1 //===- VPlan.cpp - Vectorizer Plan ----------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This is the LLVM vectorization plan. It represents a candidate for 11 /// vectorization, allowing to plan and optimize how to vectorize a given loop 12 /// before generating LLVM-IR. 13 /// The vectorizer uses vectorization plans to estimate the costs of potential 14 /// candidates and if profitable to execute the desired plan, generating vector 15 /// LLVM-IR code. 16 /// 17 //===----------------------------------------------------------------------===// 18 19 #include "VPlan.h" 20 #include "VPlanDominatorTree.h" 21 #include "llvm/ADT/DepthFirstIterator.h" 22 #include "llvm/ADT/PostOrderIterator.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/Twine.h" 25 #include "llvm/Analysis/LoopInfo.h" 26 #include "llvm/IR/BasicBlock.h" 27 #include "llvm/IR/CFG.h" 28 #include "llvm/IR/InstrTypes.h" 29 #include "llvm/IR/Instruction.h" 30 #include "llvm/IR/Instructions.h" 31 #include "llvm/IR/Type.h" 32 #include "llvm/IR/Value.h" 33 #include "llvm/Support/Casting.h" 34 #include "llvm/Support/CommandLine.h" 35 #include "llvm/Support/Debug.h" 36 #include "llvm/Support/ErrorHandling.h" 37 #include "llvm/Support/GenericDomTreeConstruction.h" 38 #include "llvm/Support/GraphWriter.h" 39 #include "llvm/Support/raw_ostream.h" 40 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 41 #include <cassert> 42 #include <iterator> 43 #include <string> 44 #include <vector> 45 46 using namespace llvm; 47 extern cl::opt<bool> EnableVPlanNativePath; 48 49 #define DEBUG_TYPE "vplan" 50 51 raw_ostream &llvm::operator<<(raw_ostream &OS, const VPValue &V) { 52 const VPInstruction *Instr = dyn_cast<VPInstruction>(&V); 53 VPSlotTracker SlotTracker( 54 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr); 55 V.print(OS, SlotTracker); 56 return OS; 57 } 58 59 void VPValue::print(raw_ostream &OS, VPSlotTracker &SlotTracker) const { 60 if (const VPInstruction *Instr = dyn_cast<VPInstruction>(this)) 61 Instr->print(OS, SlotTracker); 62 else 63 printAsOperand(OS, SlotTracker); 64 } 65 66 // Get the top-most entry block of \p Start. This is the entry block of the 67 // containing VPlan. This function is templated to support both const and non-const blocks 68 template <typename T> static T *getPlanEntry(T *Start) { 69 T *Next = Start; 70 T *Current = Start; 71 while ((Next = Next->getParent())) 72 Current = Next; 73 74 SmallSetVector<T *, 8> WorkList; 75 WorkList.insert(Current); 76 77 for (unsigned i = 0; i < WorkList.size(); i++) { 78 T *Current = WorkList[i]; 79 if (Current->getNumPredecessors() == 0) 80 return Current; 81 auto &Predecessors = Current->getPredecessors(); 82 WorkList.insert(Predecessors.begin(), Predecessors.end()); 83 } 84 85 llvm_unreachable("VPlan without any entry node without predecessors"); 86 } 87 88 VPlan *VPBlockBase::getPlan() { return getPlanEntry(this)->Plan; } 89 90 const VPlan *VPBlockBase::getPlan() const { return getPlanEntry(this)->Plan; } 91 92 /// \return the VPBasicBlock that is the entry of Block, possibly indirectly. 93 const VPBasicBlock *VPBlockBase::getEntryBasicBlock() const { 94 const VPBlockBase *Block = this; 95 while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 96 Block = Region->getEntry(); 97 return cast<VPBasicBlock>(Block); 98 } 99 100 VPBasicBlock *VPBlockBase::getEntryBasicBlock() { 101 VPBlockBase *Block = this; 102 while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 103 Block = Region->getEntry(); 104 return cast<VPBasicBlock>(Block); 105 } 106 107 void VPBlockBase::setPlan(VPlan *ParentPlan) { 108 assert(ParentPlan->getEntry() == this && 109 "Can only set plan on its entry block."); 110 Plan = ParentPlan; 111 } 112 113 /// \return the VPBasicBlock that is the exit of Block, possibly indirectly. 114 const VPBasicBlock *VPBlockBase::getExitBasicBlock() const { 115 const VPBlockBase *Block = this; 116 while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 117 Block = Region->getExit(); 118 return cast<VPBasicBlock>(Block); 119 } 120 121 VPBasicBlock *VPBlockBase::getExitBasicBlock() { 122 VPBlockBase *Block = this; 123 while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 124 Block = Region->getExit(); 125 return cast<VPBasicBlock>(Block); 126 } 127 128 VPBlockBase *VPBlockBase::getEnclosingBlockWithSuccessors() { 129 if (!Successors.empty() || !Parent) 130 return this; 131 assert(Parent->getExit() == this && 132 "Block w/o successors not the exit of its parent."); 133 return Parent->getEnclosingBlockWithSuccessors(); 134 } 135 136 VPBlockBase *VPBlockBase::getEnclosingBlockWithPredecessors() { 137 if (!Predecessors.empty() || !Parent) 138 return this; 139 assert(Parent->getEntry() == this && 140 "Block w/o predecessors not the entry of its parent."); 141 return Parent->getEnclosingBlockWithPredecessors(); 142 } 143 144 void VPBlockBase::deleteCFG(VPBlockBase *Entry) { 145 SmallVector<VPBlockBase *, 8> Blocks; 146 for (VPBlockBase *Block : depth_first(Entry)) 147 Blocks.push_back(Block); 148 149 for (VPBlockBase *Block : Blocks) 150 delete Block; 151 } 152 153 BasicBlock * 154 VPBasicBlock::createEmptyBasicBlock(VPTransformState::CFGState &CFG) { 155 // BB stands for IR BasicBlocks. VPBB stands for VPlan VPBasicBlocks. 156 // Pred stands for Predessor. Prev stands for Previous - last visited/created. 157 BasicBlock *PrevBB = CFG.PrevBB; 158 BasicBlock *NewBB = BasicBlock::Create(PrevBB->getContext(), getName(), 159 PrevBB->getParent(), CFG.LastBB); 160 LLVM_DEBUG(dbgs() << "LV: created " << NewBB->getName() << '\n'); 161 162 // Hook up the new basic block to its predecessors. 163 for (VPBlockBase *PredVPBlock : getHierarchicalPredecessors()) { 164 VPBasicBlock *PredVPBB = PredVPBlock->getExitBasicBlock(); 165 auto &PredVPSuccessors = PredVPBB->getSuccessors(); 166 BasicBlock *PredBB = CFG.VPBB2IRBB[PredVPBB]; 167 168 // In outer loop vectorization scenario, the predecessor BBlock may not yet 169 // be visited(backedge). Mark the VPBasicBlock for fixup at the end of 170 // vectorization. We do not encounter this case in inner loop vectorization 171 // as we start out by building a loop skeleton with the vector loop header 172 // and latch blocks. As a result, we never enter this function for the 173 // header block in the non VPlan-native path. 174 if (!PredBB) { 175 assert(EnableVPlanNativePath && 176 "Unexpected null predecessor in non VPlan-native path"); 177 CFG.VPBBsToFix.push_back(PredVPBB); 178 continue; 179 } 180 181 assert(PredBB && "Predecessor basic-block not found building successor."); 182 auto *PredBBTerminator = PredBB->getTerminator(); 183 LLVM_DEBUG(dbgs() << "LV: draw edge from" << PredBB->getName() << '\n'); 184 if (isa<UnreachableInst>(PredBBTerminator)) { 185 assert(PredVPSuccessors.size() == 1 && 186 "Predecessor ending w/o branch must have single successor."); 187 PredBBTerminator->eraseFromParent(); 188 BranchInst::Create(NewBB, PredBB); 189 } else { 190 assert(PredVPSuccessors.size() == 2 && 191 "Predecessor ending with branch must have two successors."); 192 unsigned idx = PredVPSuccessors.front() == this ? 0 : 1; 193 assert(!PredBBTerminator->getSuccessor(idx) && 194 "Trying to reset an existing successor block."); 195 PredBBTerminator->setSuccessor(idx, NewBB); 196 } 197 } 198 return NewBB; 199 } 200 201 void VPBasicBlock::execute(VPTransformState *State) { 202 bool Replica = State->Instance && 203 !(State->Instance->Part == 0 && State->Instance->Lane == 0); 204 VPBasicBlock *PrevVPBB = State->CFG.PrevVPBB; 205 VPBlockBase *SingleHPred = nullptr; 206 BasicBlock *NewBB = State->CFG.PrevBB; // Reuse it if possible. 207 208 // 1. Create an IR basic block, or reuse the last one if possible. 209 // The last IR basic block is reused, as an optimization, in three cases: 210 // A. the first VPBB reuses the loop header BB - when PrevVPBB is null; 211 // B. when the current VPBB has a single (hierarchical) predecessor which 212 // is PrevVPBB and the latter has a single (hierarchical) successor; and 213 // C. when the current VPBB is an entry of a region replica - where PrevVPBB 214 // is the exit of this region from a previous instance, or the predecessor 215 // of this region. 216 if (PrevVPBB && /* A */ 217 !((SingleHPred = getSingleHierarchicalPredecessor()) && 218 SingleHPred->getExitBasicBlock() == PrevVPBB && 219 PrevVPBB->getSingleHierarchicalSuccessor()) && /* B */ 220 !(Replica && getPredecessors().empty())) { /* C */ 221 NewBB = createEmptyBasicBlock(State->CFG); 222 State->Builder.SetInsertPoint(NewBB); 223 // Temporarily terminate with unreachable until CFG is rewired. 224 UnreachableInst *Terminator = State->Builder.CreateUnreachable(); 225 State->Builder.SetInsertPoint(Terminator); 226 // Register NewBB in its loop. In innermost loops its the same for all BB's. 227 Loop *L = State->LI->getLoopFor(State->CFG.LastBB); 228 L->addBasicBlockToLoop(NewBB, *State->LI); 229 State->CFG.PrevBB = NewBB; 230 } 231 232 // 2. Fill the IR basic block with IR instructions. 233 LLVM_DEBUG(dbgs() << "LV: vectorizing VPBB:" << getName() 234 << " in BB:" << NewBB->getName() << '\n'); 235 236 State->CFG.VPBB2IRBB[this] = NewBB; 237 State->CFG.PrevVPBB = this; 238 239 for (VPRecipeBase &Recipe : Recipes) 240 Recipe.execute(*State); 241 242 VPValue *CBV; 243 if (EnableVPlanNativePath && (CBV = getCondBit())) { 244 Value *IRCBV = CBV->getUnderlyingValue(); 245 assert(IRCBV && "Unexpected null underlying value for condition bit"); 246 247 // Condition bit value in a VPBasicBlock is used as the branch selector. In 248 // the VPlan-native path case, since all branches are uniform we generate a 249 // branch instruction using the condition value from vector lane 0 and dummy 250 // successors. The successors are fixed later when the successor blocks are 251 // visited. 252 Value *NewCond = State->Callback.getOrCreateVectorValues(IRCBV, 0); 253 NewCond = State->Builder.CreateExtractElement(NewCond, 254 State->Builder.getInt32(0)); 255 256 // Replace the temporary unreachable terminator with the new conditional 257 // branch. 258 auto *CurrentTerminator = NewBB->getTerminator(); 259 assert(isa<UnreachableInst>(CurrentTerminator) && 260 "Expected to replace unreachable terminator with conditional " 261 "branch."); 262 auto *CondBr = BranchInst::Create(NewBB, nullptr, NewCond); 263 CondBr->setSuccessor(0, nullptr); 264 ReplaceInstWithInst(CurrentTerminator, CondBr); 265 } 266 267 LLVM_DEBUG(dbgs() << "LV: filled BB:" << *NewBB); 268 } 269 270 void VPRegionBlock::execute(VPTransformState *State) { 271 ReversePostOrderTraversal<VPBlockBase *> RPOT(Entry); 272 273 if (!isReplicator()) { 274 // Visit the VPBlocks connected to "this", starting from it. 275 for (VPBlockBase *Block : RPOT) { 276 if (EnableVPlanNativePath) { 277 // The inner loop vectorization path does not represent loop preheader 278 // and exit blocks as part of the VPlan. In the VPlan-native path, skip 279 // vectorizing loop preheader block. In future, we may replace this 280 // check with the check for loop preheader. 281 if (Block->getNumPredecessors() == 0) 282 continue; 283 284 // Skip vectorizing loop exit block. In future, we may replace this 285 // check with the check for loop exit. 286 if (Block->getNumSuccessors() == 0) 287 continue; 288 } 289 290 LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n'); 291 Block->execute(State); 292 } 293 return; 294 } 295 296 assert(!State->Instance && "Replicating a Region with non-null instance."); 297 298 // Enter replicating mode. 299 State->Instance = {0, 0}; 300 301 for (unsigned Part = 0, UF = State->UF; Part < UF; ++Part) { 302 State->Instance->Part = Part; 303 for (unsigned Lane = 0, VF = State->VF; Lane < VF; ++Lane) { 304 State->Instance->Lane = Lane; 305 // Visit the VPBlocks connected to \p this, starting from it. 306 for (VPBlockBase *Block : RPOT) { 307 LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n'); 308 Block->execute(State); 309 } 310 } 311 } 312 313 // Exit replicating mode. 314 State->Instance.reset(); 315 } 316 317 void VPRecipeBase::insertBefore(VPRecipeBase *InsertPos) { 318 assert(!Parent && "Recipe already in some VPBasicBlock"); 319 assert(InsertPos->getParent() && 320 "Insertion position not in any VPBasicBlock"); 321 Parent = InsertPos->getParent(); 322 Parent->getRecipeList().insert(InsertPos->getIterator(), this); 323 } 324 325 void VPRecipeBase::insertAfter(VPRecipeBase *InsertPos) { 326 assert(!Parent && "Recipe already in some VPBasicBlock"); 327 assert(InsertPos->getParent() && 328 "Insertion position not in any VPBasicBlock"); 329 Parent = InsertPos->getParent(); 330 Parent->getRecipeList().insertAfter(InsertPos->getIterator(), this); 331 } 332 333 void VPRecipeBase::removeFromParent() { 334 assert(getParent() && "Recipe not in any VPBasicBlock"); 335 getParent()->getRecipeList().remove(getIterator()); 336 Parent = nullptr; 337 } 338 339 iplist<VPRecipeBase>::iterator VPRecipeBase::eraseFromParent() { 340 assert(getParent() && "Recipe not in any VPBasicBlock"); 341 return getParent()->getRecipeList().erase(getIterator()); 342 } 343 344 void VPRecipeBase::moveAfter(VPRecipeBase *InsertPos) { 345 removeFromParent(); 346 insertAfter(InsertPos); 347 } 348 349 void VPInstruction::generateInstruction(VPTransformState &State, 350 unsigned Part) { 351 IRBuilder<> &Builder = State.Builder; 352 353 if (Instruction::isBinaryOp(getOpcode())) { 354 Value *A = State.get(getOperand(0), Part); 355 Value *B = State.get(getOperand(1), Part); 356 Value *V = Builder.CreateBinOp((Instruction::BinaryOps)getOpcode(), A, B); 357 State.set(this, V, Part); 358 return; 359 } 360 361 switch (getOpcode()) { 362 case VPInstruction::Not: { 363 Value *A = State.get(getOperand(0), Part); 364 Value *V = Builder.CreateNot(A); 365 State.set(this, V, Part); 366 break; 367 } 368 case VPInstruction::ICmpULE: { 369 Value *IV = State.get(getOperand(0), Part); 370 Value *TC = State.get(getOperand(1), Part); 371 Value *V = Builder.CreateICmpULE(IV, TC); 372 State.set(this, V, Part); 373 break; 374 } 375 case Instruction::Select: { 376 Value *Cond = State.get(getOperand(0), Part); 377 Value *Op1 = State.get(getOperand(1), Part); 378 Value *Op2 = State.get(getOperand(2), Part); 379 Value *V = Builder.CreateSelect(Cond, Op1, Op2); 380 State.set(this, V, Part); 381 break; 382 } 383 default: 384 llvm_unreachable("Unsupported opcode for instruction"); 385 } 386 } 387 388 void VPInstruction::execute(VPTransformState &State) { 389 assert(!State.Instance && "VPInstruction executing an Instance"); 390 for (unsigned Part = 0; Part < State.UF; ++Part) 391 generateInstruction(State, Part); 392 } 393 394 void VPInstruction::print(raw_ostream &O, const Twine &Indent, 395 VPSlotTracker &SlotTracker) const { 396 O << " +\n" << Indent << "\"EMIT "; 397 print(O, SlotTracker); 398 O << "\\l\""; 399 } 400 401 void VPInstruction::print(raw_ostream &O) const { 402 VPSlotTracker SlotTracker(getParent()->getPlan()); 403 print(O, SlotTracker); 404 } 405 406 void VPInstruction::print(raw_ostream &O, VPSlotTracker &SlotTracker) const { 407 if (hasResult()) { 408 printAsOperand(O, SlotTracker); 409 O << " = "; 410 } 411 412 switch (getOpcode()) { 413 case VPInstruction::Not: 414 O << "not"; 415 break; 416 case VPInstruction::ICmpULE: 417 O << "icmp ule"; 418 break; 419 case VPInstruction::SLPLoad: 420 O << "combined load"; 421 break; 422 case VPInstruction::SLPStore: 423 O << "combined store"; 424 break; 425 default: 426 O << Instruction::getOpcodeName(getOpcode()); 427 } 428 429 for (const VPValue *Operand : operands()) { 430 O << " "; 431 Operand->printAsOperand(O, SlotTracker); 432 } 433 } 434 435 /// Generate the code inside the body of the vectorized loop. Assumes a single 436 /// LoopVectorBody basic-block was created for this. Introduce additional 437 /// basic-blocks as needed, and fill them all. 438 void VPlan::execute(VPTransformState *State) { 439 // -1. Check if the backedge taken count is needed, and if so build it. 440 if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) { 441 Value *TC = State->TripCount; 442 IRBuilder<> Builder(State->CFG.PrevBB->getTerminator()); 443 auto *TCMO = Builder.CreateSub(TC, ConstantInt::get(TC->getType(), 1), 444 "trip.count.minus.1"); 445 Value *VTCMO = Builder.CreateVectorSplat(State->VF, TCMO, "broadcast"); 446 for (unsigned Part = 0, UF = State->UF; Part < UF; ++Part) 447 State->set(BackedgeTakenCount, VTCMO, Part); 448 } 449 450 // 0. Set the reverse mapping from VPValues to Values for code generation. 451 for (auto &Entry : Value2VPValue) 452 State->VPValue2Value[Entry.second] = Entry.first; 453 454 BasicBlock *VectorPreHeaderBB = State->CFG.PrevBB; 455 BasicBlock *VectorHeaderBB = VectorPreHeaderBB->getSingleSuccessor(); 456 assert(VectorHeaderBB && "Loop preheader does not have a single successor."); 457 458 // 1. Make room to generate basic-blocks inside loop body if needed. 459 BasicBlock *VectorLatchBB = VectorHeaderBB->splitBasicBlock( 460 VectorHeaderBB->getFirstInsertionPt(), "vector.body.latch"); 461 Loop *L = State->LI->getLoopFor(VectorHeaderBB); 462 L->addBasicBlockToLoop(VectorLatchBB, *State->LI); 463 // Remove the edge between Header and Latch to allow other connections. 464 // Temporarily terminate with unreachable until CFG is rewired. 465 // Note: this asserts the generated code's assumption that 466 // getFirstInsertionPt() can be dereferenced into an Instruction. 467 VectorHeaderBB->getTerminator()->eraseFromParent(); 468 State->Builder.SetInsertPoint(VectorHeaderBB); 469 UnreachableInst *Terminator = State->Builder.CreateUnreachable(); 470 State->Builder.SetInsertPoint(Terminator); 471 472 // 2. Generate code in loop body. 473 State->CFG.PrevVPBB = nullptr; 474 State->CFG.PrevBB = VectorHeaderBB; 475 State->CFG.LastBB = VectorLatchBB; 476 477 for (VPBlockBase *Block : depth_first(Entry)) 478 Block->execute(State); 479 480 // Setup branch terminator successors for VPBBs in VPBBsToFix based on 481 // VPBB's successors. 482 for (auto VPBB : State->CFG.VPBBsToFix) { 483 assert(EnableVPlanNativePath && 484 "Unexpected VPBBsToFix in non VPlan-native path"); 485 BasicBlock *BB = State->CFG.VPBB2IRBB[VPBB]; 486 assert(BB && "Unexpected null basic block for VPBB"); 487 488 unsigned Idx = 0; 489 auto *BBTerminator = BB->getTerminator(); 490 491 for (VPBlockBase *SuccVPBlock : VPBB->getHierarchicalSuccessors()) { 492 VPBasicBlock *SuccVPBB = SuccVPBlock->getEntryBasicBlock(); 493 BBTerminator->setSuccessor(Idx, State->CFG.VPBB2IRBB[SuccVPBB]); 494 ++Idx; 495 } 496 } 497 498 // 3. Merge the temporary latch created with the last basic-block filled. 499 BasicBlock *LastBB = State->CFG.PrevBB; 500 // Connect LastBB to VectorLatchBB to facilitate their merge. 501 assert((EnableVPlanNativePath || 502 isa<UnreachableInst>(LastBB->getTerminator())) && 503 "Expected InnerLoop VPlan CFG to terminate with unreachable"); 504 assert((!EnableVPlanNativePath || isa<BranchInst>(LastBB->getTerminator())) && 505 "Expected VPlan CFG to terminate with branch in NativePath"); 506 LastBB->getTerminator()->eraseFromParent(); 507 BranchInst::Create(VectorLatchBB, LastBB); 508 509 // Merge LastBB with Latch. 510 bool Merged = MergeBlockIntoPredecessor(VectorLatchBB, nullptr, State->LI); 511 (void)Merged; 512 assert(Merged && "Could not merge last basic block with latch."); 513 VectorLatchBB = LastBB; 514 515 // We do not attempt to preserve DT for outer loop vectorization currently. 516 if (!EnableVPlanNativePath) 517 updateDominatorTree(State->DT, VectorPreHeaderBB, VectorLatchBB, 518 L->getExitBlock()); 519 } 520 521 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 522 LLVM_DUMP_METHOD 523 void VPlan::dump() const { dbgs() << *this << '\n'; } 524 #endif 525 526 void VPlan::updateDominatorTree(DominatorTree *DT, BasicBlock *LoopPreHeaderBB, 527 BasicBlock *LoopLatchBB, 528 BasicBlock *LoopExitBB) { 529 BasicBlock *LoopHeaderBB = LoopPreHeaderBB->getSingleSuccessor(); 530 assert(LoopHeaderBB && "Loop preheader does not have a single successor."); 531 // The vector body may be more than a single basic-block by this point. 532 // Update the dominator tree information inside the vector body by propagating 533 // it from header to latch, expecting only triangular control-flow, if any. 534 BasicBlock *PostDomSucc = nullptr; 535 for (auto *BB = LoopHeaderBB; BB != LoopLatchBB; BB = PostDomSucc) { 536 // Get the list of successors of this block. 537 std::vector<BasicBlock *> Succs(succ_begin(BB), succ_end(BB)); 538 assert(Succs.size() <= 2 && 539 "Basic block in vector loop has more than 2 successors."); 540 PostDomSucc = Succs[0]; 541 if (Succs.size() == 1) { 542 assert(PostDomSucc->getSinglePredecessor() && 543 "PostDom successor has more than one predecessor."); 544 DT->addNewBlock(PostDomSucc, BB); 545 continue; 546 } 547 BasicBlock *InterimSucc = Succs[1]; 548 if (PostDomSucc->getSingleSuccessor() == InterimSucc) { 549 PostDomSucc = Succs[1]; 550 InterimSucc = Succs[0]; 551 } 552 assert(InterimSucc->getSingleSuccessor() == PostDomSucc && 553 "One successor of a basic block does not lead to the other."); 554 assert(InterimSucc->getSinglePredecessor() && 555 "Interim successor has more than one predecessor."); 556 assert(PostDomSucc->hasNPredecessors(2) && 557 "PostDom successor has more than two predecessors."); 558 DT->addNewBlock(InterimSucc, BB); 559 DT->addNewBlock(PostDomSucc, BB); 560 } 561 // Latch block is a new dominator for the loop exit. 562 DT->changeImmediateDominator(LoopExitBB, LoopLatchBB); 563 assert(DT->verify(DominatorTree::VerificationLevel::Fast)); 564 } 565 566 const Twine VPlanPrinter::getUID(const VPBlockBase *Block) { 567 return (isa<VPRegionBlock>(Block) ? "cluster_N" : "N") + 568 Twine(getOrCreateBID(Block)); 569 } 570 571 const Twine VPlanPrinter::getOrCreateName(const VPBlockBase *Block) { 572 const std::string &Name = Block->getName(); 573 if (!Name.empty()) 574 return Name; 575 return "VPB" + Twine(getOrCreateBID(Block)); 576 } 577 578 void VPlanPrinter::dump() { 579 Depth = 1; 580 bumpIndent(0); 581 OS << "digraph VPlan {\n"; 582 OS << "graph [labelloc=t, fontsize=30; label=\"Vectorization Plan"; 583 if (!Plan.getName().empty()) 584 OS << "\\n" << DOT::EscapeString(Plan.getName()); 585 if (Plan.BackedgeTakenCount) { 586 OS << ", where:\\n"; 587 Plan.BackedgeTakenCount->print(OS, SlotTracker); 588 OS << " := BackedgeTakenCount"; 589 } 590 OS << "\"]\n"; 591 OS << "node [shape=rect, fontname=Courier, fontsize=30]\n"; 592 OS << "edge [fontname=Courier, fontsize=30]\n"; 593 OS << "compound=true\n"; 594 595 for (const VPBlockBase *Block : depth_first(Plan.getEntry())) 596 dumpBlock(Block); 597 598 OS << "}\n"; 599 } 600 601 void VPlanPrinter::dumpBlock(const VPBlockBase *Block) { 602 if (const VPBasicBlock *BasicBlock = dyn_cast<VPBasicBlock>(Block)) 603 dumpBasicBlock(BasicBlock); 604 else if (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 605 dumpRegion(Region); 606 else 607 llvm_unreachable("Unsupported kind of VPBlock."); 608 } 609 610 void VPlanPrinter::drawEdge(const VPBlockBase *From, const VPBlockBase *To, 611 bool Hidden, const Twine &Label) { 612 // Due to "dot" we print an edge between two regions as an edge between the 613 // exit basic block and the entry basic of the respective regions. 614 const VPBlockBase *Tail = From->getExitBasicBlock(); 615 const VPBlockBase *Head = To->getEntryBasicBlock(); 616 OS << Indent << getUID(Tail) << " -> " << getUID(Head); 617 OS << " [ label=\"" << Label << '\"'; 618 if (Tail != From) 619 OS << " ltail=" << getUID(From); 620 if (Head != To) 621 OS << " lhead=" << getUID(To); 622 if (Hidden) 623 OS << "; splines=none"; 624 OS << "]\n"; 625 } 626 627 void VPlanPrinter::dumpEdges(const VPBlockBase *Block) { 628 auto &Successors = Block->getSuccessors(); 629 if (Successors.size() == 1) 630 drawEdge(Block, Successors.front(), false, ""); 631 else if (Successors.size() == 2) { 632 drawEdge(Block, Successors.front(), false, "T"); 633 drawEdge(Block, Successors.back(), false, "F"); 634 } else { 635 unsigned SuccessorNumber = 0; 636 for (auto *Successor : Successors) 637 drawEdge(Block, Successor, false, Twine(SuccessorNumber++)); 638 } 639 } 640 641 void VPlanPrinter::dumpBasicBlock(const VPBasicBlock *BasicBlock) { 642 OS << Indent << getUID(BasicBlock) << " [label =\n"; 643 bumpIndent(1); 644 OS << Indent << "\"" << DOT::EscapeString(BasicBlock->getName()) << ":\\n\""; 645 bumpIndent(1); 646 647 // Dump the block predicate. 648 const VPValue *Pred = BasicBlock->getPredicate(); 649 if (Pred) { 650 OS << " +\n" << Indent << " \"BlockPredicate: "; 651 if (const VPInstruction *PredI = dyn_cast<VPInstruction>(Pred)) { 652 PredI->printAsOperand(OS, SlotTracker); 653 OS << " (" << DOT::EscapeString(PredI->getParent()->getName()) 654 << ")\\l\""; 655 } else 656 Pred->printAsOperand(OS, SlotTracker); 657 } 658 659 for (const VPRecipeBase &Recipe : *BasicBlock) 660 Recipe.print(OS, Indent, SlotTracker); 661 662 // Dump the condition bit. 663 const VPValue *CBV = BasicBlock->getCondBit(); 664 if (CBV) { 665 OS << " +\n" << Indent << " \"CondBit: "; 666 if (const VPInstruction *CBI = dyn_cast<VPInstruction>(CBV)) { 667 CBI->printAsOperand(OS, SlotTracker); 668 OS << " (" << DOT::EscapeString(CBI->getParent()->getName()) << ")\\l\""; 669 } else { 670 CBV->printAsOperand(OS, SlotTracker); 671 OS << "\""; 672 } 673 } 674 675 bumpIndent(-2); 676 OS << "\n" << Indent << "]\n"; 677 dumpEdges(BasicBlock); 678 } 679 680 void VPlanPrinter::dumpRegion(const VPRegionBlock *Region) { 681 OS << Indent << "subgraph " << getUID(Region) << " {\n"; 682 bumpIndent(1); 683 OS << Indent << "fontname=Courier\n" 684 << Indent << "label=\"" 685 << DOT::EscapeString(Region->isReplicator() ? "<xVFxUF> " : "<x1> ") 686 << DOT::EscapeString(Region->getName()) << "\"\n"; 687 // Dump the blocks of the region. 688 assert(Region->getEntry() && "Region contains no inner blocks."); 689 for (const VPBlockBase *Block : depth_first(Region->getEntry())) 690 dumpBlock(Block); 691 bumpIndent(-1); 692 OS << Indent << "}\n"; 693 dumpEdges(Region); 694 } 695 696 void VPlanPrinter::printAsIngredient(raw_ostream &O, Value *V) { 697 std::string IngredientString; 698 raw_string_ostream RSO(IngredientString); 699 if (auto *Inst = dyn_cast<Instruction>(V)) { 700 if (!Inst->getType()->isVoidTy()) { 701 Inst->printAsOperand(RSO, false); 702 RSO << " = "; 703 } 704 RSO << Inst->getOpcodeName() << " "; 705 unsigned E = Inst->getNumOperands(); 706 if (E > 0) { 707 Inst->getOperand(0)->printAsOperand(RSO, false); 708 for (unsigned I = 1; I < E; ++I) 709 Inst->getOperand(I)->printAsOperand(RSO << ", ", false); 710 } 711 } else // !Inst 712 V->printAsOperand(RSO, false); 713 RSO.flush(); 714 O << DOT::EscapeString(IngredientString); 715 } 716 717 void VPWidenCallRecipe::print(raw_ostream &O, const Twine &Indent, 718 VPSlotTracker &SlotTracker) const { 719 O << " +\n" 720 << Indent << "\"WIDEN-CALL " << VPlanIngredient(&Ingredient) << "\\l\""; 721 } 722 723 void VPWidenSelectRecipe::print(raw_ostream &O, const Twine &Indent, 724 VPSlotTracker &SlotTracker) const { 725 O << " +\n" 726 << Indent << "\"WIDEN-SELECT" << VPlanIngredient(&Ingredient) 727 << (InvariantCond ? " (condition is loop invariant)" : "") << "\\l\""; 728 } 729 730 void VPWidenRecipe::print(raw_ostream &O, const Twine &Indent, 731 VPSlotTracker &SlotTracker) const { 732 O << " +\n" << Indent << "\"WIDEN\\l\""; 733 O << "\" " << VPlanIngredient(&Ingredient) << "\\l\""; 734 } 735 736 void VPWidenIntOrFpInductionRecipe::print(raw_ostream &O, const Twine &Indent, 737 VPSlotTracker &SlotTracker) const { 738 O << " +\n" << Indent << "\"WIDEN-INDUCTION"; 739 if (Trunc) { 740 O << "\\l\""; 741 O << " +\n" << Indent << "\" " << VPlanIngredient(IV) << "\\l\""; 742 O << " +\n" << Indent << "\" " << VPlanIngredient(Trunc) << "\\l\""; 743 } else 744 O << " " << VPlanIngredient(IV) << "\\l\""; 745 } 746 747 void VPWidenGEPRecipe::print(raw_ostream &O, const Twine &Indent, 748 VPSlotTracker &SlotTracker) const { 749 O << " +\n" << Indent << "\"WIDEN-GEP "; 750 O << (IsPtrLoopInvariant ? "Inv" : "Var"); 751 size_t IndicesNumber = IsIndexLoopInvariant.size(); 752 for (size_t I = 0; I < IndicesNumber; ++I) 753 O << "[" << (IsIndexLoopInvariant[I] ? "Inv" : "Var") << "]"; 754 O << "\\l\""; 755 O << " +\n" << Indent << "\" " << VPlanIngredient(GEP) << "\\l\""; 756 } 757 758 void VPWidenPHIRecipe::print(raw_ostream &O, const Twine &Indent, 759 VPSlotTracker &SlotTracker) const { 760 O << " +\n" << Indent << "\"WIDEN-PHI " << VPlanIngredient(Phi) << "\\l\""; 761 } 762 763 void VPBlendRecipe::print(raw_ostream &O, const Twine &Indent, 764 VPSlotTracker &SlotTracker) const { 765 O << " +\n" << Indent << "\"BLEND "; 766 Phi->printAsOperand(O, false); 767 O << " ="; 768 if (getNumIncomingValues() == 1) { 769 // Not a User of any mask: not really blending, this is a 770 // single-predecessor phi. 771 O << " "; 772 getIncomingValue(0)->printAsOperand(O, SlotTracker); 773 } else { 774 for (unsigned I = 0, E = getNumIncomingValues(); I < E; ++I) { 775 O << " "; 776 getIncomingValue(I)->printAsOperand(O, SlotTracker); 777 O << "/"; 778 getMask(I)->printAsOperand(O, SlotTracker); 779 } 780 } 781 O << "\\l\""; 782 } 783 784 void VPReplicateRecipe::print(raw_ostream &O, const Twine &Indent, 785 VPSlotTracker &SlotTracker) const { 786 O << " +\n" 787 << Indent << "\"" << (IsUniform ? "CLONE " : "REPLICATE ") 788 << VPlanIngredient(Ingredient); 789 if (AlsoPack) 790 O << " (S->V)"; 791 O << "\\l\""; 792 } 793 794 void VPPredInstPHIRecipe::print(raw_ostream &O, const Twine &Indent, 795 VPSlotTracker &SlotTracker) const { 796 O << " +\n" 797 << Indent << "\"PHI-PREDICATED-INSTRUCTION " << VPlanIngredient(PredInst) 798 << "\\l\""; 799 } 800 801 void VPWidenMemoryInstructionRecipe::print(raw_ostream &O, const Twine &Indent, 802 VPSlotTracker &SlotTracker) const { 803 O << " +\n" << Indent << "\"WIDEN " << VPlanIngredient(&Instr); 804 O << ", "; 805 getAddr()->printAsOperand(O, SlotTracker); 806 VPValue *Mask = getMask(); 807 if (Mask) { 808 O << ", "; 809 Mask->printAsOperand(O, SlotTracker); 810 } 811 O << "\\l\""; 812 } 813 814 void VPWidenCanonicalIVRecipe::execute(VPTransformState &State) { 815 Value *CanonicalIV = State.CanonicalIV; 816 Type *STy = CanonicalIV->getType(); 817 IRBuilder<> Builder(State.CFG.PrevBB->getTerminator()); 818 Value *VStart = Builder.CreateVectorSplat(State.VF, CanonicalIV, "broadcast"); 819 for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part) { 820 SmallVector<Constant *, 8> Indices; 821 for (unsigned Lane = 0, VF = State.VF; Lane < VF; ++Lane) 822 Indices.push_back(ConstantInt::get(STy, Part * VF + Lane)); 823 Constant *VStep = ConstantVector::get(Indices); 824 // Add the consecutive indices to the vector value. 825 Value *CanonicalVectorIV = Builder.CreateAdd(VStart, VStep, "vec.iv"); 826 State.set(getVPValue(), CanonicalVectorIV, Part); 827 } 828 } 829 830 void VPWidenCanonicalIVRecipe::print(raw_ostream &O, const Twine &Indent, 831 VPSlotTracker &SlotTracker) const { 832 O << " +\n" << Indent << "\"EMIT "; 833 getVPValue()->printAsOperand(O, SlotTracker); 834 O << " = WIDEN-CANONICAL-INDUCTION \\l\""; 835 } 836 837 template void DomTreeBuilder::Calculate<VPDominatorTree>(VPDominatorTree &DT); 838 839 void VPValue::replaceAllUsesWith(VPValue *New) { 840 for (VPUser *User : users()) 841 for (unsigned I = 0, E = User->getNumOperands(); I < E; ++I) 842 if (User->getOperand(I) == this) 843 User->setOperand(I, New); 844 } 845 846 void VPValue::printAsOperand(raw_ostream &OS, VPSlotTracker &Tracker) const { 847 if (const Value *UV = getUnderlyingValue()) { 848 OS << "ir<"; 849 UV->printAsOperand(OS, false); 850 OS << ">"; 851 return; 852 } 853 854 unsigned Slot = Tracker.getSlot(this); 855 if (Slot == unsigned(-1)) 856 OS << "<badref>"; 857 else 858 OS << "vp<%" << Tracker.getSlot(this) << ">"; 859 } 860 861 void VPInterleavedAccessInfo::visitRegion(VPRegionBlock *Region, 862 Old2NewTy &Old2New, 863 InterleavedAccessInfo &IAI) { 864 ReversePostOrderTraversal<VPBlockBase *> RPOT(Region->getEntry()); 865 for (VPBlockBase *Base : RPOT) { 866 visitBlock(Base, Old2New, IAI); 867 } 868 } 869 870 void VPInterleavedAccessInfo::visitBlock(VPBlockBase *Block, Old2NewTy &Old2New, 871 InterleavedAccessInfo &IAI) { 872 if (VPBasicBlock *VPBB = dyn_cast<VPBasicBlock>(Block)) { 873 for (VPRecipeBase &VPI : *VPBB) { 874 assert(isa<VPInstruction>(&VPI) && "Can only handle VPInstructions"); 875 auto *VPInst = cast<VPInstruction>(&VPI); 876 auto *Inst = cast<Instruction>(VPInst->getUnderlyingValue()); 877 auto *IG = IAI.getInterleaveGroup(Inst); 878 if (!IG) 879 continue; 880 881 auto NewIGIter = Old2New.find(IG); 882 if (NewIGIter == Old2New.end()) 883 Old2New[IG] = new InterleaveGroup<VPInstruction>( 884 IG->getFactor(), IG->isReverse(), IG->getAlign()); 885 886 if (Inst == IG->getInsertPos()) 887 Old2New[IG]->setInsertPos(VPInst); 888 889 InterleaveGroupMap[VPInst] = Old2New[IG]; 890 InterleaveGroupMap[VPInst]->insertMember( 891 VPInst, IG->getIndex(Inst), 892 Align(IG->isReverse() ? (-1) * int(IG->getFactor()) 893 : IG->getFactor())); 894 } 895 } else if (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 896 visitRegion(Region, Old2New, IAI); 897 else 898 llvm_unreachable("Unsupported kind of VPBlock."); 899 } 900 901 VPInterleavedAccessInfo::VPInterleavedAccessInfo(VPlan &Plan, 902 InterleavedAccessInfo &IAI) { 903 Old2NewTy Old2New; 904 visitRegion(cast<VPRegionBlock>(Plan.getEntry()), Old2New, IAI); 905 } 906 907 void VPSlotTracker::assignSlot(const VPValue *V) { 908 assert(Slots.find(V) == Slots.end() && "VPValue already has a slot!"); 909 const Value *UV = V->getUnderlyingValue(); 910 if (UV) 911 return; 912 const auto *VPI = dyn_cast<VPInstruction>(V); 913 if (VPI && !VPI->hasResult()) 914 return; 915 916 Slots[V] = NextSlot++; 917 } 918 919 void VPSlotTracker::assignSlots(const VPBlockBase *VPBB) { 920 if (auto *Region = dyn_cast<VPRegionBlock>(VPBB)) 921 assignSlots(Region); 922 else 923 assignSlots(cast<VPBasicBlock>(VPBB)); 924 } 925 926 void VPSlotTracker::assignSlots(const VPRegionBlock *Region) { 927 ReversePostOrderTraversal<const VPBlockBase *> RPOT(Region->getEntry()); 928 for (const VPBlockBase *Block : RPOT) 929 assignSlots(Block); 930 } 931 932 void VPSlotTracker::assignSlots(const VPBasicBlock *VPBB) { 933 for (const VPRecipeBase &Recipe : *VPBB) { 934 if (const auto *VPI = dyn_cast<VPInstruction>(&Recipe)) 935 assignSlot(VPI); 936 else if (const auto *VPIV = dyn_cast<VPWidenCanonicalIVRecipe>(&Recipe)) 937 assignSlot(VPIV->getVPValue()); 938 } 939 } 940 941 void VPSlotTracker::assignSlots(const VPlan &Plan) { 942 943 for (const VPValue *V : Plan.VPExternalDefs) 944 assignSlot(V); 945 946 for (auto &E : Plan.Value2VPValue) 947 if (!isa<VPInstruction>(E.second)) 948 assignSlot(E.second); 949 950 for (const VPValue *V : Plan.VPCBVs) 951 assignSlot(V); 952 953 if (Plan.BackedgeTakenCount) 954 assignSlot(Plan.BackedgeTakenCount); 955 956 ReversePostOrderTraversal<const VPBlockBase *> RPOT(Plan.getEntry()); 957 for (const VPBlockBase *Block : RPOT) 958 assignSlots(Block); 959 } 960