredBB); 257 Br->setDebugLoc(DL); 258 } else if (TermBr && !TermBr->isConditional()) { 259 TermBr->setSuccessor(0, NewBB); 260 } else if (PredVPSuccessors.size() == 2) { 261 unsigned idx = PredVPSuccessors.front() == this ? 0 : 1; 262 assert(!PredBBTerminator->getSuccessor(idx) && 263 "Trying to reset an existing successor block."); 264 PredBBTerminator->setSuccessor(idx, NewBB); 265 } else { 266 // PredVPBB is the exiting block of a loop region. Connect its successor 267 // outside the region. 268 auto *LoopRegion = cast<VPRegionBlock>(PredVPBB->getParent()); 269 assert(!LoopRegion->isReplicator() && 270 "predecessor must be in a loop region"); 271 assert(PredVPSuccessors.empty() && 272 LoopRegion->getExitingBasicBlock() == PredVPBB && 273 "PredVPBB must be the exiting block of its parent region"); 274 assert(this == LoopRegion->getSingleSuccessor() && 275 "the current block must be the single successor of the region"); 276 PredBBTerminator->setSuccessor(0, NewBB); 277 PredBBTerminator->setSuccessor( 278 1, CFG.VPBB2IRBB[LoopRegion->getEntryBasicBlock()]); 279 } 280 } 281 return NewBB; 282 } 283 284 void VPBasicBlock::execute(VPTransformState *State) { 285 bool Replica = State->Instance && !State->Instance->isFirstIteration(); 286 VPBasicBlock *PrevVPBB = State->CFG.PrevVPBB; 287 VPBlockBase *SingleHPred = nullptr; 288 BasicBlock *NewBB = State->CFG.PrevBB; // Reuse it if possible. 289 290 auto IsLoopRegion = [](VPBlockBase *BB) { 291 auto *R = dyn_cast<VPRegionBlock>(BB); 292 return R && !R->isReplicator(); 293 }; 294 295 // 1. Create an IR basic block, or reuse the last one or ExitBB if possible. 296 if (getPlan()->getVectorLoopRegion()->getSingleSuccessor() == this) { 297 // ExitBB can be re-used for the exit block of the Plan. 298 NewBB = State->CFG.ExitBB; 299 State->CFG.PrevBB = NewBB; 300 } else if (PrevVPBB && /* A */ 301 !((SingleHPred = getSingleHierarchicalPredecessor()) && 302 SingleHPred->getExitingBasicBlock() == PrevVPBB && 303 PrevVPBB->getSingleHierarchicalSuccessor() && 304 (SingleHPred->getParent() == getEnclosingLoopRegion() && 305 !IsLoopRegion(SingleHPred))) && /* B */ 306 !(Replica && getPredecessors().empty())) { /* C */ 307 // The last IR basic block is reused, as an optimization, in three cases: 308 // A. the first VPBB reuses the loop pre-header BB - when PrevVPBB is null; 309 // B. when the current VPBB has a single (hierarchical) predecessor which 310 // is PrevVPBB and the latter has a single (hierarchical) successor which 311 // both are in the same non-replicator region; and 312 // C. when the current VPBB is an entry of a region replica - where PrevVPBB 313 // is the exiting VPBB of this region from a previous instance, or the 314 // predecessor of this region. 315 316 NewBB = createEmptyBasicBlock(State->CFG); 317 State->Builder.SetInsertPoint(NewBB); 318 // Temporarily terminate with unreachable until CFG is rewired. 319 UnreachableInst *Terminator = State->Builder.CreateUnreachable(); 320 // Register NewBB in its loop. In innermost loops its the same for all 321 // BB's. 322 if (State->CurrentVectorLoop) 323 State->CurrentVectorLoop->addBasicBlockToLoop(NewBB, *State->LI); 324 State->Builder.SetInsertPoint(Terminator); 325 State->CFG.PrevBB = NewBB; 326 } 327 328 // 2. Fill the IR basic block with IR instructions. 329 LLVM_DEBUG(dbgs() << "LV: vectorizing VPBB:" << getName() 330 << " in BB:" << NewBB->getName() << '\n'); 331 332 State->CFG.VPBB2IRBB[this] = NewBB; 333 State->CFG.PrevVPBB = this; 334 335 for (VPRecipeBase &Recipe : Recipes) 336 Recipe.execute(*State); 337 338 LLVM_DEBUG(dbgs() << "LV: filled BB:" << *NewBB); 339 } 340 341 void VPBasicBlock::dropAllReferences(VPValue *NewValue) { 342 for (VPRecipeBase &R : Recipes) { 343 for (auto *Def : R.definedValues()) 344 Def->replaceAllUsesWith(NewValue); 345 346 for (unsigned I = 0, E = R.getNumOperands(); I != E; I++) 347 R.setOperand(I, NewValue); 348 } 349 } 350 351 VPBasicBlock *VPBasicBlock::splitAt(iterator SplitAt) { 352 assert((SplitAt == end() || SplitAt->getParent() == this) && 353 "can only split at a position in the same block"); 354 355 SmallVector<VPBlockBase *, 2> Succs(successors()); 356 // First, disconnect the current block from its successors. 357 for (VPBlockBase *Succ : Succs) 358 VPBlockUtils::disconnectBlocks(this, Succ); 359 360 // Create new empty block after the block to split. 361 auto *SplitBlock = new VPBasicBlock(getName() + ".split"); 362 VPBlockUtils::insertBlockAfter(SplitBlock, this); 363 364 // Add successors for block to split to new block. 365 for (VPBlockBase *Succ : Succs) 366 VPBlockUtils::connectBlocks(SplitBlock, Succ); 367 368 // Finally, move the recipes starting at SplitAt to new block. 369 for (VPRecipeBase &ToMove : 370 make_early_inc_range(make_range(SplitAt, this->end()))) 371 ToMove.moveBefore(*SplitBlock, SplitBlock->end()); 372 373 return SplitBlock; 374 } 375 376 VPRegionBlock *VPBasicBlock::getEnclosingLoopRegion() { 377 VPRegionBlock *P = getParent(); 378 if (P && P->isReplicator()) { 379 P = P->getParent(); 380 assert(!cast<VPRegionBlock>(P)->isReplicator() && 381 "unexpected nested replicate regions"); 382 } 383 return P; 384 } 385 386 static bool hasConditionalTerminator(const VPBasicBlock *VPBB) { 387 if (VPBB->empty()) { 388 assert( 389 VPBB->getNumSuccessors() < 2 && 390 "block with multiple successors doesn't have a recipe as terminator"); 391 return false; 392 } 393 394 const VPRecipeBase *R = &VPBB->back(); 395 auto *VPI = dyn_cast<VPInstruction>(R); 396 bool IsCondBranch = 397 isa<VPBranchOnMaskRecipe>(R) || 398 (VPI && (VPI->getOpcode() == VPInstruction::BranchOnCond || 399 VPI->getOpcode() == VPInstruction::BranchOnCount)); 400 (void)IsCondBranch; 401 402 if (VPBB->getNumSuccessors() >= 2 || VPBB->isExiting()) { 403 assert(IsCondBranch && "block with multiple successors not terminated by " 404 "conditional branch recipe"); 405 406 return true; 407 } 408 409 assert( 410 !IsCondBranch && 411 "block with 0 or 1 successors terminated by conditional branch recipe"); 412 return false; 413 } 414 415 VPRecipeBase *VPBasicBlock::getTerminator() { 416 if (hasConditionalTerminator(this)) 417 return &back(); 418 return nullptr; 419 } 420 421 const VPRecipeBase *VPBasicBlock::getTerminator() const { 422 if (hasConditionalTerminator(this)) 423 return &back(); 424 return nullptr; 425 } 426 427 bool VPBasicBlock::isExiting() const { 428 return getParent()->getExitingBasicBlock() == this; 429 } 430 431 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 432 void VPBlockBase::printSuccessors(raw_ostream &O, const Twine &Indent) const { 433 if (getSuccessors().empty()) { 434 O << Indent << "No successors\n"; 435 } else { 436 O << Indent << "Successor(s): "; 437 ListSeparator LS; 438 for (auto *Succ : getSuccessors()) 439 O << LS << Succ->getName(); 440 O << '\n'; 441 } 442 } 443 444 void VPBasicBlock::print(raw_ostream &O, const Twine &Indent, 445 VPSlotTracker &SlotTracker) const { 446 O << Indent << getName() << ":\n"; 447 448 auto RecipeIndent = Indent + " "; 449 for (const VPRecipeBase &Recipe : *this) { 450 Recipe.print(O, RecipeIndent, SlotTracker); 451 O << '\n'; 452 } 453 454 printSuccessors(O, Indent); 455 } 456 #endif 457 458 void VPRegionBlock::dropAllReferences(VPValue *NewValue) { 459 for (VPBlockBase *Block : depth_first(Entry)) 460 // Drop all references in VPBasicBlocks and replace all uses with 461 // DummyValue. 462 Block->dropAllReferences(NewValue); 463 } 464 465 void VPRegionBlock::execute(VPTransformState *State) { 466 ReversePostOrderTraversal<VPBlockBase *> RPOT(Entry); 467 468 if (!isReplicator()) { 469 // Create and register the new vector loop. 470 Loop *PrevLoop = State->CurrentVectorLoop; 471 State->CurrentVectorLoop = State->LI->AllocateLoop(); 472 BasicBlock *VectorPH = State->CFG.VPBB2IRBB[getPreheaderVPBB()]; 473 Loop *ParentLoop = State->LI->getLoopFor(VectorPH); 474 475 // Insert the new loop into the loop nest and register the new basic blocks 476 // before calling any utilities such as SCEV that require valid LoopInfo. 477 if (ParentLoop) 478 ParentLoop->addChildLoop(State->CurrentVectorLoop); 479 else 480 State->LI->addTopLevelLoop(State->CurrentVectorLoop); 481 482 // Visit the VPBlocks connected to "this", starting from it. 483 for (VPBlockBase *Block : RPOT) { 484 LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n'); 485 Block->execute(State); 486 } 487 488 State->CurrentVectorLoop = PrevLoop; 489 return; 490 } 491 492 assert(!State->Instance && "Replicating a Region with non-null instance."); 493 494 // Enter replicating mode. 495 State->Instance = VPIteration(0, 0); 496 497 for (unsigned Part = 0, UF = State->UF; Part < UF; ++Part) { 498 State->Instance->Part = Part; 499 assert(!State->VF.isScalable() && "VF is assumed to be non scalable."); 500 for (unsigned Lane = 0, VF = State->VF.getKnownMinValue(); Lane < VF; 501 ++Lane) { 502 State->Instance->Lane = VPLane(Lane, VPLane::Kind::First); 503 // Visit the VPBlocks connected to \p this, starting from it. 504 for (VPBlockBase *Block : RPOT) { 505 LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n'); 506 Block->execute(State); 507 } 508 } 509 } 510 511 // Exit replicating mode. 512 State->Instance.reset(); 513 } 514 515 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 516 void VPRegionBlock::print(raw_ostream &O, const Twine &Indent, 517 VPSlotTracker &SlotTracker) const { 518 O << Indent << (isReplicator() ? "<xVFxUF> " : "<x1> ") << getName() << ": {"; 519 auto NewIndent = Indent + " "; 520 for (auto *BlockBase : depth_first(Entry)) { 521 O << '\n'; 522 BlockBase->print(O, NewIndent, SlotTracker); 523 } 524 O << Indent << "}\n"; 525 526 printSuccessors(O, Indent); 527 } 528 #endif 529 530 bool VPRecipeBase::mayWriteToMemory() const { 531 switch (getVPDefID()) { 532 case VPWidenMemoryInstructionSC: { 533 return cast<VPWidenMemoryInstructionRecipe>(this)->isStore(); 534 } 535 case VPReplicateSC: 536 case VPWidenCallSC: 537 return cast<Instruction>(getVPSingleValue()->getUnderlyingValue()) 538 ->mayWriteToMemory(); 539 case VPBranchOnMaskSC: 540 return false; 541 case VPWidenIntOrFpInductionSC: 542 case VPWidenCanonicalIVSC: 543 case VPWidenPHISC: 544 case VPBlendSC: 545 case VPWidenSC: 546 case VPWidenGEPSC: 547 case VPReductionSC: 548 case VPWidenSelectSC: { 549 const Instruction *I = 550 dyn_cast_or_null<Instruction>(getVPSingleValue()->getUnderlyingValue()); 551 (void)I; 552 assert((!I || !I->mayWriteToMemory()) && 553 "underlying instruction may write to memory"); 554 return false; 555 } 556 default: 557 return true; 558 } 559 } 560 561 bool VPRecipeBase::mayReadFromMemory() const { 562 switch (getVPDefID()) { 563 case VPWidenMemoryInstructionSC: { 564 return !cast<VPWidenMemoryInstructionRecipe>(this)->isStore(); 565 } 566 case VPReplicateSC: 567 case VPWidenCallSC: 568 return cast<Instruction>(getVPSingleValue()->getUnderlyingValue()) 569 ->mayReadFromMemory(); 570 case VPBranchOnMaskSC: 571 return false; 572 case VPWidenIntOrFpInductionSC: 573 case VPWidenCanonicalIVSC: 574 case VPWidenPHISC: 575 case VPBlendSC: 576 case VPWidenSC: 577 case VPWidenGEPSC: 578 case VPReductionSC: 579 case VPWidenSelectSC: { 580 const Instruction *I = 581 dyn_cast_or_null<Instruction>(getVPSingleValue()->getUnderlyingValue()); 582 (void)I; 583 assert((!I || !I->mayReadFromMemory()) && 584 "underlying instruction may read from memory"); 585 return false; 586 } 587 default: 588 return true; 589 } 590 } 591 592 bool VPRecipeBase::mayHaveSideEffects() const { 593 switch (getVPDefID()) { 594 case VPBranchOnMaskSC: 595 return false; 596 case VPWidenIntOrFpInductionSC: 597 case VPWidenPointerInductionSC: 598 case VPWidenCanonicalIVSC: 599 case VPWidenPHISC: 600 case VPBlendSC: 601 case VPWidenSC: 602 case VPWidenGEPSC: 603 case VPReductionSC: 604 case VPWidenSelectSC: 605 case VPScalarIVStepsSC: { 606 const Instruction *I = 607 dyn_cast_or_null<Instruction>(getVPSingleValue()->getUnderlyingValue()); 608 (void)I; 609 assert((!I || !I->mayHaveSideEffects()) && 610 "underlying instruction has side-effects"); 611 return false; 612 } 613 case VPReplicateSC: { 614 auto *R = cast<VPReplicateRecipe>(this); 615 return R->getUnderlyingInstr()->mayHaveSideEffects(); 616 } 617 default: 618 return true; 619 } 620 } 621 622 void VPLiveOut::fixPhi(VPlan &Plan, VPTransformState &State) { 623 auto Lane = VPLane::getLastLaneForVF(State.VF); 624 VPValue *ExitValue = getOperand(0); 625 if (Plan.isUniformAfterVectorization(ExitValue)) 626 Lane = VPLane::getFirstLane(); 627 Phi->addIncoming(State.get(ExitValue, VPIteration(State.UF - 1, Lane)), 628 State.Builder.GetInsertBlock()); 629 } 630 631 void VPRecipeBase::insertBefore(VPRecipeBase *InsertPos) { 632 assert(!Parent && "Recipe already in some VPBasicBlock"); 633 assert(InsertPos->getParent() && 634 "Insertion position not in any VPBasicBlock"); 635 Parent = InsertPos->getParent(); 636 Parent->getRecipeList().insert(InsertPos->getIterator(), this); 637 } 638 639 void VPRecipeBase::insertBefore(VPBasicBlock &BB, 640 iplist<VPRecipeBase>::iterator I) { 641 assert(!Parent && "Recipe already in some VPBasicBlock"); 642 assert(I == BB.end() || I->getParent() == &BB); 643 Parent = &BB; 644 BB.getRecipeList().insert(I, this); 645 } 646 647 void VPRecipeBase::insertAfter(VPRecipeBase *InsertPos) { 648 assert(!Parent && "Recipe already in some VPBasicBlock"); 649 assert(InsertPos->getParent() && 650 "Insertion position not in any VPBasicBlock"); 651 Parent = InsertPos->getParent(); 652 Parent->getRecipeList().insertAfter(InsertPos->getIterator(), this); 653 } 654 655 void VPRecipeBase::removeFromParent() { 656 assert(getParent() && "Recipe not in any VPBasicBlock"); 657 getParent()->getRecipeList().remove(getIterator()); 658 Parent = nullptr; 659 } 660 661 iplist<VPRecipeBase>::iterator VPRecipeBase::eraseFromParent() { 662 assert(getParent() && "Recipe not in any VPBasicBlock"); 663 return getParent()->getRecipeList().erase(getIterator()); 664 } 665 666 void VPRecipeBase::moveAfter(VPRecipeBase *InsertPos) { 667 removeFromParent(); 668 insertAfter(InsertPos); 669 } 670 671 void VPRecipeBase::moveBefore(VPBasicBlock &BB, 672 iplist<VPRecipeBase>::iterator I) { 673 removeFromParent(); 674 insertBefore(BB, I); 675 } 676 677 void VPInstruction::generateInstruction(VPTransformState &State, 678 unsigned Part) { 679 IRBuilderBase &Builder = State.Builder; 680 Builder.SetCurrentDebugLocation(DL); 681 682 if (Instruction::isBinaryOp(getOpcode())) { 683 Value *A = State.get(getOperand(0), Part); 684 Value *B = State.get(getOperand(1), Part); 685 Value *V = Builder.CreateBinOp((Instruction::BinaryOps)getOpcode(), A, B); 686 State.set(this, V, Part); 687 return; 688 } 689 690 switch (getOpcode()) { 691 case VPInstruction::Not: { 692 Value *A = State.get(getOperand(0), Part); 693 Value *V = Builder.CreateNot(A); 694 State.set(this, V, Part); 695 break; 696 } 697 case VPInstruction::ICmpULE: { 698 Value *IV = State.get(getOperand(0), Part); 699 Value *TC = State.get(getOperand(1), Part); 700 Value *V = Builder.CreateICmpULE(IV, TC); 701 State.set(this, V, Part); 702 break; 703 } 704 case Instruction::Select: { 705 Value *Cond = State.get(getOperand(0), Part); 706 Value *Op1 = State.get(getOperand(1), Part); 707 Value *Op2 = State.get(getOperand(2), Part); 708 Value *V = Builder.CreateSelect(Cond, Op1, Op2); 709 State.set(this, V, Part); 710 break; 711 } 712 case VPInstruction::ActiveLaneMask: { 713 // Get first lane of vector induction variable. 714 Value *VIVElem0 = State.get(getOperand(0), VPIteration(Part, 0)); 715 // Get the original loop tripcount. 716 Value *ScalarTC = State.get(getOperand(1), Part); 717 718 auto *Int1Ty = Type::getInt1Ty(Builder.getContext()); 719 auto *PredTy = VectorType::get(Int1Ty, State.VF); 720 Instruction *Call = Builder.CreateIntrinsic( 721 Intrinsic::get_active_lane_mask, {PredTy, ScalarTC->getType()}, 722 {VIVElem0, ScalarTC}, nullptr, "active.lane.mask"); 723 State.set(this, Call, Part); 724 break; 725 } 726 case VPInstruction::FirstOrderRecurrenceSplice: { 727 // Generate code to combine the previous and current values in vector v3. 728 // 729 // vector.ph: 730 // v_init = vector(..., ..., ..., a[-1]) 731 // br vector.body 732 // 733 // vector.body 734 // i = phi [0, vector.ph], [i+4, vector.body] 735 // v1 = phi [v_init, vector.ph], [v2, vector.body] 736 // v2 = a[i, i+1, i+2, i+3]; 737 // v3 = vector(v1(3), v2(0, 1, 2)) 738 739 // For the first part, use the recurrence phi (v1), otherwise v2. 740 auto *V1 = State.get(getOperand(0), 0); 741 Value *PartMinus1 = Part == 0 ? V1 : State.get(getOperand(1), Part - 1); 742 if (!PartMinus1->getType()->isVectorTy()) { 743 State.set(this, PartMinus1, Part); 744 } else { 745 Value *V2 = State.get(getOperand(1), Part); 746 State.set(this, Builder.CreateVectorSplice(PartMinus1, V2, -1), Part); 747 } 748 break; 749 } 750 751 case VPInstruction::CanonicalIVIncrement: 752 case VPInstruction::CanonicalIVIncrementNUW: { 753 Value *Next = nullptr; 754 if (Part == 0) { 755 bool IsNUW = getOpcode() == VPInstruction::CanonicalIVIncrementNUW; 756 auto *Phi = State.get(getOperand(0), 0); 757 // The loop step is equal to the vectorization factor (num of SIMD 758 // elements) times the unroll factor (num of SIMD instructions). 759 Value *Step = 760 createStepForVF(Builder, Phi->getType(), State.VF, State.UF); 761 Next = Builder.CreateAdd(Phi, Step, "index.next", IsNUW, false); 762 } else { 763 Next = State.get(this, 0); 764 } 765 766 State.set(this, Next, Part); 767 break; 768 } 769 case VPInstruction::BranchOnCond: { 770 if (Part != 0) 771 break; 772 Value *Cond = State.get(getOperand(0), VPIteration(Part, 0)); 773 VPRegionBlock *ParentRegion = getParent()->getParent(); 774 VPBasicBlock *Header = ParentRegion->getEntryBasicBlock(); 775 776 // Replace the temporary unreachable terminator with a new conditional 777 // branch, hooking it up to backward destination for exiting blocks now and 778 // to forward destination(s) later when they are created. 779 BranchInst *CondBr = 780 Builder.CreateCondBr(Cond, Builder.GetInsertBlock(), nullptr); 781 782 if (getParent()->isExiting()) 783 CondBr->setSuccessor(1, State.CFG.VPBB2IRBB[Header]); 784 785 CondBr->setSuccessor(0, nullptr); 786 Builder.GetInsertBlock()->getTerminator()->eraseFromParent(); 787 break; 788 } 789 case VPInstruction::BranchOnCount: { 790 if (Part != 0) 791 break; 792 // First create the compare. 793 Value *IV = State.get(getOperand(0), Part); 794 Value *TC = State.get(getOperand(1), Part); 795 Value *Cond = Builder.CreateICmpEQ(IV, TC); 796 797 // Now create the branch. 798 auto *Plan = getParent()->getPlan(); 799 VPRegionBlock *TopRegion = Plan->getVectorLoopRegion(); 800 VPBasicBlock *Header = TopRegion->getEntry()->getEntryBasicBlock(); 801 // TODO: Once the exit block is modeled in VPlan, use it instead of going 802 // through State.CFG.ExitBB. 803 BasicBlock *Exit = State.CFG.ExitBB; 804 805 Builder.CreateCondBr(Cond, Exit, State.CFG.VPBB2IRBB[Header]); 806 Builder.GetInsertBlock()->getTerminator()->eraseFromParent(); 807 break; 808 } 809 default: 810 llvm_unreachable("Unsupported opcode for instruction"); 811 } 812 } 813 814 void VPInstruction::execute(VPTransformState &State) { 815 assert(!State.Instance && "VPInstruction executing an Instance"); 816 IRBuilderBase::FastMathFlagGuard FMFGuard(State.Builder); 817 State.Builder.setFastMathFlags(FMF); 818 for (unsigned Part = 0; Part < State.UF; ++Part) 819 generateInstruction(State, Part); 820 } 821 822 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 823 void VPInstruction::dump() const { 824 VPSlotTracker SlotTracker(getParent()->getPlan()); 825 print(dbgs(), "", SlotTracker); 826 } 827 828 void VPInstruction::print(raw_ostream &O, const Twine &Indent, 829 VPSlotTracker &SlotTracker) const { 830 O << Indent << "EMIT "; 831 832 if (hasResult()) { 833 printAsOperand(O, SlotTracker); 834 O << " = "; 835 } 836 837 switch (getOpcode()) { 838 case VPInstruction::Not: 839 O << "not"; 840 break; 841 case VPInstruction::ICmpULE: 842 O << "icmp ule"; 843 break; 844 case VPInstruction::SLPLoad: 845 O << "combined load"; 846 break; 847 case VPInstruction::SLPStore: 848 O << "combined store"; 849 break; 850 case VPInstruction::ActiveLaneMask: 851 O << "active lane mask"; 852 break; 853 case VPInstruction::FirstOrderRecurrenceSplice: 854 O << "first-order splice"; 855 break; 856 case VPInstruction::CanonicalIVIncrement: 857 O << "VF * UF + "; 858 break; 859 case VPInstruction::CanonicalIVIncrementNUW: 860 O << "VF * UF +(nuw) "; 861 break; 862 case VPInstruction::BranchOnCond: 863 O << "branch-on-cond"; 864 break; 865 case VPInstruction::BranchOnCount: 866 O << "branch-on-count "; 867 break; 868 default: 869 O << Instruction::getOpcodeName(getOpcode()); 870 } 871 872 O << FMF; 873 874 for (const VPValue *Operand : operands()) { 875 O << " "; 876 Operand->printAsOperand(O, SlotTracker); 877 } 878 879 if (DL) { 880 O << ", !dbg "; 881 DL.print(O); 882 } 883 } 884 #endif 885 886 void VPInstruction::setFastMathFlags(FastMathFlags FMFNew) { 887 // Make sure the VPInstruction is a floating-point operation. 888 assert((Opcode == Instruction::FAdd || Opcode == Instruction::FMul || 889 Opcode == Instruction::FNeg || Opcode == Instruction::FSub || 890 Opcode == Instruction::FDiv || Opcode == Instruction::FRem || 891 Opcode == Instruction::FCmp) && 892 "this op can't take fast-math flags"); 893 FMF = FMFNew; 894 } 895 896 void VPlan::prepareToExecute(Value *TripCountV, Value *VectorTripCountV, 897 Value *CanonicalIVStartValue, 898 VPTransformState &State) { 899 // Check if the trip count is needed, and if so build it. 900 if (TripCount && TripCount->getNumUsers()) { 901 for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part) 902 State.set(TripCount, TripCountV, Part); 903 } 904 905 // Check if the backedge taken count is needed, and if so build it. 906 if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) { 907 IRBuilder<> Builder(State.CFG.PrevBB->getTerminator()); 908 auto *TCMO = Builder.CreateSub(TripCountV, 909 ConstantInt::get(TripCountV->getType(), 1), 910 "trip.count.minus.1"); 911 auto VF = State.VF; 912 Value *VTCMO = 913 VF.isScalar() ? TCMO : Builder.CreateVectorSplat(VF, TCMO, "broadcast"); 914 for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part) 915 State.set(BackedgeTakenCount, VTCMO, Part); 916 } 917 918 for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part) 919 State.set(&VectorTripCount, VectorTripCountV, Part); 920 921 // When vectorizing the epilogue loop, the canonical induction start value 922 // needs to be changed from zero to the value after the main vector loop. 923 if (CanonicalIVStartValue) { 924 VPValue *VPV = getOrAddExternalDef(CanonicalIVStartValue); 925 auto *IV = getCanonicalIV(); 926 assert(all_of(IV->users(), 927 [](const VPUser *U) { 928 if (isa<VPScalarIVStepsRecipe>(U)) 929 return true; 930 auto *VPI = cast<VPInstruction>(U); 931 return VPI->getOpcode() == 932 VPInstruction::CanonicalIVIncrement || 933 VPI->getOpcode() == 934 VPInstruction::CanonicalIVIncrementNUW; 935 }) && 936 "the canonical IV should only be used by its increments or " 937 "ScalarIVSteps when " 938 "resetting the start value"); 939 IV->setOperand(0, VPV); 940 } 941 } 942 943 /// Generate the code inside the preheader and body of the vectorized loop. 944 /// Assumes a single pre-header basic-block was created for this. Introduce 945 /// additional basic-blocks as needed, and fill them all. 946 void VPlan::execute(VPTransformState *State) { 947 // Set the reverse mapping from VPValues to Values for code generation. 948 for (auto &Entry : Value2VPValue) 949 State->VPValue2Value[Entry.second] = Entry.first; 950 951 // Initialize CFG state. 952 State->CFG.PrevVPBB = nullptr; 953 State->CFG.ExitBB = State->CFG.PrevBB->getSingleSuccessor(); 954 BasicBlock *VectorPreHeader = State->CFG.PrevBB; 955 State->Builder.SetInsertPoint(VectorPreHeader->getTerminator()); 956 957 // Generate code in the loop pre-header and body. 958 for (VPBlockBase *Block : depth_first(Entry)) 959 Block->execute(State); 960 961 VPBasicBlock *LatchVPBB = getVectorLoopRegion()->getExitingBasicBlock(); 962 BasicBlock *VectorLatchBB = State->CFG.VPBB2IRBB[LatchVPBB]; 963 964 // Fix the latch value of canonical, reduction and first-order recurrences 965 // phis in the vector loop. 966 VPBasicBlock *Header = getVectorLoopRegion()->getEntryBasicBlock(); 967 for (VPRecipeBase &R : Header->phis()) { 968 // Skip phi-like recipes that generate their backedege values themselves. 969 if (isa<VPWidenPHIRecipe>(&R)) 970 continue; 971 972 if (isa<VPWidenPointerInductionRecipe>(&R) || 973 isa<VPWidenIntOrFpInductionRecipe>(&R)) { 974 PHINode *Phi = nullptr; 975 if (isa<VPWidenIntOrFpInductionRecipe>(&R)) { 976 Phi = cast<PHINode>(State->get(R.getVPSingleValue(), 0)); 977 } else { 978 auto *WidenPhi = cast<VPWidenPointerInductionRecipe>(&R); 979 // TODO: Split off the case that all users of a pointer phi are scalar 980 // from the VPWidenPointerInductionRecipe. 981 if (WidenPhi->onlyScalarsGenerated(State->VF)) 982 continue; 983 984 auto *GEP = cast<GetElementPtrInst>(State->get(WidenPhi, 0)); 985 Phi = cast<PHINode>(GEP->getPointerOperand()); 986 } 987 988 Phi->setIncomingBlock(1, VectorLatchBB); 989 990 // Move the last step to the end of the latch block. This ensures 991 // consistent placement of all induction updates. 992 Instruction *Inc = cast<Instruction>(Phi->getIncomingValue(1)); 993 Inc->moveBefore(VectorLatchBB->getTerminator()->getPrevNode()); 994 continue; 995 } 996 997 auto *PhiR = cast<VPHeaderPHIRecipe>(&R); 998 // For canonical IV, first-order recurrences and in-order reduction phis, 999 // only a single part is generated, which provides the last part from the 1000 // previous iteration. For non-ordered reductions all UF parts are 1001 // generated. 1002 bool SinglePartNeeded = isa<VPCanonicalIVPHIRecipe>(PhiR) || 1003 isa<VPFirstOrderRecurrencePHIRecipe>(PhiR) || 1004 cast<VPReductionPHIRecipe>(PhiR)->isOrdered(); 1005 unsigned LastPartForNewPhi = SinglePartNeeded ? 1 : State->UF; 1006 1007 for (unsigned Part = 0; Part < LastPartForNewPhi; ++Part) { 1008 Value *Phi = State->get(PhiR, Part); 1009 Value *Val = State->get(PhiR->getBackedgeValue(), 1010 SinglePartNeeded ? State->UF - 1 : Part); 1011 cast<PHINode>(Phi)->addIncoming(Val, VectorLatchBB); 1012 } 1013 } 1014 1015 // We do not attempt to preserve DT for outer loop vectorization currently. 1016 if (!EnableVPlanNativePath) { 1017 BasicBlock *VectorHeaderBB = State->CFG.VPBB2IRBB[Header]; 1018 State->DT->addNewBlock(VectorHeaderBB, VectorPreHeader); 1019 updateDominatorTree(State->DT, VectorHeaderBB, VectorLatchBB, 1020 State->CFG.ExitBB); 1021 } 1022 } 1023 1024 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1025 LLVM_DUMP_METHOD 1026 void VPlan::print(raw_ostream &O) const { 1027 VPSlotTracker SlotTracker(this); 1028 1029 O << "VPlan '" << Name << "' {"; 1030 1031 if (VectorTripCount.getNumUsers() > 0) { 1032 O << "\nLive-in "; 1033 VectorTripCount.printAsOperand(O, SlotTracker); 1034 O << " = vector-trip-count\n"; 1035 } 1036 1037 if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) { 1038 O << "\nLive-in "; 1039 BackedgeTakenCount->printAsOperand(O, SlotTracker); 1040 O << " = backedge-taken count\n"; 1041 } 1042 1043 for (const VPBlockBase *Block : depth_first(getEntry())) { 1044 O << '\n'; 1045 Block->print(O, "", SlotTracker); 1046 } 1047 1048 if (!LiveOuts.empty()) 1049 O << "\n"; 1050 for (auto &KV : LiveOuts) { 1051 O << "Live-out "; 1052 KV.second->getPhi()->printAsOperand(O); 1053 O << " = "; 1054 KV.second->getOperand(0)->printAsOperand(O, SlotTracker); 1055 O << "\n"; 1056 } 1057 1058 O << "}\n"; 1059 } 1060 1061 LLVM_DUMP_METHOD 1062 void VPlan::printDOT(raw_ostream &O) const { 1063 VPlanPrinter Printer(O, *this); 1064 Printer.dump(); 1065 } 1066 1067 LLVM_DUMP_METHOD 1068 void VPlan::dump() const { print(dbgs()); } 1069 #endif 1070 1071 void VPlan::addLiveOut(PHINode *PN, VPValue *V) { 1072 assert(LiveOuts.count(PN) == 0 && "an exit value for PN already exists"); 1073 LiveOuts.insert({PN, new VPLiveOut(PN, V)}); 1074 } 1075 1076 void VPlan::updateDominatorTree(DominatorTree *DT, BasicBlock *LoopHeaderBB, 1077 BasicBlock *LoopLatchBB, 1078 BasicBlock *LoopExitBB) { 1079 // The vector body may be more than a single basic-block by this point. 1080 // Update the dominator tree information inside the vector body by propagating 1081 // it from header to latch, expecting only triangular control-flow, if any. 1082 BasicBlock *PostDomSucc = nullptr; 1083 for (auto *BB = LoopHeaderBB; BB != LoopLatchBB; BB = PostDomSucc) { 1084 // Get the list of successors of this block. 1085 std::vector<BasicBlock *> Succs(succ_begin(BB), succ_end(BB)); 1086 assert(Succs.size() <= 2 && 1087 "Basic block in vector loop has more than 2 successors."); 1088 PostDomSucc = Succs[0]; 1089 if (Succs.size() == 1) { 1090 assert(PostDomSucc->getSinglePredecessor() && 1091 "PostDom successor has more than one predecessor."); 1092 DT->addNewBlock(PostDomSucc, BB); 1093 continue; 1094 } 1095 BasicBlock *InterimSucc = Succs[1]; 1096 if (PostDomSucc->getSingleSuccessor() == InterimSucc) { 1097 PostDomSucc = Succs[1]; 1098 InterimSucc = Succs[0]; 1099 } 1100 assert(InterimSucc->getSingleSuccessor() == PostDomSucc && 1101 "One successor of a basic block does not lead to the other."); 1102 assert(InterimSucc->getSinglePredecessor() && 1103 "Interim successor has more than one predecessor."); 1104 assert(PostDomSucc->hasNPredecessors(2) && 1105 "PostDom successor has more than two predecessors."); 1106 DT->addNewBlock(InterimSucc, BB); 1107 DT->addNewBlock(PostDomSucc, BB); 1108 } 1109 // Latch block is a new dominator for the loop exit. 1110 DT->changeImmediateDominator(LoopExitBB, LoopLatchBB); 1111 assert(DT->verify(DominatorTree::VerificationLevel::Fast)); 1112 } 1113 1114 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1115 Twine VPlanPrinter::getUID(const VPBlockBase *Block) { 1116 return (isa<VPRegionBlock>(Block) ? "cluster_N" : "N") + 1117 Twine(getOrCreateBID(Block)); 1118 } 1119 1120 Twine VPlanPrinter::getOrCreateName(const VPBlockBase *Block) { 1121 const std::string &Name = Block->getName(); 1122 if (!Name.empty()) 1123 return Name; 1124 return "VPB" + Twine(getOrCreateBID(Block)); 1125 } 1126 1127 void VPlanPrinter::dump() { 1128 Depth = 1; 1129 bumpIndent(0); 1130 OS << "digraph VPlan {\n"; 1131 OS << "graph [labelloc=t, fontsize=30; label=\"Vectorization Plan"; 1132 if (!Plan.getName().empty()) 1133 OS << "\\n" << DOT::EscapeString(Plan.getName()); 1134 if (Plan.BackedgeTakenCount) { 1135 OS << ", where:\\n"; 1136 Plan.BackedgeTakenCount->print(OS, SlotTracker); 1137 OS << " := BackedgeTakenCount"; 1138 } 1139 OS << "\"]\n"; 1140 OS << "node [shape=rect, fontname=Courier, fontsize=30]\n"; 1141 OS << "edge [fontname=Courier, fontsize=30]\n"; 1142 OS << "compound=true\n"; 1143 1144 for (const VPBlockBase *Block : depth_first(Plan.getEntry())) 1145 dumpBlock(Block); 1146 1147 OS << "}\n"; 1148 } 1149 1150 void VPlanPrinter::dumpBlock(const VPBlockBase *Block) { 1151 if (const VPBasicBlock *BasicBlock = dyn_cast<VPBasicBlock>(Block)) 1152 dumpBasicBlock(BasicBlock); 1153 else if (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 1154 dumpRegion(Region); 1155 else 1156 llvm_unreachable("Unsupported kind of VPBlock."); 1157 } 1158 1159 void VPlanPrinter::drawEdge(const VPBlockBase *From, const VPBlockBase *To, 1160 bool Hidden, const Twine &Label) { 1161 // Due to "dot" we print an edge between two regions as an edge between the 1162 // exiting basic block and the entry basic of the respective regions. 1163 const VPBlockBase *Tail = From->getExitingBasicBlock(); 1164 const VPBlockBase *Head = To->getEntryBasicBlock(); 1165 OS << Indent << getUID(Tail) << " -> " << getUID(Head); 1166 OS << " [ label=\"" << Label << '\"'; 1167 if (Tail != From) 1168 OS << " ltail=" << getUID(From); 1169 if (Head != To) 1170 OS << " lhead=" << getUID(To); 1171 if (Hidden) 1172 OS << "; splines=none"; 1173 OS << "]\n"; 1174 } 1175 1176 void VPlanPrinter::dumpEdges(const VPBlockBase *Block) { 1177 auto &Successors = Block->getSuccessors(); 1178 if (Successors.size() == 1) 1179 drawEdge(Block, Successors.front(), false, ""); 1180 else if (Successors.size() == 2) { 1181 drawEdge(Block, Successors.front(), false, "T"); 1182 drawEdge(Block, Successors.back(), false, "F"); 1183 } else { 1184 unsigned SuccessorNumber = 0; 1185 for (auto *Successor : Successors) 1186 drawEdge(Block, Successor, false, Twine(SuccessorNumber++)); 1187 } 1188 } 1189 1190 void VPlanPrinter::dumpBasicBlock(const VPBasicBlock *BasicBlock) { 1191 // Implement dot-formatted dump by performing plain-text dump into the 1192 // temporary storage followed by some post-processing. 1193 OS << Indent << getUID(BasicBlock) << " [label =\n"; 1194 bumpIndent(1); 1195 std::string Str; 1196 raw_string_ostream SS(Str); 1197 // Use no indentation as we need to wrap the lines into quotes ourselves. 1198 BasicBlock->print(SS, "", SlotTracker); 1199 1200 // We need to process each line of the output separately, so split 1201 // single-string plain-text dump. 1202 SmallVector<StringRef, 0> Lines; 1203 StringRef(Str).rtrim('\n').split(Lines, "\n"); 1204 1205 auto EmitLine = [&](StringRef Line, StringRef Suffix) { 1206 OS << Indent << '"' << DOT::EscapeString(Line.str()) << "\\l\"" << Suffix; 1207 }; 1208 1209 // Don't need the "+" after the last line. 1210 for (auto Line : make_range(Lines.begin(), Lines.end() - 1)) 1211 EmitLine(Line, " +\n"); 1212 EmitLine(Lines.back(), "\n"); 1213 1214 bumpIndent(-1); 1215 OS << Indent << "]\n"; 1216 1217 dumpEdges(BasicBlock); 1218 } 1219 1220 void VPlanPrinter::dumpRegion(const VPRegionBlock *Region) { 1221 OS << Indent << "subgraph " << getUID(Region) << " {\n"; 1222 bumpIndent(1); 1223 OS << Indent << "fontname=Courier\n" 1224 << Indent << "label=\"" 1225 << DOT::EscapeString(Region->isReplicator() ? "<xVFxUF> " : "<x1> ") 1226 << DOT::EscapeString(Region->getName()) << "\"\n"; 1227 // Dump the blocks of the region. 1228 assert(Region->getEntry() && "Region contains no inner blocks."); 1229 for (const VPBlockBase *Block : depth_first(Region->getEntry())) 1230 dumpBlock(Block); 1231 bumpIndent(-1); 1232 OS << Indent << "}\n"; 1233 dumpEdges(Region); 1234 } 1235 1236 void VPlanIngredient::print(raw_ostream &O) const { 1237 if (auto *Inst = dyn_cast<Instruction>(V)) { 1238 if (!Inst->getType()->isVoidTy()) { 1239 Inst->printAsOperand(O, false); 1240 O << " = "; 1241 } 1242 O << Inst->getOpcodeName() << " "; 1243 unsigned E = Inst->getNumOperands(); 1244 if (E > 0) { 1245 Inst->getOperand(0)->printAsOperand(O, false); 1246 for (unsigned I = 1; I < E; ++I) 1247 Inst->getOperand(I)->printAsOperand(O << ", ", false); 1248 } 1249 } else // !Inst 1250 V->printAsOperand(O, false); 1251 } 1252 1253 void VPWidenCallRecipe::print(raw_ostream &O, const Twine &Indent, 1254 VPSlotTracker &SlotTracker) const { 1255 O << Indent << "WIDEN-CALL "; 1256 1257 auto *CI = cast<CallInst>(getUnderlyingInstr()); 1258 if (CI->getType()->isVoidTy()) 1259 O << "void "; 1260 else { 1261 printAsOperand(O, SlotTracker); 1262 O << " = "; 1263 } 1264 1265 O << "call @" << CI->getCalledFunction()->getName() << "("; 1266 printOperands(O, SlotTracker); 1267 O << ")"; 1268 } 1269 1270 void VPWidenSelectRecipe::print(raw_ostream &O, const Twine &Indent, 1271 VPSlotTracker &SlotTracker) const { 1272 O << Indent << "WIDEN-SELECT "; 1273 printAsOperand(O, SlotTracker); 1274 O << " = select "; 1275 getOperand(0)->printAsOperand(O, SlotTracker); 1276 O << ", "; 1277 getOperand(1)->printAsOperand(O, SlotTracker); 1278 O << ", "; 1279 getOperand(2)->printAsOperand(O, SlotTracker); 1280 O << (InvariantCond ? " (condition is loop invariant)" : ""); 1281 } 1282 1283 void VPWidenRecipe::print(raw_ostream &O, const Twine &Indent, 1284 VPSlotTracker &SlotTracker) const { 1285 O << Indent << "WIDEN "; 1286 printAsOperand(O, SlotTracker); 1287 O << " = " << getUnderlyingInstr()->getOpcodeName() << " "; 1288 printOperands(O, SlotTracker); 1289 } 1290 1291 void VPWidenIntOrFpInductionRecipe::print(raw_ostream &O, const Twine &Indent, 1292 VPSlotTracker &SlotTracker) const { 1293 O << Indent << "WIDEN-INDUCTION"; 1294 if (getTruncInst()) { 1295 O << "\\l\""; 1296 O << " +\n" << Indent << "\" " << VPlanIngredient(IV) << "\\l\""; 1297 O << " +\n" << Indent << "\" "; 1298 getVPValue(0)->printAsOperand(O, SlotTracker); 1299 } else 1300 O << " " << VPlanIngredient(IV); 1301 1302 O << ", "; 1303 getStepValue()->printAsOperand(O, SlotTracker); 1304 } 1305 1306 void VPWidenPointerInductionRecipe::print(raw_ostream &O, const Twine &Indent, 1307 VPSlotTracker &SlotTracker) const { 1308 O << Indent << "EMIT "; 1309 printAsOperand(O, SlotTracker); 1310 O << " = WIDEN-POINTER-INDUCTION "; 1311 getStartValue()->printAsOperand(O, SlotTracker); 1312 O << ", " << *IndDesc.getStep(); 1313 } 1314 1315 #endif 1316 1317 bool VPWidenIntOrFpInductionRecipe::isCanonical() const { 1318 auto *StartC = dyn_cast<ConstantInt>(getStartValue()->getLiveInIRValue()); 1319 auto *StepC = dyn_cast<SCEVConstant>(getInductionDescriptor().getStep()); 1320 return StartC && StartC->isZero() && StepC && StepC->isOne(); 1321 } 1322 1323 VPCanonicalIVPHIRecipe *VPScalarIVStepsRecipe::getCanonicalIV() const { 1324 return cast<VPCanonicalIVPHIRecipe>(getOperand(0)); 1325 } 1326 1327 bool VPScalarIVStepsRecipe::isCanonical() const { 1328 auto *CanIV = getCanonicalIV(); 1329 // The start value of the steps-recipe must match the start value of the 1330 // canonical induction and it must step by 1. 1331 if (CanIV->getStartValue() != getStartValue()) 1332 return false; 1333 auto *StepVPV = getStepValue(); 1334 if (StepVPV->getDef()) 1335 return false; 1336 auto *StepC = dyn_cast_or_null<ConstantInt>(StepVPV->getLiveInIRValue()); 1337 return StepC && StepC->isOne(); 1338 } 1339 1340 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1341 void VPScalarIVStepsRecipe::print(raw_ostream &O, const Twine &Indent, 1342 VPSlotTracker &SlotTracker) const { 1343 O << Indent; 1344 printAsOperand(O, SlotTracker); 1345 O << Indent << "= SCALAR-STEPS "; 1346 printOperands(O, SlotTracker); 1347 } 1348 1349 void VPWidenGEPRecipe::print(raw_ostream &O, const Twine &Indent, 1350 VPSlotTracker &SlotTracker) const { 1351 O << Indent << "WIDEN-GEP "; 1352 O << (IsPtrLoopInvariant ? "Inv" : "Var"); 1353 size_t IndicesNumber = IsIndexLoopInvariant.size(); 1354 for (size_t I = 0; I < IndicesNumber; ++I) 1355 O << "[" << (IsIndexLoopInvariant[I] ? "Inv" : "Var") << "]"; 1356 1357 O << " "; 1358 printAsOperand(O, SlotTracker); 1359 O << " = getelementptr "; 1360 printOperands(O, SlotTracker); 1361 } 1362 1363 void VPWidenPHIRecipe::print(raw_ostream &O, const Twine &Indent, 1364 VPSlotTracker &SlotTracker) const { 1365 O << Indent << "WIDEN-PHI "; 1366 1367 auto *OriginalPhi = cast<PHINode>(getUnderlyingValue()); 1368 // Unless all incoming values are modeled in VPlan print the original PHI 1369 // directly. 1370 // TODO: Remove once all VPWidenPHIRecipe instances keep all relevant incoming 1371 // values as VPValues. 1372 if (getNumOperands() != OriginalPhi->getNumOperands()) { 1373 O << VPlanIngredient(OriginalPhi); 1374 return; 1375 } 1376 1377 printAsOperand(O, SlotTracker); 1378 O << " = phi "; 1379 printOperands(O, SlotTracker); 1380 } 1381 1382 void VPBlendRecipe::print(raw_ostream &O, const Twine &Indent, 1383 VPSlotTracker &SlotTracker) const { 1384 O << Indent << "BLEND "; 1385 Phi->printAsOperand(O, false); 1386 O << " ="; 1387 if (getNumIncomingValues() == 1) { 1388 // Not a User of any mask: not really blending, this is a 1389 // single-predecessor phi. 1390 O << " "; 1391 getIncomingValue(0)->printAsOperand(O, SlotTracker); 1392 } else { 1393 for (unsigned I = 0, E = getNumIncomingValues(); I < E; ++I) { 1394 O << " "; 1395 getIncomingValue(I)->printAsOperand(O, SlotTracker); 1396 O << "/"; 1397 getMask(I)->printAsOperand(O, SlotTracker); 1398 } 1399 } 1400 } 1401 1402 void VPReductionRecipe::print(raw_ostream &O, const Twine &Indent, 1403 VPSlotTracker &SlotTracker) const { 1404 O << Indent << "REDUCE "; 1405 printAsOperand(O, SlotTracker); 1406 O << " = "; 1407 getChainOp()->printAsOperand(O, SlotTracker); 1408 O << " +"; 1409 if (isa<FPMathOperator>(getUnderlyingInstr())) 1410 O << getUnderlyingInstr()->getFastMathFlags(); 1411 O << " reduce." << Instruction::getOpcodeName(RdxDesc->getOpcode()) << " ("; 1412 getVecOp()->printAsOperand(O, SlotTracker); 1413 if (getCondOp()) { 1414 O << ", "; 1415 getCondOp()->printAsOperand(O, SlotTracker); 1416 } 1417 O << ")"; 1418 if (RdxDesc->IntermediateStore) 1419 O << " (with final reduction value stored in invariant address sank " 1420 "outside of loop)"; 1421 } 1422 1423 void VPReplicateRecipe::print(raw_ostream &O, const Twine &Indent, 1424 VPSlotTracker &SlotTracker) const { 1425 O << Indent << (IsUniform ? "CLONE " : "REPLICATE "); 1426 1427 if (!getUnderlyingInstr()->getType()->isVoidTy()) { 1428 printAsOperand(O, SlotTracker); 1429 O << " = "; 1430 } 1431 if (auto *CB = dyn_cast<CallBase>(getUnderlyingInstr())) { 1432 O << "call @" << CB->getCalledFunction()->getName() << "("; 1433 interleaveComma(make_range(op_begin(), op_begin() + (getNumOperands() - 1)), 1434 O, [&O, &SlotTracker](VPValue *Op) { 1435 Op->printAsOperand(O, SlotTracker); 1436 }); 1437 O << ")"; 1438 } else { 1439 O << Instruction::getOpcodeName(getUnderlyingInstr()->getOpcode()) << " "; 1440 printOperands(O, SlotTracker); 1441 } 1442 1443 if (AlsoPack) 1444 O << " (S->V)"; 1445 } 1446 1447 void VPPredInstPHIRecipe::print(raw_ostream &O, const Twine &Indent, 1448 VPSlotTracker &SlotTracker) const { 1449 O << Indent << "PHI-PREDICATED-INSTRUCTION "; 1450 printAsOperand(O, SlotTracker); 1451 O << " = "; 1452 printOperands(O, SlotTracker); 1453 } 1454 1455 void VPWidenMemoryInstructionRecipe::print(raw_ostream &O, const Twine &Indent, 1456 VPSlotTracker &SlotTracker) const { 1457 O << Indent << "WIDEN "; 1458 1459 if (!isStore()) { 1460 getVPSingleValue()->printAsOperand(O, SlotTracker); 1461 O << " = "; 1462 } 1463 O << Instruction::getOpcodeName(Ingredient.getOpcode()) << " "; 1464 1465 printOperands(O, SlotTracker); 1466 } 1467 #endif 1468 1469 void VPCanonicalIVPHIRecipe::execute(VPTransformState &State) { 1470 Value *Start = getStartValue()->getLiveInIRValue(); 1471 PHINode *EntryPart = PHINode::Create( 1472 Start->getType(), 2, "index", &*State.CFG.PrevBB->getFirstInsertionPt()); 1473 1474 BasicBlock *VectorPH = State.CFG.getPreheaderBBFor(this); 1475 EntryPart->addIncoming(Start, VectorPH); 1476 EntryPart->setDebugLoc(DL); 1477 for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part) 1478 State.set(this, EntryPart, Part); 1479 } 1480 1481 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1482 void VPCanonicalIVPHIRecipe::print(raw_ostream &O, const Twine &Indent, 1483 VPSlotTracker &SlotTracker) const { 1484 O << Indent << "EMIT "; 1485 printAsOperand(O, SlotTracker); 1486 O << " = CANONICAL-INDUCTION"; 1487 } 1488 #endif 1489 1490 bool VPWidenPointerInductionRecipe::onlyScalarsGenerated(ElementCount VF) { 1491 bool IsUniform = vputils::onlyFirstLaneUsed(this); 1492 return all_of(users(), 1493 [&](const VPUser *U) { return U->usesScalars(this); }) && 1494 (IsUniform || !VF.isScalable()); 1495 } 1496 1497 void VPExpandSCEVRecipe::execute(VPTransformState &State) { 1498 assert(!State.Instance && "cannot be used in per-lane"); 1499 const DataLayout &DL = State.CFG.PrevBB->getModule()->getDataLayout(); 1500 SCEVExpander Exp(SE, DL, "induction"); 1501 1502 Value *Res = Exp.expandCodeFor(Expr, Expr->getType(), 1503 &*State.Builder.GetInsertPoint()); 1504 1505 for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part) 1506 State.set(this, Res, Part); 1507 } 1508 1509 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1510 void VPExpandSCEVRecipe::print(raw_ostream &O, const Twine &Indent, 1511 VPSlotTracker &SlotTracker) const { 1512 O << Indent << "EMIT "; 1513 getVPSingleValue()->printAsOperand(O, SlotTracker); 1514 O << " = EXPAND SCEV " << *Expr; 1515 } 1516 #endif 1517 1518 void VPWidenCanonicalIVRecipe::execute(VPTransformState &State) { 1519 Value *CanonicalIV = State.get(getOperand(0), 0); 1520 Type *STy = CanonicalIV->getType(); 1521 IRBuilder<> Builder(State.CFG.PrevBB->getTerminator()); 1522 ElementCount VF = State.VF; 1523 Value *VStart = VF.isScalar() 1524 ? CanonicalIV 1525 : Builder.CreateVectorSplat(VF, CanonicalIV, "broadcast"); 1526 for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part) { 1527 Value *VStep = createStepForVF(Builder, STy, VF, Part); 1528 if (VF.isVector()) { 1529 VStep = Builder.CreateVectorSplat(VF, VStep); 1530 VStep = Builder.CreateAdd(VStep, Builder.CreateStepVector(VStep->getType())); 1531 } 1532 Value *CanonicalVectorIV = Builder.CreateAdd(VStart, VStep, "vec.iv"); 1533 State.set(this, CanonicalVectorIV, Part); 1534 } 1535 } 1536 1537 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1538 void VPWidenCanonicalIVRecipe::print(raw_ostream &O, const Twine &Indent, 1539 VPSlotTracker &SlotTracker) const { 1540 O << Indent << "EMIT "; 1541 printAsOperand(O, SlotTracker); 1542 O << " = WIDEN-CANONICAL-INDUCTION "; 1543 printOperands(O, SlotTracker); 1544 } 1545 #endif 1546 1547 void VPFirstOrderRecurrencePHIRecipe::execute(VPTransformState &State) { 1548 auto &Builder = State.Builder; 1549 // Create a vector from the initial value. 1550 auto *VectorInit = getStartValue()->getLiveInIRValue(); 1551 1552 Type *VecTy = State.VF.isScalar() 1553 ? VectorInit->getType() 1554 : VectorType::get(VectorInit->getType(), State.VF); 1555 1556 BasicBlock *VectorPH = State.CFG.getPreheaderBBFor(this); 1557 if (State.VF.isVector()) { 1558 auto *IdxTy = Builder.getInt32Ty(); 1559 auto *One = ConstantInt::get(IdxTy, 1); 1560 IRBuilder<>::InsertPointGuard Guard(Builder); 1561 Builder.SetInsertPoint(VectorPH->getTerminator()); 1562 auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, State.VF); 1563 auto *LastIdx = Builder.CreateSub(RuntimeVF, One); 1564 VectorInit = Builder.CreateInsertElement( 1565 PoisonValue::get(VecTy), VectorInit, LastIdx, "vector.recur.init"); 1566 } 1567 1568 // Create a phi node for the new recurrence. 1569 PHINode *EntryPart = PHINode::Create( 1570 VecTy, 2, "vector.recur", &*State.CFG.PrevBB->getFirstInsertionPt()); 1571 EntryPart->addIncoming(VectorInit, VectorPH); 1572 State.set(this, EntryPart, 0); 1573 } 1574 1575 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1576 void VPFirstOrderRecurrencePHIRecipe::print(raw_ostream &O, const Twine &Indent, 1577 VPSlotTracker &SlotTracker) const { 1578 O << Indent << "FIRST-ORDER-RECURRENCE-PHI "; 1579 printAsOperand(O, SlotTracker); 1580 O << " = phi "; 1581 printOperands(O, SlotTracker); 1582 } 1583 #endif 1584 1585 void VPReductionPHIRecipe::execute(VPTransformState &State) { 1586 PHINode *PN = cast<PHINode>(getUnderlyingValue()); 1587 auto &Builder = State.Builder; 1588 1589 // In order to support recurrences we need to be able to vectorize Phi nodes. 1590 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 1591 // stage #1: We create a new vector PHI node with no incoming edges. We'll use 1592 // this value when we vectorize all of the instructions that use the PHI. 1593 bool ScalarPHI = State.VF.isScalar() || IsInLoop; 1594 Type *VecTy = 1595 ScalarPHI ? PN->getType() : VectorType::get(PN->getType(), State.VF); 1596 1597 BasicBlock *HeaderBB = State.CFG.PrevBB; 1598 assert(State.CurrentVectorLoop->getHeader() == HeaderBB && 1599 "recipe must be in the vector loop header"); 1600 unsigned LastPartForNewPhi = isOrdered() ? 1 : State.UF; 1601 for (unsigned Part = 0; Part < LastPartForNewPhi; ++Part) { 1602 Value *EntryPart = 1603 PHINode::Create(VecTy, 2, "vec.phi", &*HeaderBB->getFirstInsertionPt()); 1604 State.set(this, EntryPart, Part); 1605 } 1606 1607 BasicBlock *VectorPH = State.CFG.getPreheaderBBFor(this); 1608 1609 // Reductions do not have to start at zero. They can start with 1610 // any loop invariant values. 1611 VPValue *StartVPV = getStartValue(); 1612 Value *StartV = StartVPV->getLiveInIRValue(); 1613 1614 Value *Iden = nullptr; 1615 RecurKind RK = RdxDesc.getRecurrenceKind(); 1616 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(RK) || 1617 RecurrenceDescriptor::isSelectCmpRecurrenceKind(RK)) { 1618 // MinMax reduction have the start value as their identify. 1619 if (ScalarPHI) { 1620 Iden = StartV; 1621 } else { 1622 IRBuilderBase::InsertPointGuard IPBuilder(Builder); 1623 Builder.SetInsertPoint(VectorPH->getTerminator()); 1624 StartV = Iden = 1625 Builder.CreateVectorSplat(State.VF, StartV, "minmax.ident"); 1626 } 1627 } else { 1628 Iden = RdxDesc.getRecurrenceIdentity(RK, VecTy->getScalarType(), 1629 RdxDesc.getFastMathFlags()); 1630 1631 if (!ScalarPHI) { 1632 Iden = Builder.CreateVectorSplat(State.VF, Iden); 1633 IRBuilderBase::InsertPointGuard IPBuilder(Builder); 1634 Builder.SetInsertPoint(VectorPH->getTerminator()); 1635 Constant *Zero = Builder.getInt32(0); 1636 StartV = Builder.CreateInsertElement(Iden, StartV, Zero); 1637 } 1638 } 1639 1640 for (unsigned Part = 0; Part < LastPartForNewPhi; ++Part) { 1641 Value *EntryPart = State.get(this, Part); 1642 // Make sure to add the reduction start value only to the 1643 // first unroll part. 1644 Value *StartVal = (Part == 0) ? StartV : Iden; 1645 cast<PHINode>(EntryPart)->addIncoming(StartVal, VectorPH); 1646 } 1647 } 1648 1649 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1650 void VPReductionPHIRecipe::print(raw_ostream &O, const Twine &Indent, 1651 VPSlotTracker &SlotTracker) const { 1652 O << Indent << "WIDEN-REDUCTION-PHI "; 1653 1654 printAsOperand(O, SlotTracker); 1655 O << " = phi "; 1656 printOperands(O, SlotTracker); 1657 } 1658 #endif 1659 1660 template void DomTreeBuilder::Calculate<VPDominatorTree>(VPDominatorTree &DT); 1661 1662 void VPValue::replaceAllUsesWith(VPValue *New) { 1663 for (unsigned J = 0; J < getNumUsers();) { 1664 VPUser *User = Users[J]; 1665 unsigned NumUsers = getNumUsers(); 1666 for (unsigned I = 0, E = User->getNumOperands(); I < E; ++I) 1667 if (User->getOperand(I) == this) 1668 User->setOperand(I, New); 1669 // If a user got removed after updating the current user, the next user to 1670 // update will be moved to the current position, so we only need to 1671 // increment the index if the number of users did not change. 1672 if (NumUsers == getNumUsers()) 1673 J++; 1674 } 1675 } 1676 1677 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1678 void VPValue::printAsOperand(raw_ostream &OS, VPSlotTracker &Tracker) const { 1679 if (const Value *UV = getUnderlyingValue()) { 1680 OS << "ir<"; 1681 UV->printAsOperand(OS, false); 1682 OS << ">"; 1683 return; 1684 } 1685 1686 unsigned Slot = Tracker.getSlot(this); 1687 if (Slot == unsigned(-1)) 1688 OS << "<badref>"; 1689 else 1690 OS << "vp<%" << Tracker.getSlot(this) << ">"; 1691 } 1692 1693 void VPUser::printOperands(raw_ostream &O, VPSlotTracker &SlotTracker) const { 1694 interleaveComma(operands(), O, [&O, &SlotTracker](VPValue *Op) { 1695 Op->printAsOperand(O, SlotTracker); 1696 }); 1697 } 1698 #endif 1699 1700 void VPInterleavedAccessInfo::visitRegion(VPRegionBlock *Region, 1701 Old2NewTy &Old2New, 1702 InterleavedAccessInfo &IAI) { 1703 ReversePostOrderTraversal<VPBlockBase *> RPOT(Region->getEntry()); 1704 for (VPBlockBase *Base : RPOT) { 1705 visitBlock(Base, Old2New, IAI); 1706 } 1707 } 1708 1709 void VPInterleavedAccessInfo::visitBlock(VPBlockBase *Block, Old2NewTy &Old2New, 1710 InterleavedAccessInfo &IAI) { 1711 if (VPBasicBlock *VPBB = dyn_cast<VPBasicBlock>(Block)) { 1712 for (VPRecipeBase &VPI : *VPBB) { 1713 if (isa<VPHeaderPHIRecipe>(&VPI)) 1714 continue; 1715 assert(isa<VPInstruction>(&VPI) && "Can only handle VPInstructions"); 1716 auto *VPInst = cast<VPInstruction>(&VPI); 1717 auto *Inst = cast<Instruction>(VPInst->getUnderlyingValue()); 1718 auto *IG = IAI.getInterleaveGroup(Inst); 1719 if (!IG) 1720 continue; 1721 1722 auto NewIGIter = Old2New.find(IG); 1723 if (NewIGIter == Old2New.end()) 1724 Old2New[IG] = new InterleaveGroup<VPInstruction>( 1725 IG->getFactor(), IG->isReverse(), IG->getAlign()); 1726 1727 if (Inst == IG->getInsertPos()) 1728 Old2New[IG]->setInsertPos(VPInst); 1729 1730 InterleaveGroupMap[VPInst] = Old2New[IG]; 1731 InterleaveGroupMap[VPInst]->insertMember( 1732 VPInst, IG->getIndex(Inst), 1733 Align(IG->isReverse() ? (-1) * int(IG->getFactor()) 1734 : IG->getFactor())); 1735 } 1736 } else if (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 1737 visitRegion(Region, Old2New, IAI); 1738 else 1739 llvm_unreachable("Unsupported kind of VPBlock."); 1740 } 1741 1742 VPInterleavedAccessInfo::VPInterleavedAccessInfo(VPlan &Plan, 1743 InterleavedAccessInfo &IAI) { 1744 Old2NewTy Old2New; 1745 visitRegion(Plan.getVectorLoopRegion(), Old2New, IAI); 1746 } 1747 1748 void VPSlotTracker::assignSlot(const VPValue *V) { 1749 assert(Slots.find(V) == Slots.end() && "VPValue already has a slot!"); 1750 Slots[V] = NextSlot++; 1751 } 1752 1753 void VPSlotTracker::assignSlots(const VPlan &Plan) { 1754 1755 for (const auto &P : Plan.VPExternalDefs) 1756 assignSlot(P.second); 1757 1758 assignSlot(&Plan.VectorTripCount); 1759 if (Plan.BackedgeTakenCount) 1760 assignSlot(Plan.BackedgeTakenCount); 1761 1762 ReversePostOrderTraversal< 1763 VPBlockRecursiveTraversalWrapper<const VPBlockBase *>> 1764 RPOT(VPBlockRecursiveTraversalWrapper<const VPBlockBase *>( 1765 Plan.getEntry())); 1766 for (const VPBasicBlock *VPBB : 1767 VPBlockUtils::blocksOnly<const VPBasicBlock>(RPOT)) 1768 for (const VPRecipeBase &Recipe : *VPBB) 1769 for (VPValue *Def : Recipe.definedValues()) 1770 assignSlot(Def); 1771 } 1772 1773 bool vputils::onlyFirstLaneUsed(VPValue *Def) { 1774 return all_of(Def->users(), 1775 [Def](VPUser *U) { return U->onlyFirstLaneUsed(Def); }); 1776 } 1777 1778 VPValue *vputils::getOrCreateVPValueForSCEVExpr(VPlan &Plan, const SCEV *Expr, 1779 ScalarEvolution &SE) { 1780 if (auto *E = dyn_cast<SCEVConstant>(Expr)) 1781 return Plan.getOrAddExternalDef(E->getValue()); 1782 if (auto *E = dyn_cast<SCEVUnknown>(Expr)) 1783 return Plan.getOrAddExternalDef(E->getValue()); 1784 1785 VPBasicBlock *Preheader = Plan.getEntry()->getEntryBasicBlock(); 1786 VPValue *Step = new VPExpandSCEVRecipe(Expr, SE); 1787 Preheader->appendRecipe(cast<VPRecipeBase>(Step->getDef())); 1788 return Step; 1789 } 1790