1 //===- VPlan.cpp - Vectorizer Plan ----------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This is the LLVM vectorization plan. It represents a candidate for 11 /// vectorization, allowing to plan and optimize how to vectorize a given loop 12 /// before generating LLVM-IR. 13 /// The vectorizer uses vectorization plans to estimate the costs of potential 14 /// candidates and if profitable to execute the desired plan, generating vector 15 /// LLVM-IR code. 16 /// 17 //===----------------------------------------------------------------------===// 18 19 #include "VPlan.h" 20 #include "VPlanDominatorTree.h" 21 #include "llvm/ADT/DepthFirstIterator.h" 22 #include "llvm/ADT/PostOrderIterator.h" 23 #include "llvm/ADT/STLExtras.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/Twine.h" 26 #include "llvm/Analysis/IVDescriptors.h" 27 #include "llvm/Analysis/LoopInfo.h" 28 #include "llvm/IR/BasicBlock.h" 29 #include "llvm/IR/CFG.h" 30 #include "llvm/IR/InstrTypes.h" 31 #include "llvm/IR/Instruction.h" 32 #include "llvm/IR/Instructions.h" 33 #include "llvm/IR/Type.h" 34 #include "llvm/IR/Value.h" 35 #include "llvm/Support/Casting.h" 36 #include "llvm/Support/CommandLine.h" 37 #include "llvm/Support/Debug.h" 38 #include "llvm/Support/ErrorHandling.h" 39 #include "llvm/Support/GenericDomTreeConstruction.h" 40 #include "llvm/Support/GraphWriter.h" 41 #include "llvm/Support/raw_ostream.h" 42 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 43 #include <cassert> 44 #include <iterator> 45 #include <string> 46 #include <vector> 47 48 using namespace llvm; 49 extern cl::opt<bool> EnableVPlanNativePath; 50 51 #define DEBUG_TYPE "vplan" 52 53 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 54 raw_ostream &llvm::operator<<(raw_ostream &OS, const VPValue &V) { 55 const VPInstruction *Instr = dyn_cast<VPInstruction>(&V); 56 VPSlotTracker SlotTracker( 57 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr); 58 V.print(OS, SlotTracker); 59 return OS; 60 } 61 #endif 62 63 Value *VPLane::getAsRuntimeExpr(IRBuilder<> &Builder, 64 const ElementCount &VF) const { 65 switch (LaneKind) { 66 case VPLane::Kind::ScalableLast: 67 // Lane = RuntimeVF - VF.getKnownMinValue() + Lane 68 return Builder.CreateSub(getRuntimeVF(Builder, Builder.getInt32Ty(), VF), 69 Builder.getInt32(VF.getKnownMinValue() - Lane)); 70 case VPLane::Kind::First: 71 return Builder.getInt32(Lane); 72 } 73 llvm_unreachable("Unknown lane kind"); 74 } 75 76 VPValue::VPValue(const unsigned char SC, Value *UV, VPDef *Def) 77 : SubclassID(SC), UnderlyingVal(UV), Def(Def) { 78 if (Def) 79 Def->addDefinedValue(this); 80 } 81 82 VPValue::~VPValue() { 83 assert(Users.empty() && "trying to delete a VPValue with remaining users"); 84 if (Def) 85 Def->removeDefinedValue(this); 86 } 87 88 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 89 void VPValue::print(raw_ostream &OS, VPSlotTracker &SlotTracker) const { 90 if (const VPRecipeBase *R = dyn_cast_or_null<VPRecipeBase>(Def)) 91 R->print(OS, "", SlotTracker); 92 else 93 printAsOperand(OS, SlotTracker); 94 } 95 96 void VPValue::dump() const { 97 const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this->Def); 98 VPSlotTracker SlotTracker( 99 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr); 100 print(dbgs(), SlotTracker); 101 dbgs() << "\n"; 102 } 103 104 void VPDef::dump() const { 105 const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this); 106 VPSlotTracker SlotTracker( 107 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr); 108 print(dbgs(), "", SlotTracker); 109 dbgs() << "\n"; 110 } 111 #endif 112 113 // Get the top-most entry block of \p Start. This is the entry block of the 114 // containing VPlan. This function is templated to support both const and non-const blocks 115 template <typename T> static T *getPlanEntry(T *Start) { 116 T *Next = Start; 117 T *Current = Start; 118 while ((Next = Next->getParent())) 119 Current = Next; 120 121 SmallSetVector<T *, 8> WorkList; 122 WorkList.insert(Current); 123 124 for (unsigned i = 0; i < WorkList.size(); i++) { 125 T *Current = WorkList[i]; 126 if (Current->getNumPredecessors() == 0) 127 return Current; 128 auto &Predecessors = Current->getPredecessors(); 129 WorkList.insert(Predecessors.begin(), Predecessors.end()); 130 } 131 132 llvm_unreachable("VPlan without any entry node without predecessors"); 133 } 134 135 VPlan *VPBlockBase::getPlan() { return getPlanEntry(this)->Plan; } 136 137 const VPlan *VPBlockBase::getPlan() const { return getPlanEntry(this)->Plan; } 138 139 /// \return the VPBasicBlock that is the entry of Block, possibly indirectly. 140 const VPBasicBlock *VPBlockBase::getEntryBasicBlock() const { 141 const VPBlockBase *Block = this; 142 while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 143 Block = Region->getEntry(); 144 return cast<VPBasicBlock>(Block); 145 } 146 147 VPBasicBlock *VPBlockBase::getEntryBasicBlock() { 148 VPBlockBase *Block = this; 149 while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 150 Block = Region->getEntry(); 151 return cast<VPBasicBlock>(Block); 152 } 153 154 void VPBlockBase::setPlan(VPlan *ParentPlan) { 155 assert(ParentPlan->getEntry() == this && 156 "Can only set plan on its entry block."); 157 Plan = ParentPlan; 158 } 159 160 /// \return the VPBasicBlock that is the exit of Block, possibly indirectly. 161 const VPBasicBlock *VPBlockBase::getExitBasicBlock() const { 162 const VPBlockBase *Block = this; 163 while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 164 Block = Region->getExit(); 165 return cast<VPBasicBlock>(Block); 166 } 167 168 VPBasicBlock *VPBlockBase::getExitBasicBlock() { 169 VPBlockBase *Block = this; 170 while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 171 Block = Region->getExit(); 172 return cast<VPBasicBlock>(Block); 173 } 174 175 VPBlockBase *VPBlockBase::getEnclosingBlockWithSuccessors() { 176 if (!Successors.empty() || !Parent) 177 return this; 178 assert(Parent->getExit() == this && 179 "Block w/o successors not the exit of its parent."); 180 return Parent->getEnclosingBlockWithSuccessors(); 181 } 182 183 VPBlockBase *VPBlockBase::getEnclosingBlockWithPredecessors() { 184 if (!Predecessors.empty() || !Parent) 185 return this; 186 assert(Parent->getEntry() == this && 187 "Block w/o predecessors not the entry of its parent."); 188 return Parent->getEnclosingBlockWithPredecessors(); 189 } 190 191 static VPValue *getSingleOperandOrNull(VPUser &U) { 192 if (U.getNumOperands() == 1) 193 return U.getOperand(0); 194 195 return nullptr; 196 } 197 198 static const VPValue *getSingleOperandOrNull(const VPUser &U) { 199 if (U.getNumOperands() == 1) 200 return U.getOperand(0); 201 202 return nullptr; 203 } 204 205 static void resetSingleOpUser(VPUser &U, VPValue *NewVal) { 206 assert(U.getNumOperands() <= 1 && "Didn't expect more than one operand!"); 207 if (!NewVal) { 208 if (U.getNumOperands() == 1) 209 U.removeLastOperand(); 210 return; 211 } 212 213 if (U.getNumOperands() == 1) 214 U.setOperand(0, NewVal); 215 else 216 U.addOperand(NewVal); 217 } 218 219 VPValue *VPBlockBase::getCondBit() { 220 return getSingleOperandOrNull(CondBitUser); 221 } 222 223 const VPValue *VPBlockBase::getCondBit() const { 224 return getSingleOperandOrNull(CondBitUser); 225 } 226 227 void VPBlockBase::setCondBit(VPValue *CV) { 228 resetSingleOpUser(CondBitUser, CV); 229 } 230 231 VPValue *VPBlockBase::getPredicate() { 232 return getSingleOperandOrNull(PredicateUser); 233 } 234 235 const VPValue *VPBlockBase::getPredicate() const { 236 return getSingleOperandOrNull(PredicateUser); 237 } 238 239 void VPBlockBase::setPredicate(VPValue *CV) { 240 resetSingleOpUser(PredicateUser, CV); 241 } 242 243 void VPBlockBase::deleteCFG(VPBlockBase *Entry) { 244 SmallVector<VPBlockBase *, 8> Blocks(depth_first(Entry)); 245 246 for (VPBlockBase *Block : Blocks) 247 delete Block; 248 } 249 250 VPBasicBlock::iterator VPBasicBlock::getFirstNonPhi() { 251 iterator It = begin(); 252 while (It != end() && (isa<VPWidenPHIRecipe>(&*It) || 253 isa<VPWidenIntOrFpInductionRecipe>(&*It) || 254 isa<VPPredInstPHIRecipe>(&*It) || 255 isa<VPWidenCanonicalIVRecipe>(&*It))) 256 It++; 257 return It; 258 } 259 260 Value *VPTransformState::get(VPValue *Def, const VPIteration &Instance) { 261 if (!Def->getDef()) 262 return Def->getLiveInIRValue(); 263 264 if (hasScalarValue(Def, Instance)) { 265 return Data 266 .PerPartScalars[Def][Instance.Part][Instance.Lane.mapToCacheIndex(VF)]; 267 } 268 269 assert(hasVectorValue(Def, Instance.Part)); 270 auto *VecPart = Data.PerPartOutput[Def][Instance.Part]; 271 if (!VecPart->getType()->isVectorTy()) { 272 assert(Instance.Lane.isFirstLane() && "cannot get lane > 0 for scalar"); 273 return VecPart; 274 } 275 // TODO: Cache created scalar values. 276 Value *Lane = Instance.Lane.getAsRuntimeExpr(Builder, VF); 277 auto *Extract = Builder.CreateExtractElement(VecPart, Lane); 278 // set(Def, Extract, Instance); 279 return Extract; 280 } 281 282 BasicBlock * 283 VPBasicBlock::createEmptyBasicBlock(VPTransformState::CFGState &CFG) { 284 // BB stands for IR BasicBlocks. VPBB stands for VPlan VPBasicBlocks. 285 // Pred stands for Predessor. Prev stands for Previous - last visited/created. 286 BasicBlock *PrevBB = CFG.PrevBB; 287 BasicBlock *NewBB = BasicBlock::Create(PrevBB->getContext(), getName(), 288 PrevBB->getParent(), CFG.LastBB); 289 LLVM_DEBUG(dbgs() << "LV: created " << NewBB->getName() << '\n'); 290 291 // Hook up the new basic block to its predecessors. 292 for (VPBlockBase *PredVPBlock : getHierarchicalPredecessors()) { 293 VPBasicBlock *PredVPBB = PredVPBlock->getExitBasicBlock(); 294 auto &PredVPSuccessors = PredVPBB->getSuccessors(); 295 BasicBlock *PredBB = CFG.VPBB2IRBB[PredVPBB]; 296 297 // In outer loop vectorization scenario, the predecessor BBlock may not yet 298 // be visited(backedge). Mark the VPBasicBlock for fixup at the end of 299 // vectorization. We do not encounter this case in inner loop vectorization 300 // as we start out by building a loop skeleton with the vector loop header 301 // and latch blocks. As a result, we never enter this function for the 302 // header block in the non VPlan-native path. 303 if (!PredBB) { 304 assert(EnableVPlanNativePath && 305 "Unexpected null predecessor in non VPlan-native path"); 306 CFG.VPBBsToFix.push_back(PredVPBB); 307 continue; 308 } 309 310 assert(PredBB && "Predecessor basic-block not found building successor."); 311 auto *PredBBTerminator = PredBB->getTerminator(); 312 LLVM_DEBUG(dbgs() << "LV: draw edge from" << PredBB->getName() << '\n'); 313 if (isa<UnreachableInst>(PredBBTerminator)) { 314 assert(PredVPSuccessors.size() == 1 && 315 "Predecessor ending w/o branch must have single successor."); 316 PredBBTerminator->eraseFromParent(); 317 BranchInst::Create(NewBB, PredBB); 318 } else { 319 assert(PredVPSuccessors.size() == 2 && 320 "Predecessor ending with branch must have two successors."); 321 unsigned idx = PredVPSuccessors.front() == this ? 0 : 1; 322 assert(!PredBBTerminator->getSuccessor(idx) && 323 "Trying to reset an existing successor block."); 324 PredBBTerminator->setSuccessor(idx, NewBB); 325 } 326 } 327 return NewBB; 328 } 329 330 void VPBasicBlock::execute(VPTransformState *State) { 331 bool Replica = State->Instance && !State->Instance->isFirstIteration(); 332 VPBasicBlock *PrevVPBB = State->CFG.PrevVPBB; 333 VPBlockBase *SingleHPred = nullptr; 334 BasicBlock *NewBB = State->CFG.PrevBB; // Reuse it if possible. 335 336 // 1. Create an IR basic block, or reuse the last one if possible. 337 // The last IR basic block is reused, as an optimization, in three cases: 338 // A. the first VPBB reuses the loop header BB - when PrevVPBB is null; 339 // B. when the current VPBB has a single (hierarchical) predecessor which 340 // is PrevVPBB and the latter has a single (hierarchical) successor; and 341 // C. when the current VPBB is an entry of a region replica - where PrevVPBB 342 // is the exit of this region from a previous instance, or the predecessor 343 // of this region. 344 if (PrevVPBB && /* A */ 345 !((SingleHPred = getSingleHierarchicalPredecessor()) && 346 SingleHPred->getExitBasicBlock() == PrevVPBB && 347 PrevVPBB->getSingleHierarchicalSuccessor()) && /* B */ 348 !(Replica && getPredecessors().empty())) { /* C */ 349 NewBB = createEmptyBasicBlock(State->CFG); 350 State->Builder.SetInsertPoint(NewBB); 351 // Temporarily terminate with unreachable until CFG is rewired. 352 UnreachableInst *Terminator = State->Builder.CreateUnreachable(); 353 State->Builder.SetInsertPoint(Terminator); 354 // Register NewBB in its loop. In innermost loops its the same for all BB's. 355 Loop *L = State->LI->getLoopFor(State->CFG.LastBB); 356 L->addBasicBlockToLoop(NewBB, *State->LI); 357 State->CFG.PrevBB = NewBB; 358 } 359 360 // 2. Fill the IR basic block with IR instructions. 361 LLVM_DEBUG(dbgs() << "LV: vectorizing VPBB:" << getName() 362 << " in BB:" << NewBB->getName() << '\n'); 363 364 State->CFG.VPBB2IRBB[this] = NewBB; 365 State->CFG.PrevVPBB = this; 366 367 for (VPRecipeBase &Recipe : Recipes) 368 Recipe.execute(*State); 369 370 VPValue *CBV; 371 if (EnableVPlanNativePath && (CBV = getCondBit())) { 372 assert(CBV->getUnderlyingValue() && 373 "Unexpected null underlying value for condition bit"); 374 375 // Condition bit value in a VPBasicBlock is used as the branch selector. In 376 // the VPlan-native path case, since all branches are uniform we generate a 377 // branch instruction using the condition value from vector lane 0 and dummy 378 // successors. The successors are fixed later when the successor blocks are 379 // visited. 380 Value *NewCond = State->get(CBV, {0, 0}); 381 382 // Replace the temporary unreachable terminator with the new conditional 383 // branch. 384 auto *CurrentTerminator = NewBB->getTerminator(); 385 assert(isa<UnreachableInst>(CurrentTerminator) && 386 "Expected to replace unreachable terminator with conditional " 387 "branch."); 388 auto *CondBr = BranchInst::Create(NewBB, nullptr, NewCond); 389 CondBr->setSuccessor(0, nullptr); 390 ReplaceInstWithInst(CurrentTerminator, CondBr); 391 } 392 393 LLVM_DEBUG(dbgs() << "LV: filled BB:" << *NewBB); 394 } 395 396 void VPBasicBlock::dropAllReferences(VPValue *NewValue) { 397 for (VPRecipeBase &R : Recipes) { 398 for (auto *Def : R.definedValues()) 399 Def->replaceAllUsesWith(NewValue); 400 401 for (unsigned I = 0, E = R.getNumOperands(); I != E; I++) 402 R.setOperand(I, NewValue); 403 } 404 } 405 406 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 407 void VPBasicBlock::print(raw_ostream &O, const Twine &Indent, 408 VPSlotTracker &SlotTracker) const { 409 O << Indent << getName() << ":\n"; 410 if (const VPValue *Pred = getPredicate()) { 411 O << Indent << "BlockPredicate:"; 412 Pred->printAsOperand(O, SlotTracker); 413 if (const auto *PredInst = dyn_cast<VPInstruction>(Pred)) 414 O << " (" << PredInst->getParent()->getName() << ")"; 415 O << '\n'; 416 } 417 418 auto RecipeIndent = Indent + " "; 419 for (const VPRecipeBase &Recipe : *this) { 420 Recipe.print(O, RecipeIndent, SlotTracker); 421 O << '\n'; 422 } 423 424 if (getSuccessors().empty()) { 425 O << Indent << "No successors\n"; 426 } else { 427 O << Indent << "Successor(s): "; 428 ListSeparator LS; 429 for (auto *Succ : getSuccessors()) 430 O << LS << Succ->getName(); 431 O << '\n'; 432 } 433 434 if (const VPValue *CBV = getCondBit()) { 435 O << Indent << "CondBit: "; 436 CBV->printAsOperand(O, SlotTracker); 437 if (const auto *CBI = dyn_cast<VPInstruction>(CBV)) 438 O << " (" << CBI->getParent()->getName() << ")"; 439 O << '\n'; 440 } 441 } 442 #endif 443 444 void VPRegionBlock::dropAllReferences(VPValue *NewValue) { 445 for (VPBlockBase *Block : depth_first(Entry)) 446 // Drop all references in VPBasicBlocks and replace all uses with 447 // DummyValue. 448 Block->dropAllReferences(NewValue); 449 } 450 451 void VPRegionBlock::execute(VPTransformState *State) { 452 ReversePostOrderTraversal<VPBlockBase *> RPOT(Entry); 453 454 if (!isReplicator()) { 455 // Visit the VPBlocks connected to "this", starting from it. 456 for (VPBlockBase *Block : RPOT) { 457 if (EnableVPlanNativePath) { 458 // The inner loop vectorization path does not represent loop preheader 459 // and exit blocks as part of the VPlan. In the VPlan-native path, skip 460 // vectorizing loop preheader block. In future, we may replace this 461 // check with the check for loop preheader. 462 if (Block->getNumPredecessors() == 0) 463 continue; 464 465 // Skip vectorizing loop exit block. In future, we may replace this 466 // check with the check for loop exit. 467 if (Block->getNumSuccessors() == 0) 468 continue; 469 } 470 471 LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n'); 472 Block->execute(State); 473 } 474 return; 475 } 476 477 assert(!State->Instance && "Replicating a Region with non-null instance."); 478 479 // Enter replicating mode. 480 State->Instance = VPIteration(0, 0); 481 482 for (unsigned Part = 0, UF = State->UF; Part < UF; ++Part) { 483 State->Instance->Part = Part; 484 assert(!State->VF.isScalable() && "VF is assumed to be non scalable."); 485 for (unsigned Lane = 0, VF = State->VF.getKnownMinValue(); Lane < VF; 486 ++Lane) { 487 State->Instance->Lane = VPLane(Lane, VPLane::Kind::First); 488 // Visit the VPBlocks connected to \p this, starting from it. 489 for (VPBlockBase *Block : RPOT) { 490 LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n'); 491 Block->execute(State); 492 } 493 } 494 } 495 496 // Exit replicating mode. 497 State->Instance.reset(); 498 } 499 500 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 501 void VPRegionBlock::print(raw_ostream &O, const Twine &Indent, 502 VPSlotTracker &SlotTracker) const { 503 O << Indent << (isReplicator() ? "<xVFxUF> " : "<x1> ") << getName() << ": {"; 504 auto NewIndent = Indent + " "; 505 for (auto *BlockBase : depth_first(Entry)) { 506 O << '\n'; 507 BlockBase->print(O, NewIndent, SlotTracker); 508 } 509 O << Indent << "}\n"; 510 } 511 #endif 512 513 bool VPRecipeBase::mayHaveSideEffects() const { 514 switch (getVPDefID()) { 515 case VPBranchOnMaskSC: 516 return false; 517 case VPBlendSC: 518 case VPWidenSC: 519 case VPWidenGEPSC: 520 case VPReductionSC: 521 case VPWidenSelectSC: { 522 const Instruction *I = 523 dyn_cast_or_null<Instruction>(getVPValue()->getUnderlyingValue()); 524 (void)I; 525 assert((!I || !I->mayHaveSideEffects()) && 526 "underlying instruction has side-effects"); 527 return false; 528 } 529 case VPReplicateSC: { 530 auto *R = cast<VPReplicateRecipe>(this); 531 return R->getUnderlyingInstr()->mayHaveSideEffects(); 532 } 533 default: 534 return true; 535 } 536 } 537 538 void VPRecipeBase::insertBefore(VPRecipeBase *InsertPos) { 539 assert(!Parent && "Recipe already in some VPBasicBlock"); 540 assert(InsertPos->getParent() && 541 "Insertion position not in any VPBasicBlock"); 542 Parent = InsertPos->getParent(); 543 Parent->getRecipeList().insert(InsertPos->getIterator(), this); 544 } 545 546 void VPRecipeBase::insertAfter(VPRecipeBase *InsertPos) { 547 assert(!Parent && "Recipe already in some VPBasicBlock"); 548 assert(InsertPos->getParent() && 549 "Insertion position not in any VPBasicBlock"); 550 Parent = InsertPos->getParent(); 551 Parent->getRecipeList().insertAfter(InsertPos->getIterator(), this); 552 } 553 554 void VPRecipeBase::removeFromParent() { 555 assert(getParent() && "Recipe not in any VPBasicBlock"); 556 getParent()->getRecipeList().remove(getIterator()); 557 Parent = nullptr; 558 } 559 560 iplist<VPRecipeBase>::iterator VPRecipeBase::eraseFromParent() { 561 assert(getParent() && "Recipe not in any VPBasicBlock"); 562 return getParent()->getRecipeList().erase(getIterator()); 563 } 564 565 void VPRecipeBase::moveAfter(VPRecipeBase *InsertPos) { 566 removeFromParent(); 567 insertAfter(InsertPos); 568 } 569 570 void VPRecipeBase::moveBefore(VPBasicBlock &BB, 571 iplist<VPRecipeBase>::iterator I) { 572 assert(I == BB.end() || I->getParent() == &BB); 573 removeFromParent(); 574 Parent = &BB; 575 BB.getRecipeList().insert(I, this); 576 } 577 578 void VPInstruction::generateInstruction(VPTransformState &State, 579 unsigned Part) { 580 IRBuilder<> &Builder = State.Builder; 581 582 if (Instruction::isBinaryOp(getOpcode())) { 583 Value *A = State.get(getOperand(0), Part); 584 Value *B = State.get(getOperand(1), Part); 585 Value *V = Builder.CreateBinOp((Instruction::BinaryOps)getOpcode(), A, B); 586 State.set(this, V, Part); 587 return; 588 } 589 590 switch (getOpcode()) { 591 case VPInstruction::Not: { 592 Value *A = State.get(getOperand(0), Part); 593 Value *V = Builder.CreateNot(A); 594 State.set(this, V, Part); 595 break; 596 } 597 case VPInstruction::ICmpULE: { 598 Value *IV = State.get(getOperand(0), Part); 599 Value *TC = State.get(getOperand(1), Part); 600 Value *V = Builder.CreateICmpULE(IV, TC); 601 State.set(this, V, Part); 602 break; 603 } 604 case Instruction::Select: { 605 Value *Cond = State.get(getOperand(0), Part); 606 Value *Op1 = State.get(getOperand(1), Part); 607 Value *Op2 = State.get(getOperand(2), Part); 608 Value *V = Builder.CreateSelect(Cond, Op1, Op2); 609 State.set(this, V, Part); 610 break; 611 } 612 case VPInstruction::ActiveLaneMask: { 613 // Get first lane of vector induction variable. 614 Value *VIVElem0 = State.get(getOperand(0), VPIteration(Part, 0)); 615 // Get the original loop tripcount. 616 Value *ScalarTC = State.TripCount; 617 618 auto *Int1Ty = Type::getInt1Ty(Builder.getContext()); 619 auto *PredTy = FixedVectorType::get(Int1Ty, State.VF.getKnownMinValue()); 620 Instruction *Call = Builder.CreateIntrinsic( 621 Intrinsic::get_active_lane_mask, {PredTy, ScalarTC->getType()}, 622 {VIVElem0, ScalarTC}, nullptr, "active.lane.mask"); 623 State.set(this, Call, Part); 624 break; 625 } 626 default: 627 llvm_unreachable("Unsupported opcode for instruction"); 628 } 629 } 630 631 void VPInstruction::execute(VPTransformState &State) { 632 assert(!State.Instance && "VPInstruction executing an Instance"); 633 for (unsigned Part = 0; Part < State.UF; ++Part) 634 generateInstruction(State, Part); 635 } 636 637 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 638 void VPInstruction::dump() const { 639 VPSlotTracker SlotTracker(getParent()->getPlan()); 640 print(dbgs(), "", SlotTracker); 641 } 642 643 void VPInstruction::print(raw_ostream &O, const Twine &Indent, 644 VPSlotTracker &SlotTracker) const { 645 O << Indent << "EMIT "; 646 647 if (hasResult()) { 648 printAsOperand(O, SlotTracker); 649 O << " = "; 650 } 651 652 switch (getOpcode()) { 653 case VPInstruction::Not: 654 O << "not"; 655 break; 656 case VPInstruction::ICmpULE: 657 O << "icmp ule"; 658 break; 659 case VPInstruction::SLPLoad: 660 O << "combined load"; 661 break; 662 case VPInstruction::SLPStore: 663 O << "combined store"; 664 break; 665 case VPInstruction::ActiveLaneMask: 666 O << "active lane mask"; 667 break; 668 669 default: 670 O << Instruction::getOpcodeName(getOpcode()); 671 } 672 673 for (const VPValue *Operand : operands()) { 674 O << " "; 675 Operand->printAsOperand(O, SlotTracker); 676 } 677 } 678 #endif 679 680 /// Generate the code inside the body of the vectorized loop. Assumes a single 681 /// LoopVectorBody basic-block was created for this. Introduce additional 682 /// basic-blocks as needed, and fill them all. 683 void VPlan::execute(VPTransformState *State) { 684 // -1. Check if the backedge taken count is needed, and if so build it. 685 if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) { 686 Value *TC = State->TripCount; 687 IRBuilder<> Builder(State->CFG.PrevBB->getTerminator()); 688 auto *TCMO = Builder.CreateSub(TC, ConstantInt::get(TC->getType(), 1), 689 "trip.count.minus.1"); 690 auto VF = State->VF; 691 Value *VTCMO = 692 VF.isScalar() ? TCMO : Builder.CreateVectorSplat(VF, TCMO, "broadcast"); 693 for (unsigned Part = 0, UF = State->UF; Part < UF; ++Part) 694 State->set(BackedgeTakenCount, VTCMO, Part); 695 } 696 697 // 0. Set the reverse mapping from VPValues to Values for code generation. 698 for (auto &Entry : Value2VPValue) 699 State->VPValue2Value[Entry.second] = Entry.first; 700 701 BasicBlock *VectorPreHeaderBB = State->CFG.PrevBB; 702 BasicBlock *VectorHeaderBB = VectorPreHeaderBB->getSingleSuccessor(); 703 assert(VectorHeaderBB && "Loop preheader does not have a single successor."); 704 705 // 1. Make room to generate basic-blocks inside loop body if needed. 706 BasicBlock *VectorLatchBB = VectorHeaderBB->splitBasicBlock( 707 VectorHeaderBB->getFirstInsertionPt(), "vector.body.latch"); 708 Loop *L = State->LI->getLoopFor(VectorHeaderBB); 709 L->addBasicBlockToLoop(VectorLatchBB, *State->LI); 710 // Remove the edge between Header and Latch to allow other connections. 711 // Temporarily terminate with unreachable until CFG is rewired. 712 // Note: this asserts the generated code's assumption that 713 // getFirstInsertionPt() can be dereferenced into an Instruction. 714 VectorHeaderBB->getTerminator()->eraseFromParent(); 715 State->Builder.SetInsertPoint(VectorHeaderBB); 716 UnreachableInst *Terminator = State->Builder.CreateUnreachable(); 717 State->Builder.SetInsertPoint(Terminator); 718 719 // 2. Generate code in loop body. 720 State->CFG.PrevVPBB = nullptr; 721 State->CFG.PrevBB = VectorHeaderBB; 722 State->CFG.LastBB = VectorLatchBB; 723 724 for (VPBlockBase *Block : depth_first(Entry)) 725 Block->execute(State); 726 727 // Setup branch terminator successors for VPBBs in VPBBsToFix based on 728 // VPBB's successors. 729 for (auto VPBB : State->CFG.VPBBsToFix) { 730 assert(EnableVPlanNativePath && 731 "Unexpected VPBBsToFix in non VPlan-native path"); 732 BasicBlock *BB = State->CFG.VPBB2IRBB[VPBB]; 733 assert(BB && "Unexpected null basic block for VPBB"); 734 735 unsigned Idx = 0; 736 auto *BBTerminator = BB->getTerminator(); 737 738 for (VPBlockBase *SuccVPBlock : VPBB->getHierarchicalSuccessors()) { 739 VPBasicBlock *SuccVPBB = SuccVPBlock->getEntryBasicBlock(); 740 BBTerminator->setSuccessor(Idx, State->CFG.VPBB2IRBB[SuccVPBB]); 741 ++Idx; 742 } 743 } 744 745 // 3. Merge the temporary latch created with the last basic-block filled. 746 BasicBlock *LastBB = State->CFG.PrevBB; 747 // Connect LastBB to VectorLatchBB to facilitate their merge. 748 assert((EnableVPlanNativePath || 749 isa<UnreachableInst>(LastBB->getTerminator())) && 750 "Expected InnerLoop VPlan CFG to terminate with unreachable"); 751 assert((!EnableVPlanNativePath || isa<BranchInst>(LastBB->getTerminator())) && 752 "Expected VPlan CFG to terminate with branch in NativePath"); 753 LastBB->getTerminator()->eraseFromParent(); 754 BranchInst::Create(VectorLatchBB, LastBB); 755 756 // Merge LastBB with Latch. 757 bool Merged = MergeBlockIntoPredecessor(VectorLatchBB, nullptr, State->LI); 758 (void)Merged; 759 assert(Merged && "Could not merge last basic block with latch."); 760 VectorLatchBB = LastBB; 761 762 // We do not attempt to preserve DT for outer loop vectorization currently. 763 if (!EnableVPlanNativePath) 764 updateDominatorTree(State->DT, VectorPreHeaderBB, VectorLatchBB, 765 L->getExitBlock()); 766 } 767 768 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 769 LLVM_DUMP_METHOD 770 void VPlan::print(raw_ostream &O) const { 771 VPSlotTracker SlotTracker(this); 772 773 O << "VPlan '" << Name << "' {"; 774 for (const VPBlockBase *Block : depth_first(getEntry())) { 775 O << '\n'; 776 Block->print(O, "", SlotTracker); 777 } 778 O << "}\n"; 779 } 780 781 LLVM_DUMP_METHOD 782 void VPlan::printDOT(raw_ostream &O) const { 783 VPlanPrinter Printer(O, *this); 784 Printer.dump(); 785 } 786 787 LLVM_DUMP_METHOD 788 void VPlan::dump() const { print(dbgs()); } 789 #endif 790 791 void VPlan::updateDominatorTree(DominatorTree *DT, BasicBlock *LoopPreHeaderBB, 792 BasicBlock *LoopLatchBB, 793 BasicBlock *LoopExitBB) { 794 BasicBlock *LoopHeaderBB = LoopPreHeaderBB->getSingleSuccessor(); 795 assert(LoopHeaderBB && "Loop preheader does not have a single successor."); 796 // The vector body may be more than a single basic-block by this point. 797 // Update the dominator tree information inside the vector body by propagating 798 // it from header to latch, expecting only triangular control-flow, if any. 799 BasicBlock *PostDomSucc = nullptr; 800 for (auto *BB = LoopHeaderBB; BB != LoopLatchBB; BB = PostDomSucc) { 801 // Get the list of successors of this block. 802 std::vector<BasicBlock *> Succs(succ_begin(BB), succ_end(BB)); 803 assert(Succs.size() <= 2 && 804 "Basic block in vector loop has more than 2 successors."); 805 PostDomSucc = Succs[0]; 806 if (Succs.size() == 1) { 807 assert(PostDomSucc->getSinglePredecessor() && 808 "PostDom successor has more than one predecessor."); 809 DT->addNewBlock(PostDomSucc, BB); 810 continue; 811 } 812 BasicBlock *InterimSucc = Succs[1]; 813 if (PostDomSucc->getSingleSuccessor() == InterimSucc) { 814 PostDomSucc = Succs[1]; 815 InterimSucc = Succs[0]; 816 } 817 assert(InterimSucc->getSingleSuccessor() == PostDomSucc && 818 "One successor of a basic block does not lead to the other."); 819 assert(InterimSucc->getSinglePredecessor() && 820 "Interim successor has more than one predecessor."); 821 assert(PostDomSucc->hasNPredecessors(2) && 822 "PostDom successor has more than two predecessors."); 823 DT->addNewBlock(InterimSucc, BB); 824 DT->addNewBlock(PostDomSucc, BB); 825 } 826 // Latch block is a new dominator for the loop exit. 827 DT->changeImmediateDominator(LoopExitBB, LoopLatchBB); 828 assert(DT->verify(DominatorTree::VerificationLevel::Fast)); 829 } 830 831 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 832 const Twine VPlanPrinter::getUID(const VPBlockBase *Block) { 833 return (isa<VPRegionBlock>(Block) ? "cluster_N" : "N") + 834 Twine(getOrCreateBID(Block)); 835 } 836 837 const Twine VPlanPrinter::getOrCreateName(const VPBlockBase *Block) { 838 const std::string &Name = Block->getName(); 839 if (!Name.empty()) 840 return Name; 841 return "VPB" + Twine(getOrCreateBID(Block)); 842 } 843 844 void VPlanPrinter::dump() { 845 Depth = 1; 846 bumpIndent(0); 847 OS << "digraph VPlan {\n"; 848 OS << "graph [labelloc=t, fontsize=30; label=\"Vectorization Plan"; 849 if (!Plan.getName().empty()) 850 OS << "\\n" << DOT::EscapeString(Plan.getName()); 851 if (Plan.BackedgeTakenCount) { 852 OS << ", where:\\n"; 853 Plan.BackedgeTakenCount->print(OS, SlotTracker); 854 OS << " := BackedgeTakenCount"; 855 } 856 OS << "\"]\n"; 857 OS << "node [shape=rect, fontname=Courier, fontsize=30]\n"; 858 OS << "edge [fontname=Courier, fontsize=30]\n"; 859 OS << "compound=true\n"; 860 861 for (const VPBlockBase *Block : depth_first(Plan.getEntry())) 862 dumpBlock(Block); 863 864 OS << "}\n"; 865 } 866 867 void VPlanPrinter::dumpBlock(const VPBlockBase *Block) { 868 if (const VPBasicBlock *BasicBlock = dyn_cast<VPBasicBlock>(Block)) 869 dumpBasicBlock(BasicBlock); 870 else if (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 871 dumpRegion(Region); 872 else 873 llvm_unreachable("Unsupported kind of VPBlock."); 874 } 875 876 void VPlanPrinter::drawEdge(const VPBlockBase *From, const VPBlockBase *To, 877 bool Hidden, const Twine &Label) { 878 // Due to "dot" we print an edge between two regions as an edge between the 879 // exit basic block and the entry basic of the respective regions. 880 const VPBlockBase *Tail = From->getExitBasicBlock(); 881 const VPBlockBase *Head = To->getEntryBasicBlock(); 882 OS << Indent << getUID(Tail) << " -> " << getUID(Head); 883 OS << " [ label=\"" << Label << '\"'; 884 if (Tail != From) 885 OS << " ltail=" << getUID(From); 886 if (Head != To) 887 OS << " lhead=" << getUID(To); 888 if (Hidden) 889 OS << "; splines=none"; 890 OS << "]\n"; 891 } 892 893 void VPlanPrinter::dumpEdges(const VPBlockBase *Block) { 894 auto &Successors = Block->getSuccessors(); 895 if (Successors.size() == 1) 896 drawEdge(Block, Successors.front(), false, ""); 897 else if (Successors.size() == 2) { 898 drawEdge(Block, Successors.front(), false, "T"); 899 drawEdge(Block, Successors.back(), false, "F"); 900 } else { 901 unsigned SuccessorNumber = 0; 902 for (auto *Successor : Successors) 903 drawEdge(Block, Successor, false, Twine(SuccessorNumber++)); 904 } 905 } 906 907 void VPlanPrinter::dumpBasicBlock(const VPBasicBlock *BasicBlock) { 908 // Implement dot-formatted dump by performing plain-text dump into the 909 // temporary storage followed by some post-processing. 910 OS << Indent << getUID(BasicBlock) << " [label =\n"; 911 bumpIndent(1); 912 std::string Str; 913 raw_string_ostream SS(Str); 914 // Use no indentation as we need to wrap the lines into quotes ourselves. 915 BasicBlock->print(SS, "", SlotTracker); 916 917 // We need to process each line of the output separately, so split 918 // single-string plain-text dump. 919 SmallVector<StringRef, 0> Lines; 920 StringRef(Str).rtrim('\n').split(Lines, "\n"); 921 922 auto EmitLine = [&](StringRef Line, StringRef Suffix) { 923 OS << Indent << '"' << DOT::EscapeString(Line.str()) << "\\l\"" << Suffix; 924 }; 925 926 // Don't need the "+" after the last line. 927 for (auto Line : make_range(Lines.begin(), Lines.end() - 1)) 928 EmitLine(Line, " +\n"); 929 EmitLine(Lines.back(), "\n"); 930 931 bumpIndent(-1); 932 OS << Indent << "]\n"; 933 934 dumpEdges(BasicBlock); 935 } 936 937 void VPlanPrinter::dumpRegion(const VPRegionBlock *Region) { 938 OS << Indent << "subgraph " << getUID(Region) << " {\n"; 939 bumpIndent(1); 940 OS << Indent << "fontname=Courier\n" 941 << Indent << "label=\"" 942 << DOT::EscapeString(Region->isReplicator() ? "<xVFxUF> " : "<x1> ") 943 << DOT::EscapeString(Region->getName()) << "\"\n"; 944 // Dump the blocks of the region. 945 assert(Region->getEntry() && "Region contains no inner blocks."); 946 for (const VPBlockBase *Block : depth_first(Region->getEntry())) 947 dumpBlock(Block); 948 bumpIndent(-1); 949 OS << Indent << "}\n"; 950 dumpEdges(Region); 951 } 952 953 void VPlanIngredient::print(raw_ostream &O) const { 954 if (auto *Inst = dyn_cast<Instruction>(V)) { 955 if (!Inst->getType()->isVoidTy()) { 956 Inst->printAsOperand(O, false); 957 O << " = "; 958 } 959 O << Inst->getOpcodeName() << " "; 960 unsigned E = Inst->getNumOperands(); 961 if (E > 0) { 962 Inst->getOperand(0)->printAsOperand(O, false); 963 for (unsigned I = 1; I < E; ++I) 964 Inst->getOperand(I)->printAsOperand(O << ", ", false); 965 } 966 } else // !Inst 967 V->printAsOperand(O, false); 968 } 969 970 void VPWidenCallRecipe::print(raw_ostream &O, const Twine &Indent, 971 VPSlotTracker &SlotTracker) const { 972 O << Indent << "WIDEN-CALL "; 973 974 auto *CI = cast<CallInst>(getUnderlyingInstr()); 975 if (CI->getType()->isVoidTy()) 976 O << "void "; 977 else { 978 printAsOperand(O, SlotTracker); 979 O << " = "; 980 } 981 982 O << "call @" << CI->getCalledFunction()->getName() << "("; 983 printOperands(O, SlotTracker); 984 O << ")"; 985 } 986 987 void VPWidenSelectRecipe::print(raw_ostream &O, const Twine &Indent, 988 VPSlotTracker &SlotTracker) const { 989 O << Indent << "WIDEN-SELECT "; 990 printAsOperand(O, SlotTracker); 991 O << " = select "; 992 getOperand(0)->printAsOperand(O, SlotTracker); 993 O << ", "; 994 getOperand(1)->printAsOperand(O, SlotTracker); 995 O << ", "; 996 getOperand(2)->printAsOperand(O, SlotTracker); 997 O << (InvariantCond ? " (condition is loop invariant)" : ""); 998 } 999 1000 void VPWidenRecipe::print(raw_ostream &O, const Twine &Indent, 1001 VPSlotTracker &SlotTracker) const { 1002 O << Indent << "WIDEN "; 1003 printAsOperand(O, SlotTracker); 1004 O << " = " << getUnderlyingInstr()->getOpcodeName() << " "; 1005 printOperands(O, SlotTracker); 1006 } 1007 1008 void VPWidenIntOrFpInductionRecipe::print(raw_ostream &O, const Twine &Indent, 1009 VPSlotTracker &SlotTracker) const { 1010 O << Indent << "WIDEN-INDUCTION"; 1011 if (getTruncInst()) { 1012 O << "\\l\""; 1013 O << " +\n" << Indent << "\" " << VPlanIngredient(IV) << "\\l\""; 1014 O << " +\n" << Indent << "\" "; 1015 getVPValue(0)->printAsOperand(O, SlotTracker); 1016 } else 1017 O << " " << VPlanIngredient(IV); 1018 } 1019 1020 void VPWidenGEPRecipe::print(raw_ostream &O, const Twine &Indent, 1021 VPSlotTracker &SlotTracker) const { 1022 O << Indent << "WIDEN-GEP "; 1023 O << (IsPtrLoopInvariant ? "Inv" : "Var"); 1024 size_t IndicesNumber = IsIndexLoopInvariant.size(); 1025 for (size_t I = 0; I < IndicesNumber; ++I) 1026 O << "[" << (IsIndexLoopInvariant[I] ? "Inv" : "Var") << "]"; 1027 1028 O << " "; 1029 printAsOperand(O, SlotTracker); 1030 O << " = getelementptr "; 1031 printOperands(O, SlotTracker); 1032 } 1033 1034 void VPWidenPHIRecipe::print(raw_ostream &O, const Twine &Indent, 1035 VPSlotTracker &SlotTracker) const { 1036 O << Indent << "WIDEN-PHI "; 1037 1038 auto *OriginalPhi = cast<PHINode>(getUnderlyingValue()); 1039 // Unless all incoming values are modeled in VPlan print the original PHI 1040 // directly. 1041 // TODO: Remove once all VPWidenPHIRecipe instances keep all relevant incoming 1042 // values as VPValues. 1043 if (getNumOperands() != OriginalPhi->getNumOperands()) { 1044 O << VPlanIngredient(OriginalPhi); 1045 return; 1046 } 1047 1048 printAsOperand(O, SlotTracker); 1049 O << " = phi "; 1050 printOperands(O, SlotTracker); 1051 } 1052 1053 void VPBlendRecipe::print(raw_ostream &O, const Twine &Indent, 1054 VPSlotTracker &SlotTracker) const { 1055 O << Indent << "BLEND "; 1056 Phi->printAsOperand(O, false); 1057 O << " ="; 1058 if (getNumIncomingValues() == 1) { 1059 // Not a User of any mask: not really blending, this is a 1060 // single-predecessor phi. 1061 O << " "; 1062 getIncomingValue(0)->printAsOperand(O, SlotTracker); 1063 } else { 1064 for (unsigned I = 0, E = getNumIncomingValues(); I < E; ++I) { 1065 O << " "; 1066 getIncomingValue(I)->printAsOperand(O, SlotTracker); 1067 O << "/"; 1068 getMask(I)->printAsOperand(O, SlotTracker); 1069 } 1070 } 1071 } 1072 1073 void VPReductionRecipe::print(raw_ostream &O, const Twine &Indent, 1074 VPSlotTracker &SlotTracker) const { 1075 O << Indent << "REDUCE "; 1076 printAsOperand(O, SlotTracker); 1077 O << " = "; 1078 getChainOp()->printAsOperand(O, SlotTracker); 1079 O << " + reduce." << Instruction::getOpcodeName(RdxDesc->getOpcode()) 1080 << " ("; 1081 getVecOp()->printAsOperand(O, SlotTracker); 1082 if (getCondOp()) { 1083 O << ", "; 1084 getCondOp()->printAsOperand(O, SlotTracker); 1085 } 1086 O << ")"; 1087 } 1088 1089 void VPReplicateRecipe::print(raw_ostream &O, const Twine &Indent, 1090 VPSlotTracker &SlotTracker) const { 1091 O << Indent << (IsUniform ? "CLONE " : "REPLICATE "); 1092 1093 if (!getUnderlyingInstr()->getType()->isVoidTy()) { 1094 printAsOperand(O, SlotTracker); 1095 O << " = "; 1096 } 1097 O << Instruction::getOpcodeName(getUnderlyingInstr()->getOpcode()) << " "; 1098 printOperands(O, SlotTracker); 1099 1100 if (AlsoPack) 1101 O << " (S->V)"; 1102 } 1103 1104 void VPPredInstPHIRecipe::print(raw_ostream &O, const Twine &Indent, 1105 VPSlotTracker &SlotTracker) const { 1106 O << Indent << "PHI-PREDICATED-INSTRUCTION "; 1107 printAsOperand(O, SlotTracker); 1108 O << " = "; 1109 printOperands(O, SlotTracker); 1110 } 1111 1112 void VPWidenMemoryInstructionRecipe::print(raw_ostream &O, const Twine &Indent, 1113 VPSlotTracker &SlotTracker) const { 1114 O << Indent << "WIDEN "; 1115 1116 if (!isStore()) { 1117 getVPValue()->printAsOperand(O, SlotTracker); 1118 O << " = "; 1119 } 1120 O << Instruction::getOpcodeName(Ingredient.getOpcode()) << " "; 1121 1122 printOperands(O, SlotTracker); 1123 } 1124 #endif 1125 1126 void VPWidenCanonicalIVRecipe::execute(VPTransformState &State) { 1127 Value *CanonicalIV = State.CanonicalIV; 1128 Type *STy = CanonicalIV->getType(); 1129 IRBuilder<> Builder(State.CFG.PrevBB->getTerminator()); 1130 ElementCount VF = State.VF; 1131 assert(!VF.isScalable() && "the code following assumes non scalables ECs"); 1132 Value *VStart = VF.isScalar() 1133 ? CanonicalIV 1134 : Builder.CreateVectorSplat(VF.getKnownMinValue(), 1135 CanonicalIV, "broadcast"); 1136 for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part) { 1137 SmallVector<Constant *, 8> Indices; 1138 for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane) 1139 Indices.push_back( 1140 ConstantInt::get(STy, Part * VF.getKnownMinValue() + Lane)); 1141 // If VF == 1, there is only one iteration in the loop above, thus the 1142 // element pushed back into Indices is ConstantInt::get(STy, Part) 1143 Constant *VStep = 1144 VF.isScalar() ? Indices.back() : ConstantVector::get(Indices); 1145 // Add the consecutive indices to the vector value. 1146 Value *CanonicalVectorIV = Builder.CreateAdd(VStart, VStep, "vec.iv"); 1147 State.set(getVPSingleValue(), CanonicalVectorIV, Part); 1148 } 1149 } 1150 1151 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1152 void VPWidenCanonicalIVRecipe::print(raw_ostream &O, const Twine &Indent, 1153 VPSlotTracker &SlotTracker) const { 1154 O << Indent << "EMIT "; 1155 getVPValue()->printAsOperand(O, SlotTracker); 1156 O << " = WIDEN-CANONICAL-INDUCTION"; 1157 } 1158 #endif 1159 1160 template void DomTreeBuilder::Calculate<VPDominatorTree>(VPDominatorTree &DT); 1161 1162 void VPValue::replaceAllUsesWith(VPValue *New) { 1163 for (unsigned J = 0; J < getNumUsers();) { 1164 VPUser *User = Users[J]; 1165 unsigned NumUsers = getNumUsers(); 1166 for (unsigned I = 0, E = User->getNumOperands(); I < E; ++I) 1167 if (User->getOperand(I) == this) 1168 User->setOperand(I, New); 1169 // If a user got removed after updating the current user, the next user to 1170 // update will be moved to the current position, so we only need to 1171 // increment the index if the number of users did not change. 1172 if (NumUsers == getNumUsers()) 1173 J++; 1174 } 1175 } 1176 1177 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1178 void VPValue::printAsOperand(raw_ostream &OS, VPSlotTracker &Tracker) const { 1179 if (const Value *UV = getUnderlyingValue()) { 1180 OS << "ir<"; 1181 UV->printAsOperand(OS, false); 1182 OS << ">"; 1183 return; 1184 } 1185 1186 unsigned Slot = Tracker.getSlot(this); 1187 if (Slot == unsigned(-1)) 1188 OS << "<badref>"; 1189 else 1190 OS << "vp<%" << Tracker.getSlot(this) << ">"; 1191 } 1192 1193 void VPUser::printOperands(raw_ostream &O, VPSlotTracker &SlotTracker) const { 1194 interleaveComma(operands(), O, [&O, &SlotTracker](VPValue *Op) { 1195 Op->printAsOperand(O, SlotTracker); 1196 }); 1197 } 1198 #endif 1199 1200 void VPInterleavedAccessInfo::visitRegion(VPRegionBlock *Region, 1201 Old2NewTy &Old2New, 1202 InterleavedAccessInfo &IAI) { 1203 ReversePostOrderTraversal<VPBlockBase *> RPOT(Region->getEntry()); 1204 for (VPBlockBase *Base : RPOT) { 1205 visitBlock(Base, Old2New, IAI); 1206 } 1207 } 1208 1209 void VPInterleavedAccessInfo::visitBlock(VPBlockBase *Block, Old2NewTy &Old2New, 1210 InterleavedAccessInfo &IAI) { 1211 if (VPBasicBlock *VPBB = dyn_cast<VPBasicBlock>(Block)) { 1212 for (VPRecipeBase &VPI : *VPBB) { 1213 if (isa<VPWidenPHIRecipe>(&VPI)) 1214 continue; 1215 assert(isa<VPInstruction>(&VPI) && "Can only handle VPInstructions"); 1216 auto *VPInst = cast<VPInstruction>(&VPI); 1217 auto *Inst = cast<Instruction>(VPInst->getUnderlyingValue()); 1218 auto *IG = IAI.getInterleaveGroup(Inst); 1219 if (!IG) 1220 continue; 1221 1222 auto NewIGIter = Old2New.find(IG); 1223 if (NewIGIter == Old2New.end()) 1224 Old2New[IG] = new InterleaveGroup<VPInstruction>( 1225 IG->getFactor(), IG->isReverse(), IG->getAlign()); 1226 1227 if (Inst == IG->getInsertPos()) 1228 Old2New[IG]->setInsertPos(VPInst); 1229 1230 InterleaveGroupMap[VPInst] = Old2New[IG]; 1231 InterleaveGroupMap[VPInst]->insertMember( 1232 VPInst, IG->getIndex(Inst), 1233 Align(IG->isReverse() ? (-1) * int(IG->getFactor()) 1234 : IG->getFactor())); 1235 } 1236 } else if (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 1237 visitRegion(Region, Old2New, IAI); 1238 else 1239 llvm_unreachable("Unsupported kind of VPBlock."); 1240 } 1241 1242 VPInterleavedAccessInfo::VPInterleavedAccessInfo(VPlan &Plan, 1243 InterleavedAccessInfo &IAI) { 1244 Old2NewTy Old2New; 1245 visitRegion(cast<VPRegionBlock>(Plan.getEntry()), Old2New, IAI); 1246 } 1247 1248 void VPSlotTracker::assignSlot(const VPValue *V) { 1249 assert(Slots.find(V) == Slots.end() && "VPValue already has a slot!"); 1250 Slots[V] = NextSlot++; 1251 } 1252 1253 void VPSlotTracker::assignSlots(const VPlan &Plan) { 1254 1255 for (const VPValue *V : Plan.VPExternalDefs) 1256 assignSlot(V); 1257 1258 if (Plan.BackedgeTakenCount) 1259 assignSlot(Plan.BackedgeTakenCount); 1260 1261 ReversePostOrderTraversal< 1262 VPBlockRecursiveTraversalWrapper<const VPBlockBase *>> 1263 RPOT(VPBlockRecursiveTraversalWrapper<const VPBlockBase *>( 1264 Plan.getEntry())); 1265 for (const VPBasicBlock *VPBB : 1266 VPBlockUtils::blocksOnly<const VPBasicBlock>(RPOT)) 1267 for (const VPRecipeBase &Recipe : *VPBB) 1268 for (VPValue *Def : Recipe.definedValues()) 1269 assignSlot(Def); 1270 } 1271