1 //===- VPlan.cpp - Vectorizer Plan ----------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This is the LLVM vectorization plan. It represents a candidate for 11 /// vectorization, allowing to plan and optimize how to vectorize a given loop 12 /// before generating LLVM-IR. 13 /// The vectorizer uses vectorization plans to estimate the costs of potential 14 /// candidates and if profitable to execute the desired plan, generating vector 15 /// LLVM-IR code. 16 /// 17 //===----------------------------------------------------------------------===// 18 19 #include "VPlan.h" 20 #include "LoopVectorizationPlanner.h" 21 #include "VPlanCFG.h" 22 #include "VPlanDominatorTree.h" 23 #include "VPlanPatternMatch.h" 24 #include "VPlanTransforms.h" 25 #include "VPlanUtils.h" 26 #include "llvm/ADT/PostOrderIterator.h" 27 #include "llvm/ADT/STLExtras.h" 28 #include "llvm/ADT/SmallVector.h" 29 #include "llvm/ADT/StringExtras.h" 30 #include "llvm/ADT/Twine.h" 31 #include "llvm/Analysis/DomTreeUpdater.h" 32 #include "llvm/Analysis/LoopInfo.h" 33 #include "llvm/IR/BasicBlock.h" 34 #include "llvm/IR/CFG.h" 35 #include "llvm/IR/IRBuilder.h" 36 #include "llvm/IR/Instruction.h" 37 #include "llvm/IR/Instructions.h" 38 #include "llvm/IR/Type.h" 39 #include "llvm/IR/Value.h" 40 #include "llvm/Support/Casting.h" 41 #include "llvm/Support/CommandLine.h" 42 #include "llvm/Support/Debug.h" 43 #include "llvm/Support/GraphWriter.h" 44 #include "llvm/Support/raw_ostream.h" 45 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 46 #include "llvm/Transforms/Utils/LoopVersioning.h" 47 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 48 #include <cassert> 49 #include <string> 50 #include <vector> 51 52 using namespace llvm; 53 using namespace llvm::VPlanPatternMatch; 54 55 namespace llvm { 56 extern cl::opt<bool> EnableVPlanNativePath; 57 } 58 extern cl::opt<unsigned> ForceTargetInstructionCost; 59 60 static cl::opt<bool> PrintVPlansInDotFormat( 61 "vplan-print-in-dot-format", cl::Hidden, 62 cl::desc("Use dot format instead of plain text when dumping VPlans")); 63 64 #define DEBUG_TYPE "vplan" 65 66 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 67 raw_ostream &llvm::operator<<(raw_ostream &OS, const VPValue &V) { 68 const VPInstruction *Instr = dyn_cast<VPInstruction>(&V); 69 VPSlotTracker SlotTracker( 70 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr); 71 V.print(OS, SlotTracker); 72 return OS; 73 } 74 #endif 75 76 Value *VPLane::getAsRuntimeExpr(IRBuilderBase &Builder, 77 const ElementCount &VF) const { 78 switch (LaneKind) { 79 case VPLane::Kind::ScalableLast: 80 // Lane = RuntimeVF - VF.getKnownMinValue() + Lane 81 return Builder.CreateSub(getRuntimeVF(Builder, Builder.getInt32Ty(), VF), 82 Builder.getInt32(VF.getKnownMinValue() - Lane)); 83 case VPLane::Kind::First: 84 return Builder.getInt32(Lane); 85 } 86 llvm_unreachable("Unknown lane kind"); 87 } 88 89 VPValue::VPValue(const unsigned char SC, Value *UV, VPDef *Def) 90 : SubclassID(SC), UnderlyingVal(UV), Def(Def) { 91 if (Def) 92 Def->addDefinedValue(this); 93 } 94 95 VPValue::~VPValue() { 96 assert(Users.empty() && "trying to delete a VPValue with remaining users"); 97 if (Def) 98 Def->removeDefinedValue(this); 99 } 100 101 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 102 void VPValue::print(raw_ostream &OS, VPSlotTracker &SlotTracker) const { 103 if (const VPRecipeBase *R = dyn_cast_or_null<VPRecipeBase>(Def)) 104 R->print(OS, "", SlotTracker); 105 else 106 printAsOperand(OS, SlotTracker); 107 } 108 109 void VPValue::dump() const { 110 const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this->Def); 111 VPSlotTracker SlotTracker( 112 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr); 113 print(dbgs(), SlotTracker); 114 dbgs() << "\n"; 115 } 116 117 void VPDef::dump() const { 118 const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this); 119 VPSlotTracker SlotTracker( 120 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr); 121 print(dbgs(), "", SlotTracker); 122 dbgs() << "\n"; 123 } 124 #endif 125 126 VPRecipeBase *VPValue::getDefiningRecipe() { 127 return cast_or_null<VPRecipeBase>(Def); 128 } 129 130 const VPRecipeBase *VPValue::getDefiningRecipe() const { 131 return cast_or_null<VPRecipeBase>(Def); 132 } 133 134 // Get the top-most entry block of \p Start. This is the entry block of the 135 // containing VPlan. This function is templated to support both const and non-const blocks 136 template <typename T> static T *getPlanEntry(T *Start) { 137 T *Next = Start; 138 T *Current = Start; 139 while ((Next = Next->getParent())) 140 Current = Next; 141 142 SmallSetVector<T *, 8> WorkList; 143 WorkList.insert(Current); 144 145 for (unsigned i = 0; i < WorkList.size(); i++) { 146 T *Current = WorkList[i]; 147 if (Current->getNumPredecessors() == 0) 148 return Current; 149 auto &Predecessors = Current->getPredecessors(); 150 WorkList.insert(Predecessors.begin(), Predecessors.end()); 151 } 152 153 llvm_unreachable("VPlan without any entry node without predecessors"); 154 } 155 156 VPlan *VPBlockBase::getPlan() { return getPlanEntry(this)->Plan; } 157 158 const VPlan *VPBlockBase::getPlan() const { return getPlanEntry(this)->Plan; } 159 160 /// \return the VPBasicBlock that is the entry of Block, possibly indirectly. 161 const VPBasicBlock *VPBlockBase::getEntryBasicBlock() const { 162 const VPBlockBase *Block = this; 163 while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 164 Block = Region->getEntry(); 165 return cast<VPBasicBlock>(Block); 166 } 167 168 VPBasicBlock *VPBlockBase::getEntryBasicBlock() { 169 VPBlockBase *Block = this; 170 while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 171 Block = Region->getEntry(); 172 return cast<VPBasicBlock>(Block); 173 } 174 175 void VPBlockBase::setPlan(VPlan *ParentPlan) { 176 assert( 177 (ParentPlan->getEntry() == this || ParentPlan->getPreheader() == this) && 178 "Can only set plan on its entry or preheader block."); 179 Plan = ParentPlan; 180 } 181 182 /// \return the VPBasicBlock that is the exit of Block, possibly indirectly. 183 const VPBasicBlock *VPBlockBase::getExitingBasicBlock() const { 184 const VPBlockBase *Block = this; 185 while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 186 Block = Region->getExiting(); 187 return cast<VPBasicBlock>(Block); 188 } 189 190 VPBasicBlock *VPBlockBase::getExitingBasicBlock() { 191 VPBlockBase *Block = this; 192 while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 193 Block = Region->getExiting(); 194 return cast<VPBasicBlock>(Block); 195 } 196 197 VPBlockBase *VPBlockBase::getEnclosingBlockWithSuccessors() { 198 if (!Successors.empty() || !Parent) 199 return this; 200 assert(Parent->getExiting() == this && 201 "Block w/o successors not the exiting block of its parent."); 202 return Parent->getEnclosingBlockWithSuccessors(); 203 } 204 205 VPBlockBase *VPBlockBase::getEnclosingBlockWithPredecessors() { 206 if (!Predecessors.empty() || !Parent) 207 return this; 208 assert(Parent->getEntry() == this && 209 "Block w/o predecessors not the entry of its parent."); 210 return Parent->getEnclosingBlockWithPredecessors(); 211 } 212 213 void VPBlockBase::deleteCFG(VPBlockBase *Entry) { 214 for (VPBlockBase *Block : to_vector(vp_depth_first_shallow(Entry))) 215 delete Block; 216 } 217 218 VPBasicBlock::iterator VPBasicBlock::getFirstNonPhi() { 219 iterator It = begin(); 220 while (It != end() && It->isPhi()) 221 It++; 222 return It; 223 } 224 225 VPTransformState::VPTransformState(ElementCount VF, unsigned UF, LoopInfo *LI, 226 DominatorTree *DT, IRBuilderBase &Builder, 227 InnerLoopVectorizer *ILV, VPlan *Plan) 228 : VF(VF), UF(UF), CFG(DT), LI(LI), Builder(Builder), ILV(ILV), Plan(Plan), 229 LVer(nullptr), TypeAnalysis(Plan->getCanonicalIV()->getScalarType()) {} 230 231 Value *VPTransformState::get(VPValue *Def, const VPIteration &Instance) { 232 if (Def->isLiveIn()) 233 return Def->getLiveInIRValue(); 234 235 if (hasScalarValue(Def, Instance)) { 236 return Data 237 .PerPartScalars[Def][Instance.Part][Instance.Lane.mapToCacheIndex(VF)]; 238 } 239 if (!Instance.Lane.isFirstLane() && 240 vputils::isUniformAfterVectorization(Def) && 241 hasScalarValue(Def, {Instance.Part, VPLane::getFirstLane()})) { 242 return Data.PerPartScalars[Def][Instance.Part][0]; 243 } 244 245 assert(hasVectorValue(Def, Instance.Part)); 246 auto *VecPart = Data.PerPartOutput[Def][Instance.Part]; 247 if (!VecPart->getType()->isVectorTy()) { 248 assert(Instance.Lane.isFirstLane() && "cannot get lane > 0 for scalar"); 249 return VecPart; 250 } 251 // TODO: Cache created scalar values. 252 Value *Lane = Instance.Lane.getAsRuntimeExpr(Builder, VF); 253 auto *Extract = Builder.CreateExtractElement(VecPart, Lane); 254 // set(Def, Extract, Instance); 255 return Extract; 256 } 257 258 Value *VPTransformState::get(VPValue *Def, unsigned Part, bool NeedsScalar) { 259 if (NeedsScalar) { 260 assert((VF.isScalar() || Def->isLiveIn() || hasVectorValue(Def, Part) || 261 !vputils::onlyFirstLaneUsed(Def) || 262 (hasScalarValue(Def, VPIteration(Part, 0)) && 263 Data.PerPartScalars[Def][Part].size() == 1)) && 264 "Trying to access a single scalar per part but has multiple scalars " 265 "per part."); 266 return get(Def, VPIteration(Part, 0)); 267 } 268 269 // If Values have been set for this Def return the one relevant for \p Part. 270 if (hasVectorValue(Def, Part)) 271 return Data.PerPartOutput[Def][Part]; 272 273 auto GetBroadcastInstrs = [this, Def](Value *V) { 274 bool SafeToHoist = Def->isDefinedOutsideLoopRegions(); 275 if (VF.isScalar()) 276 return V; 277 // Place the code for broadcasting invariant variables in the new preheader. 278 IRBuilder<>::InsertPointGuard Guard(Builder); 279 if (SafeToHoist) { 280 BasicBlock *LoopVectorPreHeader = CFG.VPBB2IRBB[cast<VPBasicBlock>( 281 Plan->getVectorLoopRegion()->getSinglePredecessor())]; 282 if (LoopVectorPreHeader) 283 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 284 } 285 286 // Place the code for broadcasting invariant variables in the new preheader. 287 // Broadcast the scalar into all locations in the vector. 288 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 289 290 return Shuf; 291 }; 292 293 if (!hasScalarValue(Def, {Part, 0})) { 294 assert(Def->isLiveIn() && "expected a live-in"); 295 if (Part != 0) 296 return get(Def, 0); 297 Value *IRV = Def->getLiveInIRValue(); 298 Value *B = GetBroadcastInstrs(IRV); 299 set(Def, B, Part); 300 return B; 301 } 302 303 Value *ScalarValue = get(Def, {Part, 0}); 304 // If we aren't vectorizing, we can just copy the scalar map values over 305 // to the vector map. 306 if (VF.isScalar()) { 307 set(Def, ScalarValue, Part); 308 return ScalarValue; 309 } 310 311 bool IsUniform = vputils::isUniformAfterVectorization(Def); 312 313 unsigned LastLane = IsUniform ? 0 : VF.getKnownMinValue() - 1; 314 // Check if there is a scalar value for the selected lane. 315 if (!hasScalarValue(Def, {Part, LastLane})) { 316 // At the moment, VPWidenIntOrFpInductionRecipes, VPScalarIVStepsRecipes and 317 // VPExpandSCEVRecipes can also be uniform. 318 assert((isa<VPWidenIntOrFpInductionRecipe>(Def->getDefiningRecipe()) || 319 isa<VPScalarIVStepsRecipe>(Def->getDefiningRecipe()) || 320 isa<VPExpandSCEVRecipe>(Def->getDefiningRecipe())) && 321 "unexpected recipe found to be invariant"); 322 IsUniform = true; 323 LastLane = 0; 324 } 325 326 auto *LastInst = cast<Instruction>(get(Def, {Part, LastLane})); 327 // Set the insert point after the last scalarized instruction or after the 328 // last PHI, if LastInst is a PHI. This ensures the insertelement sequence 329 // will directly follow the scalar definitions. 330 auto OldIP = Builder.saveIP(); 331 auto NewIP = 332 isa<PHINode>(LastInst) 333 ? BasicBlock::iterator(LastInst->getParent()->getFirstNonPHI()) 334 : std::next(BasicBlock::iterator(LastInst)); 335 Builder.SetInsertPoint(&*NewIP); 336 337 // However, if we are vectorizing, we need to construct the vector values. 338 // If the value is known to be uniform after vectorization, we can just 339 // broadcast the scalar value corresponding to lane zero for each unroll 340 // iteration. Otherwise, we construct the vector values using 341 // insertelement instructions. Since the resulting vectors are stored in 342 // State, we will only generate the insertelements once. 343 Value *VectorValue = nullptr; 344 if (IsUniform) { 345 VectorValue = GetBroadcastInstrs(ScalarValue); 346 set(Def, VectorValue, Part); 347 } else { 348 // Initialize packing with insertelements to start from undef. 349 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 350 Value *Undef = PoisonValue::get(VectorType::get(LastInst->getType(), VF)); 351 set(Def, Undef, Part); 352 for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane) 353 packScalarIntoVectorValue(Def, {Part, Lane}); 354 VectorValue = get(Def, Part); 355 } 356 Builder.restoreIP(OldIP); 357 return VectorValue; 358 } 359 360 BasicBlock *VPTransformState::CFGState::getPreheaderBBFor(VPRecipeBase *R) { 361 VPRegionBlock *LoopRegion = R->getParent()->getEnclosingLoopRegion(); 362 return VPBB2IRBB[LoopRegion->getPreheaderVPBB()]; 363 } 364 365 void VPTransformState::addNewMetadata(Instruction *To, 366 const Instruction *Orig) { 367 // If the loop was versioned with memchecks, add the corresponding no-alias 368 // metadata. 369 if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig))) 370 LVer->annotateInstWithNoAlias(To, Orig); 371 } 372 373 void VPTransformState::addMetadata(Value *To, Instruction *From) { 374 // No source instruction to transfer metadata from? 375 if (!From) 376 return; 377 378 if (Instruction *ToI = dyn_cast<Instruction>(To)) { 379 propagateMetadata(ToI, From); 380 addNewMetadata(ToI, From); 381 } 382 } 383 384 void VPTransformState::setDebugLocFrom(DebugLoc DL) { 385 const DILocation *DIL = DL; 386 // When a FSDiscriminator is enabled, we don't need to add the multiply 387 // factors to the discriminators. 388 if (DIL && 389 Builder.GetInsertBlock() 390 ->getParent() 391 ->shouldEmitDebugInfoForProfiling() && 392 !EnableFSDiscriminator) { 393 // FIXME: For scalable vectors, assume vscale=1. 394 unsigned UF = Plan->getUF(); 395 auto NewDIL = 396 DIL->cloneByMultiplyingDuplicationFactor(UF * VF.getKnownMinValue()); 397 if (NewDIL) 398 Builder.SetCurrentDebugLocation(*NewDIL); 399 else 400 LLVM_DEBUG(dbgs() << "Failed to create new discriminator: " 401 << DIL->getFilename() << " Line: " << DIL->getLine()); 402 } else 403 Builder.SetCurrentDebugLocation(DIL); 404 } 405 406 void VPTransformState::packScalarIntoVectorValue(VPValue *Def, 407 const VPIteration &Instance) { 408 Value *ScalarInst = get(Def, Instance); 409 Value *VectorValue = get(Def, Instance.Part); 410 VectorValue = Builder.CreateInsertElement( 411 VectorValue, ScalarInst, Instance.Lane.getAsRuntimeExpr(Builder, VF)); 412 set(Def, VectorValue, Instance.Part); 413 } 414 415 BasicBlock * 416 VPBasicBlock::createEmptyBasicBlock(VPTransformState::CFGState &CFG) { 417 // BB stands for IR BasicBlocks. VPBB stands for VPlan VPBasicBlocks. 418 // Pred stands for Predessor. Prev stands for Previous - last visited/created. 419 BasicBlock *PrevBB = CFG.PrevBB; 420 BasicBlock *NewBB = BasicBlock::Create(PrevBB->getContext(), getName(), 421 PrevBB->getParent(), CFG.ExitBB); 422 LLVM_DEBUG(dbgs() << "LV: created " << NewBB->getName() << '\n'); 423 424 // Hook up the new basic block to its predecessors. 425 for (VPBlockBase *PredVPBlock : getHierarchicalPredecessors()) { 426 VPBasicBlock *PredVPBB = PredVPBlock->getExitingBasicBlock(); 427 auto &PredVPSuccessors = PredVPBB->getHierarchicalSuccessors(); 428 BasicBlock *PredBB = CFG.VPBB2IRBB[PredVPBB]; 429 430 assert(PredBB && "Predecessor basic-block not found building successor."); 431 auto *PredBBTerminator = PredBB->getTerminator(); 432 LLVM_DEBUG(dbgs() << "LV: draw edge from" << PredBB->getName() << '\n'); 433 434 auto *TermBr = dyn_cast<BranchInst>(PredBBTerminator); 435 if (isa<UnreachableInst>(PredBBTerminator)) { 436 assert(PredVPSuccessors.size() == 1 && 437 "Predecessor ending w/o branch must have single successor."); 438 DebugLoc DL = PredBBTerminator->getDebugLoc(); 439 PredBBTerminator->eraseFromParent(); 440 auto *Br = BranchInst::Create(NewBB, PredBB); 441 Br->setDebugLoc(DL); 442 } else if (TermBr && !TermBr->isConditional()) { 443 TermBr->setSuccessor(0, NewBB); 444 } else { 445 // Set each forward successor here when it is created, excluding 446 // backedges. A backward successor is set when the branch is created. 447 unsigned idx = PredVPSuccessors.front() == this ? 0 : 1; 448 assert(!TermBr->getSuccessor(idx) && 449 "Trying to reset an existing successor block."); 450 TermBr->setSuccessor(idx, NewBB); 451 } 452 CFG.DTU.applyUpdates({{DominatorTree::Insert, PredBB, NewBB}}); 453 } 454 return NewBB; 455 } 456 457 void VPIRBasicBlock::execute(VPTransformState *State) { 458 assert(getHierarchicalSuccessors().size() <= 2 && 459 "VPIRBasicBlock can have at most two successors at the moment!"); 460 State->Builder.SetInsertPoint(getIRBasicBlock()->getTerminator()); 461 executeRecipes(State, getIRBasicBlock()); 462 if (getSingleSuccessor()) { 463 assert(isa<UnreachableInst>(getIRBasicBlock()->getTerminator())); 464 auto *Br = State->Builder.CreateBr(getIRBasicBlock()); 465 Br->setOperand(0, nullptr); 466 getIRBasicBlock()->getTerminator()->eraseFromParent(); 467 } 468 469 for (VPBlockBase *PredVPBlock : getHierarchicalPredecessors()) { 470 VPBasicBlock *PredVPBB = PredVPBlock->getExitingBasicBlock(); 471 BasicBlock *PredBB = State->CFG.VPBB2IRBB[PredVPBB]; 472 assert(PredBB && "Predecessor basic-block not found building successor."); 473 LLVM_DEBUG(dbgs() << "LV: draw edge from" << PredBB->getName() << '\n'); 474 475 auto *PredBBTerminator = PredBB->getTerminator(); 476 auto *TermBr = cast<BranchInst>(PredBBTerminator); 477 // Set each forward successor here when it is created, excluding 478 // backedges. A backward successor is set when the branch is created. 479 const auto &PredVPSuccessors = PredVPBB->getHierarchicalSuccessors(); 480 unsigned idx = PredVPSuccessors.front() == this ? 0 : 1; 481 assert(!TermBr->getSuccessor(idx) && 482 "Trying to reset an existing successor block."); 483 TermBr->setSuccessor(idx, IRBB); 484 State->CFG.DTU.applyUpdates({{DominatorTree::Insert, PredBB, IRBB}}); 485 } 486 } 487 488 void VPBasicBlock::execute(VPTransformState *State) { 489 bool Replica = State->Instance && !State->Instance->isFirstIteration(); 490 VPBasicBlock *PrevVPBB = State->CFG.PrevVPBB; 491 VPBlockBase *SingleHPred = nullptr; 492 BasicBlock *NewBB = State->CFG.PrevBB; // Reuse it if possible. 493 494 auto IsLoopRegion = [](VPBlockBase *BB) { 495 auto *R = dyn_cast<VPRegionBlock>(BB); 496 return R && !R->isReplicator(); 497 }; 498 499 // 1. Create an IR basic block. 500 if (PrevVPBB && /* A */ 501 !((SingleHPred = getSingleHierarchicalPredecessor()) && 502 SingleHPred->getExitingBasicBlock() == PrevVPBB && 503 PrevVPBB->getSingleHierarchicalSuccessor() && 504 (SingleHPred->getParent() == getEnclosingLoopRegion() && 505 !IsLoopRegion(SingleHPred))) && /* B */ 506 !(Replica && getPredecessors().empty())) { /* C */ 507 // The last IR basic block is reused, as an optimization, in three cases: 508 // A. the first VPBB reuses the loop pre-header BB - when PrevVPBB is null; 509 // B. when the current VPBB has a single (hierarchical) predecessor which 510 // is PrevVPBB and the latter has a single (hierarchical) successor which 511 // both are in the same non-replicator region; and 512 // C. when the current VPBB is an entry of a region replica - where PrevVPBB 513 // is the exiting VPBB of this region from a previous instance, or the 514 // predecessor of this region. 515 516 NewBB = createEmptyBasicBlock(State->CFG); 517 State->Builder.SetInsertPoint(NewBB); 518 // Temporarily terminate with unreachable until CFG is rewired. 519 UnreachableInst *Terminator = State->Builder.CreateUnreachable(); 520 // Register NewBB in its loop. In innermost loops its the same for all 521 // BB's. 522 if (State->CurrentVectorLoop) 523 State->CurrentVectorLoop->addBasicBlockToLoop(NewBB, *State->LI); 524 State->Builder.SetInsertPoint(Terminator); 525 State->CFG.PrevBB = NewBB; 526 } 527 528 // 2. Fill the IR basic block with IR instructions. 529 executeRecipes(State, NewBB); 530 } 531 532 void VPBasicBlock::dropAllReferences(VPValue *NewValue) { 533 for (VPRecipeBase &R : Recipes) { 534 for (auto *Def : R.definedValues()) 535 Def->replaceAllUsesWith(NewValue); 536 537 for (unsigned I = 0, E = R.getNumOperands(); I != E; I++) 538 R.setOperand(I, NewValue); 539 } 540 } 541 542 void VPBasicBlock::executeRecipes(VPTransformState *State, BasicBlock *BB) { 543 LLVM_DEBUG(dbgs() << "LV: vectorizing VPBB:" << getName() 544 << " in BB:" << BB->getName() << '\n'); 545 546 State->CFG.VPBB2IRBB[this] = BB; 547 State->CFG.PrevVPBB = this; 548 549 for (VPRecipeBase &Recipe : Recipes) 550 Recipe.execute(*State); 551 552 LLVM_DEBUG(dbgs() << "LV: filled BB:" << *BB); 553 } 554 555 VPBasicBlock *VPBasicBlock::splitAt(iterator SplitAt) { 556 assert((SplitAt == end() || SplitAt->getParent() == this) && 557 "can only split at a position in the same block"); 558 559 SmallVector<VPBlockBase *, 2> Succs(successors()); 560 // First, disconnect the current block from its successors. 561 for (VPBlockBase *Succ : Succs) 562 VPBlockUtils::disconnectBlocks(this, Succ); 563 564 // Create new empty block after the block to split. 565 auto *SplitBlock = new VPBasicBlock(getName() + ".split"); 566 VPBlockUtils::insertBlockAfter(SplitBlock, this); 567 568 // Add successors for block to split to new block. 569 for (VPBlockBase *Succ : Succs) 570 VPBlockUtils::connectBlocks(SplitBlock, Succ); 571 572 // Finally, move the recipes starting at SplitAt to new block. 573 for (VPRecipeBase &ToMove : 574 make_early_inc_range(make_range(SplitAt, this->end()))) 575 ToMove.moveBefore(*SplitBlock, SplitBlock->end()); 576 577 return SplitBlock; 578 } 579 580 /// Return the enclosing loop region for region \p P. The templated version is 581 /// used to support both const and non-const block arguments. 582 template <typename T> static T *getEnclosingLoopRegionForRegion(T *P) { 583 if (P && P->isReplicator()) { 584 P = P->getParent(); 585 assert(!cast<VPRegionBlock>(P)->isReplicator() && 586 "unexpected nested replicate regions"); 587 } 588 return P; 589 } 590 591 VPRegionBlock *VPBasicBlock::getEnclosingLoopRegion() { 592 return getEnclosingLoopRegionForRegion(getParent()); 593 } 594 595 const VPRegionBlock *VPBasicBlock::getEnclosingLoopRegion() const { 596 return getEnclosingLoopRegionForRegion(getParent()); 597 } 598 599 static bool hasConditionalTerminator(const VPBasicBlock *VPBB) { 600 if (VPBB->empty()) { 601 assert( 602 VPBB->getNumSuccessors() < 2 && 603 "block with multiple successors doesn't have a recipe as terminator"); 604 return false; 605 } 606 607 const VPRecipeBase *R = &VPBB->back(); 608 bool IsCondBranch = isa<VPBranchOnMaskRecipe>(R) || 609 match(R, m_BranchOnCond(m_VPValue())) || 610 match(R, m_BranchOnCount(m_VPValue(), m_VPValue())); 611 (void)IsCondBranch; 612 613 if (VPBB->getNumSuccessors() >= 2 || 614 (VPBB->isExiting() && !VPBB->getParent()->isReplicator())) { 615 assert(IsCondBranch && "block with multiple successors not terminated by " 616 "conditional branch recipe"); 617 618 return true; 619 } 620 621 assert( 622 !IsCondBranch && 623 "block with 0 or 1 successors terminated by conditional branch recipe"); 624 return false; 625 } 626 627 VPRecipeBase *VPBasicBlock::getTerminator() { 628 if (hasConditionalTerminator(this)) 629 return &back(); 630 return nullptr; 631 } 632 633 const VPRecipeBase *VPBasicBlock::getTerminator() const { 634 if (hasConditionalTerminator(this)) 635 return &back(); 636 return nullptr; 637 } 638 639 bool VPBasicBlock::isExiting() const { 640 return getParent() && getParent()->getExitingBasicBlock() == this; 641 } 642 643 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 644 void VPBlockBase::printSuccessors(raw_ostream &O, const Twine &Indent) const { 645 if (getSuccessors().empty()) { 646 O << Indent << "No successors\n"; 647 } else { 648 O << Indent << "Successor(s): "; 649 ListSeparator LS; 650 for (auto *Succ : getSuccessors()) 651 O << LS << Succ->getName(); 652 O << '\n'; 653 } 654 } 655 656 void VPBasicBlock::print(raw_ostream &O, const Twine &Indent, 657 VPSlotTracker &SlotTracker) const { 658 O << Indent << getName() << ":\n"; 659 660 auto RecipeIndent = Indent + " "; 661 for (const VPRecipeBase &Recipe : *this) { 662 Recipe.print(O, RecipeIndent, SlotTracker); 663 O << '\n'; 664 } 665 666 printSuccessors(O, Indent); 667 } 668 #endif 669 670 static std::pair<VPBlockBase *, VPBlockBase *> cloneFrom(VPBlockBase *Entry); 671 672 // Clone the CFG for all nodes reachable from \p Entry, this includes cloning 673 // the blocks and their recipes. Operands of cloned recipes will NOT be updated. 674 // Remapping of operands must be done separately. Returns a pair with the new 675 // entry and exiting blocks of the cloned region. If \p Entry isn't part of a 676 // region, return nullptr for the exiting block. 677 static std::pair<VPBlockBase *, VPBlockBase *> cloneFrom(VPBlockBase *Entry) { 678 DenseMap<VPBlockBase *, VPBlockBase *> Old2NewVPBlocks; 679 VPBlockBase *Exiting = nullptr; 680 bool InRegion = Entry->getParent(); 681 // First, clone blocks reachable from Entry. 682 for (VPBlockBase *BB : vp_depth_first_shallow(Entry)) { 683 VPBlockBase *NewBB = BB->clone(); 684 Old2NewVPBlocks[BB] = NewBB; 685 if (InRegion && BB->getNumSuccessors() == 0) { 686 assert(!Exiting && "Multiple exiting blocks?"); 687 Exiting = BB; 688 } 689 } 690 assert((!InRegion || Exiting) && "regions must have a single exiting block"); 691 692 // Second, update the predecessors & successors of the cloned blocks. 693 for (VPBlockBase *BB : vp_depth_first_shallow(Entry)) { 694 VPBlockBase *NewBB = Old2NewVPBlocks[BB]; 695 SmallVector<VPBlockBase *> NewPreds; 696 for (VPBlockBase *Pred : BB->getPredecessors()) { 697 NewPreds.push_back(Old2NewVPBlocks[Pred]); 698 } 699 NewBB->setPredecessors(NewPreds); 700 SmallVector<VPBlockBase *> NewSuccs; 701 for (VPBlockBase *Succ : BB->successors()) { 702 NewSuccs.push_back(Old2NewVPBlocks[Succ]); 703 } 704 NewBB->setSuccessors(NewSuccs); 705 } 706 707 #if !defined(NDEBUG) 708 // Verify that the order of predecessors and successors matches in the cloned 709 // version. 710 for (const auto &[OldBB, NewBB] : 711 zip(vp_depth_first_shallow(Entry), 712 vp_depth_first_shallow(Old2NewVPBlocks[Entry]))) { 713 for (const auto &[OldPred, NewPred] : 714 zip(OldBB->getPredecessors(), NewBB->getPredecessors())) 715 assert(NewPred == Old2NewVPBlocks[OldPred] && "Different predecessors"); 716 717 for (const auto &[OldSucc, NewSucc] : 718 zip(OldBB->successors(), NewBB->successors())) 719 assert(NewSucc == Old2NewVPBlocks[OldSucc] && "Different successors"); 720 } 721 #endif 722 723 return std::make_pair(Old2NewVPBlocks[Entry], 724 Exiting ? Old2NewVPBlocks[Exiting] : nullptr); 725 } 726 727 VPRegionBlock *VPRegionBlock::clone() { 728 const auto &[NewEntry, NewExiting] = cloneFrom(getEntry()); 729 auto *NewRegion = 730 new VPRegionBlock(NewEntry, NewExiting, getName(), isReplicator()); 731 for (VPBlockBase *Block : vp_depth_first_shallow(NewEntry)) 732 Block->setParent(NewRegion); 733 return NewRegion; 734 } 735 736 void VPRegionBlock::dropAllReferences(VPValue *NewValue) { 737 for (VPBlockBase *Block : vp_depth_first_shallow(Entry)) 738 // Drop all references in VPBasicBlocks and replace all uses with 739 // DummyValue. 740 Block->dropAllReferences(NewValue); 741 } 742 743 void VPRegionBlock::execute(VPTransformState *State) { 744 ReversePostOrderTraversal<VPBlockShallowTraversalWrapper<VPBlockBase *>> 745 RPOT(Entry); 746 747 if (!isReplicator()) { 748 // Create and register the new vector loop. 749 Loop *PrevLoop = State->CurrentVectorLoop; 750 State->CurrentVectorLoop = State->LI->AllocateLoop(); 751 BasicBlock *VectorPH = State->CFG.VPBB2IRBB[getPreheaderVPBB()]; 752 Loop *ParentLoop = State->LI->getLoopFor(VectorPH); 753 754 // Insert the new loop into the loop nest and register the new basic blocks 755 // before calling any utilities such as SCEV that require valid LoopInfo. 756 if (ParentLoop) 757 ParentLoop->addChildLoop(State->CurrentVectorLoop); 758 else 759 State->LI->addTopLevelLoop(State->CurrentVectorLoop); 760 761 // Visit the VPBlocks connected to "this", starting from it. 762 for (VPBlockBase *Block : RPOT) { 763 LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n'); 764 Block->execute(State); 765 } 766 767 State->CurrentVectorLoop = PrevLoop; 768 return; 769 } 770 771 assert(!State->Instance && "Replicating a Region with non-null instance."); 772 773 // Enter replicating mode. 774 State->Instance = VPIteration(0, 0); 775 776 for (unsigned Part = 0, UF = State->UF; Part < UF; ++Part) { 777 State->Instance->Part = Part; 778 assert(!State->VF.isScalable() && "VF is assumed to be non scalable."); 779 for (unsigned Lane = 0, VF = State->VF.getKnownMinValue(); Lane < VF; 780 ++Lane) { 781 State->Instance->Lane = VPLane(Lane, VPLane::Kind::First); 782 // Visit the VPBlocks connected to \p this, starting from it. 783 for (VPBlockBase *Block : RPOT) { 784 LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n'); 785 Block->execute(State); 786 } 787 } 788 } 789 790 // Exit replicating mode. 791 State->Instance.reset(); 792 } 793 794 InstructionCost VPBasicBlock::cost(ElementCount VF, VPCostContext &Ctx) { 795 InstructionCost Cost = 0; 796 for (VPRecipeBase &R : Recipes) 797 Cost += R.cost(VF, Ctx); 798 return Cost; 799 } 800 801 InstructionCost VPRegionBlock::cost(ElementCount VF, VPCostContext &Ctx) { 802 if (!isReplicator()) { 803 InstructionCost Cost = 0; 804 for (VPBlockBase *Block : vp_depth_first_shallow(getEntry())) 805 Cost += Block->cost(VF, Ctx); 806 InstructionCost BackedgeCost = 807 ForceTargetInstructionCost.getNumOccurrences() 808 ? InstructionCost(ForceTargetInstructionCost.getNumOccurrences()) 809 : Ctx.TTI.getCFInstrCost(Instruction::Br, TTI::TCK_RecipThroughput); 810 LLVM_DEBUG(dbgs() << "Cost of " << BackedgeCost << " for VF " << VF 811 << ": vector loop backedge\n"); 812 Cost += BackedgeCost; 813 return Cost; 814 } 815 816 // Compute the cost of a replicate region. Replicating isn't supported for 817 // scalable vectors, return an invalid cost for them. 818 // TODO: Discard scalable VPlans with replicate recipes earlier after 819 // construction. 820 if (VF.isScalable()) 821 return InstructionCost::getInvalid(); 822 823 // First compute the cost of the conditionally executed recipes, followed by 824 // account for the branching cost, except if the mask is a header mask or 825 // uniform condition. 826 using namespace llvm::VPlanPatternMatch; 827 VPBasicBlock *Then = cast<VPBasicBlock>(getEntry()->getSuccessors()[0]); 828 InstructionCost ThenCost = Then->cost(VF, Ctx); 829 830 // For the scalar case, we may not always execute the original predicated 831 // block, Thus, scale the block's cost by the probability of executing it. 832 if (VF.isScalar()) 833 return ThenCost / getReciprocalPredBlockProb(); 834 835 return ThenCost; 836 } 837 838 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 839 void VPRegionBlock::print(raw_ostream &O, const Twine &Indent, 840 VPSlotTracker &SlotTracker) const { 841 O << Indent << (isReplicator() ? "<xVFxUF> " : "<x1> ") << getName() << ": {"; 842 auto NewIndent = Indent + " "; 843 for (auto *BlockBase : vp_depth_first_shallow(Entry)) { 844 O << '\n'; 845 BlockBase->print(O, NewIndent, SlotTracker); 846 } 847 O << Indent << "}\n"; 848 849 printSuccessors(O, Indent); 850 } 851 #endif 852 853 VPlan::~VPlan() { 854 for (auto &KV : LiveOuts) 855 delete KV.second; 856 LiveOuts.clear(); 857 858 if (Entry) { 859 VPValue DummyValue; 860 for (VPBlockBase *Block : vp_depth_first_shallow(Entry)) 861 Block->dropAllReferences(&DummyValue); 862 863 VPBlockBase::deleteCFG(Entry); 864 865 Preheader->dropAllReferences(&DummyValue); 866 delete Preheader; 867 } 868 for (VPValue *VPV : VPLiveInsToFree) 869 delete VPV; 870 if (BackedgeTakenCount) 871 delete BackedgeTakenCount; 872 } 873 874 static VPIRBasicBlock *createVPIRBasicBlockFor(BasicBlock *BB) { 875 auto *VPIRBB = new VPIRBasicBlock(BB); 876 for (Instruction &I : 877 make_range(BB->begin(), BB->getTerminator()->getIterator())) 878 VPIRBB->appendRecipe(new VPIRInstruction(I)); 879 return VPIRBB; 880 } 881 882 VPlanPtr VPlan::createInitialVPlan(Type *InductionTy, 883 PredicatedScalarEvolution &PSE, 884 bool RequiresScalarEpilogueCheck, 885 bool TailFolded, Loop *TheLoop) { 886 VPIRBasicBlock *Entry = createVPIRBasicBlockFor(TheLoop->getLoopPreheader()); 887 VPBasicBlock *VecPreheader = new VPBasicBlock("vector.ph"); 888 auto Plan = std::make_unique<VPlan>(Entry, VecPreheader); 889 890 // Create SCEV and VPValue for the trip count. 891 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 892 assert(!isa<SCEVCouldNotCompute>(BackedgeTakenCount) && "Invalid loop count"); 893 ScalarEvolution &SE = *PSE.getSE(); 894 const SCEV *TripCount = 895 SE.getTripCountFromExitCount(BackedgeTakenCount, InductionTy, TheLoop); 896 Plan->TripCount = 897 vputils::getOrCreateVPValueForSCEVExpr(*Plan, TripCount, SE); 898 899 // Create VPRegionBlock, with empty header and latch blocks, to be filled 900 // during processing later. 901 VPBasicBlock *HeaderVPBB = new VPBasicBlock("vector.body"); 902 VPBasicBlock *LatchVPBB = new VPBasicBlock("vector.latch"); 903 VPBlockUtils::insertBlockAfter(LatchVPBB, HeaderVPBB); 904 auto *TopRegion = new VPRegionBlock(HeaderVPBB, LatchVPBB, "vector loop", 905 false /*isReplicator*/); 906 907 VPBlockUtils::insertBlockAfter(TopRegion, VecPreheader); 908 VPBasicBlock *MiddleVPBB = new VPBasicBlock("middle.block"); 909 VPBlockUtils::insertBlockAfter(MiddleVPBB, TopRegion); 910 911 VPBasicBlock *ScalarPH = new VPBasicBlock("scalar.ph"); 912 if (!RequiresScalarEpilogueCheck) { 913 VPBlockUtils::connectBlocks(MiddleVPBB, ScalarPH); 914 return Plan; 915 } 916 917 // If needed, add a check in the middle block to see if we have completed 918 // all of the iterations in the first vector loop. Three cases: 919 // 1) If (N - N%VF) == N, then we *don't* need to run the remainder. 920 // Thus if tail is to be folded, we know we don't need to run the 921 // remainder and we can set the condition to true. 922 // 2) If we require a scalar epilogue, there is no conditional branch as 923 // we unconditionally branch to the scalar preheader. Do nothing. 924 // 3) Otherwise, construct a runtime check. 925 BasicBlock *IRExitBlock = TheLoop->getUniqueExitBlock(); 926 auto *VPExitBlock = createVPIRBasicBlockFor(IRExitBlock); 927 // The connection order corresponds to the operands of the conditional branch. 928 VPBlockUtils::insertBlockAfter(VPExitBlock, MiddleVPBB); 929 VPBlockUtils::connectBlocks(MiddleVPBB, ScalarPH); 930 931 auto *ScalarLatchTerm = TheLoop->getLoopLatch()->getTerminator(); 932 // Here we use the same DebugLoc as the scalar loop latch terminator instead 933 // of the corresponding compare because they may have ended up with 934 // different line numbers and we want to avoid awkward line stepping while 935 // debugging. Eg. if the compare has got a line number inside the loop. 936 VPBuilder Builder(MiddleVPBB); 937 VPValue *Cmp = 938 TailFolded 939 ? Plan->getOrAddLiveIn(ConstantInt::getTrue( 940 IntegerType::getInt1Ty(TripCount->getType()->getContext()))) 941 : Builder.createICmp(CmpInst::ICMP_EQ, Plan->getTripCount(), 942 &Plan->getVectorTripCount(), 943 ScalarLatchTerm->getDebugLoc(), "cmp.n"); 944 Builder.createNaryOp(VPInstruction::BranchOnCond, {Cmp}, 945 ScalarLatchTerm->getDebugLoc()); 946 return Plan; 947 } 948 949 void VPlan::prepareToExecute(Value *TripCountV, Value *VectorTripCountV, 950 Value *CanonicalIVStartValue, 951 VPTransformState &State) { 952 Type *TCTy = TripCountV->getType(); 953 // Check if the backedge taken count is needed, and if so build it. 954 if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) { 955 IRBuilder<> Builder(State.CFG.PrevBB->getTerminator()); 956 auto *TCMO = Builder.CreateSub(TripCountV, ConstantInt::get(TCTy, 1), 957 "trip.count.minus.1"); 958 BackedgeTakenCount->setUnderlyingValue(TCMO); 959 } 960 961 VectorTripCount.setUnderlyingValue(VectorTripCountV); 962 963 IRBuilder<> Builder(State.CFG.PrevBB->getTerminator()); 964 // FIXME: Model VF * UF computation completely in VPlan. 965 assert(VFxUF.getNumUsers() && "VFxUF expected to always have users"); 966 if (VF.getNumUsers()) { 967 Value *RuntimeVF = getRuntimeVF(Builder, TCTy, State.VF); 968 VF.setUnderlyingValue(RuntimeVF); 969 VFxUF.setUnderlyingValue( 970 State.UF > 1 971 ? Builder.CreateMul(RuntimeVF, ConstantInt::get(TCTy, State.UF)) 972 : RuntimeVF); 973 } else { 974 VFxUF.setUnderlyingValue( 975 createStepForVF(Builder, TCTy, State.VF, State.UF)); 976 } 977 978 // When vectorizing the epilogue loop, the canonical induction start value 979 // needs to be changed from zero to the value after the main vector loop. 980 // FIXME: Improve modeling for canonical IV start values in the epilogue loop. 981 if (CanonicalIVStartValue) { 982 VPValue *VPV = getOrAddLiveIn(CanonicalIVStartValue); 983 auto *IV = getCanonicalIV(); 984 assert(all_of(IV->users(), 985 [](const VPUser *U) { 986 return isa<VPScalarIVStepsRecipe>(U) || 987 isa<VPScalarCastRecipe>(U) || 988 isa<VPDerivedIVRecipe>(U) || 989 cast<VPInstruction>(U)->getOpcode() == 990 Instruction::Add; 991 }) && 992 "the canonical IV should only be used by its increment or " 993 "ScalarIVSteps when resetting the start value"); 994 IV->setOperand(0, VPV); 995 } 996 } 997 998 /// Replace \p VPBB with a VPIRBasicBlock wrapping \p IRBB. All recipes from \p 999 /// VPBB are moved to the end of the newly created VPIRBasicBlock. VPBB must 1000 /// have a single predecessor, which is rewired to the new VPIRBasicBlock. All 1001 /// successors of VPBB, if any, are rewired to the new VPIRBasicBlock. 1002 static void replaceVPBBWithIRVPBB(VPBasicBlock *VPBB, BasicBlock *IRBB) { 1003 VPIRBasicBlock *IRVPBB = createVPIRBasicBlockFor(IRBB); 1004 for (auto &R : make_early_inc_range(*VPBB)) { 1005 assert(!R.isPhi() && "Tried to move phi recipe to end of block"); 1006 R.moveBefore(*IRVPBB, IRVPBB->end()); 1007 } 1008 VPBlockBase *PredVPBB = VPBB->getSinglePredecessor(); 1009 VPBlockUtils::disconnectBlocks(PredVPBB, VPBB); 1010 VPBlockUtils::connectBlocks(PredVPBB, IRVPBB); 1011 for (auto *Succ : to_vector(VPBB->getSuccessors())) { 1012 VPBlockUtils::connectBlocks(IRVPBB, Succ); 1013 VPBlockUtils::disconnectBlocks(VPBB, Succ); 1014 } 1015 delete VPBB; 1016 } 1017 1018 /// Generate the code inside the preheader and body of the vectorized loop. 1019 /// Assumes a single pre-header basic-block was created for this. Introduce 1020 /// additional basic-blocks as needed, and fill them all. 1021 void VPlan::execute(VPTransformState *State) { 1022 // Set UF to 1, as the unrollByUF VPlan transform already explicitly unrolled 1023 // the VPlan. 1024 // TODO: Remove State::UF and all uses. 1025 State->UF = 1; 1026 // Initialize CFG state. 1027 State->CFG.PrevVPBB = nullptr; 1028 State->CFG.ExitBB = State->CFG.PrevBB->getSingleSuccessor(); 1029 BasicBlock *VectorPreHeader = State->CFG.PrevBB; 1030 State->Builder.SetInsertPoint(VectorPreHeader->getTerminator()); 1031 1032 // Disconnect VectorPreHeader from ExitBB in both the CFG and DT. 1033 cast<BranchInst>(VectorPreHeader->getTerminator())->setSuccessor(0, nullptr); 1034 State->CFG.DTU.applyUpdates( 1035 {{DominatorTree::Delete, VectorPreHeader, State->CFG.ExitBB}}); 1036 1037 // Replace regular VPBB's for the middle and scalar preheader blocks with 1038 // VPIRBasicBlocks wrapping their IR blocks. The IR blocks are created during 1039 // skeleton creation, so we can only create the VPIRBasicBlocks now during 1040 // VPlan execution rather than earlier during VPlan construction. 1041 BasicBlock *MiddleBB = State->CFG.ExitBB; 1042 VPBasicBlock *MiddleVPBB = 1043 cast<VPBasicBlock>(getVectorLoopRegion()->getSingleSuccessor()); 1044 // Find the VPBB for the scalar preheader, relying on the current structure 1045 // when creating the middle block and its successrs: if there's a single 1046 // predecessor, it must be the scalar preheader. Otherwise, the second 1047 // successor is the scalar preheader. 1048 BasicBlock *ScalarPh = MiddleBB->getSingleSuccessor(); 1049 auto &MiddleSuccs = MiddleVPBB->getSuccessors(); 1050 assert((MiddleSuccs.size() == 1 || MiddleSuccs.size() == 2) && 1051 "middle block has unexpected successors"); 1052 VPBasicBlock *ScalarPhVPBB = cast<VPBasicBlock>( 1053 MiddleSuccs.size() == 1 ? MiddleSuccs[0] : MiddleSuccs[1]); 1054 assert(!isa<VPIRBasicBlock>(ScalarPhVPBB) && 1055 "scalar preheader cannot be wrapped already"); 1056 replaceVPBBWithIRVPBB(ScalarPhVPBB, ScalarPh); 1057 replaceVPBBWithIRVPBB(MiddleVPBB, MiddleBB); 1058 1059 // Disconnect the middle block from its single successor (the scalar loop 1060 // header) in both the CFG and DT. The branch will be recreated during VPlan 1061 // execution. 1062 auto *BrInst = new UnreachableInst(MiddleBB->getContext()); 1063 BrInst->insertBefore(MiddleBB->getTerminator()); 1064 MiddleBB->getTerminator()->eraseFromParent(); 1065 State->CFG.DTU.applyUpdates({{DominatorTree::Delete, MiddleBB, ScalarPh}}); 1066 1067 // Generate code in the loop pre-header and body. 1068 for (VPBlockBase *Block : vp_depth_first_shallow(Entry)) 1069 Block->execute(State); 1070 1071 VPBasicBlock *LatchVPBB = getVectorLoopRegion()->getExitingBasicBlock(); 1072 BasicBlock *VectorLatchBB = State->CFG.VPBB2IRBB[LatchVPBB]; 1073 1074 // Fix the latch value of canonical, reduction and first-order recurrences 1075 // phis in the vector loop. 1076 VPBasicBlock *Header = getVectorLoopRegion()->getEntryBasicBlock(); 1077 for (VPRecipeBase &R : Header->phis()) { 1078 // Skip phi-like recipes that generate their backedege values themselves. 1079 if (isa<VPWidenPHIRecipe>(&R)) 1080 continue; 1081 1082 if (isa<VPWidenPointerInductionRecipe>(&R) || 1083 isa<VPWidenIntOrFpInductionRecipe>(&R)) { 1084 PHINode *Phi = nullptr; 1085 if (isa<VPWidenIntOrFpInductionRecipe>(&R)) { 1086 Phi = cast<PHINode>(State->get(R.getVPSingleValue(), 0)); 1087 } else { 1088 auto *WidenPhi = cast<VPWidenPointerInductionRecipe>(&R); 1089 assert(!WidenPhi->onlyScalarsGenerated(State->VF.isScalable()) && 1090 "recipe generating only scalars should have been replaced"); 1091 auto *GEP = cast<GetElementPtrInst>(State->get(WidenPhi, 0)); 1092 Phi = cast<PHINode>(GEP->getPointerOperand()); 1093 } 1094 1095 Phi->setIncomingBlock(1, VectorLatchBB); 1096 1097 // Move the last step to the end of the latch block. This ensures 1098 // consistent placement of all induction updates. 1099 Instruction *Inc = cast<Instruction>(Phi->getIncomingValue(1)); 1100 Inc->moveBefore(VectorLatchBB->getTerminator()->getPrevNode()); 1101 1102 // Use the steps for the last part as backedge value for the induction. 1103 if (auto *IV = dyn_cast<VPWidenIntOrFpInductionRecipe>(&R)) 1104 Inc->setOperand(0, State->get(IV->getLastUnrolledPartOperand(), 0)); 1105 continue; 1106 } 1107 1108 auto *PhiR = cast<VPHeaderPHIRecipe>(&R); 1109 // For canonical IV, first-order recurrences and in-order reduction phis, 1110 // only a single part is generated, which provides the last part from the 1111 // previous iteration. For non-ordered reductions all UF parts are 1112 // generated. 1113 bool SinglePartNeeded = 1114 isa<VPCanonicalIVPHIRecipe>(PhiR) || 1115 isa<VPFirstOrderRecurrencePHIRecipe, VPEVLBasedIVPHIRecipe>(PhiR) || 1116 (isa<VPReductionPHIRecipe>(PhiR) && 1117 cast<VPReductionPHIRecipe>(PhiR)->isOrdered()); 1118 bool NeedsScalar = 1119 isa<VPCanonicalIVPHIRecipe, VPEVLBasedIVPHIRecipe>(PhiR) || 1120 (isa<VPReductionPHIRecipe>(PhiR) && 1121 cast<VPReductionPHIRecipe>(PhiR)->isInLoop()); 1122 unsigned LastPartForNewPhi = SinglePartNeeded ? 1 : State->UF; 1123 1124 for (unsigned Part = 0; Part < LastPartForNewPhi; ++Part) { 1125 Value *Phi = State->get(PhiR, Part, NeedsScalar); 1126 Value *Val = 1127 State->get(PhiR->getBackedgeValue(), 1128 SinglePartNeeded ? State->UF - 1 : Part, NeedsScalar); 1129 cast<PHINode>(Phi)->addIncoming(Val, VectorLatchBB); 1130 } 1131 } 1132 1133 State->CFG.DTU.flush(); 1134 assert(State->CFG.DTU.getDomTree().verify( 1135 DominatorTree::VerificationLevel::Fast) && 1136 "DT not preserved correctly"); 1137 } 1138 1139 InstructionCost VPlan::cost(ElementCount VF, VPCostContext &Ctx) { 1140 // For now only return the cost of the vector loop region, ignoring any other 1141 // blocks, like the preheader or middle blocks. 1142 return getVectorLoopRegion()->cost(VF, Ctx); 1143 } 1144 1145 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1146 void VPlan::printLiveIns(raw_ostream &O) const { 1147 VPSlotTracker SlotTracker(this); 1148 1149 if (VF.getNumUsers() > 0) { 1150 O << "\nLive-in "; 1151 VF.printAsOperand(O, SlotTracker); 1152 O << " = VF"; 1153 } 1154 1155 if (VFxUF.getNumUsers() > 0) { 1156 O << "\nLive-in "; 1157 VFxUF.printAsOperand(O, SlotTracker); 1158 O << " = VF * UF"; 1159 } 1160 1161 if (VectorTripCount.getNumUsers() > 0) { 1162 O << "\nLive-in "; 1163 VectorTripCount.printAsOperand(O, SlotTracker); 1164 O << " = vector-trip-count"; 1165 } 1166 1167 if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) { 1168 O << "\nLive-in "; 1169 BackedgeTakenCount->printAsOperand(O, SlotTracker); 1170 O << " = backedge-taken count"; 1171 } 1172 1173 O << "\n"; 1174 if (TripCount->isLiveIn()) 1175 O << "Live-in "; 1176 TripCount->printAsOperand(O, SlotTracker); 1177 O << " = original trip-count"; 1178 O << "\n"; 1179 } 1180 1181 LLVM_DUMP_METHOD 1182 void VPlan::print(raw_ostream &O) const { 1183 VPSlotTracker SlotTracker(this); 1184 1185 O << "VPlan '" << getName() << "' {"; 1186 1187 printLiveIns(O); 1188 1189 if (!getPreheader()->empty()) { 1190 O << "\n"; 1191 getPreheader()->print(O, "", SlotTracker); 1192 } 1193 1194 for (const VPBlockBase *Block : vp_depth_first_shallow(getEntry())) { 1195 O << '\n'; 1196 Block->print(O, "", SlotTracker); 1197 } 1198 1199 if (!LiveOuts.empty()) 1200 O << "\n"; 1201 for (const auto &KV : LiveOuts) { 1202 KV.second->print(O, SlotTracker); 1203 } 1204 1205 O << "}\n"; 1206 } 1207 1208 std::string VPlan::getName() const { 1209 std::string Out; 1210 raw_string_ostream RSO(Out); 1211 RSO << Name << " for "; 1212 if (!VFs.empty()) { 1213 RSO << "VF={" << VFs[0]; 1214 for (ElementCount VF : drop_begin(VFs)) 1215 RSO << "," << VF; 1216 RSO << "},"; 1217 } 1218 1219 if (UFs.empty()) { 1220 RSO << "UF>=1"; 1221 } else { 1222 RSO << "UF={" << UFs[0]; 1223 for (unsigned UF : drop_begin(UFs)) 1224 RSO << "," << UF; 1225 RSO << "}"; 1226 } 1227 1228 return Out; 1229 } 1230 1231 LLVM_DUMP_METHOD 1232 void VPlan::printDOT(raw_ostream &O) const { 1233 VPlanPrinter Printer(O, *this); 1234 Printer.dump(); 1235 } 1236 1237 LLVM_DUMP_METHOD 1238 void VPlan::dump() const { print(dbgs()); } 1239 #endif 1240 1241 void VPlan::addLiveOut(PHINode *PN, VPValue *V) { 1242 assert(LiveOuts.count(PN) == 0 && "an exit value for PN already exists"); 1243 LiveOuts.insert({PN, new VPLiveOut(PN, V)}); 1244 } 1245 1246 static void remapOperands(VPBlockBase *Entry, VPBlockBase *NewEntry, 1247 DenseMap<VPValue *, VPValue *> &Old2NewVPValues) { 1248 // Update the operands of all cloned recipes starting at NewEntry. This 1249 // traverses all reachable blocks. This is done in two steps, to handle cycles 1250 // in PHI recipes. 1251 ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<VPBlockBase *>> 1252 OldDeepRPOT(Entry); 1253 ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<VPBlockBase *>> 1254 NewDeepRPOT(NewEntry); 1255 // First, collect all mappings from old to new VPValues defined by cloned 1256 // recipes. 1257 for (const auto &[OldBB, NewBB] : 1258 zip(VPBlockUtils::blocksOnly<VPBasicBlock>(OldDeepRPOT), 1259 VPBlockUtils::blocksOnly<VPBasicBlock>(NewDeepRPOT))) { 1260 assert(OldBB->getRecipeList().size() == NewBB->getRecipeList().size() && 1261 "blocks must have the same number of recipes"); 1262 for (const auto &[OldR, NewR] : zip(*OldBB, *NewBB)) { 1263 assert(OldR.getNumOperands() == NewR.getNumOperands() && 1264 "recipes must have the same number of operands"); 1265 assert(OldR.getNumDefinedValues() == NewR.getNumDefinedValues() && 1266 "recipes must define the same number of operands"); 1267 for (const auto &[OldV, NewV] : 1268 zip(OldR.definedValues(), NewR.definedValues())) 1269 Old2NewVPValues[OldV] = NewV; 1270 } 1271 } 1272 1273 // Update all operands to use cloned VPValues. 1274 for (VPBasicBlock *NewBB : 1275 VPBlockUtils::blocksOnly<VPBasicBlock>(NewDeepRPOT)) { 1276 for (VPRecipeBase &NewR : *NewBB) 1277 for (unsigned I = 0, E = NewR.getNumOperands(); I != E; ++I) { 1278 VPValue *NewOp = Old2NewVPValues.lookup(NewR.getOperand(I)); 1279 NewR.setOperand(I, NewOp); 1280 } 1281 } 1282 } 1283 1284 VPlan *VPlan::duplicate() { 1285 // Clone blocks. 1286 VPBasicBlock *NewPreheader = Preheader->clone(); 1287 const auto &[NewEntry, __] = cloneFrom(Entry); 1288 1289 // Create VPlan, clone live-ins and remap operands in the cloned blocks. 1290 auto *NewPlan = new VPlan(NewPreheader, cast<VPBasicBlock>(NewEntry)); 1291 DenseMap<VPValue *, VPValue *> Old2NewVPValues; 1292 for (VPValue *OldLiveIn : VPLiveInsToFree) { 1293 Old2NewVPValues[OldLiveIn] = 1294 NewPlan->getOrAddLiveIn(OldLiveIn->getLiveInIRValue()); 1295 } 1296 Old2NewVPValues[&VectorTripCount] = &NewPlan->VectorTripCount; 1297 Old2NewVPValues[&VF] = &NewPlan->VF; 1298 Old2NewVPValues[&VFxUF] = &NewPlan->VFxUF; 1299 if (BackedgeTakenCount) { 1300 NewPlan->BackedgeTakenCount = new VPValue(); 1301 Old2NewVPValues[BackedgeTakenCount] = NewPlan->BackedgeTakenCount; 1302 } 1303 assert(TripCount && "trip count must be set"); 1304 if (TripCount->isLiveIn()) 1305 Old2NewVPValues[TripCount] = 1306 NewPlan->getOrAddLiveIn(TripCount->getLiveInIRValue()); 1307 // else NewTripCount will be created and inserted into Old2NewVPValues when 1308 // TripCount is cloned. In any case NewPlan->TripCount is updated below. 1309 1310 remapOperands(Preheader, NewPreheader, Old2NewVPValues); 1311 remapOperands(Entry, NewEntry, Old2NewVPValues); 1312 1313 // Clone live-outs. 1314 for (const auto &[_, LO] : LiveOuts) 1315 NewPlan->addLiveOut(LO->getPhi(), Old2NewVPValues[LO->getOperand(0)]); 1316 1317 // Initialize remaining fields of cloned VPlan. 1318 NewPlan->VFs = VFs; 1319 NewPlan->UFs = UFs; 1320 // TODO: Adjust names. 1321 NewPlan->Name = Name; 1322 assert(Old2NewVPValues.contains(TripCount) && 1323 "TripCount must have been added to Old2NewVPValues"); 1324 NewPlan->TripCount = Old2NewVPValues[TripCount]; 1325 return NewPlan; 1326 } 1327 1328 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1329 1330 Twine VPlanPrinter::getUID(const VPBlockBase *Block) { 1331 return (isa<VPRegionBlock>(Block) ? "cluster_N" : "N") + 1332 Twine(getOrCreateBID(Block)); 1333 } 1334 1335 Twine VPlanPrinter::getOrCreateName(const VPBlockBase *Block) { 1336 const std::string &Name = Block->getName(); 1337 if (!Name.empty()) 1338 return Name; 1339 return "VPB" + Twine(getOrCreateBID(Block)); 1340 } 1341 1342 void VPlanPrinter::dump() { 1343 Depth = 1; 1344 bumpIndent(0); 1345 OS << "digraph VPlan {\n"; 1346 OS << "graph [labelloc=t, fontsize=30; label=\"Vectorization Plan"; 1347 if (!Plan.getName().empty()) 1348 OS << "\\n" << DOT::EscapeString(Plan.getName()); 1349 1350 { 1351 // Print live-ins. 1352 std::string Str; 1353 raw_string_ostream SS(Str); 1354 Plan.printLiveIns(SS); 1355 SmallVector<StringRef, 0> Lines; 1356 StringRef(Str).rtrim('\n').split(Lines, "\n"); 1357 for (auto Line : Lines) 1358 OS << DOT::EscapeString(Line.str()) << "\\n"; 1359 } 1360 1361 OS << "\"]\n"; 1362 OS << "node [shape=rect, fontname=Courier, fontsize=30]\n"; 1363 OS << "edge [fontname=Courier, fontsize=30]\n"; 1364 OS << "compound=true\n"; 1365 1366 dumpBlock(Plan.getPreheader()); 1367 1368 for (const VPBlockBase *Block : vp_depth_first_shallow(Plan.getEntry())) 1369 dumpBlock(Block); 1370 1371 OS << "}\n"; 1372 } 1373 1374 void VPlanPrinter::dumpBlock(const VPBlockBase *Block) { 1375 if (const VPBasicBlock *BasicBlock = dyn_cast<VPBasicBlock>(Block)) 1376 dumpBasicBlock(BasicBlock); 1377 else if (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 1378 dumpRegion(Region); 1379 else 1380 llvm_unreachable("Unsupported kind of VPBlock."); 1381 } 1382 1383 void VPlanPrinter::drawEdge(const VPBlockBase *From, const VPBlockBase *To, 1384 bool Hidden, const Twine &Label) { 1385 // Due to "dot" we print an edge between two regions as an edge between the 1386 // exiting basic block and the entry basic of the respective regions. 1387 const VPBlockBase *Tail = From->getExitingBasicBlock(); 1388 const VPBlockBase *Head = To->getEntryBasicBlock(); 1389 OS << Indent << getUID(Tail) << " -> " << getUID(Head); 1390 OS << " [ label=\"" << Label << '\"'; 1391 if (Tail != From) 1392 OS << " ltail=" << getUID(From); 1393 if (Head != To) 1394 OS << " lhead=" << getUID(To); 1395 if (Hidden) 1396 OS << "; splines=none"; 1397 OS << "]\n"; 1398 } 1399 1400 void VPlanPrinter::dumpEdges(const VPBlockBase *Block) { 1401 auto &Successors = Block->getSuccessors(); 1402 if (Successors.size() == 1) 1403 drawEdge(Block, Successors.front(), false, ""); 1404 else if (Successors.size() == 2) { 1405 drawEdge(Block, Successors.front(), false, "T"); 1406 drawEdge(Block, Successors.back(), false, "F"); 1407 } else { 1408 unsigned SuccessorNumber = 0; 1409 for (auto *Successor : Successors) 1410 drawEdge(Block, Successor, false, Twine(SuccessorNumber++)); 1411 } 1412 } 1413 1414 void VPlanPrinter::dumpBasicBlock(const VPBasicBlock *BasicBlock) { 1415 // Implement dot-formatted dump by performing plain-text dump into the 1416 // temporary storage followed by some post-processing. 1417 OS << Indent << getUID(BasicBlock) << " [label =\n"; 1418 bumpIndent(1); 1419 std::string Str; 1420 raw_string_ostream SS(Str); 1421 // Use no indentation as we need to wrap the lines into quotes ourselves. 1422 BasicBlock->print(SS, "", SlotTracker); 1423 1424 // We need to process each line of the output separately, so split 1425 // single-string plain-text dump. 1426 SmallVector<StringRef, 0> Lines; 1427 StringRef(Str).rtrim('\n').split(Lines, "\n"); 1428 1429 auto EmitLine = [&](StringRef Line, StringRef Suffix) { 1430 OS << Indent << '"' << DOT::EscapeString(Line.str()) << "\\l\"" << Suffix; 1431 }; 1432 1433 // Don't need the "+" after the last line. 1434 for (auto Line : make_range(Lines.begin(), Lines.end() - 1)) 1435 EmitLine(Line, " +\n"); 1436 EmitLine(Lines.back(), "\n"); 1437 1438 bumpIndent(-1); 1439 OS << Indent << "]\n"; 1440 1441 dumpEdges(BasicBlock); 1442 } 1443 1444 void VPlanPrinter::dumpRegion(const VPRegionBlock *Region) { 1445 OS << Indent << "subgraph " << getUID(Region) << " {\n"; 1446 bumpIndent(1); 1447 OS << Indent << "fontname=Courier\n" 1448 << Indent << "label=\"" 1449 << DOT::EscapeString(Region->isReplicator() ? "<xVFxUF> " : "<x1> ") 1450 << DOT::EscapeString(Region->getName()) << "\"\n"; 1451 // Dump the blocks of the region. 1452 assert(Region->getEntry() && "Region contains no inner blocks."); 1453 for (const VPBlockBase *Block : vp_depth_first_shallow(Region->getEntry())) 1454 dumpBlock(Block); 1455 bumpIndent(-1); 1456 OS << Indent << "}\n"; 1457 dumpEdges(Region); 1458 } 1459 1460 void VPlanIngredient::print(raw_ostream &O) const { 1461 if (auto *Inst = dyn_cast<Instruction>(V)) { 1462 if (!Inst->getType()->isVoidTy()) { 1463 Inst->printAsOperand(O, false); 1464 O << " = "; 1465 } 1466 O << Inst->getOpcodeName() << " "; 1467 unsigned E = Inst->getNumOperands(); 1468 if (E > 0) { 1469 Inst->getOperand(0)->printAsOperand(O, false); 1470 for (unsigned I = 1; I < E; ++I) 1471 Inst->getOperand(I)->printAsOperand(O << ", ", false); 1472 } 1473 } else // !Inst 1474 V->printAsOperand(O, false); 1475 } 1476 1477 #endif 1478 1479 bool VPValue::isDefinedOutsideLoopRegions() const { 1480 return !hasDefiningRecipe() || 1481 !getDefiningRecipe()->getParent()->getEnclosingLoopRegion(); 1482 } 1483 1484 void VPValue::replaceAllUsesWith(VPValue *New) { 1485 replaceUsesWithIf(New, [](VPUser &, unsigned) { return true; }); 1486 } 1487 1488 void VPValue::replaceUsesWithIf( 1489 VPValue *New, 1490 llvm::function_ref<bool(VPUser &U, unsigned Idx)> ShouldReplace) { 1491 // Note that this early exit is required for correctness; the implementation 1492 // below relies on the number of users for this VPValue to decrease, which 1493 // isn't the case if this == New. 1494 if (this == New) 1495 return; 1496 1497 for (unsigned J = 0; J < getNumUsers();) { 1498 VPUser *User = Users[J]; 1499 bool RemovedUser = false; 1500 for (unsigned I = 0, E = User->getNumOperands(); I < E; ++I) { 1501 if (User->getOperand(I) != this || !ShouldReplace(*User, I)) 1502 continue; 1503 1504 RemovedUser = true; 1505 User->setOperand(I, New); 1506 } 1507 // If a user got removed after updating the current user, the next user to 1508 // update will be moved to the current position, so we only need to 1509 // increment the index if the number of users did not change. 1510 if (!RemovedUser) 1511 J++; 1512 } 1513 } 1514 1515 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1516 void VPValue::printAsOperand(raw_ostream &OS, VPSlotTracker &Tracker) const { 1517 OS << Tracker.getOrCreateName(this); 1518 } 1519 1520 void VPUser::printOperands(raw_ostream &O, VPSlotTracker &SlotTracker) const { 1521 interleaveComma(operands(), O, [&O, &SlotTracker](VPValue *Op) { 1522 Op->printAsOperand(O, SlotTracker); 1523 }); 1524 } 1525 #endif 1526 1527 void VPInterleavedAccessInfo::visitRegion(VPRegionBlock *Region, 1528 Old2NewTy &Old2New, 1529 InterleavedAccessInfo &IAI) { 1530 ReversePostOrderTraversal<VPBlockShallowTraversalWrapper<VPBlockBase *>> 1531 RPOT(Region->getEntry()); 1532 for (VPBlockBase *Base : RPOT) { 1533 visitBlock(Base, Old2New, IAI); 1534 } 1535 } 1536 1537 void VPInterleavedAccessInfo::visitBlock(VPBlockBase *Block, Old2NewTy &Old2New, 1538 InterleavedAccessInfo &IAI) { 1539 if (VPBasicBlock *VPBB = dyn_cast<VPBasicBlock>(Block)) { 1540 for (VPRecipeBase &VPI : *VPBB) { 1541 if (isa<VPWidenPHIRecipe>(&VPI)) 1542 continue; 1543 assert(isa<VPInstruction>(&VPI) && "Can only handle VPInstructions"); 1544 auto *VPInst = cast<VPInstruction>(&VPI); 1545 1546 auto *Inst = dyn_cast_or_null<Instruction>(VPInst->getUnderlyingValue()); 1547 if (!Inst) 1548 continue; 1549 auto *IG = IAI.getInterleaveGroup(Inst); 1550 if (!IG) 1551 continue; 1552 1553 auto NewIGIter = Old2New.find(IG); 1554 if (NewIGIter == Old2New.end()) 1555 Old2New[IG] = new InterleaveGroup<VPInstruction>( 1556 IG->getFactor(), IG->isReverse(), IG->getAlign()); 1557 1558 if (Inst == IG->getInsertPos()) 1559 Old2New[IG]->setInsertPos(VPInst); 1560 1561 InterleaveGroupMap[VPInst] = Old2New[IG]; 1562 InterleaveGroupMap[VPInst]->insertMember( 1563 VPInst, IG->getIndex(Inst), 1564 Align(IG->isReverse() ? (-1) * int(IG->getFactor()) 1565 : IG->getFactor())); 1566 } 1567 } else if (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 1568 visitRegion(Region, Old2New, IAI); 1569 else 1570 llvm_unreachable("Unsupported kind of VPBlock."); 1571 } 1572 1573 VPInterleavedAccessInfo::VPInterleavedAccessInfo(VPlan &Plan, 1574 InterleavedAccessInfo &IAI) { 1575 Old2NewTy Old2New; 1576 visitRegion(Plan.getVectorLoopRegion(), Old2New, IAI); 1577 } 1578 1579 void VPSlotTracker::assignName(const VPValue *V) { 1580 assert(!VPValue2Name.contains(V) && "VPValue already has a name!"); 1581 auto *UV = V->getUnderlyingValue(); 1582 if (!UV) { 1583 VPValue2Name[V] = (Twine("vp<%") + Twine(NextSlot) + ">").str(); 1584 NextSlot++; 1585 return; 1586 } 1587 1588 // Use the name of the underlying Value, wrapped in "ir<>", and versioned by 1589 // appending ".Number" to the name if there are multiple uses. 1590 std::string Name; 1591 raw_string_ostream S(Name); 1592 UV->printAsOperand(S, false); 1593 assert(!Name.empty() && "Name cannot be empty."); 1594 std::string BaseName = (Twine("ir<") + Name + Twine(">")).str(); 1595 1596 // First assign the base name for V. 1597 const auto &[A, _] = VPValue2Name.insert({V, BaseName}); 1598 // Integer or FP constants with different types will result in he same string 1599 // due to stripping types. 1600 if (V->isLiveIn() && isa<ConstantInt, ConstantFP>(UV)) 1601 return; 1602 1603 // If it is already used by C > 0 other VPValues, increase the version counter 1604 // C and use it for V. 1605 const auto &[C, UseInserted] = BaseName2Version.insert({BaseName, 0}); 1606 if (!UseInserted) { 1607 C->second++; 1608 A->second = (BaseName + Twine(".") + Twine(C->second)).str(); 1609 } 1610 } 1611 1612 void VPSlotTracker::assignNames(const VPlan &Plan) { 1613 if (Plan.VF.getNumUsers() > 0) 1614 assignName(&Plan.VF); 1615 if (Plan.VFxUF.getNumUsers() > 0) 1616 assignName(&Plan.VFxUF); 1617 assignName(&Plan.VectorTripCount); 1618 if (Plan.BackedgeTakenCount) 1619 assignName(Plan.BackedgeTakenCount); 1620 for (VPValue *LI : Plan.VPLiveInsToFree) 1621 assignName(LI); 1622 assignNames(Plan.getPreheader()); 1623 1624 ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<const VPBlockBase *>> 1625 RPOT(VPBlockDeepTraversalWrapper<const VPBlockBase *>(Plan.getEntry())); 1626 for (const VPBasicBlock *VPBB : 1627 VPBlockUtils::blocksOnly<const VPBasicBlock>(RPOT)) 1628 assignNames(VPBB); 1629 } 1630 1631 void VPSlotTracker::assignNames(const VPBasicBlock *VPBB) { 1632 for (const VPRecipeBase &Recipe : *VPBB) 1633 for (VPValue *Def : Recipe.definedValues()) 1634 assignName(Def); 1635 } 1636 1637 std::string VPSlotTracker::getOrCreateName(const VPValue *V) const { 1638 std::string Name = VPValue2Name.lookup(V); 1639 if (!Name.empty()) 1640 return Name; 1641 1642 // If no name was assigned, no VPlan was provided when creating the slot 1643 // tracker or it is not reachable from the provided VPlan. This can happen, 1644 // e.g. when trying to print a recipe that has not been inserted into a VPlan 1645 // in a debugger. 1646 // TODO: Update VPSlotTracker constructor to assign names to recipes & 1647 // VPValues not associated with a VPlan, instead of constructing names ad-hoc 1648 // here. 1649 const VPRecipeBase *DefR = V->getDefiningRecipe(); 1650 (void)DefR; 1651 assert((!DefR || !DefR->getParent() || !DefR->getParent()->getPlan()) && 1652 "VPValue defined by a recipe in a VPlan?"); 1653 1654 // Use the underlying value's name, if there is one. 1655 if (auto *UV = V->getUnderlyingValue()) { 1656 std::string Name; 1657 raw_string_ostream S(Name); 1658 UV->printAsOperand(S, false); 1659 return (Twine("ir<") + Name + ">").str(); 1660 } 1661 1662 return "<badref>"; 1663 } 1664 1665 bool LoopVectorizationPlanner::getDecisionAndClampRange( 1666 const std::function<bool(ElementCount)> &Predicate, VFRange &Range) { 1667 assert(!Range.isEmpty() && "Trying to test an empty VF range."); 1668 bool PredicateAtRangeStart = Predicate(Range.Start); 1669 1670 for (ElementCount TmpVF : VFRange(Range.Start * 2, Range.End)) 1671 if (Predicate(TmpVF) != PredicateAtRangeStart) { 1672 Range.End = TmpVF; 1673 break; 1674 } 1675 1676 return PredicateAtRangeStart; 1677 } 1678 1679 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF, 1680 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range 1681 /// of VF's starting at a given VF and extending it as much as possible. Each 1682 /// vectorization decision can potentially shorten this sub-range during 1683 /// buildVPlan(). 1684 void LoopVectorizationPlanner::buildVPlans(ElementCount MinVF, 1685 ElementCount MaxVF) { 1686 auto MaxVFTimes2 = MaxVF * 2; 1687 for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFTimes2);) { 1688 VFRange SubRange = {VF, MaxVFTimes2}; 1689 auto Plan = buildVPlan(SubRange); 1690 VPlanTransforms::optimize(*Plan); 1691 VPlans.push_back(std::move(Plan)); 1692 VF = SubRange.End; 1693 } 1694 } 1695 1696 VPlan &LoopVectorizationPlanner::getPlanFor(ElementCount VF) const { 1697 assert(count_if(VPlans, 1698 [VF](const VPlanPtr &Plan) { return Plan->hasVF(VF); }) == 1699 1 && 1700 "Multiple VPlans for VF."); 1701 1702 for (const VPlanPtr &Plan : VPlans) { 1703 if (Plan->hasVF(VF)) 1704 return *Plan.get(); 1705 } 1706 llvm_unreachable("No plan found!"); 1707 } 1708 1709 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1710 void LoopVectorizationPlanner::printPlans(raw_ostream &O) { 1711 if (VPlans.empty()) { 1712 O << "LV: No VPlans built.\n"; 1713 return; 1714 } 1715 for (const auto &Plan : VPlans) 1716 if (PrintVPlansInDotFormat) 1717 Plan->printDOT(O); 1718 else 1719 Plan->print(O); 1720 } 1721 #endif 1722