1 //===- VPlan.cpp - Vectorizer Plan ----------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This is the LLVM vectorization plan. It represents a candidate for 11 /// vectorization, allowing to plan and optimize how to vectorize a given loop 12 /// before generating LLVM-IR. 13 /// The vectorizer uses vectorization plans to estimate the costs of potential 14 /// candidates and if profitable to execute the desired plan, generating vector 15 /// LLVM-IR code. 16 /// 17 //===----------------------------------------------------------------------===// 18 19 #include "VPlan.h" 20 #include "VPlanDominatorTree.h" 21 #include "llvm/ADT/DepthFirstIterator.h" 22 #include "llvm/ADT/PostOrderIterator.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/Twine.h" 25 #include "llvm/Analysis/LoopInfo.h" 26 #include "llvm/IR/BasicBlock.h" 27 #include "llvm/IR/CFG.h" 28 #include "llvm/IR/InstrTypes.h" 29 #include "llvm/IR/Instruction.h" 30 #include "llvm/IR/Instructions.h" 31 #include "llvm/IR/Type.h" 32 #include "llvm/IR/Value.h" 33 #include "llvm/Support/Casting.h" 34 #include "llvm/Support/CommandLine.h" 35 #include "llvm/Support/Debug.h" 36 #include "llvm/Support/ErrorHandling.h" 37 #include "llvm/Support/GenericDomTreeConstruction.h" 38 #include "llvm/Support/GraphWriter.h" 39 #include "llvm/Support/raw_ostream.h" 40 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 41 #include <cassert> 42 #include <iterator> 43 #include <string> 44 #include <vector> 45 46 using namespace llvm; 47 extern cl::opt<bool> EnableVPlanNativePath; 48 49 #define DEBUG_TYPE "vplan" 50 51 raw_ostream &llvm::operator<<(raw_ostream &OS, const VPValue &V) { 52 const VPInstruction *Instr = dyn_cast<VPInstruction>(&V); 53 VPSlotTracker SlotTracker( 54 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr); 55 V.print(OS, SlotTracker); 56 return OS; 57 } 58 59 void VPValue::print(raw_ostream &OS, VPSlotTracker &SlotTracker) const { 60 if (const VPInstruction *Instr = dyn_cast<VPInstruction>(this)) 61 Instr->print(OS, SlotTracker); 62 else 63 printAsOperand(OS, SlotTracker); 64 } 65 66 void VPValue::dump() const { 67 const VPInstruction *Instr = dyn_cast<VPInstruction>(this); 68 VPSlotTracker SlotTracker( 69 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr); 70 print(dbgs(), SlotTracker); 71 dbgs() << "\n"; 72 } 73 74 void VPRecipeBase::dump() const { 75 VPSlotTracker SlotTracker(nullptr); 76 print(dbgs(), "", SlotTracker); 77 dbgs() << "\n"; 78 } 79 80 VPUser *VPRecipeBase::toVPUser() { 81 if (auto *U = dyn_cast<VPInstruction>(this)) 82 return U; 83 if (auto *U = dyn_cast<VPWidenRecipe>(this)) 84 return U; 85 if (auto *U = dyn_cast<VPWidenCallRecipe>(this)) 86 return U; 87 if (auto *U = dyn_cast<VPWidenSelectRecipe>(this)) 88 return U; 89 if (auto *U = dyn_cast<VPWidenGEPRecipe>(this)) 90 return U; 91 if (auto *U = dyn_cast<VPBlendRecipe>(this)) 92 return U; 93 if (auto *U = dyn_cast<VPInterleaveRecipe>(this)) 94 return U; 95 if (auto *U = dyn_cast<VPReplicateRecipe>(this)) 96 return U; 97 if (auto *U = dyn_cast<VPBranchOnMaskRecipe>(this)) 98 return U; 99 if (auto *U = dyn_cast<VPWidenMemoryInstructionRecipe>(this)) 100 return U; 101 return nullptr; 102 } 103 104 VPValue *VPRecipeBase::toVPValue() { 105 if (auto *V = dyn_cast<VPInstruction>(this)) 106 return V; 107 if (auto *V = dyn_cast<VPWidenMemoryInstructionRecipe>(this)) 108 return V; 109 if (auto *V = dyn_cast<VPWidenCallRecipe>(this)) 110 return V; 111 if (auto *V = dyn_cast<VPWidenSelectRecipe>(this)) 112 return V; 113 return nullptr; 114 } 115 116 const VPValue *VPRecipeBase::toVPValue() const { 117 if (auto *V = dyn_cast<VPInstruction>(this)) 118 return V; 119 if (auto *V = dyn_cast<VPWidenMemoryInstructionRecipe>(this)) 120 return V; 121 if (auto *V = dyn_cast<VPWidenCallRecipe>(this)) 122 return V; 123 if (auto *V = dyn_cast<VPWidenSelectRecipe>(this)) 124 return V; 125 return nullptr; 126 } 127 128 // Get the top-most entry block of \p Start. This is the entry block of the 129 // containing VPlan. This function is templated to support both const and non-const blocks 130 template <typename T> static T *getPlanEntry(T *Start) { 131 T *Next = Start; 132 T *Current = Start; 133 while ((Next = Next->getParent())) 134 Current = Next; 135 136 SmallSetVector<T *, 8> WorkList; 137 WorkList.insert(Current); 138 139 for (unsigned i = 0; i < WorkList.size(); i++) { 140 T *Current = WorkList[i]; 141 if (Current->getNumPredecessors() == 0) 142 return Current; 143 auto &Predecessors = Current->getPredecessors(); 144 WorkList.insert(Predecessors.begin(), Predecessors.end()); 145 } 146 147 llvm_unreachable("VPlan without any entry node without predecessors"); 148 } 149 150 VPlan *VPBlockBase::getPlan() { return getPlanEntry(this)->Plan; } 151 152 const VPlan *VPBlockBase::getPlan() const { return getPlanEntry(this)->Plan; } 153 154 /// \return the VPBasicBlock that is the entry of Block, possibly indirectly. 155 const VPBasicBlock *VPBlockBase::getEntryBasicBlock() const { 156 const VPBlockBase *Block = this; 157 while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 158 Block = Region->getEntry(); 159 return cast<VPBasicBlock>(Block); 160 } 161 162 VPBasicBlock *VPBlockBase::getEntryBasicBlock() { 163 VPBlockBase *Block = this; 164 while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 165 Block = Region->getEntry(); 166 return cast<VPBasicBlock>(Block); 167 } 168 169 void VPBlockBase::setPlan(VPlan *ParentPlan) { 170 assert(ParentPlan->getEntry() == this && 171 "Can only set plan on its entry block."); 172 Plan = ParentPlan; 173 } 174 175 /// \return the VPBasicBlock that is the exit of Block, possibly indirectly. 176 const VPBasicBlock *VPBlockBase::getExitBasicBlock() const { 177 const VPBlockBase *Block = this; 178 while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 179 Block = Region->getExit(); 180 return cast<VPBasicBlock>(Block); 181 } 182 183 VPBasicBlock *VPBlockBase::getExitBasicBlock() { 184 VPBlockBase *Block = this; 185 while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 186 Block = Region->getExit(); 187 return cast<VPBasicBlock>(Block); 188 } 189 190 VPBlockBase *VPBlockBase::getEnclosingBlockWithSuccessors() { 191 if (!Successors.empty() || !Parent) 192 return this; 193 assert(Parent->getExit() == this && 194 "Block w/o successors not the exit of its parent."); 195 return Parent->getEnclosingBlockWithSuccessors(); 196 } 197 198 VPBlockBase *VPBlockBase::getEnclosingBlockWithPredecessors() { 199 if (!Predecessors.empty() || !Parent) 200 return this; 201 assert(Parent->getEntry() == this && 202 "Block w/o predecessors not the entry of its parent."); 203 return Parent->getEnclosingBlockWithPredecessors(); 204 } 205 206 void VPBlockBase::deleteCFG(VPBlockBase *Entry) { 207 SmallVector<VPBlockBase *, 8> Blocks; 208 209 VPValue DummyValue; 210 for (VPBlockBase *Block : depth_first(Entry)) { 211 // Drop all references in VPBasicBlocks and replace all uses with 212 // DummyValue. 213 if (auto *VPBB = dyn_cast<VPBasicBlock>(Block)) 214 VPBB->dropAllReferences(&DummyValue); 215 Blocks.push_back(Block); 216 } 217 218 for (VPBlockBase *Block : Blocks) 219 delete Block; 220 } 221 222 VPBasicBlock::iterator VPBasicBlock::getFirstNonPhi() { 223 iterator It = begin(); 224 while (It != end() && (isa<VPWidenPHIRecipe>(&*It) || 225 isa<VPWidenIntOrFpInductionRecipe>(&*It) || 226 isa<VPPredInstPHIRecipe>(&*It) || 227 isa<VPWidenCanonicalIVRecipe>(&*It))) 228 It++; 229 return It; 230 } 231 232 BasicBlock * 233 VPBasicBlock::createEmptyBasicBlock(VPTransformState::CFGState &CFG) { 234 // BB stands for IR BasicBlocks. VPBB stands for VPlan VPBasicBlocks. 235 // Pred stands for Predessor. Prev stands for Previous - last visited/created. 236 BasicBlock *PrevBB = CFG.PrevBB; 237 BasicBlock *NewBB = BasicBlock::Create(PrevBB->getContext(), getName(), 238 PrevBB->getParent(), CFG.LastBB); 239 LLVM_DEBUG(dbgs() << "LV: created " << NewBB->getName() << '\n'); 240 241 // Hook up the new basic block to its predecessors. 242 for (VPBlockBase *PredVPBlock : getHierarchicalPredecessors()) { 243 VPBasicBlock *PredVPBB = PredVPBlock->getExitBasicBlock(); 244 auto &PredVPSuccessors = PredVPBB->getSuccessors(); 245 BasicBlock *PredBB = CFG.VPBB2IRBB[PredVPBB]; 246 247 // In outer loop vectorization scenario, the predecessor BBlock may not yet 248 // be visited(backedge). Mark the VPBasicBlock for fixup at the end of 249 // vectorization. We do not encounter this case in inner loop vectorization 250 // as we start out by building a loop skeleton with the vector loop header 251 // and latch blocks. As a result, we never enter this function for the 252 // header block in the non VPlan-native path. 253 if (!PredBB) { 254 assert(EnableVPlanNativePath && 255 "Unexpected null predecessor in non VPlan-native path"); 256 CFG.VPBBsToFix.push_back(PredVPBB); 257 continue; 258 } 259 260 assert(PredBB && "Predecessor basic-block not found building successor."); 261 auto *PredBBTerminator = PredBB->getTerminator(); 262 LLVM_DEBUG(dbgs() << "LV: draw edge from" << PredBB->getName() << '\n'); 263 if (isa<UnreachableInst>(PredBBTerminator)) { 264 assert(PredVPSuccessors.size() == 1 && 265 "Predecessor ending w/o branch must have single successor."); 266 PredBBTerminator->eraseFromParent(); 267 BranchInst::Create(NewBB, PredBB); 268 } else { 269 assert(PredVPSuccessors.size() == 2 && 270 "Predecessor ending with branch must have two successors."); 271 unsigned idx = PredVPSuccessors.front() == this ? 0 : 1; 272 assert(!PredBBTerminator->getSuccessor(idx) && 273 "Trying to reset an existing successor block."); 274 PredBBTerminator->setSuccessor(idx, NewBB); 275 } 276 } 277 return NewBB; 278 } 279 280 void VPBasicBlock::execute(VPTransformState *State) { 281 bool Replica = State->Instance && 282 !(State->Instance->Part == 0 && State->Instance->Lane == 0); 283 VPBasicBlock *PrevVPBB = State->CFG.PrevVPBB; 284 VPBlockBase *SingleHPred = nullptr; 285 BasicBlock *NewBB = State->CFG.PrevBB; // Reuse it if possible. 286 287 // 1. Create an IR basic block, or reuse the last one if possible. 288 // The last IR basic block is reused, as an optimization, in three cases: 289 // A. the first VPBB reuses the loop header BB - when PrevVPBB is null; 290 // B. when the current VPBB has a single (hierarchical) predecessor which 291 // is PrevVPBB and the latter has a single (hierarchical) successor; and 292 // C. when the current VPBB is an entry of a region replica - where PrevVPBB 293 // is the exit of this region from a previous instance, or the predecessor 294 // of this region. 295 if (PrevVPBB && /* A */ 296 !((SingleHPred = getSingleHierarchicalPredecessor()) && 297 SingleHPred->getExitBasicBlock() == PrevVPBB && 298 PrevVPBB->getSingleHierarchicalSuccessor()) && /* B */ 299 !(Replica && getPredecessors().empty())) { /* C */ 300 NewBB = createEmptyBasicBlock(State->CFG); 301 State->Builder.SetInsertPoint(NewBB); 302 // Temporarily terminate with unreachable until CFG is rewired. 303 UnreachableInst *Terminator = State->Builder.CreateUnreachable(); 304 State->Builder.SetInsertPoint(Terminator); 305 // Register NewBB in its loop. In innermost loops its the same for all BB's. 306 Loop *L = State->LI->getLoopFor(State->CFG.LastBB); 307 L->addBasicBlockToLoop(NewBB, *State->LI); 308 State->CFG.PrevBB = NewBB; 309 } 310 311 // 2. Fill the IR basic block with IR instructions. 312 LLVM_DEBUG(dbgs() << "LV: vectorizing VPBB:" << getName() 313 << " in BB:" << NewBB->getName() << '\n'); 314 315 State->CFG.VPBB2IRBB[this] = NewBB; 316 State->CFG.PrevVPBB = this; 317 318 for (VPRecipeBase &Recipe : Recipes) 319 Recipe.execute(*State); 320 321 VPValue *CBV; 322 if (EnableVPlanNativePath && (CBV = getCondBit())) { 323 Value *IRCBV = CBV->getUnderlyingValue(); 324 assert(IRCBV && "Unexpected null underlying value for condition bit"); 325 326 // Condition bit value in a VPBasicBlock is used as the branch selector. In 327 // the VPlan-native path case, since all branches are uniform we generate a 328 // branch instruction using the condition value from vector lane 0 and dummy 329 // successors. The successors are fixed later when the successor blocks are 330 // visited. 331 Value *NewCond = State->Callback.getOrCreateVectorValues(IRCBV, 0); 332 NewCond = State->Builder.CreateExtractElement(NewCond, 333 State->Builder.getInt32(0)); 334 335 // Replace the temporary unreachable terminator with the new conditional 336 // branch. 337 auto *CurrentTerminator = NewBB->getTerminator(); 338 assert(isa<UnreachableInst>(CurrentTerminator) && 339 "Expected to replace unreachable terminator with conditional " 340 "branch."); 341 auto *CondBr = BranchInst::Create(NewBB, nullptr, NewCond); 342 CondBr->setSuccessor(0, nullptr); 343 ReplaceInstWithInst(CurrentTerminator, CondBr); 344 } 345 346 LLVM_DEBUG(dbgs() << "LV: filled BB:" << *NewBB); 347 } 348 349 void VPBasicBlock::dropAllReferences(VPValue *NewValue) { 350 for (VPRecipeBase &R : Recipes) { 351 if (auto *VPV = R.toVPValue()) 352 VPV->replaceAllUsesWith(NewValue); 353 354 if (auto *User = R.toVPUser()) 355 for (unsigned I = 0, E = User->getNumOperands(); I != E; I++) 356 User->setOperand(I, NewValue); 357 } 358 } 359 360 void VPRegionBlock::execute(VPTransformState *State) { 361 ReversePostOrderTraversal<VPBlockBase *> RPOT(Entry); 362 363 if (!isReplicator()) { 364 // Visit the VPBlocks connected to "this", starting from it. 365 for (VPBlockBase *Block : RPOT) { 366 if (EnableVPlanNativePath) { 367 // The inner loop vectorization path does not represent loop preheader 368 // and exit blocks as part of the VPlan. In the VPlan-native path, skip 369 // vectorizing loop preheader block. In future, we may replace this 370 // check with the check for loop preheader. 371 if (Block->getNumPredecessors() == 0) 372 continue; 373 374 // Skip vectorizing loop exit block. In future, we may replace this 375 // check with the check for loop exit. 376 if (Block->getNumSuccessors() == 0) 377 continue; 378 } 379 380 LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n'); 381 Block->execute(State); 382 } 383 return; 384 } 385 386 assert(!State->Instance && "Replicating a Region with non-null instance."); 387 388 // Enter replicating mode. 389 State->Instance = {0, 0}; 390 391 for (unsigned Part = 0, UF = State->UF; Part < UF; ++Part) { 392 State->Instance->Part = Part; 393 assert(!State->VF.isScalable() && "VF is assumed to be non scalable."); 394 for (unsigned Lane = 0, VF = State->VF.getKnownMinValue(); Lane < VF; 395 ++Lane) { 396 State->Instance->Lane = Lane; 397 // Visit the VPBlocks connected to \p this, starting from it. 398 for (VPBlockBase *Block : RPOT) { 399 LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n'); 400 Block->execute(State); 401 } 402 } 403 } 404 405 // Exit replicating mode. 406 State->Instance.reset(); 407 } 408 409 void VPRecipeBase::insertBefore(VPRecipeBase *InsertPos) { 410 assert(!Parent && "Recipe already in some VPBasicBlock"); 411 assert(InsertPos->getParent() && 412 "Insertion position not in any VPBasicBlock"); 413 Parent = InsertPos->getParent(); 414 Parent->getRecipeList().insert(InsertPos->getIterator(), this); 415 } 416 417 void VPRecipeBase::insertAfter(VPRecipeBase *InsertPos) { 418 assert(!Parent && "Recipe already in some VPBasicBlock"); 419 assert(InsertPos->getParent() && 420 "Insertion position not in any VPBasicBlock"); 421 Parent = InsertPos->getParent(); 422 Parent->getRecipeList().insertAfter(InsertPos->getIterator(), this); 423 } 424 425 void VPRecipeBase::removeFromParent() { 426 assert(getParent() && "Recipe not in any VPBasicBlock"); 427 getParent()->getRecipeList().remove(getIterator()); 428 Parent = nullptr; 429 } 430 431 iplist<VPRecipeBase>::iterator VPRecipeBase::eraseFromParent() { 432 assert(getParent() && "Recipe not in any VPBasicBlock"); 433 return getParent()->getRecipeList().erase(getIterator()); 434 } 435 436 void VPRecipeBase::moveAfter(VPRecipeBase *InsertPos) { 437 removeFromParent(); 438 insertAfter(InsertPos); 439 } 440 441 void VPInstruction::generateInstruction(VPTransformState &State, 442 unsigned Part) { 443 IRBuilder<> &Builder = State.Builder; 444 445 if (Instruction::isBinaryOp(getOpcode())) { 446 Value *A = State.get(getOperand(0), Part); 447 Value *B = State.get(getOperand(1), Part); 448 Value *V = Builder.CreateBinOp((Instruction::BinaryOps)getOpcode(), A, B); 449 State.set(this, V, Part); 450 return; 451 } 452 453 switch (getOpcode()) { 454 case VPInstruction::Not: { 455 Value *A = State.get(getOperand(0), Part); 456 Value *V = Builder.CreateNot(A); 457 State.set(this, V, Part); 458 break; 459 } 460 case VPInstruction::ICmpULE: { 461 Value *IV = State.get(getOperand(0), Part); 462 Value *TC = State.get(getOperand(1), Part); 463 Value *V = Builder.CreateICmpULE(IV, TC); 464 State.set(this, V, Part); 465 break; 466 } 467 case Instruction::Select: { 468 Value *Cond = State.get(getOperand(0), Part); 469 Value *Op1 = State.get(getOperand(1), Part); 470 Value *Op2 = State.get(getOperand(2), Part); 471 Value *V = Builder.CreateSelect(Cond, Op1, Op2); 472 State.set(this, V, Part); 473 break; 474 } 475 case VPInstruction::ActiveLaneMask: { 476 // Get first lane of vector induction variable. 477 Value *VIVElem0 = State.get(getOperand(0), {Part, 0}); 478 // Get the original loop tripcount. 479 Value *ScalarTC = State.TripCount; 480 481 auto *Int1Ty = Type::getInt1Ty(Builder.getContext()); 482 auto *PredTy = FixedVectorType::get(Int1Ty, State.VF.getKnownMinValue()); 483 Instruction *Call = Builder.CreateIntrinsic( 484 Intrinsic::get_active_lane_mask, {PredTy, ScalarTC->getType()}, 485 {VIVElem0, ScalarTC}, nullptr, "active.lane.mask"); 486 State.set(this, Call, Part); 487 break; 488 } 489 default: 490 llvm_unreachable("Unsupported opcode for instruction"); 491 } 492 } 493 494 void VPInstruction::execute(VPTransformState &State) { 495 assert(!State.Instance && "VPInstruction executing an Instance"); 496 for (unsigned Part = 0; Part < State.UF; ++Part) 497 generateInstruction(State, Part); 498 } 499 500 void VPInstruction::print(raw_ostream &O, const Twine &Indent, 501 VPSlotTracker &SlotTracker) const { 502 O << "\"EMIT "; 503 print(O, SlotTracker); 504 } 505 506 void VPInstruction::print(raw_ostream &O) const { 507 VPSlotTracker SlotTracker(getParent()->getPlan()); 508 print(O, SlotTracker); 509 } 510 511 void VPInstruction::print(raw_ostream &O, VPSlotTracker &SlotTracker) const { 512 if (hasResult()) { 513 printAsOperand(O, SlotTracker); 514 O << " = "; 515 } 516 517 switch (getOpcode()) { 518 case VPInstruction::Not: 519 O << "not"; 520 break; 521 case VPInstruction::ICmpULE: 522 O << "icmp ule"; 523 break; 524 case VPInstruction::SLPLoad: 525 O << "combined load"; 526 break; 527 case VPInstruction::SLPStore: 528 O << "combined store"; 529 break; 530 case VPInstruction::ActiveLaneMask: 531 O << "active lane mask"; 532 break; 533 534 default: 535 O << Instruction::getOpcodeName(getOpcode()); 536 } 537 538 for (const VPValue *Operand : operands()) { 539 O << " "; 540 Operand->printAsOperand(O, SlotTracker); 541 } 542 } 543 544 /// Generate the code inside the body of the vectorized loop. Assumes a single 545 /// LoopVectorBody basic-block was created for this. Introduce additional 546 /// basic-blocks as needed, and fill them all. 547 void VPlan::execute(VPTransformState *State) { 548 // -1. Check if the backedge taken count is needed, and if so build it. 549 if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) { 550 Value *TC = State->TripCount; 551 IRBuilder<> Builder(State->CFG.PrevBB->getTerminator()); 552 auto *TCMO = Builder.CreateSub(TC, ConstantInt::get(TC->getType(), 1), 553 "trip.count.minus.1"); 554 auto VF = State->VF; 555 Value *VTCMO = 556 VF.isScalar() ? TCMO : Builder.CreateVectorSplat(VF, TCMO, "broadcast"); 557 for (unsigned Part = 0, UF = State->UF; Part < UF; ++Part) 558 State->set(BackedgeTakenCount, VTCMO, Part); 559 } 560 561 // 0. Set the reverse mapping from VPValues to Values for code generation. 562 for (auto &Entry : Value2VPValue) 563 State->VPValue2Value[Entry.second] = Entry.first; 564 565 BasicBlock *VectorPreHeaderBB = State->CFG.PrevBB; 566 BasicBlock *VectorHeaderBB = VectorPreHeaderBB->getSingleSuccessor(); 567 assert(VectorHeaderBB && "Loop preheader does not have a single successor."); 568 569 // 1. Make room to generate basic-blocks inside loop body if needed. 570 BasicBlock *VectorLatchBB = VectorHeaderBB->splitBasicBlock( 571 VectorHeaderBB->getFirstInsertionPt(), "vector.body.latch"); 572 Loop *L = State->LI->getLoopFor(VectorHeaderBB); 573 L->addBasicBlockToLoop(VectorLatchBB, *State->LI); 574 // Remove the edge between Header and Latch to allow other connections. 575 // Temporarily terminate with unreachable until CFG is rewired. 576 // Note: this asserts the generated code's assumption that 577 // getFirstInsertionPt() can be dereferenced into an Instruction. 578 VectorHeaderBB->getTerminator()->eraseFromParent(); 579 State->Builder.SetInsertPoint(VectorHeaderBB); 580 UnreachableInst *Terminator = State->Builder.CreateUnreachable(); 581 State->Builder.SetInsertPoint(Terminator); 582 583 // 2. Generate code in loop body. 584 State->CFG.PrevVPBB = nullptr; 585 State->CFG.PrevBB = VectorHeaderBB; 586 State->CFG.LastBB = VectorLatchBB; 587 588 for (VPBlockBase *Block : depth_first(Entry)) 589 Block->execute(State); 590 591 // Setup branch terminator successors for VPBBs in VPBBsToFix based on 592 // VPBB's successors. 593 for (auto VPBB : State->CFG.VPBBsToFix) { 594 assert(EnableVPlanNativePath && 595 "Unexpected VPBBsToFix in non VPlan-native path"); 596 BasicBlock *BB = State->CFG.VPBB2IRBB[VPBB]; 597 assert(BB && "Unexpected null basic block for VPBB"); 598 599 unsigned Idx = 0; 600 auto *BBTerminator = BB->getTerminator(); 601 602 for (VPBlockBase *SuccVPBlock : VPBB->getHierarchicalSuccessors()) { 603 VPBasicBlock *SuccVPBB = SuccVPBlock->getEntryBasicBlock(); 604 BBTerminator->setSuccessor(Idx, State->CFG.VPBB2IRBB[SuccVPBB]); 605 ++Idx; 606 } 607 } 608 609 // 3. Merge the temporary latch created with the last basic-block filled. 610 BasicBlock *LastBB = State->CFG.PrevBB; 611 // Connect LastBB to VectorLatchBB to facilitate their merge. 612 assert((EnableVPlanNativePath || 613 isa<UnreachableInst>(LastBB->getTerminator())) && 614 "Expected InnerLoop VPlan CFG to terminate with unreachable"); 615 assert((!EnableVPlanNativePath || isa<BranchInst>(LastBB->getTerminator())) && 616 "Expected VPlan CFG to terminate with branch in NativePath"); 617 LastBB->getTerminator()->eraseFromParent(); 618 BranchInst::Create(VectorLatchBB, LastBB); 619 620 // Merge LastBB with Latch. 621 bool Merged = MergeBlockIntoPredecessor(VectorLatchBB, nullptr, State->LI); 622 (void)Merged; 623 assert(Merged && "Could not merge last basic block with latch."); 624 VectorLatchBB = LastBB; 625 626 // We do not attempt to preserve DT for outer loop vectorization currently. 627 if (!EnableVPlanNativePath) 628 updateDominatorTree(State->DT, VectorPreHeaderBB, VectorLatchBB, 629 L->getExitBlock()); 630 } 631 632 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 633 LLVM_DUMP_METHOD 634 void VPlan::dump() const { dbgs() << *this << '\n'; } 635 #endif 636 637 void VPlan::updateDominatorTree(DominatorTree *DT, BasicBlock *LoopPreHeaderBB, 638 BasicBlock *LoopLatchBB, 639 BasicBlock *LoopExitBB) { 640 BasicBlock *LoopHeaderBB = LoopPreHeaderBB->getSingleSuccessor(); 641 assert(LoopHeaderBB && "Loop preheader does not have a single successor."); 642 // The vector body may be more than a single basic-block by this point. 643 // Update the dominator tree information inside the vector body by propagating 644 // it from header to latch, expecting only triangular control-flow, if any. 645 BasicBlock *PostDomSucc = nullptr; 646 for (auto *BB = LoopHeaderBB; BB != LoopLatchBB; BB = PostDomSucc) { 647 // Get the list of successors of this block. 648 std::vector<BasicBlock *> Succs(succ_begin(BB), succ_end(BB)); 649 assert(Succs.size() <= 2 && 650 "Basic block in vector loop has more than 2 successors."); 651 PostDomSucc = Succs[0]; 652 if (Succs.size() == 1) { 653 assert(PostDomSucc->getSinglePredecessor() && 654 "PostDom successor has more than one predecessor."); 655 DT->addNewBlock(PostDomSucc, BB); 656 continue; 657 } 658 BasicBlock *InterimSucc = Succs[1]; 659 if (PostDomSucc->getSingleSuccessor() == InterimSucc) { 660 PostDomSucc = Succs[1]; 661 InterimSucc = Succs[0]; 662 } 663 assert(InterimSucc->getSingleSuccessor() == PostDomSucc && 664 "One successor of a basic block does not lead to the other."); 665 assert(InterimSucc->getSinglePredecessor() && 666 "Interim successor has more than one predecessor."); 667 assert(PostDomSucc->hasNPredecessors(2) && 668 "PostDom successor has more than two predecessors."); 669 DT->addNewBlock(InterimSucc, BB); 670 DT->addNewBlock(PostDomSucc, BB); 671 } 672 // Latch block is a new dominator for the loop exit. 673 DT->changeImmediateDominator(LoopExitBB, LoopLatchBB); 674 assert(DT->verify(DominatorTree::VerificationLevel::Fast)); 675 } 676 677 const Twine VPlanPrinter::getUID(const VPBlockBase *Block) { 678 return (isa<VPRegionBlock>(Block) ? "cluster_N" : "N") + 679 Twine(getOrCreateBID(Block)); 680 } 681 682 const Twine VPlanPrinter::getOrCreateName(const VPBlockBase *Block) { 683 const std::string &Name = Block->getName(); 684 if (!Name.empty()) 685 return Name; 686 return "VPB" + Twine(getOrCreateBID(Block)); 687 } 688 689 void VPlanPrinter::dump() { 690 Depth = 1; 691 bumpIndent(0); 692 OS << "digraph VPlan {\n"; 693 OS << "graph [labelloc=t, fontsize=30; label=\"Vectorization Plan"; 694 if (!Plan.getName().empty()) 695 OS << "\\n" << DOT::EscapeString(Plan.getName()); 696 if (Plan.BackedgeTakenCount) { 697 OS << ", where:\\n"; 698 Plan.BackedgeTakenCount->print(OS, SlotTracker); 699 OS << " := BackedgeTakenCount"; 700 } 701 OS << "\"]\n"; 702 OS << "node [shape=rect, fontname=Courier, fontsize=30]\n"; 703 OS << "edge [fontname=Courier, fontsize=30]\n"; 704 OS << "compound=true\n"; 705 706 for (const VPBlockBase *Block : depth_first(Plan.getEntry())) 707 dumpBlock(Block); 708 709 OS << "}\n"; 710 } 711 712 void VPlanPrinter::dumpBlock(const VPBlockBase *Block) { 713 if (const VPBasicBlock *BasicBlock = dyn_cast<VPBasicBlock>(Block)) 714 dumpBasicBlock(BasicBlock); 715 else if (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 716 dumpRegion(Region); 717 else 718 llvm_unreachable("Unsupported kind of VPBlock."); 719 } 720 721 void VPlanPrinter::drawEdge(const VPBlockBase *From, const VPBlockBase *To, 722 bool Hidden, const Twine &Label) { 723 // Due to "dot" we print an edge between two regions as an edge between the 724 // exit basic block and the entry basic of the respective regions. 725 const VPBlockBase *Tail = From->getExitBasicBlock(); 726 const VPBlockBase *Head = To->getEntryBasicBlock(); 727 OS << Indent << getUID(Tail) << " -> " << getUID(Head); 728 OS << " [ label=\"" << Label << '\"'; 729 if (Tail != From) 730 OS << " ltail=" << getUID(From); 731 if (Head != To) 732 OS << " lhead=" << getUID(To); 733 if (Hidden) 734 OS << "; splines=none"; 735 OS << "]\n"; 736 } 737 738 void VPlanPrinter::dumpEdges(const VPBlockBase *Block) { 739 auto &Successors = Block->getSuccessors(); 740 if (Successors.size() == 1) 741 drawEdge(Block, Successors.front(), false, ""); 742 else if (Successors.size() == 2) { 743 drawEdge(Block, Successors.front(), false, "T"); 744 drawEdge(Block, Successors.back(), false, "F"); 745 } else { 746 unsigned SuccessorNumber = 0; 747 for (auto *Successor : Successors) 748 drawEdge(Block, Successor, false, Twine(SuccessorNumber++)); 749 } 750 } 751 752 void VPlanPrinter::dumpBasicBlock(const VPBasicBlock *BasicBlock) { 753 OS << Indent << getUID(BasicBlock) << " [label =\n"; 754 bumpIndent(1); 755 OS << Indent << "\"" << DOT::EscapeString(BasicBlock->getName()) << ":\\n\""; 756 bumpIndent(1); 757 758 // Dump the block predicate. 759 const VPValue *Pred = BasicBlock->getPredicate(); 760 if (Pred) { 761 OS << " +\n" << Indent << " \"BlockPredicate: "; 762 if (const VPInstruction *PredI = dyn_cast<VPInstruction>(Pred)) { 763 PredI->printAsOperand(OS, SlotTracker); 764 OS << " (" << DOT::EscapeString(PredI->getParent()->getName()) 765 << ")\\l\""; 766 } else 767 Pred->printAsOperand(OS, SlotTracker); 768 } 769 770 for (const VPRecipeBase &Recipe : *BasicBlock) { 771 OS << " +\n" << Indent; 772 Recipe.print(OS, Indent, SlotTracker); 773 OS << "\\l\""; 774 } 775 776 // Dump the condition bit. 777 const VPValue *CBV = BasicBlock->getCondBit(); 778 if (CBV) { 779 OS << " +\n" << Indent << " \"CondBit: "; 780 if (const VPInstruction *CBI = dyn_cast<VPInstruction>(CBV)) { 781 CBI->printAsOperand(OS, SlotTracker); 782 OS << " (" << DOT::EscapeString(CBI->getParent()->getName()) << ")\\l\""; 783 } else { 784 CBV->printAsOperand(OS, SlotTracker); 785 OS << "\""; 786 } 787 } 788 789 bumpIndent(-2); 790 OS << "\n" << Indent << "]\n"; 791 dumpEdges(BasicBlock); 792 } 793 794 void VPlanPrinter::dumpRegion(const VPRegionBlock *Region) { 795 OS << Indent << "subgraph " << getUID(Region) << " {\n"; 796 bumpIndent(1); 797 OS << Indent << "fontname=Courier\n" 798 << Indent << "label=\"" 799 << DOT::EscapeString(Region->isReplicator() ? "<xVFxUF> " : "<x1> ") 800 << DOT::EscapeString(Region->getName()) << "\"\n"; 801 // Dump the blocks of the region. 802 assert(Region->getEntry() && "Region contains no inner blocks."); 803 for (const VPBlockBase *Block : depth_first(Region->getEntry())) 804 dumpBlock(Block); 805 bumpIndent(-1); 806 OS << Indent << "}\n"; 807 dumpEdges(Region); 808 } 809 810 void VPlanPrinter::printAsIngredient(raw_ostream &O, const Value *V) { 811 std::string IngredientString; 812 raw_string_ostream RSO(IngredientString); 813 if (auto *Inst = dyn_cast<Instruction>(V)) { 814 if (!Inst->getType()->isVoidTy()) { 815 Inst->printAsOperand(RSO, false); 816 RSO << " = "; 817 } 818 RSO << Inst->getOpcodeName() << " "; 819 unsigned E = Inst->getNumOperands(); 820 if (E > 0) { 821 Inst->getOperand(0)->printAsOperand(RSO, false); 822 for (unsigned I = 1; I < E; ++I) 823 Inst->getOperand(I)->printAsOperand(RSO << ", ", false); 824 } 825 } else // !Inst 826 V->printAsOperand(RSO, false); 827 RSO.flush(); 828 O << DOT::EscapeString(IngredientString); 829 } 830 831 void VPWidenCallRecipe::print(raw_ostream &O, const Twine &Indent, 832 VPSlotTracker &SlotTracker) const { 833 O << "\"WIDEN-CALL "; 834 835 auto *CI = cast<CallInst>(getUnderlyingInstr()); 836 if (CI->getType()->isVoidTy()) 837 O << "void "; 838 else { 839 printAsOperand(O, SlotTracker); 840 O << " = "; 841 } 842 843 O << "call @" << CI->getCalledFunction()->getName() << "("; 844 printOperands(O, SlotTracker); 845 O << ")"; 846 } 847 848 void VPWidenSelectRecipe::print(raw_ostream &O, const Twine &Indent, 849 VPSlotTracker &SlotTracker) const { 850 O << "\"WIDEN-SELECT "; 851 printAsOperand(O, SlotTracker); 852 O << " = select "; 853 getOperand(0)->printAsOperand(O, SlotTracker); 854 O << ", "; 855 getOperand(1)->printAsOperand(O, SlotTracker); 856 O << ", "; 857 getOperand(2)->printAsOperand(O, SlotTracker); 858 O << (InvariantCond ? " (condition is loop invariant)" : ""); 859 } 860 861 void VPWidenRecipe::print(raw_ostream &O, const Twine &Indent, 862 VPSlotTracker &SlotTracker) const { 863 O << "\"WIDEN\\l\""; 864 O << "\" " << VPlanIngredient(&Ingredient); 865 } 866 867 void VPWidenIntOrFpInductionRecipe::print(raw_ostream &O, const Twine &Indent, 868 VPSlotTracker &SlotTracker) const { 869 O << "\"WIDEN-INDUCTION"; 870 if (Trunc) { 871 O << "\\l\""; 872 O << " +\n" << Indent << "\" " << VPlanIngredient(IV) << "\\l\""; 873 O << " +\n" << Indent << "\" " << VPlanIngredient(Trunc); 874 } else 875 O << " " << VPlanIngredient(IV); 876 } 877 878 void VPWidenGEPRecipe::print(raw_ostream &O, const Twine &Indent, 879 VPSlotTracker &SlotTracker) const { 880 O << "\"WIDEN-GEP "; 881 O << (IsPtrLoopInvariant ? "Inv" : "Var"); 882 size_t IndicesNumber = IsIndexLoopInvariant.size(); 883 for (size_t I = 0; I < IndicesNumber; ++I) 884 O << "[" << (IsIndexLoopInvariant[I] ? "Inv" : "Var") << "]"; 885 O << "\\l\""; 886 O << " +\n" << Indent << "\" " << VPlanIngredient(GEP); 887 } 888 889 void VPWidenPHIRecipe::print(raw_ostream &O, const Twine &Indent, 890 VPSlotTracker &SlotTracker) const { 891 O << "\"WIDEN-PHI " << VPlanIngredient(Phi); 892 } 893 894 void VPBlendRecipe::print(raw_ostream &O, const Twine &Indent, 895 VPSlotTracker &SlotTracker) const { 896 O << "\"BLEND "; 897 Phi->printAsOperand(O, false); 898 O << " ="; 899 if (getNumIncomingValues() == 1) { 900 // Not a User of any mask: not really blending, this is a 901 // single-predecessor phi. 902 O << " "; 903 getIncomingValue(0)->printAsOperand(O, SlotTracker); 904 } else { 905 for (unsigned I = 0, E = getNumIncomingValues(); I < E; ++I) { 906 O << " "; 907 getIncomingValue(I)->printAsOperand(O, SlotTracker); 908 O << "/"; 909 getMask(I)->printAsOperand(O, SlotTracker); 910 } 911 } 912 } 913 914 void VPReductionRecipe::print(raw_ostream &O, const Twine &Indent, 915 VPSlotTracker &SlotTracker) const { 916 O << "\"REDUCE of" << *I << " as "; 917 ChainOp->printAsOperand(O, SlotTracker); 918 O << " + reduce("; 919 VecOp->printAsOperand(O, SlotTracker); 920 if (CondOp) { 921 O << ", "; 922 CondOp->printAsOperand(O, SlotTracker); 923 } 924 O << ")"; 925 } 926 927 void VPReplicateRecipe::print(raw_ostream &O, const Twine &Indent, 928 VPSlotTracker &SlotTracker) const { 929 O << "\"" << (IsUniform ? "CLONE " : "REPLICATE ") 930 << VPlanIngredient(Ingredient); 931 if (AlsoPack) 932 O << " (S->V)"; 933 } 934 935 void VPPredInstPHIRecipe::print(raw_ostream &O, const Twine &Indent, 936 VPSlotTracker &SlotTracker) const { 937 O << "\"PHI-PREDICATED-INSTRUCTION " << VPlanIngredient(PredInst); 938 } 939 940 void VPWidenMemoryInstructionRecipe::print(raw_ostream &O, const Twine &Indent, 941 VPSlotTracker &SlotTracker) const { 942 O << "\"WIDEN "; 943 944 if (!isStore()) { 945 printAsOperand(O, SlotTracker); 946 O << " = "; 947 } 948 O << Instruction::getOpcodeName(getUnderlyingInstr()->getOpcode()) << " "; 949 950 printOperands(O, SlotTracker); 951 } 952 953 void VPWidenCanonicalIVRecipe::execute(VPTransformState &State) { 954 Value *CanonicalIV = State.CanonicalIV; 955 Type *STy = CanonicalIV->getType(); 956 IRBuilder<> Builder(State.CFG.PrevBB->getTerminator()); 957 ElementCount VF = State.VF; 958 assert(!VF.isScalable() && "the code following assumes non scalables ECs"); 959 Value *VStart = VF.isScalar() 960 ? CanonicalIV 961 : Builder.CreateVectorSplat(VF.getKnownMinValue(), 962 CanonicalIV, "broadcast"); 963 for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part) { 964 SmallVector<Constant *, 8> Indices; 965 for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane) 966 Indices.push_back( 967 ConstantInt::get(STy, Part * VF.getKnownMinValue() + Lane)); 968 // If VF == 1, there is only one iteration in the loop above, thus the 969 // element pushed back into Indices is ConstantInt::get(STy, Part) 970 Constant *VStep = 971 VF.isScalar() ? Indices.back() : ConstantVector::get(Indices); 972 // Add the consecutive indices to the vector value. 973 Value *CanonicalVectorIV = Builder.CreateAdd(VStart, VStep, "vec.iv"); 974 State.set(getVPValue(), CanonicalVectorIV, Part); 975 } 976 } 977 978 void VPWidenCanonicalIVRecipe::print(raw_ostream &O, const Twine &Indent, 979 VPSlotTracker &SlotTracker) const { 980 O << "\"EMIT "; 981 getVPValue()->printAsOperand(O, SlotTracker); 982 O << " = WIDEN-CANONICAL-INDUCTION"; 983 } 984 985 template void DomTreeBuilder::Calculate<VPDominatorTree>(VPDominatorTree &DT); 986 987 void VPValue::replaceAllUsesWith(VPValue *New) { 988 for (unsigned J = 0; J < getNumUsers();) { 989 VPUser *User = Users[J]; 990 unsigned NumUsers = getNumUsers(); 991 for (unsigned I = 0, E = User->getNumOperands(); I < E; ++I) 992 if (User->getOperand(I) == this) 993 User->setOperand(I, New); 994 // If a user got removed after updating the current user, the next user to 995 // update will be moved to the current position, so we only need to 996 // increment the index if the number of users did not change. 997 if (NumUsers == getNumUsers()) 998 J++; 999 } 1000 } 1001 1002 void VPValue::printAsOperand(raw_ostream &OS, VPSlotTracker &Tracker) const { 1003 if (const Value *UV = getUnderlyingValue()) { 1004 OS << "ir<"; 1005 UV->printAsOperand(OS, false); 1006 OS << ">"; 1007 return; 1008 } 1009 1010 unsigned Slot = Tracker.getSlot(this); 1011 if (Slot == unsigned(-1)) 1012 OS << "<badref>"; 1013 else 1014 OS << "vp<%" << Tracker.getSlot(this) << ">"; 1015 } 1016 1017 void VPUser::printOperands(raw_ostream &O, VPSlotTracker &SlotTracker) const { 1018 bool First = true; 1019 for (VPValue *Op : operands()) { 1020 if (!First) 1021 O << ", "; 1022 Op->printAsOperand(O, SlotTracker); 1023 First = false; 1024 } 1025 } 1026 1027 void VPInterleavedAccessInfo::visitRegion(VPRegionBlock *Region, 1028 Old2NewTy &Old2New, 1029 InterleavedAccessInfo &IAI) { 1030 ReversePostOrderTraversal<VPBlockBase *> RPOT(Region->getEntry()); 1031 for (VPBlockBase *Base : RPOT) { 1032 visitBlock(Base, Old2New, IAI); 1033 } 1034 } 1035 1036 void VPInterleavedAccessInfo::visitBlock(VPBlockBase *Block, Old2NewTy &Old2New, 1037 InterleavedAccessInfo &IAI) { 1038 if (VPBasicBlock *VPBB = dyn_cast<VPBasicBlock>(Block)) { 1039 for (VPRecipeBase &VPI : *VPBB) { 1040 assert(isa<VPInstruction>(&VPI) && "Can only handle VPInstructions"); 1041 auto *VPInst = cast<VPInstruction>(&VPI); 1042 auto *Inst = cast<Instruction>(VPInst->getUnderlyingValue()); 1043 auto *IG = IAI.getInterleaveGroup(Inst); 1044 if (!IG) 1045 continue; 1046 1047 auto NewIGIter = Old2New.find(IG); 1048 if (NewIGIter == Old2New.end()) 1049 Old2New[IG] = new InterleaveGroup<VPInstruction>( 1050 IG->getFactor(), IG->isReverse(), IG->getAlign()); 1051 1052 if (Inst == IG->getInsertPos()) 1053 Old2New[IG]->setInsertPos(VPInst); 1054 1055 InterleaveGroupMap[VPInst] = Old2New[IG]; 1056 InterleaveGroupMap[VPInst]->insertMember( 1057 VPInst, IG->getIndex(Inst), 1058 Align(IG->isReverse() ? (-1) * int(IG->getFactor()) 1059 : IG->getFactor())); 1060 } 1061 } else if (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 1062 visitRegion(Region, Old2New, IAI); 1063 else 1064 llvm_unreachable("Unsupported kind of VPBlock."); 1065 } 1066 1067 VPInterleavedAccessInfo::VPInterleavedAccessInfo(VPlan &Plan, 1068 InterleavedAccessInfo &IAI) { 1069 Old2NewTy Old2New; 1070 visitRegion(cast<VPRegionBlock>(Plan.getEntry()), Old2New, IAI); 1071 } 1072 1073 void VPSlotTracker::assignSlot(const VPValue *V) { 1074 assert(Slots.find(V) == Slots.end() && "VPValue already has a slot!"); 1075 const Value *UV = V->getUnderlyingValue(); 1076 if (UV) 1077 return; 1078 const auto *VPI = dyn_cast<VPInstruction>(V); 1079 if (VPI && !VPI->hasResult()) 1080 return; 1081 1082 Slots[V] = NextSlot++; 1083 } 1084 1085 void VPSlotTracker::assignSlots(const VPBlockBase *VPBB) { 1086 if (auto *Region = dyn_cast<VPRegionBlock>(VPBB)) 1087 assignSlots(Region); 1088 else 1089 assignSlots(cast<VPBasicBlock>(VPBB)); 1090 } 1091 1092 void VPSlotTracker::assignSlots(const VPRegionBlock *Region) { 1093 ReversePostOrderTraversal<const VPBlockBase *> RPOT(Region->getEntry()); 1094 for (const VPBlockBase *Block : RPOT) 1095 assignSlots(Block); 1096 } 1097 1098 void VPSlotTracker::assignSlots(const VPBasicBlock *VPBB) { 1099 for (const VPRecipeBase &Recipe : *VPBB) { 1100 if (const auto *VPI = dyn_cast<VPInstruction>(&Recipe)) 1101 assignSlot(VPI); 1102 else if (const auto *VPIV = dyn_cast<VPWidenCanonicalIVRecipe>(&Recipe)) 1103 assignSlot(VPIV->getVPValue()); 1104 } 1105 } 1106 1107 void VPSlotTracker::assignSlots(const VPlan &Plan) { 1108 1109 for (const VPValue *V : Plan.VPExternalDefs) 1110 assignSlot(V); 1111 1112 for (auto &E : Plan.Value2VPValue) 1113 if (!isa<VPInstruction>(E.second)) 1114 assignSlot(E.second); 1115 1116 for (const VPValue *V : Plan.VPCBVs) 1117 assignSlot(V); 1118 1119 if (Plan.BackedgeTakenCount) 1120 assignSlot(Plan.BackedgeTakenCount); 1121 1122 ReversePostOrderTraversal<const VPBlockBase *> RPOT(Plan.getEntry()); 1123 for (const VPBlockBase *Block : RPOT) 1124 assignSlots(Block); 1125 } 1126