xref: /llvm-project/llvm/lib/Transforms/Vectorize/VPlan.cpp (revision a7fda0e1e4dfd17ccf4a1bb80024acca2da6424e)
1 //===- VPlan.cpp - Vectorizer Plan ----------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This is the LLVM vectorization plan. It represents a candidate for
11 /// vectorization, allowing to plan and optimize how to vectorize a given loop
12 /// before generating LLVM-IR.
13 /// The vectorizer uses vectorization plans to estimate the costs of potential
14 /// candidates and if profitable to execute the desired plan, generating vector
15 /// LLVM-IR code.
16 ///
17 //===----------------------------------------------------------------------===//
18 
19 #include "VPlan.h"
20 #include "LoopVectorizationPlanner.h"
21 #include "VPlanCFG.h"
22 #include "VPlanPatternMatch.h"
23 #include "VPlanTransforms.h"
24 #include "VPlanUtils.h"
25 #include "llvm/ADT/PostOrderIterator.h"
26 #include "llvm/ADT/STLExtras.h"
27 #include "llvm/ADT/SmallVector.h"
28 #include "llvm/ADT/StringExtras.h"
29 #include "llvm/ADT/Twine.h"
30 #include "llvm/Analysis/DomTreeUpdater.h"
31 #include "llvm/Analysis/LoopInfo.h"
32 #include "llvm/IR/BasicBlock.h"
33 #include "llvm/IR/CFG.h"
34 #include "llvm/IR/IRBuilder.h"
35 #include "llvm/IR/Instruction.h"
36 #include "llvm/IR/Instructions.h"
37 #include "llvm/IR/Type.h"
38 #include "llvm/IR/Value.h"
39 #include "llvm/Support/Casting.h"
40 #include "llvm/Support/CommandLine.h"
41 #include "llvm/Support/Debug.h"
42 #include "llvm/Support/GraphWriter.h"
43 #include "llvm/Support/raw_ostream.h"
44 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
45 #include "llvm/Transforms/Utils/LoopVersioning.h"
46 #include <cassert>
47 #include <string>
48 
49 using namespace llvm;
50 using namespace llvm::VPlanPatternMatch;
51 
52 namespace llvm {
53 extern cl::opt<bool> EnableVPlanNativePath;
54 }
55 extern cl::opt<unsigned> ForceTargetInstructionCost;
56 
57 static cl::opt<bool> PrintVPlansInDotFormat(
58     "vplan-print-in-dot-format", cl::Hidden,
59     cl::desc("Use dot format instead of plain text when dumping VPlans"));
60 
61 #define DEBUG_TYPE "loop-vectorize"
62 
63 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
64 raw_ostream &llvm::operator<<(raw_ostream &OS, const VPValue &V) {
65   const VPInstruction *Instr = dyn_cast<VPInstruction>(&V);
66   VPSlotTracker SlotTracker(
67       (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr);
68   V.print(OS, SlotTracker);
69   return OS;
70 }
71 #endif
72 
73 Value *VPLane::getAsRuntimeExpr(IRBuilderBase &Builder,
74                                 const ElementCount &VF) const {
75   switch (LaneKind) {
76   case VPLane::Kind::ScalableLast:
77     // Lane = RuntimeVF - VF.getKnownMinValue() + Lane
78     return Builder.CreateSub(getRuntimeVF(Builder, Builder.getInt32Ty(), VF),
79                              Builder.getInt32(VF.getKnownMinValue() - Lane));
80   case VPLane::Kind::First:
81     return Builder.getInt32(Lane);
82   }
83   llvm_unreachable("Unknown lane kind");
84 }
85 
86 VPValue::VPValue(const unsigned char SC, Value *UV, VPDef *Def)
87     : SubclassID(SC), UnderlyingVal(UV), Def(Def) {
88   if (Def)
89     Def->addDefinedValue(this);
90 }
91 
92 VPValue::~VPValue() {
93   assert(Users.empty() && "trying to delete a VPValue with remaining users");
94   if (Def)
95     Def->removeDefinedValue(this);
96 }
97 
98 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
99 void VPValue::print(raw_ostream &OS, VPSlotTracker &SlotTracker) const {
100   if (const VPRecipeBase *R = dyn_cast_or_null<VPRecipeBase>(Def))
101     R->print(OS, "", SlotTracker);
102   else
103     printAsOperand(OS, SlotTracker);
104 }
105 
106 void VPValue::dump() const {
107   const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this->Def);
108   VPSlotTracker SlotTracker(
109       (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr);
110   print(dbgs(), SlotTracker);
111   dbgs() << "\n";
112 }
113 
114 void VPDef::dump() const {
115   const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this);
116   VPSlotTracker SlotTracker(
117       (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr);
118   print(dbgs(), "", SlotTracker);
119   dbgs() << "\n";
120 }
121 #endif
122 
123 VPRecipeBase *VPValue::getDefiningRecipe() {
124   return cast_or_null<VPRecipeBase>(Def);
125 }
126 
127 const VPRecipeBase *VPValue::getDefiningRecipe() const {
128   return cast_or_null<VPRecipeBase>(Def);
129 }
130 
131 // Get the top-most entry block of \p Start. This is the entry block of the
132 // containing VPlan. This function is templated to support both const and non-const blocks
133 template <typename T> static T *getPlanEntry(T *Start) {
134   T *Next = Start;
135   T *Current = Start;
136   while ((Next = Next->getParent()))
137     Current = Next;
138 
139   SmallSetVector<T *, 8> WorkList;
140   WorkList.insert(Current);
141 
142   for (unsigned i = 0; i < WorkList.size(); i++) {
143     T *Current = WorkList[i];
144     if (Current->getNumPredecessors() == 0)
145       return Current;
146     auto &Predecessors = Current->getPredecessors();
147     WorkList.insert(Predecessors.begin(), Predecessors.end());
148   }
149 
150   llvm_unreachable("VPlan without any entry node without predecessors");
151 }
152 
153 VPlan *VPBlockBase::getPlan() { return getPlanEntry(this)->Plan; }
154 
155 const VPlan *VPBlockBase::getPlan() const { return getPlanEntry(this)->Plan; }
156 
157 /// \return the VPBasicBlock that is the entry of Block, possibly indirectly.
158 const VPBasicBlock *VPBlockBase::getEntryBasicBlock() const {
159   const VPBlockBase *Block = this;
160   while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
161     Block = Region->getEntry();
162   return cast<VPBasicBlock>(Block);
163 }
164 
165 VPBasicBlock *VPBlockBase::getEntryBasicBlock() {
166   VPBlockBase *Block = this;
167   while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
168     Block = Region->getEntry();
169   return cast<VPBasicBlock>(Block);
170 }
171 
172 void VPBlockBase::setPlan(VPlan *ParentPlan) {
173   assert(
174       (ParentPlan->getEntry() == this || ParentPlan->getPreheader() == this) &&
175       "Can only set plan on its entry or preheader block.");
176   Plan = ParentPlan;
177 }
178 
179 /// \return the VPBasicBlock that is the exit of Block, possibly indirectly.
180 const VPBasicBlock *VPBlockBase::getExitingBasicBlock() const {
181   const VPBlockBase *Block = this;
182   while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
183     Block = Region->getExiting();
184   return cast<VPBasicBlock>(Block);
185 }
186 
187 VPBasicBlock *VPBlockBase::getExitingBasicBlock() {
188   VPBlockBase *Block = this;
189   while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
190     Block = Region->getExiting();
191   return cast<VPBasicBlock>(Block);
192 }
193 
194 VPBlockBase *VPBlockBase::getEnclosingBlockWithSuccessors() {
195   if (!Successors.empty() || !Parent)
196     return this;
197   assert(Parent->getExiting() == this &&
198          "Block w/o successors not the exiting block of its parent.");
199   return Parent->getEnclosingBlockWithSuccessors();
200 }
201 
202 VPBlockBase *VPBlockBase::getEnclosingBlockWithPredecessors() {
203   if (!Predecessors.empty() || !Parent)
204     return this;
205   assert(Parent->getEntry() == this &&
206          "Block w/o predecessors not the entry of its parent.");
207   return Parent->getEnclosingBlockWithPredecessors();
208 }
209 
210 void VPBlockBase::deleteCFG(VPBlockBase *Entry) {
211   for (VPBlockBase *Block : to_vector(vp_depth_first_shallow(Entry)))
212     delete Block;
213 }
214 
215 VPBasicBlock::iterator VPBasicBlock::getFirstNonPhi() {
216   iterator It = begin();
217   while (It != end() && It->isPhi())
218     It++;
219   return It;
220 }
221 
222 VPTransformState::VPTransformState(const TargetTransformInfo *TTI,
223                                    ElementCount VF, unsigned UF, LoopInfo *LI,
224                                    DominatorTree *DT, IRBuilderBase &Builder,
225                                    InnerLoopVectorizer *ILV, VPlan *Plan)
226     : TTI(TTI), VF(VF), CFG(DT), LI(LI), Builder(Builder), ILV(ILV), Plan(Plan),
227       LVer(nullptr), TypeAnalysis(Plan->getCanonicalIV()->getScalarType()) {}
228 
229 Value *VPTransformState::get(VPValue *Def, const VPLane &Lane) {
230   if (Def->isLiveIn())
231     return Def->getLiveInIRValue();
232 
233   if (hasScalarValue(Def, Lane))
234     return Data.VPV2Scalars[Def][Lane.mapToCacheIndex(VF)];
235 
236   if (!Lane.isFirstLane() && vputils::isUniformAfterVectorization(Def) &&
237       hasScalarValue(Def, VPLane::getFirstLane())) {
238     return Data.VPV2Scalars[Def][0];
239   }
240 
241   assert(hasVectorValue(Def));
242   auto *VecPart = Data.VPV2Vector[Def];
243   if (!VecPart->getType()->isVectorTy()) {
244     assert(Lane.isFirstLane() && "cannot get lane > 0 for scalar");
245     return VecPart;
246   }
247   // TODO: Cache created scalar values.
248   Value *LaneV = Lane.getAsRuntimeExpr(Builder, VF);
249   auto *Extract = Builder.CreateExtractElement(VecPart, LaneV);
250   // set(Def, Extract, Instance);
251   return Extract;
252 }
253 
254 Value *VPTransformState::get(VPValue *Def, bool NeedsScalar) {
255   if (NeedsScalar) {
256     assert((VF.isScalar() || Def->isLiveIn() || hasVectorValue(Def) ||
257             !vputils::onlyFirstLaneUsed(Def) ||
258             (hasScalarValue(Def, VPLane(0)) &&
259              Data.VPV2Scalars[Def].size() == 1)) &&
260            "Trying to access a single scalar per part but has multiple scalars "
261            "per part.");
262     return get(Def, VPLane(0));
263   }
264 
265   // If Values have been set for this Def return the one relevant for \p Part.
266   if (hasVectorValue(Def))
267     return Data.VPV2Vector[Def];
268 
269   auto GetBroadcastInstrs = [this, Def](Value *V) {
270     bool SafeToHoist = Def->isDefinedOutsideLoopRegions();
271     if (VF.isScalar())
272       return V;
273     // Place the code for broadcasting invariant variables in the new preheader.
274     IRBuilder<>::InsertPointGuard Guard(Builder);
275     if (SafeToHoist) {
276       BasicBlock *LoopVectorPreHeader =
277           CFG.VPBB2IRBB[Plan->getVectorPreheader()];
278       if (LoopVectorPreHeader)
279         Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
280     }
281 
282     // Place the code for broadcasting invariant variables in the new preheader.
283     // Broadcast the scalar into all locations in the vector.
284     Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast");
285 
286     return Shuf;
287   };
288 
289   if (!hasScalarValue(Def, {0})) {
290     assert(Def->isLiveIn() && "expected a live-in");
291     Value *IRV = Def->getLiveInIRValue();
292     Value *B = GetBroadcastInstrs(IRV);
293     set(Def, B);
294     return B;
295   }
296 
297   Value *ScalarValue = get(Def, VPLane(0));
298   // If we aren't vectorizing, we can just copy the scalar map values over
299   // to the vector map.
300   if (VF.isScalar()) {
301     set(Def, ScalarValue);
302     return ScalarValue;
303   }
304 
305   bool IsUniform = vputils::isUniformAfterVectorization(Def);
306 
307   VPLane LastLane(IsUniform ? 0 : VF.getKnownMinValue() - 1);
308   // Check if there is a scalar value for the selected lane.
309   if (!hasScalarValue(Def, LastLane)) {
310     // At the moment, VPWidenIntOrFpInductionRecipes, VPScalarIVStepsRecipes and
311     // VPExpandSCEVRecipes can also be uniform.
312     assert((isa<VPWidenIntOrFpInductionRecipe>(Def->getDefiningRecipe()) ||
313             isa<VPScalarIVStepsRecipe>(Def->getDefiningRecipe()) ||
314             isa<VPExpandSCEVRecipe>(Def->getDefiningRecipe())) &&
315            "unexpected recipe found to be invariant");
316     IsUniform = true;
317     LastLane = 0;
318   }
319 
320   auto *LastInst = cast<Instruction>(get(Def, LastLane));
321   // Set the insert point after the last scalarized instruction or after the
322   // last PHI, if LastInst is a PHI. This ensures the insertelement sequence
323   // will directly follow the scalar definitions.
324   auto OldIP = Builder.saveIP();
325   auto NewIP =
326       isa<PHINode>(LastInst)
327           ? BasicBlock::iterator(LastInst->getParent()->getFirstNonPHI())
328           : std::next(BasicBlock::iterator(LastInst));
329   Builder.SetInsertPoint(&*NewIP);
330 
331   // However, if we are vectorizing, we need to construct the vector values.
332   // If the value is known to be uniform after vectorization, we can just
333   // broadcast the scalar value corresponding to lane zero. Otherwise, we
334   // construct the vector values using insertelement instructions. Since the
335   // resulting vectors are stored in State, we will only generate the
336   // insertelements once.
337   Value *VectorValue = nullptr;
338   if (IsUniform) {
339     VectorValue = GetBroadcastInstrs(ScalarValue);
340     set(Def, VectorValue);
341   } else {
342     // Initialize packing with insertelements to start from undef.
343     assert(!VF.isScalable() && "VF is assumed to be non scalable.");
344     Value *Undef = PoisonValue::get(VectorType::get(LastInst->getType(), VF));
345     set(Def, Undef);
346     for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane)
347       packScalarIntoVectorValue(Def, Lane);
348     VectorValue = get(Def);
349   }
350   Builder.restoreIP(OldIP);
351   return VectorValue;
352 }
353 
354 BasicBlock *VPTransformState::CFGState::getPreheaderBBFor(VPRecipeBase *R) {
355   VPRegionBlock *LoopRegion = R->getParent()->getEnclosingLoopRegion();
356   return VPBB2IRBB[LoopRegion->getPreheaderVPBB()];
357 }
358 
359 void VPTransformState::addNewMetadata(Instruction *To,
360                                       const Instruction *Orig) {
361   // If the loop was versioned with memchecks, add the corresponding no-alias
362   // metadata.
363   if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig)))
364     LVer->annotateInstWithNoAlias(To, Orig);
365 }
366 
367 void VPTransformState::addMetadata(Value *To, Instruction *From) {
368   // No source instruction to transfer metadata from?
369   if (!From)
370     return;
371 
372   if (Instruction *ToI = dyn_cast<Instruction>(To)) {
373     propagateMetadata(ToI, From);
374     addNewMetadata(ToI, From);
375   }
376 }
377 
378 void VPTransformState::setDebugLocFrom(DebugLoc DL) {
379   const DILocation *DIL = DL;
380   // When a FSDiscriminator is enabled, we don't need to add the multiply
381   // factors to the discriminators.
382   if (DIL &&
383       Builder.GetInsertBlock()
384           ->getParent()
385           ->shouldEmitDebugInfoForProfiling() &&
386       !EnableFSDiscriminator) {
387     // FIXME: For scalable vectors, assume vscale=1.
388     unsigned UF = Plan->getUF();
389     auto NewDIL =
390         DIL->cloneByMultiplyingDuplicationFactor(UF * VF.getKnownMinValue());
391     if (NewDIL)
392       Builder.SetCurrentDebugLocation(*NewDIL);
393     else
394       LLVM_DEBUG(dbgs() << "Failed to create new discriminator: "
395                         << DIL->getFilename() << " Line: " << DIL->getLine());
396   } else
397     Builder.SetCurrentDebugLocation(DIL);
398 }
399 
400 void VPTransformState::packScalarIntoVectorValue(VPValue *Def,
401                                                  const VPLane &Lane) {
402   Value *ScalarInst = get(Def, Lane);
403   Value *VectorValue = get(Def);
404   VectorValue = Builder.CreateInsertElement(VectorValue, ScalarInst,
405                                             Lane.getAsRuntimeExpr(Builder, VF));
406   set(Def, VectorValue);
407 }
408 
409 BasicBlock *
410 VPBasicBlock::createEmptyBasicBlock(VPTransformState::CFGState &CFG) {
411   // BB stands for IR BasicBlocks. VPBB stands for VPlan VPBasicBlocks.
412   // Pred stands for Predessor. Prev stands for Previous - last visited/created.
413   BasicBlock *PrevBB = CFG.PrevBB;
414   BasicBlock *NewBB = BasicBlock::Create(PrevBB->getContext(), getName(),
415                                          PrevBB->getParent(), CFG.ExitBB);
416   LLVM_DEBUG(dbgs() << "LV: created " << NewBB->getName() << '\n');
417 
418   return NewBB;
419 }
420 
421 void VPBasicBlock::connectToPredecessors(VPTransformState::CFGState &CFG) {
422   BasicBlock *NewBB = CFG.VPBB2IRBB[this];
423   // Hook up the new basic block to its predecessors.
424   for (VPBlockBase *PredVPBlock : getHierarchicalPredecessors()) {
425     VPBasicBlock *PredVPBB = PredVPBlock->getExitingBasicBlock();
426     auto &PredVPSuccessors = PredVPBB->getHierarchicalSuccessors();
427     BasicBlock *PredBB = CFG.VPBB2IRBB[PredVPBB];
428 
429     assert(PredBB && "Predecessor basic-block not found building successor.");
430     auto *PredBBTerminator = PredBB->getTerminator();
431     LLVM_DEBUG(dbgs() << "LV: draw edge from" << PredBB->getName() << '\n');
432 
433     auto *TermBr = dyn_cast<BranchInst>(PredBBTerminator);
434     if (isa<UnreachableInst>(PredBBTerminator)) {
435       assert(PredVPSuccessors.size() == 1 &&
436              "Predecessor ending w/o branch must have single successor.");
437       DebugLoc DL = PredBBTerminator->getDebugLoc();
438       PredBBTerminator->eraseFromParent();
439       auto *Br = BranchInst::Create(NewBB, PredBB);
440       Br->setDebugLoc(DL);
441     } else if (TermBr && !TermBr->isConditional()) {
442       TermBr->setSuccessor(0, NewBB);
443     } else {
444       // Set each forward successor here when it is created, excluding
445       // backedges. A backward successor is set when the branch is created.
446       unsigned idx = PredVPSuccessors.front() == this ? 0 : 1;
447       assert(
448           (!TermBr->getSuccessor(idx) ||
449            (isa<VPIRBasicBlock>(this) && TermBr->getSuccessor(idx) == NewBB)) &&
450           "Trying to reset an existing successor block.");
451       TermBr->setSuccessor(idx, NewBB);
452     }
453     CFG.DTU.applyUpdates({{DominatorTree::Insert, PredBB, NewBB}});
454   }
455 }
456 
457 void VPIRBasicBlock::execute(VPTransformState *State) {
458   assert(getHierarchicalSuccessors().size() <= 2 &&
459          "VPIRBasicBlock can have at most two successors at the moment!");
460   State->Builder.SetInsertPoint(IRBB->getTerminator());
461   State->CFG.PrevBB = IRBB;
462   State->CFG.VPBB2IRBB[this] = IRBB;
463   executeRecipes(State, IRBB);
464   // Create a branch instruction to terminate IRBB if one was not created yet
465   // and is needed.
466   if (getSingleSuccessor() && isa<UnreachableInst>(IRBB->getTerminator())) {
467     auto *Br = State->Builder.CreateBr(IRBB);
468     Br->setOperand(0, nullptr);
469     IRBB->getTerminator()->eraseFromParent();
470   } else {
471     assert(
472         (getNumSuccessors() == 0 || isa<BranchInst>(IRBB->getTerminator())) &&
473         "other blocks must be terminated by a branch");
474   }
475 
476   connectToPredecessors(State->CFG);
477 }
478 
479 void VPBasicBlock::execute(VPTransformState *State) {
480   bool Replica = bool(State->Lane);
481   BasicBlock *NewBB = State->CFG.PrevBB; // Reuse it if possible.
482 
483   auto IsReplicateRegion = [](VPBlockBase *BB) {
484     auto *R = dyn_cast_or_null<VPRegionBlock>(BB);
485     return R && R->isReplicator();
486   };
487 
488   // 1. Create an IR basic block.
489   if (this == getPlan()->getVectorPreheader() ||
490       (Replica && this == getParent()->getEntry()) ||
491       IsReplicateRegion(getSingleHierarchicalPredecessor())) {
492     // Reuse the previous basic block if the current VPBB is either
493     //  * the vector preheader,
494     //  * the entry to a replicate region, or
495     //  * the exit of a replicate region.
496     State->CFG.VPBB2IRBB[this] = NewBB;
497   } else {
498     NewBB = createEmptyBasicBlock(State->CFG);
499 
500     State->Builder.SetInsertPoint(NewBB);
501     // Temporarily terminate with unreachable until CFG is rewired.
502     UnreachableInst *Terminator = State->Builder.CreateUnreachable();
503     // Register NewBB in its loop. In innermost loops its the same for all
504     // BB's.
505     if (State->CurrentVectorLoop)
506       State->CurrentVectorLoop->addBasicBlockToLoop(NewBB, *State->LI);
507     State->Builder.SetInsertPoint(Terminator);
508 
509     State->CFG.PrevBB = NewBB;
510     State->CFG.VPBB2IRBB[this] = NewBB;
511     connectToPredecessors(State->CFG);
512   }
513 
514   // 2. Fill the IR basic block with IR instructions.
515   executeRecipes(State, NewBB);
516 }
517 
518 void VPBasicBlock::dropAllReferences(VPValue *NewValue) {
519   for (VPRecipeBase &R : Recipes) {
520     for (auto *Def : R.definedValues())
521       Def->replaceAllUsesWith(NewValue);
522 
523     for (unsigned I = 0, E = R.getNumOperands(); I != E; I++)
524       R.setOperand(I, NewValue);
525   }
526 }
527 
528 void VPBasicBlock::executeRecipes(VPTransformState *State, BasicBlock *BB) {
529   LLVM_DEBUG(dbgs() << "LV: vectorizing VPBB:" << getName()
530                     << " in BB:" << BB->getName() << '\n');
531 
532   State->CFG.PrevVPBB = this;
533 
534   for (VPRecipeBase &Recipe : Recipes)
535     Recipe.execute(*State);
536 
537   LLVM_DEBUG(dbgs() << "LV: filled BB:" << *BB);
538 }
539 
540 VPBasicBlock *VPBasicBlock::splitAt(iterator SplitAt) {
541   assert((SplitAt == end() || SplitAt->getParent() == this) &&
542          "can only split at a position in the same block");
543 
544   SmallVector<VPBlockBase *, 2> Succs(successors());
545   // Create new empty block after the block to split.
546   auto *SplitBlock = new VPBasicBlock(getName() + ".split");
547   VPBlockUtils::insertBlockAfter(SplitBlock, this);
548 
549   // Finally, move the recipes starting at SplitAt to new block.
550   for (VPRecipeBase &ToMove :
551        make_early_inc_range(make_range(SplitAt, this->end())))
552     ToMove.moveBefore(*SplitBlock, SplitBlock->end());
553 
554   return SplitBlock;
555 }
556 
557 /// Return the enclosing loop region for region \p P. The templated version is
558 /// used to support both const and non-const block arguments.
559 template <typename T> static T *getEnclosingLoopRegionForRegion(T *P) {
560   if (P && P->isReplicator()) {
561     P = P->getParent();
562     assert(!cast<VPRegionBlock>(P)->isReplicator() &&
563            "unexpected nested replicate regions");
564   }
565   return P;
566 }
567 
568 VPRegionBlock *VPBasicBlock::getEnclosingLoopRegion() {
569   return getEnclosingLoopRegionForRegion(getParent());
570 }
571 
572 const VPRegionBlock *VPBasicBlock::getEnclosingLoopRegion() const {
573   return getEnclosingLoopRegionForRegion(getParent());
574 }
575 
576 static bool hasConditionalTerminator(const VPBasicBlock *VPBB) {
577   if (VPBB->empty()) {
578     assert(
579         VPBB->getNumSuccessors() < 2 &&
580         "block with multiple successors doesn't have a recipe as terminator");
581     return false;
582   }
583 
584   const VPRecipeBase *R = &VPBB->back();
585   bool IsCondBranch = isa<VPBranchOnMaskRecipe>(R) ||
586                       match(R, m_BranchOnCond(m_VPValue())) ||
587                       match(R, m_BranchOnCount(m_VPValue(), m_VPValue()));
588   (void)IsCondBranch;
589 
590   if (VPBB->getNumSuccessors() >= 2 ||
591       (VPBB->isExiting() && !VPBB->getParent()->isReplicator())) {
592     assert(IsCondBranch && "block with multiple successors not terminated by "
593                            "conditional branch recipe");
594 
595     return true;
596   }
597 
598   assert(
599       !IsCondBranch &&
600       "block with 0 or 1 successors terminated by conditional branch recipe");
601   return false;
602 }
603 
604 VPRecipeBase *VPBasicBlock::getTerminator() {
605   if (hasConditionalTerminator(this))
606     return &back();
607   return nullptr;
608 }
609 
610 const VPRecipeBase *VPBasicBlock::getTerminator() const {
611   if (hasConditionalTerminator(this))
612     return &back();
613   return nullptr;
614 }
615 
616 bool VPBasicBlock::isExiting() const {
617   return getParent() && getParent()->getExitingBasicBlock() == this;
618 }
619 
620 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
621 void VPBlockBase::printSuccessors(raw_ostream &O, const Twine &Indent) const {
622   if (getSuccessors().empty()) {
623     O << Indent << "No successors\n";
624   } else {
625     O << Indent << "Successor(s): ";
626     ListSeparator LS;
627     for (auto *Succ : getSuccessors())
628       O << LS << Succ->getName();
629     O << '\n';
630   }
631 }
632 
633 void VPBasicBlock::print(raw_ostream &O, const Twine &Indent,
634                          VPSlotTracker &SlotTracker) const {
635   O << Indent << getName() << ":\n";
636 
637   auto RecipeIndent = Indent + "  ";
638   for (const VPRecipeBase &Recipe : *this) {
639     Recipe.print(O, RecipeIndent, SlotTracker);
640     O << '\n';
641   }
642 
643   printSuccessors(O, Indent);
644 }
645 #endif
646 
647 static std::pair<VPBlockBase *, VPBlockBase *> cloneFrom(VPBlockBase *Entry);
648 
649 // Clone the CFG for all nodes reachable from \p Entry, this includes cloning
650 // the blocks and their recipes. Operands of cloned recipes will NOT be updated.
651 // Remapping of operands must be done separately. Returns a pair with the new
652 // entry and exiting blocks of the cloned region. If \p Entry isn't part of a
653 // region, return nullptr for the exiting block.
654 static std::pair<VPBlockBase *, VPBlockBase *> cloneFrom(VPBlockBase *Entry) {
655   DenseMap<VPBlockBase *, VPBlockBase *> Old2NewVPBlocks;
656   VPBlockBase *Exiting = nullptr;
657   bool InRegion = Entry->getParent();
658   // First, clone blocks reachable from Entry.
659   for (VPBlockBase *BB : vp_depth_first_shallow(Entry)) {
660     VPBlockBase *NewBB = BB->clone();
661     Old2NewVPBlocks[BB] = NewBB;
662     if (InRegion && BB->getNumSuccessors() == 0) {
663       assert(!Exiting && "Multiple exiting blocks?");
664       Exiting = BB;
665     }
666   }
667   assert((!InRegion || Exiting) && "regions must have a single exiting block");
668 
669   // Second, update the predecessors & successors of the cloned blocks.
670   for (VPBlockBase *BB : vp_depth_first_shallow(Entry)) {
671     VPBlockBase *NewBB = Old2NewVPBlocks[BB];
672     SmallVector<VPBlockBase *> NewPreds;
673     for (VPBlockBase *Pred : BB->getPredecessors()) {
674       NewPreds.push_back(Old2NewVPBlocks[Pred]);
675     }
676     NewBB->setPredecessors(NewPreds);
677     SmallVector<VPBlockBase *> NewSuccs;
678     for (VPBlockBase *Succ : BB->successors()) {
679       NewSuccs.push_back(Old2NewVPBlocks[Succ]);
680     }
681     NewBB->setSuccessors(NewSuccs);
682   }
683 
684 #if !defined(NDEBUG)
685   // Verify that the order of predecessors and successors matches in the cloned
686   // version.
687   for (const auto &[OldBB, NewBB] :
688        zip(vp_depth_first_shallow(Entry),
689            vp_depth_first_shallow(Old2NewVPBlocks[Entry]))) {
690     for (const auto &[OldPred, NewPred] :
691          zip(OldBB->getPredecessors(), NewBB->getPredecessors()))
692       assert(NewPred == Old2NewVPBlocks[OldPred] && "Different predecessors");
693 
694     for (const auto &[OldSucc, NewSucc] :
695          zip(OldBB->successors(), NewBB->successors()))
696       assert(NewSucc == Old2NewVPBlocks[OldSucc] && "Different successors");
697   }
698 #endif
699 
700   return std::make_pair(Old2NewVPBlocks[Entry],
701                         Exiting ? Old2NewVPBlocks[Exiting] : nullptr);
702 }
703 
704 VPRegionBlock *VPRegionBlock::clone() {
705   const auto &[NewEntry, NewExiting] = cloneFrom(getEntry());
706   auto *NewRegion =
707       new VPRegionBlock(NewEntry, NewExiting, getName(), isReplicator());
708   for (VPBlockBase *Block : vp_depth_first_shallow(NewEntry))
709     Block->setParent(NewRegion);
710   return NewRegion;
711 }
712 
713 void VPRegionBlock::dropAllReferences(VPValue *NewValue) {
714   for (VPBlockBase *Block : vp_depth_first_shallow(Entry))
715     // Drop all references in VPBasicBlocks and replace all uses with
716     // DummyValue.
717     Block->dropAllReferences(NewValue);
718 }
719 
720 void VPRegionBlock::execute(VPTransformState *State) {
721   ReversePostOrderTraversal<VPBlockShallowTraversalWrapper<VPBlockBase *>>
722       RPOT(Entry);
723 
724   if (!isReplicator()) {
725     // Create and register the new vector loop.
726     Loop *PrevLoop = State->CurrentVectorLoop;
727     State->CurrentVectorLoop = State->LI->AllocateLoop();
728     BasicBlock *VectorPH = State->CFG.VPBB2IRBB[getPreheaderVPBB()];
729     Loop *ParentLoop = State->LI->getLoopFor(VectorPH);
730 
731     // Insert the new loop into the loop nest and register the new basic blocks
732     // before calling any utilities such as SCEV that require valid LoopInfo.
733     if (ParentLoop)
734       ParentLoop->addChildLoop(State->CurrentVectorLoop);
735     else
736       State->LI->addTopLevelLoop(State->CurrentVectorLoop);
737 
738     // Visit the VPBlocks connected to "this", starting from it.
739     for (VPBlockBase *Block : RPOT) {
740       LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n');
741       Block->execute(State);
742     }
743 
744     State->CurrentVectorLoop = PrevLoop;
745     return;
746   }
747 
748   assert(!State->Lane && "Replicating a Region with non-null instance.");
749 
750   // Enter replicating mode.
751   assert(!State->VF.isScalable() && "VF is assumed to be non scalable.");
752   State->Lane = VPLane(0);
753   for (unsigned Lane = 0, VF = State->VF.getKnownMinValue(); Lane < VF;
754        ++Lane) {
755     State->Lane = VPLane(Lane, VPLane::Kind::First);
756     // Visit the VPBlocks connected to \p this, starting from it.
757     for (VPBlockBase *Block : RPOT) {
758       LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n');
759       Block->execute(State);
760     }
761   }
762 
763   // Exit replicating mode.
764   State->Lane.reset();
765 }
766 
767 InstructionCost VPBasicBlock::cost(ElementCount VF, VPCostContext &Ctx) {
768   InstructionCost Cost = 0;
769   for (VPRecipeBase &R : Recipes)
770     Cost += R.cost(VF, Ctx);
771   return Cost;
772 }
773 
774 InstructionCost VPRegionBlock::cost(ElementCount VF, VPCostContext &Ctx) {
775   if (!isReplicator()) {
776     InstructionCost Cost = 0;
777     for (VPBlockBase *Block : vp_depth_first_shallow(getEntry()))
778       Cost += Block->cost(VF, Ctx);
779     InstructionCost BackedgeCost =
780         ForceTargetInstructionCost.getNumOccurrences()
781             ? InstructionCost(ForceTargetInstructionCost.getNumOccurrences())
782             : Ctx.TTI.getCFInstrCost(Instruction::Br, TTI::TCK_RecipThroughput);
783     LLVM_DEBUG(dbgs() << "Cost of " << BackedgeCost << " for VF " << VF
784                       << ": vector loop backedge\n");
785     Cost += BackedgeCost;
786     return Cost;
787   }
788 
789   // Compute the cost of a replicate region. Replicating isn't supported for
790   // scalable vectors, return an invalid cost for them.
791   // TODO: Discard scalable VPlans with replicate recipes earlier after
792   // construction.
793   if (VF.isScalable())
794     return InstructionCost::getInvalid();
795 
796   // First compute the cost of the conditionally executed recipes, followed by
797   // account for the branching cost, except if the mask is a header mask or
798   // uniform condition.
799   using namespace llvm::VPlanPatternMatch;
800   VPBasicBlock *Then = cast<VPBasicBlock>(getEntry()->getSuccessors()[0]);
801   InstructionCost ThenCost = Then->cost(VF, Ctx);
802 
803   // For the scalar case, we may not always execute the original predicated
804   // block, Thus, scale the block's cost by the probability of executing it.
805   if (VF.isScalar())
806     return ThenCost / getReciprocalPredBlockProb();
807 
808   return ThenCost;
809 }
810 
811 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
812 void VPRegionBlock::print(raw_ostream &O, const Twine &Indent,
813                           VPSlotTracker &SlotTracker) const {
814   O << Indent << (isReplicator() ? "<xVFxUF> " : "<x1> ") << getName() << ": {";
815   auto NewIndent = Indent + "  ";
816   for (auto *BlockBase : vp_depth_first_shallow(Entry)) {
817     O << '\n';
818     BlockBase->print(O, NewIndent, SlotTracker);
819   }
820   O << Indent << "}\n";
821 
822   printSuccessors(O, Indent);
823 }
824 #endif
825 
826 VPlan::~VPlan() {
827   if (Entry) {
828     VPValue DummyValue;
829     for (VPBlockBase *Block : vp_depth_first_shallow(Entry))
830       Block->dropAllReferences(&DummyValue);
831 
832     VPBlockBase::deleteCFG(Entry);
833 
834     Preheader->dropAllReferences(&DummyValue);
835     delete Preheader;
836   }
837   for (VPValue *VPV : VPLiveInsToFree)
838     delete VPV;
839   if (BackedgeTakenCount)
840     delete BackedgeTakenCount;
841 }
842 
843 VPIRBasicBlock *VPIRBasicBlock::fromBasicBlock(BasicBlock *IRBB) {
844   auto *VPIRBB = new VPIRBasicBlock(IRBB);
845   for (Instruction &I :
846        make_range(IRBB->begin(), IRBB->getTerminator()->getIterator()))
847     VPIRBB->appendRecipe(new VPIRInstruction(I));
848   return VPIRBB;
849 }
850 
851 VPlanPtr VPlan::createInitialVPlan(Type *InductionTy,
852                                    PredicatedScalarEvolution &PSE,
853                                    bool RequiresScalarEpilogueCheck,
854                                    bool TailFolded, Loop *TheLoop) {
855   VPIRBasicBlock *Entry =
856       VPIRBasicBlock::fromBasicBlock(TheLoop->getLoopPreheader());
857   VPBasicBlock *VecPreheader = new VPBasicBlock("vector.ph");
858   VPIRBasicBlock *ScalarHeader =
859       VPIRBasicBlock::fromBasicBlock(TheLoop->getHeader());
860   auto Plan = std::make_unique<VPlan>(Entry, VecPreheader, ScalarHeader);
861 
862   // Create SCEV and VPValue for the trip count.
863 
864   // Currently only loops with countable exits are vectorized, but calling
865   // getSymbolicMaxBackedgeTakenCount allows enablement work for loops with
866   // uncountable exits whilst also ensuring the symbolic maximum and known
867   // back-edge taken count remain identical for loops with countable exits.
868   const SCEV *BackedgeTakenCountSCEV = PSE.getSymbolicMaxBackedgeTakenCount();
869   assert((!isa<SCEVCouldNotCompute>(BackedgeTakenCountSCEV) &&
870           BackedgeTakenCountSCEV == PSE.getBackedgeTakenCount()) &&
871          "Invalid loop count");
872   ScalarEvolution &SE = *PSE.getSE();
873   const SCEV *TripCount = SE.getTripCountFromExitCount(BackedgeTakenCountSCEV,
874                                                        InductionTy, TheLoop);
875   Plan->TripCount =
876       vputils::getOrCreateVPValueForSCEVExpr(*Plan, TripCount, SE);
877 
878   // Create VPRegionBlock, with empty header and latch blocks, to be filled
879   // during processing later.
880   VPBasicBlock *HeaderVPBB = new VPBasicBlock("vector.body");
881   VPBasicBlock *LatchVPBB = new VPBasicBlock("vector.latch");
882   VPBlockUtils::insertBlockAfter(LatchVPBB, HeaderVPBB);
883   auto *TopRegion = new VPRegionBlock(HeaderVPBB, LatchVPBB, "vector loop",
884                                       false /*isReplicator*/);
885 
886   VPBlockUtils::insertBlockAfter(TopRegion, VecPreheader);
887   VPBasicBlock *MiddleVPBB = new VPBasicBlock("middle.block");
888   VPBlockUtils::insertBlockAfter(MiddleVPBB, TopRegion);
889 
890   VPBasicBlock *ScalarPH = new VPBasicBlock("scalar.ph");
891   VPBlockUtils::connectBlocks(ScalarPH, ScalarHeader);
892   if (!RequiresScalarEpilogueCheck) {
893     VPBlockUtils::connectBlocks(MiddleVPBB, ScalarPH);
894     return Plan;
895   }
896 
897   // If needed, add a check in the middle block to see if we have completed
898   // all of the iterations in the first vector loop.  Three cases:
899   // 1) If (N - N%VF) == N, then we *don't* need to run the remainder.
900   //    Thus if tail is to be folded, we know we don't need to run the
901   //    remainder and we can set the condition to true.
902   // 2) If we require a scalar epilogue, there is no conditional branch as
903   //    we unconditionally branch to the scalar preheader.  Do nothing.
904   // 3) Otherwise, construct a runtime check.
905   BasicBlock *IRExitBlock = TheLoop->getUniqueExitBlock();
906   auto *VPExitBlock = VPIRBasicBlock::fromBasicBlock(IRExitBlock);
907   // The connection order corresponds to the operands of the conditional branch.
908   VPBlockUtils::insertBlockAfter(VPExitBlock, MiddleVPBB);
909   VPBlockUtils::connectBlocks(MiddleVPBB, ScalarPH);
910 
911   auto *ScalarLatchTerm = TheLoop->getLoopLatch()->getTerminator();
912   // Here we use the same DebugLoc as the scalar loop latch terminator instead
913   // of the corresponding compare because they may have ended up with
914   // different line numbers and we want to avoid awkward line stepping while
915   // debugging. Eg. if the compare has got a line number inside the loop.
916   VPBuilder Builder(MiddleVPBB);
917   VPValue *Cmp =
918       TailFolded
919           ? Plan->getOrAddLiveIn(ConstantInt::getTrue(
920                 IntegerType::getInt1Ty(TripCount->getType()->getContext())))
921           : Builder.createICmp(CmpInst::ICMP_EQ, Plan->getTripCount(),
922                                &Plan->getVectorTripCount(),
923                                ScalarLatchTerm->getDebugLoc(), "cmp.n");
924   Builder.createNaryOp(VPInstruction::BranchOnCond, {Cmp},
925                        ScalarLatchTerm->getDebugLoc());
926   return Plan;
927 }
928 
929 void VPlan::prepareToExecute(Value *TripCountV, Value *VectorTripCountV,
930                              Value *CanonicalIVStartValue,
931                              VPTransformState &State) {
932   Type *TCTy = TripCountV->getType();
933   // Check if the backedge taken count is needed, and if so build it.
934   if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) {
935     IRBuilder<> Builder(State.CFG.PrevBB->getTerminator());
936     auto *TCMO = Builder.CreateSub(TripCountV, ConstantInt::get(TCTy, 1),
937                                    "trip.count.minus.1");
938     BackedgeTakenCount->setUnderlyingValue(TCMO);
939   }
940 
941   VectorTripCount.setUnderlyingValue(VectorTripCountV);
942 
943   IRBuilder<> Builder(State.CFG.PrevBB->getTerminator());
944   // FIXME: Model VF * UF computation completely in VPlan.
945   assert(VFxUF.getNumUsers() && "VFxUF expected to always have users");
946   unsigned UF = getUF();
947   if (VF.getNumUsers()) {
948     Value *RuntimeVF = getRuntimeVF(Builder, TCTy, State.VF);
949     VF.setUnderlyingValue(RuntimeVF);
950     VFxUF.setUnderlyingValue(
951         UF > 1 ? Builder.CreateMul(RuntimeVF, ConstantInt::get(TCTy, UF))
952                : RuntimeVF);
953   } else {
954     VFxUF.setUnderlyingValue(createStepForVF(Builder, TCTy, State.VF, UF));
955   }
956 
957   // When vectorizing the epilogue loop, the canonical induction start value
958   // needs to be changed from zero to the value after the main vector loop.
959   // FIXME: Improve modeling for canonical IV start values in the epilogue loop.
960   if (CanonicalIVStartValue) {
961     VPValue *VPV = getOrAddLiveIn(CanonicalIVStartValue);
962     auto *IV = getCanonicalIV();
963     assert(all_of(IV->users(),
964                   [](const VPUser *U) {
965                     return isa<VPScalarIVStepsRecipe>(U) ||
966                            isa<VPScalarCastRecipe>(U) ||
967                            isa<VPDerivedIVRecipe>(U) ||
968                            cast<VPInstruction>(U)->getOpcode() ==
969                                Instruction::Add;
970                   }) &&
971            "the canonical IV should only be used by its increment or "
972            "ScalarIVSteps when resetting the start value");
973     IV->setOperand(0, VPV);
974   }
975 }
976 
977 /// Replace \p VPBB with a VPIRBasicBlock wrapping \p IRBB. All recipes from \p
978 /// VPBB are moved to the end of the newly created VPIRBasicBlock. VPBB must
979 /// have a single predecessor, which is rewired to the new VPIRBasicBlock. All
980 /// successors of VPBB, if any, are rewired to the new VPIRBasicBlock.
981 static void replaceVPBBWithIRVPBB(VPBasicBlock *VPBB, BasicBlock *IRBB) {
982   VPIRBasicBlock *IRVPBB = VPIRBasicBlock::fromBasicBlock(IRBB);
983   for (auto &R : make_early_inc_range(*VPBB)) {
984     assert(!R.isPhi() && "Tried to move phi recipe to end of block");
985     R.moveBefore(*IRVPBB, IRVPBB->end());
986   }
987 
988   VPBlockUtils::reassociateBlocks(VPBB, IRVPBB);
989 
990   delete VPBB;
991 }
992 
993 /// Generate the code inside the preheader and body of the vectorized loop.
994 /// Assumes a single pre-header basic-block was created for this. Introduce
995 /// additional basic-blocks as needed, and fill them all.
996 void VPlan::execute(VPTransformState *State) {
997   // Initialize CFG state.
998   State->CFG.PrevVPBB = nullptr;
999   State->CFG.ExitBB = State->CFG.PrevBB->getSingleSuccessor();
1000   BasicBlock *VectorPreHeader = State->CFG.PrevBB;
1001   State->Builder.SetInsertPoint(VectorPreHeader->getTerminator());
1002 
1003   // Disconnect VectorPreHeader from ExitBB in both the CFG and DT.
1004   cast<BranchInst>(VectorPreHeader->getTerminator())->setSuccessor(0, nullptr);
1005   State->CFG.DTU.applyUpdates(
1006       {{DominatorTree::Delete, VectorPreHeader, State->CFG.ExitBB}});
1007 
1008   // Replace regular VPBB's for the middle and scalar preheader blocks with
1009   // VPIRBasicBlocks wrapping their IR blocks. The IR blocks are created during
1010   // skeleton creation, so we can only create the VPIRBasicBlocks now during
1011   // VPlan execution rather than earlier during VPlan construction.
1012   BasicBlock *MiddleBB = State->CFG.ExitBB;
1013   VPBasicBlock *MiddleVPBB = getMiddleBlock();
1014   BasicBlock *ScalarPh = MiddleBB->getSingleSuccessor();
1015   replaceVPBBWithIRVPBB(getScalarPreheader(), ScalarPh);
1016   replaceVPBBWithIRVPBB(MiddleVPBB, MiddleBB);
1017 
1018   // Disconnect the middle block from its single successor (the scalar loop
1019   // header) in both the CFG and DT. The branch will be recreated during VPlan
1020   // execution.
1021   auto *BrInst = new UnreachableInst(MiddleBB->getContext());
1022   BrInst->insertBefore(MiddleBB->getTerminator());
1023   MiddleBB->getTerminator()->eraseFromParent();
1024   State->CFG.DTU.applyUpdates({{DominatorTree::Delete, MiddleBB, ScalarPh}});
1025   // Disconnect scalar preheader and scalar header, as the dominator tree edge
1026   // will be updated as part of VPlan execution. This allows keeping the DTU
1027   // logic generic during VPlan execution.
1028   State->CFG.DTU.applyUpdates(
1029       {{DominatorTree::Delete, ScalarPh, ScalarPh->getSingleSuccessor()}});
1030 
1031   // Generate code in the loop pre-header and body.
1032   for (VPBlockBase *Block : vp_depth_first_shallow(Entry))
1033     Block->execute(State);
1034 
1035   VPBasicBlock *LatchVPBB = getVectorLoopRegion()->getExitingBasicBlock();
1036   BasicBlock *VectorLatchBB = State->CFG.VPBB2IRBB[LatchVPBB];
1037 
1038   // Fix the latch value of canonical, reduction and first-order recurrences
1039   // phis in the vector loop.
1040   VPBasicBlock *Header = getVectorLoopRegion()->getEntryBasicBlock();
1041   for (VPRecipeBase &R : Header->phis()) {
1042     // Skip phi-like recipes that generate their backedege values themselves.
1043     if (isa<VPWidenPHIRecipe>(&R))
1044       continue;
1045 
1046     if (isa<VPWidenPointerInductionRecipe>(&R) ||
1047         isa<VPWidenIntOrFpInductionRecipe>(&R)) {
1048       PHINode *Phi = nullptr;
1049       if (isa<VPWidenIntOrFpInductionRecipe>(&R)) {
1050         Phi = cast<PHINode>(State->get(R.getVPSingleValue()));
1051       } else {
1052         auto *WidenPhi = cast<VPWidenPointerInductionRecipe>(&R);
1053         assert(!WidenPhi->onlyScalarsGenerated(State->VF.isScalable()) &&
1054                "recipe generating only scalars should have been replaced");
1055         auto *GEP = cast<GetElementPtrInst>(State->get(WidenPhi));
1056         Phi = cast<PHINode>(GEP->getPointerOperand());
1057       }
1058 
1059       Phi->setIncomingBlock(1, VectorLatchBB);
1060 
1061       // Move the last step to the end of the latch block. This ensures
1062       // consistent placement of all induction updates.
1063       Instruction *Inc = cast<Instruction>(Phi->getIncomingValue(1));
1064       Inc->moveBefore(VectorLatchBB->getTerminator()->getPrevNode());
1065 
1066       // Use the steps for the last part as backedge value for the induction.
1067       if (auto *IV = dyn_cast<VPWidenIntOrFpInductionRecipe>(&R))
1068         Inc->setOperand(0, State->get(IV->getLastUnrolledPartOperand()));
1069       continue;
1070     }
1071 
1072     auto *PhiR = cast<VPHeaderPHIRecipe>(&R);
1073     bool NeedsScalar = isa<VPScalarPHIRecipe>(PhiR) ||
1074                        (isa<VPReductionPHIRecipe>(PhiR) &&
1075                         cast<VPReductionPHIRecipe>(PhiR)->isInLoop());
1076     Value *Phi = State->get(PhiR, NeedsScalar);
1077     Value *Val = State->get(PhiR->getBackedgeValue(), NeedsScalar);
1078     cast<PHINode>(Phi)->addIncoming(Val, VectorLatchBB);
1079   }
1080 
1081   State->CFG.DTU.flush();
1082   assert(State->CFG.DTU.getDomTree().verify(
1083              DominatorTree::VerificationLevel::Fast) &&
1084          "DT not preserved correctly");
1085 }
1086 
1087 InstructionCost VPlan::cost(ElementCount VF, VPCostContext &Ctx) {
1088   // For now only return the cost of the vector loop region, ignoring any other
1089   // blocks, like the preheader or middle blocks.
1090   return getVectorLoopRegion()->cost(VF, Ctx);
1091 }
1092 
1093 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1094 void VPlan::printLiveIns(raw_ostream &O) const {
1095   VPSlotTracker SlotTracker(this);
1096 
1097   if (VF.getNumUsers() > 0) {
1098     O << "\nLive-in ";
1099     VF.printAsOperand(O, SlotTracker);
1100     O << " = VF";
1101   }
1102 
1103   if (VFxUF.getNumUsers() > 0) {
1104     O << "\nLive-in ";
1105     VFxUF.printAsOperand(O, SlotTracker);
1106     O << " = VF * UF";
1107   }
1108 
1109   if (VectorTripCount.getNumUsers() > 0) {
1110     O << "\nLive-in ";
1111     VectorTripCount.printAsOperand(O, SlotTracker);
1112     O << " = vector-trip-count";
1113   }
1114 
1115   if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) {
1116     O << "\nLive-in ";
1117     BackedgeTakenCount->printAsOperand(O, SlotTracker);
1118     O << " = backedge-taken count";
1119   }
1120 
1121   O << "\n";
1122   if (TripCount->isLiveIn())
1123     O << "Live-in ";
1124   TripCount->printAsOperand(O, SlotTracker);
1125   O << " = original trip-count";
1126   O << "\n";
1127 }
1128 
1129 LLVM_DUMP_METHOD
1130 void VPlan::print(raw_ostream &O) const {
1131   VPSlotTracker SlotTracker(this);
1132 
1133   O << "VPlan '" << getName() << "' {";
1134 
1135   printLiveIns(O);
1136 
1137   if (!getPreheader()->empty()) {
1138     O << "\n";
1139     getPreheader()->print(O, "", SlotTracker);
1140   }
1141 
1142   for (const VPBlockBase *Block : vp_depth_first_shallow(getEntry())) {
1143     O << '\n';
1144     Block->print(O, "", SlotTracker);
1145   }
1146 
1147   O << "}\n";
1148 }
1149 
1150 std::string VPlan::getName() const {
1151   std::string Out;
1152   raw_string_ostream RSO(Out);
1153   RSO << Name << " for ";
1154   if (!VFs.empty()) {
1155     RSO << "VF={" << VFs[0];
1156     for (ElementCount VF : drop_begin(VFs))
1157       RSO << "," << VF;
1158     RSO << "},";
1159   }
1160 
1161   if (UFs.empty()) {
1162     RSO << "UF>=1";
1163   } else {
1164     RSO << "UF={" << UFs[0];
1165     for (unsigned UF : drop_begin(UFs))
1166       RSO << "," << UF;
1167     RSO << "}";
1168   }
1169 
1170   return Out;
1171 }
1172 
1173 LLVM_DUMP_METHOD
1174 void VPlan::printDOT(raw_ostream &O) const {
1175   VPlanPrinter Printer(O, *this);
1176   Printer.dump();
1177 }
1178 
1179 LLVM_DUMP_METHOD
1180 void VPlan::dump() const { print(dbgs()); }
1181 #endif
1182 
1183 static void remapOperands(VPBlockBase *Entry, VPBlockBase *NewEntry,
1184                           DenseMap<VPValue *, VPValue *> &Old2NewVPValues) {
1185   // Update the operands of all cloned recipes starting at NewEntry. This
1186   // traverses all reachable blocks. This is done in two steps, to handle cycles
1187   // in PHI recipes.
1188   ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<VPBlockBase *>>
1189       OldDeepRPOT(Entry);
1190   ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<VPBlockBase *>>
1191       NewDeepRPOT(NewEntry);
1192   // First, collect all mappings from old to new VPValues defined by cloned
1193   // recipes.
1194   for (const auto &[OldBB, NewBB] :
1195        zip(VPBlockUtils::blocksOnly<VPBasicBlock>(OldDeepRPOT),
1196            VPBlockUtils::blocksOnly<VPBasicBlock>(NewDeepRPOT))) {
1197     assert(OldBB->getRecipeList().size() == NewBB->getRecipeList().size() &&
1198            "blocks must have the same number of recipes");
1199     for (const auto &[OldR, NewR] : zip(*OldBB, *NewBB)) {
1200       assert(OldR.getNumOperands() == NewR.getNumOperands() &&
1201              "recipes must have the same number of operands");
1202       assert(OldR.getNumDefinedValues() == NewR.getNumDefinedValues() &&
1203              "recipes must define the same number of operands");
1204       for (const auto &[OldV, NewV] :
1205            zip(OldR.definedValues(), NewR.definedValues()))
1206         Old2NewVPValues[OldV] = NewV;
1207     }
1208   }
1209 
1210   // Update all operands to use cloned VPValues.
1211   for (VPBasicBlock *NewBB :
1212        VPBlockUtils::blocksOnly<VPBasicBlock>(NewDeepRPOT)) {
1213     for (VPRecipeBase &NewR : *NewBB)
1214       for (unsigned I = 0, E = NewR.getNumOperands(); I != E; ++I) {
1215         VPValue *NewOp = Old2NewVPValues.lookup(NewR.getOperand(I));
1216         NewR.setOperand(I, NewOp);
1217       }
1218   }
1219 }
1220 
1221 VPlan *VPlan::duplicate() {
1222   // Clone blocks.
1223   VPBasicBlock *NewPreheader = Preheader->clone();
1224   const auto &[NewEntry, __] = cloneFrom(Entry);
1225 
1226   BasicBlock *ScalarHeaderIRBB = getScalarHeader()->getIRBasicBlock();
1227   VPIRBasicBlock *NewScalarHeader = cast<VPIRBasicBlock>(*find_if(
1228       vp_depth_first_shallow(NewEntry), [ScalarHeaderIRBB](VPBlockBase *VPB) {
1229         auto *VPIRBB = dyn_cast<VPIRBasicBlock>(VPB);
1230         return VPIRBB && VPIRBB->getIRBasicBlock() == ScalarHeaderIRBB;
1231       }));
1232   // Create VPlan, clone live-ins and remap operands in the cloned blocks.
1233   auto *NewPlan =
1234       new VPlan(NewPreheader, cast<VPBasicBlock>(NewEntry), NewScalarHeader);
1235   DenseMap<VPValue *, VPValue *> Old2NewVPValues;
1236   for (VPValue *OldLiveIn : VPLiveInsToFree) {
1237     Old2NewVPValues[OldLiveIn] =
1238         NewPlan->getOrAddLiveIn(OldLiveIn->getLiveInIRValue());
1239   }
1240   Old2NewVPValues[&VectorTripCount] = &NewPlan->VectorTripCount;
1241   Old2NewVPValues[&VF] = &NewPlan->VF;
1242   Old2NewVPValues[&VFxUF] = &NewPlan->VFxUF;
1243   if (BackedgeTakenCount) {
1244     NewPlan->BackedgeTakenCount = new VPValue();
1245     Old2NewVPValues[BackedgeTakenCount] = NewPlan->BackedgeTakenCount;
1246   }
1247   assert(TripCount && "trip count must be set");
1248   if (TripCount->isLiveIn())
1249     Old2NewVPValues[TripCount] =
1250         NewPlan->getOrAddLiveIn(TripCount->getLiveInIRValue());
1251   // else NewTripCount will be created and inserted into Old2NewVPValues when
1252   // TripCount is cloned. In any case NewPlan->TripCount is updated below.
1253 
1254   remapOperands(Preheader, NewPreheader, Old2NewVPValues);
1255   remapOperands(Entry, NewEntry, Old2NewVPValues);
1256 
1257   // Initialize remaining fields of cloned VPlan.
1258   NewPlan->VFs = VFs;
1259   NewPlan->UFs = UFs;
1260   // TODO: Adjust names.
1261   NewPlan->Name = Name;
1262   assert(Old2NewVPValues.contains(TripCount) &&
1263          "TripCount must have been added to Old2NewVPValues");
1264   NewPlan->TripCount = Old2NewVPValues[TripCount];
1265   return NewPlan;
1266 }
1267 
1268 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1269 
1270 Twine VPlanPrinter::getUID(const VPBlockBase *Block) {
1271   return (isa<VPRegionBlock>(Block) ? "cluster_N" : "N") +
1272          Twine(getOrCreateBID(Block));
1273 }
1274 
1275 Twine VPlanPrinter::getOrCreateName(const VPBlockBase *Block) {
1276   const std::string &Name = Block->getName();
1277   if (!Name.empty())
1278     return Name;
1279   return "VPB" + Twine(getOrCreateBID(Block));
1280 }
1281 
1282 void VPlanPrinter::dump() {
1283   Depth = 1;
1284   bumpIndent(0);
1285   OS << "digraph VPlan {\n";
1286   OS << "graph [labelloc=t, fontsize=30; label=\"Vectorization Plan";
1287   if (!Plan.getName().empty())
1288     OS << "\\n" << DOT::EscapeString(Plan.getName());
1289 
1290   {
1291     // Print live-ins.
1292   std::string Str;
1293   raw_string_ostream SS(Str);
1294   Plan.printLiveIns(SS);
1295   SmallVector<StringRef, 0> Lines;
1296   StringRef(Str).rtrim('\n').split(Lines, "\n");
1297   for (auto Line : Lines)
1298     OS << DOT::EscapeString(Line.str()) << "\\n";
1299   }
1300 
1301   OS << "\"]\n";
1302   OS << "node [shape=rect, fontname=Courier, fontsize=30]\n";
1303   OS << "edge [fontname=Courier, fontsize=30]\n";
1304   OS << "compound=true\n";
1305 
1306   dumpBlock(Plan.getPreheader());
1307 
1308   for (const VPBlockBase *Block : vp_depth_first_shallow(Plan.getEntry()))
1309     dumpBlock(Block);
1310 
1311   OS << "}\n";
1312 }
1313 
1314 void VPlanPrinter::dumpBlock(const VPBlockBase *Block) {
1315   if (const VPBasicBlock *BasicBlock = dyn_cast<VPBasicBlock>(Block))
1316     dumpBasicBlock(BasicBlock);
1317   else if (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
1318     dumpRegion(Region);
1319   else
1320     llvm_unreachable("Unsupported kind of VPBlock.");
1321 }
1322 
1323 void VPlanPrinter::drawEdge(const VPBlockBase *From, const VPBlockBase *To,
1324                             bool Hidden, const Twine &Label) {
1325   // Due to "dot" we print an edge between two regions as an edge between the
1326   // exiting basic block and the entry basic of the respective regions.
1327   const VPBlockBase *Tail = From->getExitingBasicBlock();
1328   const VPBlockBase *Head = To->getEntryBasicBlock();
1329   OS << Indent << getUID(Tail) << " -> " << getUID(Head);
1330   OS << " [ label=\"" << Label << '\"';
1331   if (Tail != From)
1332     OS << " ltail=" << getUID(From);
1333   if (Head != To)
1334     OS << " lhead=" << getUID(To);
1335   if (Hidden)
1336     OS << "; splines=none";
1337   OS << "]\n";
1338 }
1339 
1340 void VPlanPrinter::dumpEdges(const VPBlockBase *Block) {
1341   auto &Successors = Block->getSuccessors();
1342   if (Successors.size() == 1)
1343     drawEdge(Block, Successors.front(), false, "");
1344   else if (Successors.size() == 2) {
1345     drawEdge(Block, Successors.front(), false, "T");
1346     drawEdge(Block, Successors.back(), false, "F");
1347   } else {
1348     unsigned SuccessorNumber = 0;
1349     for (auto *Successor : Successors)
1350       drawEdge(Block, Successor, false, Twine(SuccessorNumber++));
1351   }
1352 }
1353 
1354 void VPlanPrinter::dumpBasicBlock(const VPBasicBlock *BasicBlock) {
1355   // Implement dot-formatted dump by performing plain-text dump into the
1356   // temporary storage followed by some post-processing.
1357   OS << Indent << getUID(BasicBlock) << " [label =\n";
1358   bumpIndent(1);
1359   std::string Str;
1360   raw_string_ostream SS(Str);
1361   // Use no indentation as we need to wrap the lines into quotes ourselves.
1362   BasicBlock->print(SS, "", SlotTracker);
1363 
1364   // We need to process each line of the output separately, so split
1365   // single-string plain-text dump.
1366   SmallVector<StringRef, 0> Lines;
1367   StringRef(Str).rtrim('\n').split(Lines, "\n");
1368 
1369   auto EmitLine = [&](StringRef Line, StringRef Suffix) {
1370     OS << Indent << '"' << DOT::EscapeString(Line.str()) << "\\l\"" << Suffix;
1371   };
1372 
1373   // Don't need the "+" after the last line.
1374   for (auto Line : make_range(Lines.begin(), Lines.end() - 1))
1375     EmitLine(Line, " +\n");
1376   EmitLine(Lines.back(), "\n");
1377 
1378   bumpIndent(-1);
1379   OS << Indent << "]\n";
1380 
1381   dumpEdges(BasicBlock);
1382 }
1383 
1384 void VPlanPrinter::dumpRegion(const VPRegionBlock *Region) {
1385   OS << Indent << "subgraph " << getUID(Region) << " {\n";
1386   bumpIndent(1);
1387   OS << Indent << "fontname=Courier\n"
1388      << Indent << "label=\""
1389      << DOT::EscapeString(Region->isReplicator() ? "<xVFxUF> " : "<x1> ")
1390      << DOT::EscapeString(Region->getName()) << "\"\n";
1391   // Dump the blocks of the region.
1392   assert(Region->getEntry() && "Region contains no inner blocks.");
1393   for (const VPBlockBase *Block : vp_depth_first_shallow(Region->getEntry()))
1394     dumpBlock(Block);
1395   bumpIndent(-1);
1396   OS << Indent << "}\n";
1397   dumpEdges(Region);
1398 }
1399 
1400 void VPlanIngredient::print(raw_ostream &O) const {
1401   if (auto *Inst = dyn_cast<Instruction>(V)) {
1402     if (!Inst->getType()->isVoidTy()) {
1403       Inst->printAsOperand(O, false);
1404       O << " = ";
1405     }
1406     O << Inst->getOpcodeName() << " ";
1407     unsigned E = Inst->getNumOperands();
1408     if (E > 0) {
1409       Inst->getOperand(0)->printAsOperand(O, false);
1410       for (unsigned I = 1; I < E; ++I)
1411         Inst->getOperand(I)->printAsOperand(O << ", ", false);
1412     }
1413   } else // !Inst
1414     V->printAsOperand(O, false);
1415 }
1416 
1417 #endif
1418 
1419 bool VPValue::isDefinedOutsideLoopRegions() const {
1420   return !hasDefiningRecipe() ||
1421          !getDefiningRecipe()->getParent()->getEnclosingLoopRegion();
1422 }
1423 
1424 void VPValue::replaceAllUsesWith(VPValue *New) {
1425   replaceUsesWithIf(New, [](VPUser &, unsigned) { return true; });
1426 }
1427 
1428 void VPValue::replaceUsesWithIf(
1429     VPValue *New,
1430     llvm::function_ref<bool(VPUser &U, unsigned Idx)> ShouldReplace) {
1431   // Note that this early exit is required for correctness; the implementation
1432   // below relies on the number of users for this VPValue to decrease, which
1433   // isn't the case if this == New.
1434   if (this == New)
1435     return;
1436 
1437   for (unsigned J = 0; J < getNumUsers();) {
1438     VPUser *User = Users[J];
1439     bool RemovedUser = false;
1440     for (unsigned I = 0, E = User->getNumOperands(); I < E; ++I) {
1441       if (User->getOperand(I) != this || !ShouldReplace(*User, I))
1442         continue;
1443 
1444       RemovedUser = true;
1445       User->setOperand(I, New);
1446     }
1447     // If a user got removed after updating the current user, the next user to
1448     // update will be moved to the current position, so we only need to
1449     // increment the index if the number of users did not change.
1450     if (!RemovedUser)
1451       J++;
1452   }
1453 }
1454 
1455 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1456 void VPValue::printAsOperand(raw_ostream &OS, VPSlotTracker &Tracker) const {
1457   OS << Tracker.getOrCreateName(this);
1458 }
1459 
1460 void VPUser::printOperands(raw_ostream &O, VPSlotTracker &SlotTracker) const {
1461   interleaveComma(operands(), O, [&O, &SlotTracker](VPValue *Op) {
1462     Op->printAsOperand(O, SlotTracker);
1463   });
1464 }
1465 #endif
1466 
1467 void VPInterleavedAccessInfo::visitRegion(VPRegionBlock *Region,
1468                                           Old2NewTy &Old2New,
1469                                           InterleavedAccessInfo &IAI) {
1470   ReversePostOrderTraversal<VPBlockShallowTraversalWrapper<VPBlockBase *>>
1471       RPOT(Region->getEntry());
1472   for (VPBlockBase *Base : RPOT) {
1473     visitBlock(Base, Old2New, IAI);
1474   }
1475 }
1476 
1477 void VPInterleavedAccessInfo::visitBlock(VPBlockBase *Block, Old2NewTy &Old2New,
1478                                          InterleavedAccessInfo &IAI) {
1479   if (VPBasicBlock *VPBB = dyn_cast<VPBasicBlock>(Block)) {
1480     for (VPRecipeBase &VPI : *VPBB) {
1481       if (isa<VPWidenPHIRecipe>(&VPI))
1482         continue;
1483       assert(isa<VPInstruction>(&VPI) && "Can only handle VPInstructions");
1484       auto *VPInst = cast<VPInstruction>(&VPI);
1485 
1486       auto *Inst = dyn_cast_or_null<Instruction>(VPInst->getUnderlyingValue());
1487       if (!Inst)
1488         continue;
1489       auto *IG = IAI.getInterleaveGroup(Inst);
1490       if (!IG)
1491         continue;
1492 
1493       auto NewIGIter = Old2New.find(IG);
1494       if (NewIGIter == Old2New.end())
1495         Old2New[IG] = new InterleaveGroup<VPInstruction>(
1496             IG->getFactor(), IG->isReverse(), IG->getAlign());
1497 
1498       if (Inst == IG->getInsertPos())
1499         Old2New[IG]->setInsertPos(VPInst);
1500 
1501       InterleaveGroupMap[VPInst] = Old2New[IG];
1502       InterleaveGroupMap[VPInst]->insertMember(
1503           VPInst, IG->getIndex(Inst),
1504           Align(IG->isReverse() ? (-1) * int(IG->getFactor())
1505                                 : IG->getFactor()));
1506     }
1507   } else if (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
1508     visitRegion(Region, Old2New, IAI);
1509   else
1510     llvm_unreachable("Unsupported kind of VPBlock.");
1511 }
1512 
1513 VPInterleavedAccessInfo::VPInterleavedAccessInfo(VPlan &Plan,
1514                                                  InterleavedAccessInfo &IAI) {
1515   Old2NewTy Old2New;
1516   visitRegion(Plan.getVectorLoopRegion(), Old2New, IAI);
1517 }
1518 
1519 void VPSlotTracker::assignName(const VPValue *V) {
1520   assert(!VPValue2Name.contains(V) && "VPValue already has a name!");
1521   auto *UV = V->getUnderlyingValue();
1522   auto *VPI = dyn_cast_or_null<VPInstruction>(V->getDefiningRecipe());
1523   if (!UV && !(VPI && !VPI->getName().empty())) {
1524     VPValue2Name[V] = (Twine("vp<%") + Twine(NextSlot) + ">").str();
1525     NextSlot++;
1526     return;
1527   }
1528 
1529   // Use the name of the underlying Value, wrapped in "ir<>", and versioned by
1530   // appending ".Number" to the name if there are multiple uses.
1531   std::string Name;
1532   if (UV) {
1533     raw_string_ostream S(Name);
1534     UV->printAsOperand(S, false);
1535   } else
1536     Name = VPI->getName();
1537 
1538   assert(!Name.empty() && "Name cannot be empty.");
1539   StringRef Prefix = UV ? "ir<" : "vp<%";
1540   std::string BaseName = (Twine(Prefix) + Name + Twine(">")).str();
1541 
1542   // First assign the base name for V.
1543   const auto &[A, _] = VPValue2Name.insert({V, BaseName});
1544   // Integer or FP constants with different types will result in he same string
1545   // due to stripping types.
1546   if (V->isLiveIn() && isa<ConstantInt, ConstantFP>(UV))
1547     return;
1548 
1549   // If it is already used by C > 0 other VPValues, increase the version counter
1550   // C and use it for V.
1551   const auto &[C, UseInserted] = BaseName2Version.insert({BaseName, 0});
1552   if (!UseInserted) {
1553     C->second++;
1554     A->second = (BaseName + Twine(".") + Twine(C->second)).str();
1555   }
1556 }
1557 
1558 void VPSlotTracker::assignNames(const VPlan &Plan) {
1559   if (Plan.VF.getNumUsers() > 0)
1560     assignName(&Plan.VF);
1561   if (Plan.VFxUF.getNumUsers() > 0)
1562     assignName(&Plan.VFxUF);
1563   assignName(&Plan.VectorTripCount);
1564   if (Plan.BackedgeTakenCount)
1565     assignName(Plan.BackedgeTakenCount);
1566   for (VPValue *LI : Plan.VPLiveInsToFree)
1567     assignName(LI);
1568   assignNames(Plan.getPreheader());
1569 
1570   ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<const VPBlockBase *>>
1571       RPOT(VPBlockDeepTraversalWrapper<const VPBlockBase *>(Plan.getEntry()));
1572   for (const VPBasicBlock *VPBB :
1573        VPBlockUtils::blocksOnly<const VPBasicBlock>(RPOT))
1574     assignNames(VPBB);
1575 }
1576 
1577 void VPSlotTracker::assignNames(const VPBasicBlock *VPBB) {
1578   for (const VPRecipeBase &Recipe : *VPBB)
1579     for (VPValue *Def : Recipe.definedValues())
1580       assignName(Def);
1581 }
1582 
1583 std::string VPSlotTracker::getOrCreateName(const VPValue *V) const {
1584   std::string Name = VPValue2Name.lookup(V);
1585   if (!Name.empty())
1586     return Name;
1587 
1588   // If no name was assigned, no VPlan was provided when creating the slot
1589   // tracker or it is not reachable from the provided VPlan. This can happen,
1590   // e.g. when trying to print a recipe that has not been inserted into a VPlan
1591   // in a debugger.
1592   // TODO: Update VPSlotTracker constructor to assign names to recipes &
1593   // VPValues not associated with a VPlan, instead of constructing names ad-hoc
1594   // here.
1595   const VPRecipeBase *DefR = V->getDefiningRecipe();
1596   (void)DefR;
1597   assert((!DefR || !DefR->getParent() || !DefR->getParent()->getPlan()) &&
1598          "VPValue defined by a recipe in a VPlan?");
1599 
1600   // Use the underlying value's name, if there is one.
1601   if (auto *UV = V->getUnderlyingValue()) {
1602     std::string Name;
1603     raw_string_ostream S(Name);
1604     UV->printAsOperand(S, false);
1605     return (Twine("ir<") + Name + ">").str();
1606   }
1607 
1608   return "<badref>";
1609 }
1610 
1611 bool LoopVectorizationPlanner::getDecisionAndClampRange(
1612     const std::function<bool(ElementCount)> &Predicate, VFRange &Range) {
1613   assert(!Range.isEmpty() && "Trying to test an empty VF range.");
1614   bool PredicateAtRangeStart = Predicate(Range.Start);
1615 
1616   for (ElementCount TmpVF : VFRange(Range.Start * 2, Range.End))
1617     if (Predicate(TmpVF) != PredicateAtRangeStart) {
1618       Range.End = TmpVF;
1619       break;
1620     }
1621 
1622   return PredicateAtRangeStart;
1623 }
1624 
1625 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF,
1626 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range
1627 /// of VF's starting at a given VF and extending it as much as possible. Each
1628 /// vectorization decision can potentially shorten this sub-range during
1629 /// buildVPlan().
1630 void LoopVectorizationPlanner::buildVPlans(ElementCount MinVF,
1631                                            ElementCount MaxVF) {
1632   auto MaxVFTimes2 = MaxVF * 2;
1633   for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFTimes2);) {
1634     VFRange SubRange = {VF, MaxVFTimes2};
1635     auto Plan = buildVPlan(SubRange);
1636     VPlanTransforms::optimize(*Plan);
1637     VPlans.push_back(std::move(Plan));
1638     VF = SubRange.End;
1639   }
1640 }
1641 
1642 VPlan &LoopVectorizationPlanner::getPlanFor(ElementCount VF) const {
1643   assert(count_if(VPlans,
1644                   [VF](const VPlanPtr &Plan) { return Plan->hasVF(VF); }) ==
1645              1 &&
1646          "Multiple VPlans for VF.");
1647 
1648   for (const VPlanPtr &Plan : VPlans) {
1649     if (Plan->hasVF(VF))
1650       return *Plan.get();
1651   }
1652   llvm_unreachable("No plan found!");
1653 }
1654 
1655 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1656 void LoopVectorizationPlanner::printPlans(raw_ostream &O) {
1657   if (VPlans.empty()) {
1658     O << "LV: No VPlans built.\n";
1659     return;
1660   }
1661   for (const auto &Plan : VPlans)
1662     if (PrintVPlansInDotFormat)
1663       Plan->printDOT(O);
1664     else
1665       Plan->print(O);
1666 }
1667 #endif
1668 
1669 TargetTransformInfo::OperandValueInfo
1670 VPCostContext::getOperandInfo(VPValue *V) const {
1671   if (!V->isLiveIn())
1672     return {};
1673 
1674   return TTI::getOperandInfo(V->getLiveInIRValue());
1675 }
1676