1 //===- VPlan.cpp - Vectorizer Plan ----------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This is the LLVM vectorization plan. It represents a candidate for 11 /// vectorization, allowing to plan and optimize how to vectorize a given loop 12 /// before generating LLVM-IR. 13 /// The vectorizer uses vectorization plans to estimate the costs of potential 14 /// candidates and if profitable to execute the desired plan, generating vector 15 /// LLVM-IR code. 16 /// 17 //===----------------------------------------------------------------------===// 18 19 #include "VPlan.h" 20 #include "VPlanDominatorTree.h" 21 #include "llvm/ADT/DepthFirstIterator.h" 22 #include "llvm/ADT/PostOrderIterator.h" 23 #include "llvm/ADT/STLExtras.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/Twine.h" 26 #include "llvm/Analysis/IVDescriptors.h" 27 #include "llvm/Analysis/LoopInfo.h" 28 #include "llvm/IR/BasicBlock.h" 29 #include "llvm/IR/CFG.h" 30 #include "llvm/IR/InstrTypes.h" 31 #include "llvm/IR/Instruction.h" 32 #include "llvm/IR/Instructions.h" 33 #include "llvm/IR/Type.h" 34 #include "llvm/IR/Value.h" 35 #include "llvm/Support/Casting.h" 36 #include "llvm/Support/CommandLine.h" 37 #include "llvm/Support/Debug.h" 38 #include "llvm/Support/ErrorHandling.h" 39 #include "llvm/Support/GenericDomTreeConstruction.h" 40 #include "llvm/Support/GraphWriter.h" 41 #include "llvm/Support/raw_ostream.h" 42 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 43 #include <cassert> 44 #include <iterator> 45 #include <string> 46 #include <vector> 47 48 using namespace llvm; 49 extern cl::opt<bool> EnableVPlanNativePath; 50 51 #define DEBUG_TYPE "vplan" 52 53 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 54 raw_ostream &llvm::operator<<(raw_ostream &OS, const VPValue &V) { 55 const VPInstruction *Instr = dyn_cast<VPInstruction>(&V); 56 VPSlotTracker SlotTracker( 57 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr); 58 V.print(OS, SlotTracker); 59 return OS; 60 } 61 #endif 62 63 Value *VPLane::getAsRuntimeExpr(IRBuilder<> &Builder, 64 const ElementCount &VF) const { 65 switch (LaneKind) { 66 case VPLane::Kind::ScalableLast: 67 // Lane = RuntimeVF - VF.getKnownMinValue() + Lane 68 return Builder.CreateSub(getRuntimeVF(Builder, Builder.getInt32Ty(), VF), 69 Builder.getInt32(VF.getKnownMinValue() - Lane)); 70 case VPLane::Kind::First: 71 return Builder.getInt32(Lane); 72 } 73 llvm_unreachable("Unknown lane kind"); 74 } 75 76 VPValue::VPValue(const unsigned char SC, Value *UV, VPDef *Def) 77 : SubclassID(SC), UnderlyingVal(UV), Def(Def) { 78 if (Def) 79 Def->addDefinedValue(this); 80 } 81 82 VPValue::~VPValue() { 83 assert(Users.empty() && "trying to delete a VPValue with remaining users"); 84 if (Def) 85 Def->removeDefinedValue(this); 86 } 87 88 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 89 void VPValue::print(raw_ostream &OS, VPSlotTracker &SlotTracker) const { 90 if (const VPRecipeBase *R = dyn_cast_or_null<VPRecipeBase>(Def)) 91 R->print(OS, "", SlotTracker); 92 else 93 printAsOperand(OS, SlotTracker); 94 } 95 96 void VPValue::dump() const { 97 const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this->Def); 98 VPSlotTracker SlotTracker( 99 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr); 100 print(dbgs(), SlotTracker); 101 dbgs() << "\n"; 102 } 103 104 void VPDef::dump() const { 105 const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this); 106 VPSlotTracker SlotTracker( 107 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr); 108 print(dbgs(), "", SlotTracker); 109 dbgs() << "\n"; 110 } 111 #endif 112 113 // Get the top-most entry block of \p Start. This is the entry block of the 114 // containing VPlan. This function is templated to support both const and non-const blocks 115 template <typename T> static T *getPlanEntry(T *Start) { 116 T *Next = Start; 117 T *Current = Start; 118 while ((Next = Next->getParent())) 119 Current = Next; 120 121 SmallSetVector<T *, 8> WorkList; 122 WorkList.insert(Current); 123 124 for (unsigned i = 0; i < WorkList.size(); i++) { 125 T *Current = WorkList[i]; 126 if (Current->getNumPredecessors() == 0) 127 return Current; 128 auto &Predecessors = Current->getPredecessors(); 129 WorkList.insert(Predecessors.begin(), Predecessors.end()); 130 } 131 132 llvm_unreachable("VPlan without any entry node without predecessors"); 133 } 134 135 VPlan *VPBlockBase::getPlan() { return getPlanEntry(this)->Plan; } 136 137 const VPlan *VPBlockBase::getPlan() const { return getPlanEntry(this)->Plan; } 138 139 /// \return the VPBasicBlock that is the entry of Block, possibly indirectly. 140 const VPBasicBlock *VPBlockBase::getEntryBasicBlock() const { 141 const VPBlockBase *Block = this; 142 while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 143 Block = Region->getEntry(); 144 return cast<VPBasicBlock>(Block); 145 } 146 147 VPBasicBlock *VPBlockBase::getEntryBasicBlock() { 148 VPBlockBase *Block = this; 149 while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 150 Block = Region->getEntry(); 151 return cast<VPBasicBlock>(Block); 152 } 153 154 void VPBlockBase::setPlan(VPlan *ParentPlan) { 155 assert(ParentPlan->getEntry() == this && 156 "Can only set plan on its entry block."); 157 Plan = ParentPlan; 158 } 159 160 /// \return the VPBasicBlock that is the exit of Block, possibly indirectly. 161 const VPBasicBlock *VPBlockBase::getExitBasicBlock() const { 162 const VPBlockBase *Block = this; 163 while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 164 Block = Region->getExit(); 165 return cast<VPBasicBlock>(Block); 166 } 167 168 VPBasicBlock *VPBlockBase::getExitBasicBlock() { 169 VPBlockBase *Block = this; 170 while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 171 Block = Region->getExit(); 172 return cast<VPBasicBlock>(Block); 173 } 174 175 VPBlockBase *VPBlockBase::getEnclosingBlockWithSuccessors() { 176 if (!Successors.empty() || !Parent) 177 return this; 178 assert(Parent->getExit() == this && 179 "Block w/o successors not the exit of its parent."); 180 return Parent->getEnclosingBlockWithSuccessors(); 181 } 182 183 VPBlockBase *VPBlockBase::getEnclosingBlockWithPredecessors() { 184 if (!Predecessors.empty() || !Parent) 185 return this; 186 assert(Parent->getEntry() == this && 187 "Block w/o predecessors not the entry of its parent."); 188 return Parent->getEnclosingBlockWithPredecessors(); 189 } 190 191 static VPValue *getSingleOperandOrNull(VPUser &U) { 192 if (U.getNumOperands() == 1) 193 return U.getOperand(0); 194 195 return nullptr; 196 } 197 198 static const VPValue *getSingleOperandOrNull(const VPUser &U) { 199 if (U.getNumOperands() == 1) 200 return U.getOperand(0); 201 202 return nullptr; 203 } 204 205 static void resetSingleOpUser(VPUser &U, VPValue *NewVal) { 206 assert(U.getNumOperands() <= 1 && "Didn't expect more than one operand!"); 207 if (!NewVal) { 208 if (U.getNumOperands() == 1) 209 U.removeLastOperand(); 210 return; 211 } 212 213 if (U.getNumOperands() == 1) 214 U.setOperand(0, NewVal); 215 else 216 U.addOperand(NewVal); 217 } 218 219 VPValue *VPBlockBase::getCondBit() { 220 return getSingleOperandOrNull(CondBitUser); 221 } 222 223 const VPValue *VPBlockBase::getCondBit() const { 224 return getSingleOperandOrNull(CondBitUser); 225 } 226 227 void VPBlockBase::setCondBit(VPValue *CV) { 228 resetSingleOpUser(CondBitUser, CV); 229 } 230 231 VPValue *VPBlockBase::getPredicate() { 232 return getSingleOperandOrNull(PredicateUser); 233 } 234 235 const VPValue *VPBlockBase::getPredicate() const { 236 return getSingleOperandOrNull(PredicateUser); 237 } 238 239 void VPBlockBase::setPredicate(VPValue *CV) { 240 resetSingleOpUser(PredicateUser, CV); 241 } 242 243 void VPBlockBase::deleteCFG(VPBlockBase *Entry) { 244 SmallVector<VPBlockBase *, 8> Blocks(depth_first(Entry)); 245 246 for (VPBlockBase *Block : Blocks) 247 delete Block; 248 } 249 250 VPBasicBlock::iterator VPBasicBlock::getFirstNonPhi() { 251 iterator It = begin(); 252 while (It != end() && (isa<VPWidenPHIRecipe>(&*It) || 253 isa<VPWidenIntOrFpInductionRecipe>(&*It) || 254 isa<VPPredInstPHIRecipe>(&*It) || 255 isa<VPWidenCanonicalIVRecipe>(&*It))) 256 It++; 257 return It; 258 } 259 260 Value *VPTransformState::get(VPValue *Def, const VPIteration &Instance) { 261 if (!Def->getDef()) 262 return Def->getLiveInIRValue(); 263 264 if (hasScalarValue(Def, Instance)) { 265 return Data 266 .PerPartScalars[Def][Instance.Part][Instance.Lane.mapToCacheIndex(VF)]; 267 } 268 269 assert(hasVectorValue(Def, Instance.Part)); 270 auto *VecPart = Data.PerPartOutput[Def][Instance.Part]; 271 if (!VecPart->getType()->isVectorTy()) { 272 assert(Instance.Lane.isFirstLane() && "cannot get lane > 0 for scalar"); 273 return VecPart; 274 } 275 // TODO: Cache created scalar values. 276 Value *Lane = Instance.Lane.getAsRuntimeExpr(Builder, VF); 277 auto *Extract = Builder.CreateExtractElement(VecPart, Lane); 278 // set(Def, Extract, Instance); 279 return Extract; 280 } 281 282 BasicBlock * 283 VPBasicBlock::createEmptyBasicBlock(VPTransformState::CFGState &CFG) { 284 // BB stands for IR BasicBlocks. VPBB stands for VPlan VPBasicBlocks. 285 // Pred stands for Predessor. Prev stands for Previous - last visited/created. 286 BasicBlock *PrevBB = CFG.PrevBB; 287 BasicBlock *NewBB = BasicBlock::Create(PrevBB->getContext(), getName(), 288 PrevBB->getParent(), CFG.LastBB); 289 LLVM_DEBUG(dbgs() << "LV: created " << NewBB->getName() << '\n'); 290 291 // Hook up the new basic block to its predecessors. 292 for (VPBlockBase *PredVPBlock : getHierarchicalPredecessors()) { 293 VPBasicBlock *PredVPBB = PredVPBlock->getExitBasicBlock(); 294 auto &PredVPSuccessors = PredVPBB->getSuccessors(); 295 BasicBlock *PredBB = CFG.VPBB2IRBB[PredVPBB]; 296 297 // In outer loop vectorization scenario, the predecessor BBlock may not yet 298 // be visited(backedge). Mark the VPBasicBlock for fixup at the end of 299 // vectorization. We do not encounter this case in inner loop vectorization 300 // as we start out by building a loop skeleton with the vector loop header 301 // and latch blocks. As a result, we never enter this function for the 302 // header block in the non VPlan-native path. 303 if (!PredBB) { 304 assert(EnableVPlanNativePath && 305 "Unexpected null predecessor in non VPlan-native path"); 306 CFG.VPBBsToFix.push_back(PredVPBB); 307 continue; 308 } 309 310 assert(PredBB && "Predecessor basic-block not found building successor."); 311 auto *PredBBTerminator = PredBB->getTerminator(); 312 LLVM_DEBUG(dbgs() << "LV: draw edge from" << PredBB->getName() << '\n'); 313 if (isa<UnreachableInst>(PredBBTerminator)) { 314 assert(PredVPSuccessors.size() == 1 && 315 "Predecessor ending w/o branch must have single successor."); 316 PredBBTerminator->eraseFromParent(); 317 BranchInst::Create(NewBB, PredBB); 318 } else { 319 assert(PredVPSuccessors.size() == 2 && 320 "Predecessor ending with branch must have two successors."); 321 unsigned idx = PredVPSuccessors.front() == this ? 0 : 1; 322 assert(!PredBBTerminator->getSuccessor(idx) && 323 "Trying to reset an existing successor block."); 324 PredBBTerminator->setSuccessor(idx, NewBB); 325 } 326 } 327 return NewBB; 328 } 329 330 void VPBasicBlock::execute(VPTransformState *State) { 331 bool Replica = State->Instance && !State->Instance->isFirstIteration(); 332 VPBasicBlock *PrevVPBB = State->CFG.PrevVPBB; 333 VPBlockBase *SingleHPred = nullptr; 334 BasicBlock *NewBB = State->CFG.PrevBB; // Reuse it if possible. 335 336 // 1. Create an IR basic block, or reuse the last one if possible. 337 // The last IR basic block is reused, as an optimization, in three cases: 338 // A. the first VPBB reuses the loop header BB - when PrevVPBB is null; 339 // B. when the current VPBB has a single (hierarchical) predecessor which 340 // is PrevVPBB and the latter has a single (hierarchical) successor; and 341 // C. when the current VPBB is an entry of a region replica - where PrevVPBB 342 // is the exit of this region from a previous instance, or the predecessor 343 // of this region. 344 if (PrevVPBB && /* A */ 345 !((SingleHPred = getSingleHierarchicalPredecessor()) && 346 SingleHPred->getExitBasicBlock() == PrevVPBB && 347 PrevVPBB->getSingleHierarchicalSuccessor()) && /* B */ 348 !(Replica && getPredecessors().empty())) { /* C */ 349 NewBB = createEmptyBasicBlock(State->CFG); 350 State->Builder.SetInsertPoint(NewBB); 351 // Temporarily terminate with unreachable until CFG is rewired. 352 UnreachableInst *Terminator = State->Builder.CreateUnreachable(); 353 State->Builder.SetInsertPoint(Terminator); 354 // Register NewBB in its loop. In innermost loops its the same for all BB's. 355 Loop *L = State->LI->getLoopFor(State->CFG.LastBB); 356 L->addBasicBlockToLoop(NewBB, *State->LI); 357 State->CFG.PrevBB = NewBB; 358 } 359 360 // 2. Fill the IR basic block with IR instructions. 361 LLVM_DEBUG(dbgs() << "LV: vectorizing VPBB:" << getName() 362 << " in BB:" << NewBB->getName() << '\n'); 363 364 State->CFG.VPBB2IRBB[this] = NewBB; 365 State->CFG.PrevVPBB = this; 366 367 for (VPRecipeBase &Recipe : Recipes) 368 Recipe.execute(*State); 369 370 VPValue *CBV; 371 if (EnableVPlanNativePath && (CBV = getCondBit())) { 372 assert(CBV->getUnderlyingValue() && 373 "Unexpected null underlying value for condition bit"); 374 375 // Condition bit value in a VPBasicBlock is used as the branch selector. In 376 // the VPlan-native path case, since all branches are uniform we generate a 377 // branch instruction using the condition value from vector lane 0 and dummy 378 // successors. The successors are fixed later when the successor blocks are 379 // visited. 380 Value *NewCond = State->get(CBV, {0, 0}); 381 382 // Replace the temporary unreachable terminator with the new conditional 383 // branch. 384 auto *CurrentTerminator = NewBB->getTerminator(); 385 assert(isa<UnreachableInst>(CurrentTerminator) && 386 "Expected to replace unreachable terminator with conditional " 387 "branch."); 388 auto *CondBr = BranchInst::Create(NewBB, nullptr, NewCond); 389 CondBr->setSuccessor(0, nullptr); 390 ReplaceInstWithInst(CurrentTerminator, CondBr); 391 } 392 393 LLVM_DEBUG(dbgs() << "LV: filled BB:" << *NewBB); 394 } 395 396 void VPBasicBlock::dropAllReferences(VPValue *NewValue) { 397 for (VPRecipeBase &R : Recipes) { 398 for (auto *Def : R.definedValues()) 399 Def->replaceAllUsesWith(NewValue); 400 401 for (unsigned I = 0, E = R.getNumOperands(); I != E; I++) 402 R.setOperand(I, NewValue); 403 } 404 } 405 406 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 407 void VPBasicBlock::print(raw_ostream &O, const Twine &Indent, 408 VPSlotTracker &SlotTracker) const { 409 O << Indent << getName() << ":\n"; 410 if (const VPValue *Pred = getPredicate()) { 411 O << Indent << "BlockPredicate:"; 412 Pred->printAsOperand(O, SlotTracker); 413 if (const auto *PredInst = dyn_cast<VPInstruction>(Pred)) 414 O << " (" << PredInst->getParent()->getName() << ")"; 415 O << '\n'; 416 } 417 418 auto RecipeIndent = Indent + " "; 419 for (const VPRecipeBase &Recipe : *this) { 420 Recipe.print(O, RecipeIndent, SlotTracker); 421 O << '\n'; 422 } 423 424 if (getSuccessors().empty()) { 425 O << Indent << "No successors\n"; 426 } else { 427 O << Indent << "Successor(s): "; 428 ListSeparator LS; 429 for (auto *Succ : getSuccessors()) 430 O << LS << Succ->getName(); 431 O << '\n'; 432 } 433 434 if (const VPValue *CBV = getCondBit()) { 435 O << Indent << "CondBit: "; 436 CBV->printAsOperand(O, SlotTracker); 437 if (const auto *CBI = dyn_cast<VPInstruction>(CBV)) 438 O << " (" << CBI->getParent()->getName() << ")"; 439 O << '\n'; 440 } 441 } 442 #endif 443 444 void VPRegionBlock::dropAllReferences(VPValue *NewValue) { 445 for (VPBlockBase *Block : depth_first(Entry)) 446 // Drop all references in VPBasicBlocks and replace all uses with 447 // DummyValue. 448 Block->dropAllReferences(NewValue); 449 } 450 451 void VPRegionBlock::execute(VPTransformState *State) { 452 ReversePostOrderTraversal<VPBlockBase *> RPOT(Entry); 453 454 if (!isReplicator()) { 455 // Visit the VPBlocks connected to "this", starting from it. 456 for (VPBlockBase *Block : RPOT) { 457 if (EnableVPlanNativePath) { 458 // The inner loop vectorization path does not represent loop preheader 459 // and exit blocks as part of the VPlan. In the VPlan-native path, skip 460 // vectorizing loop preheader block. In future, we may replace this 461 // check with the check for loop preheader. 462 if (Block->getNumPredecessors() == 0) 463 continue; 464 465 // Skip vectorizing loop exit block. In future, we may replace this 466 // check with the check for loop exit. 467 if (Block->getNumSuccessors() == 0) 468 continue; 469 } 470 471 LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n'); 472 Block->execute(State); 473 } 474 return; 475 } 476 477 assert(!State->Instance && "Replicating a Region with non-null instance."); 478 479 // Enter replicating mode. 480 State->Instance = VPIteration(0, 0); 481 482 for (unsigned Part = 0, UF = State->UF; Part < UF; ++Part) { 483 State->Instance->Part = Part; 484 assert(!State->VF.isScalable() && "VF is assumed to be non scalable."); 485 for (unsigned Lane = 0, VF = State->VF.getKnownMinValue(); Lane < VF; 486 ++Lane) { 487 State->Instance->Lane = VPLane(Lane, VPLane::Kind::First); 488 // Visit the VPBlocks connected to \p this, starting from it. 489 for (VPBlockBase *Block : RPOT) { 490 LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n'); 491 Block->execute(State); 492 } 493 } 494 } 495 496 // Exit replicating mode. 497 State->Instance.reset(); 498 } 499 500 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 501 void VPRegionBlock::print(raw_ostream &O, const Twine &Indent, 502 VPSlotTracker &SlotTracker) const { 503 O << Indent << (isReplicator() ? "<xVFxUF> " : "<x1> ") << getName() << ": {"; 504 auto NewIndent = Indent + " "; 505 for (auto *BlockBase : depth_first(Entry)) { 506 O << '\n'; 507 BlockBase->print(O, NewIndent, SlotTracker); 508 } 509 O << Indent << "}\n"; 510 } 511 #endif 512 513 void VPRecipeBase::insertBefore(VPRecipeBase *InsertPos) { 514 assert(!Parent && "Recipe already in some VPBasicBlock"); 515 assert(InsertPos->getParent() && 516 "Insertion position not in any VPBasicBlock"); 517 Parent = InsertPos->getParent(); 518 Parent->getRecipeList().insert(InsertPos->getIterator(), this); 519 } 520 521 void VPRecipeBase::insertAfter(VPRecipeBase *InsertPos) { 522 assert(!Parent && "Recipe already in some VPBasicBlock"); 523 assert(InsertPos->getParent() && 524 "Insertion position not in any VPBasicBlock"); 525 Parent = InsertPos->getParent(); 526 Parent->getRecipeList().insertAfter(InsertPos->getIterator(), this); 527 } 528 529 void VPRecipeBase::removeFromParent() { 530 assert(getParent() && "Recipe not in any VPBasicBlock"); 531 getParent()->getRecipeList().remove(getIterator()); 532 Parent = nullptr; 533 } 534 535 iplist<VPRecipeBase>::iterator VPRecipeBase::eraseFromParent() { 536 assert(getParent() && "Recipe not in any VPBasicBlock"); 537 return getParent()->getRecipeList().erase(getIterator()); 538 } 539 540 void VPRecipeBase::moveAfter(VPRecipeBase *InsertPos) { 541 removeFromParent(); 542 insertAfter(InsertPos); 543 } 544 545 void VPRecipeBase::moveBefore(VPBasicBlock &BB, 546 iplist<VPRecipeBase>::iterator I) { 547 assert(I == BB.end() || I->getParent() == &BB); 548 removeFromParent(); 549 Parent = &BB; 550 BB.getRecipeList().insert(I, this); 551 } 552 553 void VPInstruction::generateInstruction(VPTransformState &State, 554 unsigned Part) { 555 IRBuilder<> &Builder = State.Builder; 556 557 if (Instruction::isBinaryOp(getOpcode())) { 558 Value *A = State.get(getOperand(0), Part); 559 Value *B = State.get(getOperand(1), Part); 560 Value *V = Builder.CreateBinOp((Instruction::BinaryOps)getOpcode(), A, B); 561 State.set(this, V, Part); 562 return; 563 } 564 565 switch (getOpcode()) { 566 case VPInstruction::Not: { 567 Value *A = State.get(getOperand(0), Part); 568 Value *V = Builder.CreateNot(A); 569 State.set(this, V, Part); 570 break; 571 } 572 case VPInstruction::ICmpULE: { 573 Value *IV = State.get(getOperand(0), Part); 574 Value *TC = State.get(getOperand(1), Part); 575 Value *V = Builder.CreateICmpULE(IV, TC); 576 State.set(this, V, Part); 577 break; 578 } 579 case Instruction::Select: { 580 Value *Cond = State.get(getOperand(0), Part); 581 Value *Op1 = State.get(getOperand(1), Part); 582 Value *Op2 = State.get(getOperand(2), Part); 583 Value *V = Builder.CreateSelect(Cond, Op1, Op2); 584 State.set(this, V, Part); 585 break; 586 } 587 case VPInstruction::ActiveLaneMask: { 588 // Get first lane of vector induction variable. 589 Value *VIVElem0 = State.get(getOperand(0), VPIteration(Part, 0)); 590 // Get the original loop tripcount. 591 Value *ScalarTC = State.TripCount; 592 593 auto *Int1Ty = Type::getInt1Ty(Builder.getContext()); 594 auto *PredTy = FixedVectorType::get(Int1Ty, State.VF.getKnownMinValue()); 595 Instruction *Call = Builder.CreateIntrinsic( 596 Intrinsic::get_active_lane_mask, {PredTy, ScalarTC->getType()}, 597 {VIVElem0, ScalarTC}, nullptr, "active.lane.mask"); 598 State.set(this, Call, Part); 599 break; 600 } 601 default: 602 llvm_unreachable("Unsupported opcode for instruction"); 603 } 604 } 605 606 void VPInstruction::execute(VPTransformState &State) { 607 assert(!State.Instance && "VPInstruction executing an Instance"); 608 for (unsigned Part = 0; Part < State.UF; ++Part) 609 generateInstruction(State, Part); 610 } 611 612 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 613 void VPInstruction::dump() const { 614 VPSlotTracker SlotTracker(getParent()->getPlan()); 615 print(dbgs(), "", SlotTracker); 616 } 617 618 void VPInstruction::print(raw_ostream &O, const Twine &Indent, 619 VPSlotTracker &SlotTracker) const { 620 O << Indent << "EMIT "; 621 622 if (hasResult()) { 623 printAsOperand(O, SlotTracker); 624 O << " = "; 625 } 626 627 switch (getOpcode()) { 628 case VPInstruction::Not: 629 O << "not"; 630 break; 631 case VPInstruction::ICmpULE: 632 O << "icmp ule"; 633 break; 634 case VPInstruction::SLPLoad: 635 O << "combined load"; 636 break; 637 case VPInstruction::SLPStore: 638 O << "combined store"; 639 break; 640 case VPInstruction::ActiveLaneMask: 641 O << "active lane mask"; 642 break; 643 644 default: 645 O << Instruction::getOpcodeName(getOpcode()); 646 } 647 648 for (const VPValue *Operand : operands()) { 649 O << " "; 650 Operand->printAsOperand(O, SlotTracker); 651 } 652 } 653 #endif 654 655 /// Generate the code inside the body of the vectorized loop. Assumes a single 656 /// LoopVectorBody basic-block was created for this. Introduce additional 657 /// basic-blocks as needed, and fill them all. 658 void VPlan::execute(VPTransformState *State) { 659 // -1. Check if the backedge taken count is needed, and if so build it. 660 if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) { 661 Value *TC = State->TripCount; 662 IRBuilder<> Builder(State->CFG.PrevBB->getTerminator()); 663 auto *TCMO = Builder.CreateSub(TC, ConstantInt::get(TC->getType(), 1), 664 "trip.count.minus.1"); 665 auto VF = State->VF; 666 Value *VTCMO = 667 VF.isScalar() ? TCMO : Builder.CreateVectorSplat(VF, TCMO, "broadcast"); 668 for (unsigned Part = 0, UF = State->UF; Part < UF; ++Part) 669 State->set(BackedgeTakenCount, VTCMO, Part); 670 } 671 672 // 0. Set the reverse mapping from VPValues to Values for code generation. 673 for (auto &Entry : Value2VPValue) 674 State->VPValue2Value[Entry.second] = Entry.first; 675 676 BasicBlock *VectorPreHeaderBB = State->CFG.PrevBB; 677 BasicBlock *VectorHeaderBB = VectorPreHeaderBB->getSingleSuccessor(); 678 assert(VectorHeaderBB && "Loop preheader does not have a single successor."); 679 680 // 1. Make room to generate basic-blocks inside loop body if needed. 681 BasicBlock *VectorLatchBB = VectorHeaderBB->splitBasicBlock( 682 VectorHeaderBB->getFirstInsertionPt(), "vector.body.latch"); 683 Loop *L = State->LI->getLoopFor(VectorHeaderBB); 684 L->addBasicBlockToLoop(VectorLatchBB, *State->LI); 685 // Remove the edge between Header and Latch to allow other connections. 686 // Temporarily terminate with unreachable until CFG is rewired. 687 // Note: this asserts the generated code's assumption that 688 // getFirstInsertionPt() can be dereferenced into an Instruction. 689 VectorHeaderBB->getTerminator()->eraseFromParent(); 690 State->Builder.SetInsertPoint(VectorHeaderBB); 691 UnreachableInst *Terminator = State->Builder.CreateUnreachable(); 692 State->Builder.SetInsertPoint(Terminator); 693 694 // 2. Generate code in loop body. 695 State->CFG.PrevVPBB = nullptr; 696 State->CFG.PrevBB = VectorHeaderBB; 697 State->CFG.LastBB = VectorLatchBB; 698 699 for (VPBlockBase *Block : depth_first(Entry)) 700 Block->execute(State); 701 702 // Setup branch terminator successors for VPBBs in VPBBsToFix based on 703 // VPBB's successors. 704 for (auto VPBB : State->CFG.VPBBsToFix) { 705 assert(EnableVPlanNativePath && 706 "Unexpected VPBBsToFix in non VPlan-native path"); 707 BasicBlock *BB = State->CFG.VPBB2IRBB[VPBB]; 708 assert(BB && "Unexpected null basic block for VPBB"); 709 710 unsigned Idx = 0; 711 auto *BBTerminator = BB->getTerminator(); 712 713 for (VPBlockBase *SuccVPBlock : VPBB->getHierarchicalSuccessors()) { 714 VPBasicBlock *SuccVPBB = SuccVPBlock->getEntryBasicBlock(); 715 BBTerminator->setSuccessor(Idx, State->CFG.VPBB2IRBB[SuccVPBB]); 716 ++Idx; 717 } 718 } 719 720 // 3. Merge the temporary latch created with the last basic-block filled. 721 BasicBlock *LastBB = State->CFG.PrevBB; 722 // Connect LastBB to VectorLatchBB to facilitate their merge. 723 assert((EnableVPlanNativePath || 724 isa<UnreachableInst>(LastBB->getTerminator())) && 725 "Expected InnerLoop VPlan CFG to terminate with unreachable"); 726 assert((!EnableVPlanNativePath || isa<BranchInst>(LastBB->getTerminator())) && 727 "Expected VPlan CFG to terminate with branch in NativePath"); 728 LastBB->getTerminator()->eraseFromParent(); 729 BranchInst::Create(VectorLatchBB, LastBB); 730 731 // Merge LastBB with Latch. 732 bool Merged = MergeBlockIntoPredecessor(VectorLatchBB, nullptr, State->LI); 733 (void)Merged; 734 assert(Merged && "Could not merge last basic block with latch."); 735 VectorLatchBB = LastBB; 736 737 // We do not attempt to preserve DT for outer loop vectorization currently. 738 if (!EnableVPlanNativePath) 739 updateDominatorTree(State->DT, VectorPreHeaderBB, VectorLatchBB, 740 L->getExitBlock()); 741 } 742 743 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 744 LLVM_DUMP_METHOD 745 void VPlan::print(raw_ostream &O) const { 746 VPSlotTracker SlotTracker(this); 747 748 O << "VPlan '" << Name << "' {"; 749 for (const VPBlockBase *Block : depth_first(getEntry())) { 750 O << '\n'; 751 Block->print(O, "", SlotTracker); 752 } 753 O << "}\n"; 754 } 755 756 LLVM_DUMP_METHOD 757 void VPlan::printDOT(raw_ostream &O) const { 758 VPlanPrinter Printer(O, *this); 759 Printer.dump(); 760 } 761 762 LLVM_DUMP_METHOD 763 void VPlan::dump() const { print(dbgs()); } 764 #endif 765 766 void VPlan::updateDominatorTree(DominatorTree *DT, BasicBlock *LoopPreHeaderBB, 767 BasicBlock *LoopLatchBB, 768 BasicBlock *LoopExitBB) { 769 BasicBlock *LoopHeaderBB = LoopPreHeaderBB->getSingleSuccessor(); 770 assert(LoopHeaderBB && "Loop preheader does not have a single successor."); 771 // The vector body may be more than a single basic-block by this point. 772 // Update the dominator tree information inside the vector body by propagating 773 // it from header to latch, expecting only triangular control-flow, if any. 774 BasicBlock *PostDomSucc = nullptr; 775 for (auto *BB = LoopHeaderBB; BB != LoopLatchBB; BB = PostDomSucc) { 776 // Get the list of successors of this block. 777 std::vector<BasicBlock *> Succs(succ_begin(BB), succ_end(BB)); 778 assert(Succs.size() <= 2 && 779 "Basic block in vector loop has more than 2 successors."); 780 PostDomSucc = Succs[0]; 781 if (Succs.size() == 1) { 782 assert(PostDomSucc->getSinglePredecessor() && 783 "PostDom successor has more than one predecessor."); 784 DT->addNewBlock(PostDomSucc, BB); 785 continue; 786 } 787 BasicBlock *InterimSucc = Succs[1]; 788 if (PostDomSucc->getSingleSuccessor() == InterimSucc) { 789 PostDomSucc = Succs[1]; 790 InterimSucc = Succs[0]; 791 } 792 assert(InterimSucc->getSingleSuccessor() == PostDomSucc && 793 "One successor of a basic block does not lead to the other."); 794 assert(InterimSucc->getSinglePredecessor() && 795 "Interim successor has more than one predecessor."); 796 assert(PostDomSucc->hasNPredecessors(2) && 797 "PostDom successor has more than two predecessors."); 798 DT->addNewBlock(InterimSucc, BB); 799 DT->addNewBlock(PostDomSucc, BB); 800 } 801 // Latch block is a new dominator for the loop exit. 802 DT->changeImmediateDominator(LoopExitBB, LoopLatchBB); 803 assert(DT->verify(DominatorTree::VerificationLevel::Fast)); 804 } 805 806 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 807 const Twine VPlanPrinter::getUID(const VPBlockBase *Block) { 808 return (isa<VPRegionBlock>(Block) ? "cluster_N" : "N") + 809 Twine(getOrCreateBID(Block)); 810 } 811 812 const Twine VPlanPrinter::getOrCreateName(const VPBlockBase *Block) { 813 const std::string &Name = Block->getName(); 814 if (!Name.empty()) 815 return Name; 816 return "VPB" + Twine(getOrCreateBID(Block)); 817 } 818 819 void VPlanPrinter::dump() { 820 Depth = 1; 821 bumpIndent(0); 822 OS << "digraph VPlan {\n"; 823 OS << "graph [labelloc=t, fontsize=30; label=\"Vectorization Plan"; 824 if (!Plan.getName().empty()) 825 OS << "\\n" << DOT::EscapeString(Plan.getName()); 826 if (Plan.BackedgeTakenCount) { 827 OS << ", where:\\n"; 828 Plan.BackedgeTakenCount->print(OS, SlotTracker); 829 OS << " := BackedgeTakenCount"; 830 } 831 OS << "\"]\n"; 832 OS << "node [shape=rect, fontname=Courier, fontsize=30]\n"; 833 OS << "edge [fontname=Courier, fontsize=30]\n"; 834 OS << "compound=true\n"; 835 836 for (const VPBlockBase *Block : depth_first(Plan.getEntry())) 837 dumpBlock(Block); 838 839 OS << "}\n"; 840 } 841 842 void VPlanPrinter::dumpBlock(const VPBlockBase *Block) { 843 if (const VPBasicBlock *BasicBlock = dyn_cast<VPBasicBlock>(Block)) 844 dumpBasicBlock(BasicBlock); 845 else if (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 846 dumpRegion(Region); 847 else 848 llvm_unreachable("Unsupported kind of VPBlock."); 849 } 850 851 void VPlanPrinter::drawEdge(const VPBlockBase *From, const VPBlockBase *To, 852 bool Hidden, const Twine &Label) { 853 // Due to "dot" we print an edge between two regions as an edge between the 854 // exit basic block and the entry basic of the respective regions. 855 const VPBlockBase *Tail = From->getExitBasicBlock(); 856 const VPBlockBase *Head = To->getEntryBasicBlock(); 857 OS << Indent << getUID(Tail) << " -> " << getUID(Head); 858 OS << " [ label=\"" << Label << '\"'; 859 if (Tail != From) 860 OS << " ltail=" << getUID(From); 861 if (Head != To) 862 OS << " lhead=" << getUID(To); 863 if (Hidden) 864 OS << "; splines=none"; 865 OS << "]\n"; 866 } 867 868 void VPlanPrinter::dumpEdges(const VPBlockBase *Block) { 869 auto &Successors = Block->getSuccessors(); 870 if (Successors.size() == 1) 871 drawEdge(Block, Successors.front(), false, ""); 872 else if (Successors.size() == 2) { 873 drawEdge(Block, Successors.front(), false, "T"); 874 drawEdge(Block, Successors.back(), false, "F"); 875 } else { 876 unsigned SuccessorNumber = 0; 877 for (auto *Successor : Successors) 878 drawEdge(Block, Successor, false, Twine(SuccessorNumber++)); 879 } 880 } 881 882 void VPlanPrinter::dumpBasicBlock(const VPBasicBlock *BasicBlock) { 883 // Implement dot-formatted dump by performing plain-text dump into the 884 // temporary storage followed by some post-processing. 885 OS << Indent << getUID(BasicBlock) << " [label =\n"; 886 bumpIndent(1); 887 std::string Str; 888 raw_string_ostream SS(Str); 889 // Use no indentation as we need to wrap the lines into quotes ourselves. 890 BasicBlock->print(SS, "", SlotTracker); 891 892 // We need to process each line of the output separately, so split 893 // single-string plain-text dump. 894 SmallVector<StringRef, 0> Lines; 895 StringRef(Str).rtrim('\n').split(Lines, "\n"); 896 897 auto EmitLine = [&](StringRef Line, StringRef Suffix) { 898 OS << Indent << '"' << DOT::EscapeString(Line.str()) << "\\l\"" << Suffix; 899 }; 900 901 // Don't need the "+" after the last line. 902 for (auto Line : make_range(Lines.begin(), Lines.end() - 1)) 903 EmitLine(Line, " +\n"); 904 EmitLine(Lines.back(), "\n"); 905 906 bumpIndent(-1); 907 OS << Indent << "]\n"; 908 909 dumpEdges(BasicBlock); 910 } 911 912 void VPlanPrinter::dumpRegion(const VPRegionBlock *Region) { 913 OS << Indent << "subgraph " << getUID(Region) << " {\n"; 914 bumpIndent(1); 915 OS << Indent << "fontname=Courier\n" 916 << Indent << "label=\"" 917 << DOT::EscapeString(Region->isReplicator() ? "<xVFxUF> " : "<x1> ") 918 << DOT::EscapeString(Region->getName()) << "\"\n"; 919 // Dump the blocks of the region. 920 assert(Region->getEntry() && "Region contains no inner blocks."); 921 for (const VPBlockBase *Block : depth_first(Region->getEntry())) 922 dumpBlock(Block); 923 bumpIndent(-1); 924 OS << Indent << "}\n"; 925 dumpEdges(Region); 926 } 927 928 void VPlanIngredient::print(raw_ostream &O) const { 929 if (auto *Inst = dyn_cast<Instruction>(V)) { 930 if (!Inst->getType()->isVoidTy()) { 931 Inst->printAsOperand(O, false); 932 O << " = "; 933 } 934 O << Inst->getOpcodeName() << " "; 935 unsigned E = Inst->getNumOperands(); 936 if (E > 0) { 937 Inst->getOperand(0)->printAsOperand(O, false); 938 for (unsigned I = 1; I < E; ++I) 939 Inst->getOperand(I)->printAsOperand(O << ", ", false); 940 } 941 } else // !Inst 942 V->printAsOperand(O, false); 943 } 944 945 void VPWidenCallRecipe::print(raw_ostream &O, const Twine &Indent, 946 VPSlotTracker &SlotTracker) const { 947 O << Indent << "WIDEN-CALL "; 948 949 auto *CI = cast<CallInst>(getUnderlyingInstr()); 950 if (CI->getType()->isVoidTy()) 951 O << "void "; 952 else { 953 printAsOperand(O, SlotTracker); 954 O << " = "; 955 } 956 957 O << "call @" << CI->getCalledFunction()->getName() << "("; 958 printOperands(O, SlotTracker); 959 O << ")"; 960 } 961 962 void VPWidenSelectRecipe::print(raw_ostream &O, const Twine &Indent, 963 VPSlotTracker &SlotTracker) const { 964 O << Indent << "WIDEN-SELECT "; 965 printAsOperand(O, SlotTracker); 966 O << " = select "; 967 getOperand(0)->printAsOperand(O, SlotTracker); 968 O << ", "; 969 getOperand(1)->printAsOperand(O, SlotTracker); 970 O << ", "; 971 getOperand(2)->printAsOperand(O, SlotTracker); 972 O << (InvariantCond ? " (condition is loop invariant)" : ""); 973 } 974 975 void VPWidenRecipe::print(raw_ostream &O, const Twine &Indent, 976 VPSlotTracker &SlotTracker) const { 977 O << Indent << "WIDEN "; 978 printAsOperand(O, SlotTracker); 979 O << " = " << getUnderlyingInstr()->getOpcodeName() << " "; 980 printOperands(O, SlotTracker); 981 } 982 983 void VPWidenIntOrFpInductionRecipe::print(raw_ostream &O, const Twine &Indent, 984 VPSlotTracker &SlotTracker) const { 985 O << Indent << "WIDEN-INDUCTION"; 986 if (getTruncInst()) { 987 O << "\\l\""; 988 O << " +\n" << Indent << "\" " << VPlanIngredient(IV) << "\\l\""; 989 O << " +\n" << Indent << "\" "; 990 getVPValue(0)->printAsOperand(O, SlotTracker); 991 } else 992 O << " " << VPlanIngredient(IV); 993 } 994 995 void VPWidenGEPRecipe::print(raw_ostream &O, const Twine &Indent, 996 VPSlotTracker &SlotTracker) const { 997 O << Indent << "WIDEN-GEP "; 998 O << (IsPtrLoopInvariant ? "Inv" : "Var"); 999 size_t IndicesNumber = IsIndexLoopInvariant.size(); 1000 for (size_t I = 0; I < IndicesNumber; ++I) 1001 O << "[" << (IsIndexLoopInvariant[I] ? "Inv" : "Var") << "]"; 1002 1003 O << " "; 1004 printAsOperand(O, SlotTracker); 1005 O << " = getelementptr "; 1006 printOperands(O, SlotTracker); 1007 } 1008 1009 void VPWidenPHIRecipe::print(raw_ostream &O, const Twine &Indent, 1010 VPSlotTracker &SlotTracker) const { 1011 O << Indent << "WIDEN-PHI "; 1012 1013 auto *OriginalPhi = cast<PHINode>(getUnderlyingValue()); 1014 // Unless all incoming values are modeled in VPlan print the original PHI 1015 // directly. 1016 // TODO: Remove once all VPWidenPHIRecipe instances keep all relevant incoming 1017 // values as VPValues. 1018 if (getNumOperands() != OriginalPhi->getNumOperands()) { 1019 O << VPlanIngredient(OriginalPhi); 1020 return; 1021 } 1022 1023 printAsOperand(O, SlotTracker); 1024 O << " = phi "; 1025 printOperands(O, SlotTracker); 1026 } 1027 1028 void VPBlendRecipe::print(raw_ostream &O, const Twine &Indent, 1029 VPSlotTracker &SlotTracker) const { 1030 O << Indent << "BLEND "; 1031 Phi->printAsOperand(O, false); 1032 O << " ="; 1033 if (getNumIncomingValues() == 1) { 1034 // Not a User of any mask: not really blending, this is a 1035 // single-predecessor phi. 1036 O << " "; 1037 getIncomingValue(0)->printAsOperand(O, SlotTracker); 1038 } else { 1039 for (unsigned I = 0, E = getNumIncomingValues(); I < E; ++I) { 1040 O << " "; 1041 getIncomingValue(I)->printAsOperand(O, SlotTracker); 1042 O << "/"; 1043 getMask(I)->printAsOperand(O, SlotTracker); 1044 } 1045 } 1046 } 1047 1048 void VPReductionRecipe::print(raw_ostream &O, const Twine &Indent, 1049 VPSlotTracker &SlotTracker) const { 1050 O << Indent << "REDUCE "; 1051 printAsOperand(O, SlotTracker); 1052 O << " = "; 1053 getChainOp()->printAsOperand(O, SlotTracker); 1054 O << " + reduce." << Instruction::getOpcodeName(RdxDesc->getOpcode()) 1055 << " ("; 1056 getVecOp()->printAsOperand(O, SlotTracker); 1057 if (getCondOp()) { 1058 O << ", "; 1059 getCondOp()->printAsOperand(O, SlotTracker); 1060 } 1061 O << ")"; 1062 } 1063 1064 void VPReplicateRecipe::print(raw_ostream &O, const Twine &Indent, 1065 VPSlotTracker &SlotTracker) const { 1066 O << Indent << (IsUniform ? "CLONE " : "REPLICATE "); 1067 1068 if (!getUnderlyingInstr()->getType()->isVoidTy()) { 1069 printAsOperand(O, SlotTracker); 1070 O << " = "; 1071 } 1072 O << Instruction::getOpcodeName(getUnderlyingInstr()->getOpcode()) << " "; 1073 printOperands(O, SlotTracker); 1074 1075 if (AlsoPack) 1076 O << " (S->V)"; 1077 } 1078 1079 void VPPredInstPHIRecipe::print(raw_ostream &O, const Twine &Indent, 1080 VPSlotTracker &SlotTracker) const { 1081 O << Indent << "PHI-PREDICATED-INSTRUCTION "; 1082 printAsOperand(O, SlotTracker); 1083 O << " = "; 1084 printOperands(O, SlotTracker); 1085 } 1086 1087 void VPWidenMemoryInstructionRecipe::print(raw_ostream &O, const Twine &Indent, 1088 VPSlotTracker &SlotTracker) const { 1089 O << Indent << "WIDEN "; 1090 1091 if (!isStore()) { 1092 getVPValue()->printAsOperand(O, SlotTracker); 1093 O << " = "; 1094 } 1095 O << Instruction::getOpcodeName(Ingredient.getOpcode()) << " "; 1096 1097 printOperands(O, SlotTracker); 1098 } 1099 #endif 1100 1101 void VPWidenCanonicalIVRecipe::execute(VPTransformState &State) { 1102 Value *CanonicalIV = State.CanonicalIV; 1103 Type *STy = CanonicalIV->getType(); 1104 IRBuilder<> Builder(State.CFG.PrevBB->getTerminator()); 1105 ElementCount VF = State.VF; 1106 assert(!VF.isScalable() && "the code following assumes non scalables ECs"); 1107 Value *VStart = VF.isScalar() 1108 ? CanonicalIV 1109 : Builder.CreateVectorSplat(VF.getKnownMinValue(), 1110 CanonicalIV, "broadcast"); 1111 for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part) { 1112 SmallVector<Constant *, 8> Indices; 1113 for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane) 1114 Indices.push_back( 1115 ConstantInt::get(STy, Part * VF.getKnownMinValue() + Lane)); 1116 // If VF == 1, there is only one iteration in the loop above, thus the 1117 // element pushed back into Indices is ConstantInt::get(STy, Part) 1118 Constant *VStep = 1119 VF.isScalar() ? Indices.back() : ConstantVector::get(Indices); 1120 // Add the consecutive indices to the vector value. 1121 Value *CanonicalVectorIV = Builder.CreateAdd(VStart, VStep, "vec.iv"); 1122 State.set(getVPValue(), CanonicalVectorIV, Part); 1123 } 1124 } 1125 1126 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1127 void VPWidenCanonicalIVRecipe::print(raw_ostream &O, const Twine &Indent, 1128 VPSlotTracker &SlotTracker) const { 1129 O << Indent << "EMIT "; 1130 getVPValue()->printAsOperand(O, SlotTracker); 1131 O << " = WIDEN-CANONICAL-INDUCTION"; 1132 } 1133 #endif 1134 1135 template void DomTreeBuilder::Calculate<VPDominatorTree>(VPDominatorTree &DT); 1136 1137 void VPValue::replaceAllUsesWith(VPValue *New) { 1138 for (unsigned J = 0; J < getNumUsers();) { 1139 VPUser *User = Users[J]; 1140 unsigned NumUsers = getNumUsers(); 1141 for (unsigned I = 0, E = User->getNumOperands(); I < E; ++I) 1142 if (User->getOperand(I) == this) 1143 User->setOperand(I, New); 1144 // If a user got removed after updating the current user, the next user to 1145 // update will be moved to the current position, so we only need to 1146 // increment the index if the number of users did not change. 1147 if (NumUsers == getNumUsers()) 1148 J++; 1149 } 1150 } 1151 1152 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1153 void VPValue::printAsOperand(raw_ostream &OS, VPSlotTracker &Tracker) const { 1154 if (const Value *UV = getUnderlyingValue()) { 1155 OS << "ir<"; 1156 UV->printAsOperand(OS, false); 1157 OS << ">"; 1158 return; 1159 } 1160 1161 unsigned Slot = Tracker.getSlot(this); 1162 if (Slot == unsigned(-1)) 1163 OS << "<badref>"; 1164 else 1165 OS << "vp<%" << Tracker.getSlot(this) << ">"; 1166 } 1167 1168 void VPUser::printOperands(raw_ostream &O, VPSlotTracker &SlotTracker) const { 1169 interleaveComma(operands(), O, [&O, &SlotTracker](VPValue *Op) { 1170 Op->printAsOperand(O, SlotTracker); 1171 }); 1172 } 1173 #endif 1174 1175 void VPInterleavedAccessInfo::visitRegion(VPRegionBlock *Region, 1176 Old2NewTy &Old2New, 1177 InterleavedAccessInfo &IAI) { 1178 ReversePostOrderTraversal<VPBlockBase *> RPOT(Region->getEntry()); 1179 for (VPBlockBase *Base : RPOT) { 1180 visitBlock(Base, Old2New, IAI); 1181 } 1182 } 1183 1184 void VPInterleavedAccessInfo::visitBlock(VPBlockBase *Block, Old2NewTy &Old2New, 1185 InterleavedAccessInfo &IAI) { 1186 if (VPBasicBlock *VPBB = dyn_cast<VPBasicBlock>(Block)) { 1187 for (VPRecipeBase &VPI : *VPBB) { 1188 if (isa<VPWidenPHIRecipe>(&VPI)) 1189 continue; 1190 assert(isa<VPInstruction>(&VPI) && "Can only handle VPInstructions"); 1191 auto *VPInst = cast<VPInstruction>(&VPI); 1192 auto *Inst = cast<Instruction>(VPInst->getUnderlyingValue()); 1193 auto *IG = IAI.getInterleaveGroup(Inst); 1194 if (!IG) 1195 continue; 1196 1197 auto NewIGIter = Old2New.find(IG); 1198 if (NewIGIter == Old2New.end()) 1199 Old2New[IG] = new InterleaveGroup<VPInstruction>( 1200 IG->getFactor(), IG->isReverse(), IG->getAlign()); 1201 1202 if (Inst == IG->getInsertPos()) 1203 Old2New[IG]->setInsertPos(VPInst); 1204 1205 InterleaveGroupMap[VPInst] = Old2New[IG]; 1206 InterleaveGroupMap[VPInst]->insertMember( 1207 VPInst, IG->getIndex(Inst), 1208 Align(IG->isReverse() ? (-1) * int(IG->getFactor()) 1209 : IG->getFactor())); 1210 } 1211 } else if (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 1212 visitRegion(Region, Old2New, IAI); 1213 else 1214 llvm_unreachable("Unsupported kind of VPBlock."); 1215 } 1216 1217 VPInterleavedAccessInfo::VPInterleavedAccessInfo(VPlan &Plan, 1218 InterleavedAccessInfo &IAI) { 1219 Old2NewTy Old2New; 1220 visitRegion(cast<VPRegionBlock>(Plan.getEntry()), Old2New, IAI); 1221 } 1222 1223 void VPSlotTracker::assignSlot(const VPValue *V) { 1224 assert(Slots.find(V) == Slots.end() && "VPValue already has a slot!"); 1225 Slots[V] = NextSlot++; 1226 } 1227 1228 void VPSlotTracker::assignSlots(const VPBlockBase *VPBB) { 1229 if (auto *Region = dyn_cast<VPRegionBlock>(VPBB)) 1230 assignSlots(Region); 1231 else 1232 assignSlots(cast<VPBasicBlock>(VPBB)); 1233 } 1234 1235 void VPSlotTracker::assignSlots(const VPRegionBlock *Region) { 1236 ReversePostOrderTraversal<const VPBlockBase *> RPOT(Region->getEntry()); 1237 for (const VPBlockBase *Block : RPOT) 1238 assignSlots(Block); 1239 } 1240 1241 void VPSlotTracker::assignSlots(const VPBasicBlock *VPBB) { 1242 for (const VPRecipeBase &Recipe : *VPBB) { 1243 for (VPValue *Def : Recipe.definedValues()) 1244 assignSlot(Def); 1245 } 1246 } 1247 1248 void VPSlotTracker::assignSlots(const VPlan &Plan) { 1249 1250 for (const VPValue *V : Plan.VPExternalDefs) 1251 assignSlot(V); 1252 1253 if (Plan.BackedgeTakenCount) 1254 assignSlot(Plan.BackedgeTakenCount); 1255 1256 ReversePostOrderTraversal<const VPBlockBase *> RPOT(Plan.getEntry()); 1257 for (const VPBlockBase *Block : RPOT) 1258 assignSlots(Block); 1259 } 1260