xref: /llvm-project/llvm/lib/Transforms/Vectorize/VPlan.cpp (revision 8cd189272599b73398eee3b46b015070aa77b2f3)
1 //===- VPlan.cpp - Vectorizer Plan ----------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This is the LLVM vectorization plan. It represents a candidate for
11 /// vectorization, allowing to plan and optimize how to vectorize a given loop
12 /// before generating LLVM-IR.
13 /// The vectorizer uses vectorization plans to estimate the costs of potential
14 /// candidates and if profitable to execute the desired plan, generating vector
15 /// LLVM-IR code.
16 ///
17 //===----------------------------------------------------------------------===//
18 
19 #include "VPlan.h"
20 #include "VPlanDominatorTree.h"
21 #include "llvm/ADT/DepthFirstIterator.h"
22 #include "llvm/ADT/PostOrderIterator.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/Twine.h"
26 #include "llvm/Analysis/IVDescriptors.h"
27 #include "llvm/Analysis/LoopInfo.h"
28 #include "llvm/IR/BasicBlock.h"
29 #include "llvm/IR/CFG.h"
30 #include "llvm/IR/IRBuilder.h"
31 #include "llvm/IR/Instruction.h"
32 #include "llvm/IR/Instructions.h"
33 #include "llvm/IR/Type.h"
34 #include "llvm/IR/Value.h"
35 #include "llvm/Support/Casting.h"
36 #include "llvm/Support/CommandLine.h"
37 #include "llvm/Support/Debug.h"
38 #include "llvm/Support/ErrorHandling.h"
39 #include "llvm/Support/GenericDomTreeConstruction.h"
40 #include "llvm/Support/GraphWriter.h"
41 #include "llvm/Support/raw_ostream.h"
42 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
43 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
44 #include <cassert>
45 #include <string>
46 #include <vector>
47 
48 using namespace llvm;
49 extern cl::opt<bool> EnableVPlanNativePath;
50 
51 #define DEBUG_TYPE "vplan"
52 
53 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
54 raw_ostream &llvm::operator<<(raw_ostream &OS, const VPValue &V) {
55   const VPInstruction *Instr = dyn_cast<VPInstruction>(&V);
56   VPSlotTracker SlotTracker(
57       (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr);
58   V.print(OS, SlotTracker);
59   return OS;
60 }
61 #endif
62 
63 Value *VPLane::getAsRuntimeExpr(IRBuilderBase &Builder,
64                                 const ElementCount &VF) const {
65   switch (LaneKind) {
66   case VPLane::Kind::ScalableLast:
67     // Lane = RuntimeVF - VF.getKnownMinValue() + Lane
68     return Builder.CreateSub(getRuntimeVF(Builder, Builder.getInt32Ty(), VF),
69                              Builder.getInt32(VF.getKnownMinValue() - Lane));
70   case VPLane::Kind::First:
71     return Builder.getInt32(Lane);
72   }
73   llvm_unreachable("Unknown lane kind");
74 }
75 
76 VPValue::VPValue(const unsigned char SC, Value *UV, VPDef *Def)
77     : SubclassID(SC), UnderlyingVal(UV), Def(Def) {
78   if (Def)
79     Def->addDefinedValue(this);
80 }
81 
82 VPValue::~VPValue() {
83   assert(Users.empty() && "trying to delete a VPValue with remaining users");
84   if (Def)
85     Def->removeDefinedValue(this);
86 }
87 
88 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
89 void VPValue::print(raw_ostream &OS, VPSlotTracker &SlotTracker) const {
90   if (const VPRecipeBase *R = dyn_cast_or_null<VPRecipeBase>(Def))
91     R->print(OS, "", SlotTracker);
92   else
93     printAsOperand(OS, SlotTracker);
94 }
95 
96 void VPValue::dump() const {
97   const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this->Def);
98   VPSlotTracker SlotTracker(
99       (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr);
100   print(dbgs(), SlotTracker);
101   dbgs() << "\n";
102 }
103 
104 void VPDef::dump() const {
105   const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this);
106   VPSlotTracker SlotTracker(
107       (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr);
108   print(dbgs(), "", SlotTracker);
109   dbgs() << "\n";
110 }
111 #endif
112 
113 // Get the top-most entry block of \p Start. This is the entry block of the
114 // containing VPlan. This function is templated to support both const and non-const blocks
115 template <typename T> static T *getPlanEntry(T *Start) {
116   T *Next = Start;
117   T *Current = Start;
118   while ((Next = Next->getParent()))
119     Current = Next;
120 
121   SmallSetVector<T *, 8> WorkList;
122   WorkList.insert(Current);
123 
124   for (unsigned i = 0; i < WorkList.size(); i++) {
125     T *Current = WorkList[i];
126     if (Current->getNumPredecessors() == 0)
127       return Current;
128     auto &Predecessors = Current->getPredecessors();
129     WorkList.insert(Predecessors.begin(), Predecessors.end());
130   }
131 
132   llvm_unreachable("VPlan without any entry node without predecessors");
133 }
134 
135 VPlan *VPBlockBase::getPlan() { return getPlanEntry(this)->Plan; }
136 
137 const VPlan *VPBlockBase::getPlan() const { return getPlanEntry(this)->Plan; }
138 
139 /// \return the VPBasicBlock that is the entry of Block, possibly indirectly.
140 const VPBasicBlock *VPBlockBase::getEntryBasicBlock() const {
141   const VPBlockBase *Block = this;
142   while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
143     Block = Region->getEntry();
144   return cast<VPBasicBlock>(Block);
145 }
146 
147 VPBasicBlock *VPBlockBase::getEntryBasicBlock() {
148   VPBlockBase *Block = this;
149   while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
150     Block = Region->getEntry();
151   return cast<VPBasicBlock>(Block);
152 }
153 
154 void VPBlockBase::setPlan(VPlan *ParentPlan) {
155   assert(ParentPlan->getEntry() == this &&
156          "Can only set plan on its entry block.");
157   Plan = ParentPlan;
158 }
159 
160 /// \return the VPBasicBlock that is the exit of Block, possibly indirectly.
161 const VPBasicBlock *VPBlockBase::getExitBasicBlock() const {
162   const VPBlockBase *Block = this;
163   while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
164     Block = Region->getExit();
165   return cast<VPBasicBlock>(Block);
166 }
167 
168 VPBasicBlock *VPBlockBase::getExitBasicBlock() {
169   VPBlockBase *Block = this;
170   while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
171     Block = Region->getExit();
172   return cast<VPBasicBlock>(Block);
173 }
174 
175 VPBlockBase *VPBlockBase::getEnclosingBlockWithSuccessors() {
176   if (!Successors.empty() || !Parent)
177     return this;
178   assert(Parent->getExit() == this &&
179          "Block w/o successors not the exit of its parent.");
180   return Parent->getEnclosingBlockWithSuccessors();
181 }
182 
183 VPBlockBase *VPBlockBase::getEnclosingBlockWithPredecessors() {
184   if (!Predecessors.empty() || !Parent)
185     return this;
186   assert(Parent->getEntry() == this &&
187          "Block w/o predecessors not the entry of its parent.");
188   return Parent->getEnclosingBlockWithPredecessors();
189 }
190 
191 VPValue *VPBlockBase::getCondBit() {
192   return CondBitUser.getSingleOperandOrNull();
193 }
194 
195 const VPValue *VPBlockBase::getCondBit() const {
196   return CondBitUser.getSingleOperandOrNull();
197 }
198 
199 void VPBlockBase::setCondBit(VPValue *CV) { CondBitUser.resetSingleOpUser(CV); }
200 
201 VPValue *VPBlockBase::getPredicate() {
202   return PredicateUser.getSingleOperandOrNull();
203 }
204 
205 const VPValue *VPBlockBase::getPredicate() const {
206   return PredicateUser.getSingleOperandOrNull();
207 }
208 
209 void VPBlockBase::setPredicate(VPValue *CV) {
210   PredicateUser.resetSingleOpUser(CV);
211 }
212 
213 void VPBlockBase::deleteCFG(VPBlockBase *Entry) {
214   SmallVector<VPBlockBase *, 8> Blocks(depth_first(Entry));
215 
216   for (VPBlockBase *Block : Blocks)
217     delete Block;
218 }
219 
220 VPBasicBlock::iterator VPBasicBlock::getFirstNonPhi() {
221   iterator It = begin();
222   while (It != end() && It->isPhi())
223     It++;
224   return It;
225 }
226 
227 Value *VPTransformState::get(VPValue *Def, const VPIteration &Instance) {
228   if (!Def->getDef())
229     return Def->getLiveInIRValue();
230 
231   if (hasScalarValue(Def, Instance)) {
232     return Data
233         .PerPartScalars[Def][Instance.Part][Instance.Lane.mapToCacheIndex(VF)];
234   }
235 
236   assert(hasVectorValue(Def, Instance.Part));
237   auto *VecPart = Data.PerPartOutput[Def][Instance.Part];
238   if (!VecPart->getType()->isVectorTy()) {
239     assert(Instance.Lane.isFirstLane() && "cannot get lane > 0 for scalar");
240     return VecPart;
241   }
242   // TODO: Cache created scalar values.
243   Value *Lane = Instance.Lane.getAsRuntimeExpr(Builder, VF);
244   auto *Extract = Builder.CreateExtractElement(VecPart, Lane);
245   // set(Def, Extract, Instance);
246   return Extract;
247 }
248 
249 BasicBlock *
250 VPBasicBlock::createEmptyBasicBlock(VPTransformState::CFGState &CFG) {
251   // BB stands for IR BasicBlocks. VPBB stands for VPlan VPBasicBlocks.
252   // Pred stands for Predessor. Prev stands for Previous - last visited/created.
253   BasicBlock *PrevBB = CFG.PrevBB;
254   BasicBlock *NewBB = BasicBlock::Create(PrevBB->getContext(), getName(),
255                                          PrevBB->getParent(), CFG.ExitBB);
256   LLVM_DEBUG(dbgs() << "LV: created " << NewBB->getName() << '\n');
257 
258   // Hook up the new basic block to its predecessors.
259   for (VPBlockBase *PredVPBlock : getHierarchicalPredecessors()) {
260     VPBasicBlock *PredVPBB = PredVPBlock->getExitBasicBlock();
261     auto &PredVPSuccessors = PredVPBB->getSuccessors();
262     BasicBlock *PredBB = CFG.VPBB2IRBB[PredVPBB];
263 
264     // In outer loop vectorization scenario, the predecessor BBlock may not yet
265     // be visited(backedge). Mark the VPBasicBlock for fixup at the end of
266     // vectorization. We do not encounter this case in inner loop vectorization
267     // as we start out by building a loop skeleton with the vector loop header
268     // and latch blocks. As a result, we never enter this function for the
269     // header block in the non VPlan-native path.
270     if (!PredBB) {
271       assert(EnableVPlanNativePath &&
272              "Unexpected null predecessor in non VPlan-native path");
273       CFG.VPBBsToFix.push_back(PredVPBB);
274       continue;
275     }
276 
277     assert(PredBB && "Predecessor basic-block not found building successor.");
278     auto *PredBBTerminator = PredBB->getTerminator();
279     LLVM_DEBUG(dbgs() << "LV: draw edge from" << PredBB->getName() << '\n');
280     if (isa<UnreachableInst>(PredBBTerminator)) {
281       assert(PredVPSuccessors.size() == 1 &&
282              "Predecessor ending w/o branch must have single successor.");
283       PredBBTerminator->eraseFromParent();
284       BranchInst::Create(NewBB, PredBB);
285     } else {
286       assert(PredVPSuccessors.size() == 2 &&
287              "Predecessor ending with branch must have two successors.");
288       unsigned idx = PredVPSuccessors.front() == this ? 0 : 1;
289       assert(!PredBBTerminator->getSuccessor(idx) &&
290              "Trying to reset an existing successor block.");
291       PredBBTerminator->setSuccessor(idx, NewBB);
292     }
293   }
294   return NewBB;
295 }
296 
297 void VPBasicBlock::execute(VPTransformState *State) {
298   bool Replica = State->Instance && !State->Instance->isFirstIteration();
299   VPBasicBlock *PrevVPBB = State->CFG.PrevVPBB;
300   VPBlockBase *SingleHPred = nullptr;
301   BasicBlock *NewBB = State->CFG.PrevBB; // Reuse it if possible.
302 
303   // 1. Create an IR basic block, or reuse the last one if possible.
304   // The last IR basic block is reused, as an optimization, in three cases:
305   // A. the first VPBB reuses the loop header BB - when PrevVPBB is null;
306   // B. when the current VPBB has a single (hierarchical) predecessor which
307   //    is PrevVPBB and the latter has a single (hierarchical) successor; and
308   // C. when the current VPBB is an entry of a region replica - where PrevVPBB
309   //    is the exit of this region from a previous instance, or the predecessor
310   //    of this region.
311   if (PrevVPBB && /* A */
312       !((SingleHPred = getSingleHierarchicalPredecessor()) &&
313         SingleHPred->getExitBasicBlock() == PrevVPBB &&
314         PrevVPBB->getSingleHierarchicalSuccessor()) && /* B */
315       !(Replica && getPredecessors().empty())) {       /* C */
316     NewBB = createEmptyBasicBlock(State->CFG);
317     State->Builder.SetInsertPoint(NewBB);
318     // Temporarily terminate with unreachable until CFG is rewired.
319     UnreachableInst *Terminator = State->Builder.CreateUnreachable();
320     State->Builder.SetInsertPoint(Terminator);
321     State->CFG.PrevBB = NewBB;
322   }
323 
324   if (State->CurrentVectorLoop &&
325       !State->CurrentVectorLoop->contains(State->CFG.PrevBB)) {
326     // Register NewBB in its loop. In innermost loops its the same for all BB's.
327     State->CurrentVectorLoop->addBasicBlockToLoop(State->CFG.PrevBB,
328                                                   *State->LI);
329   }
330 
331   // 2. Fill the IR basic block with IR instructions.
332   LLVM_DEBUG(dbgs() << "LV: vectorizing VPBB:" << getName()
333                     << " in BB:" << NewBB->getName() << '\n');
334 
335   State->CFG.VPBB2IRBB[this] = NewBB;
336   State->CFG.PrevVPBB = this;
337 
338   for (VPRecipeBase &Recipe : Recipes)
339     Recipe.execute(*State);
340 
341   VPValue *CBV;
342   if (EnableVPlanNativePath && (CBV = getCondBit())) {
343     assert(CBV->getUnderlyingValue() &&
344            "Unexpected null underlying value for condition bit");
345 
346     // Condition bit value in a VPBasicBlock is used as the branch selector. In
347     // the VPlan-native path case, since all branches are uniform we generate a
348     // branch instruction using the condition value from vector lane 0 and dummy
349     // successors. The successors are fixed later when the successor blocks are
350     // visited.
351     Value *NewCond = State->get(CBV, {0, 0});
352 
353     // Replace the temporary unreachable terminator with the new conditional
354     // branch.
355     auto *CurrentTerminator = NewBB->getTerminator();
356     assert(isa<UnreachableInst>(CurrentTerminator) &&
357            "Expected to replace unreachable terminator with conditional "
358            "branch.");
359     auto *CondBr = BranchInst::Create(NewBB, nullptr, NewCond);
360     CondBr->setSuccessor(0, nullptr);
361     ReplaceInstWithInst(CurrentTerminator, CondBr);
362   }
363 
364   LLVM_DEBUG(dbgs() << "LV: filled BB:" << *NewBB);
365 }
366 
367 void VPBasicBlock::dropAllReferences(VPValue *NewValue) {
368   for (VPRecipeBase &R : Recipes) {
369     for (auto *Def : R.definedValues())
370       Def->replaceAllUsesWith(NewValue);
371 
372     for (unsigned I = 0, E = R.getNumOperands(); I != E; I++)
373       R.setOperand(I, NewValue);
374   }
375 }
376 
377 VPBasicBlock *VPBasicBlock::splitAt(iterator SplitAt) {
378   assert((SplitAt == end() || SplitAt->getParent() == this) &&
379          "can only split at a position in the same block");
380 
381   SmallVector<VPBlockBase *, 2> Succs(successors());
382   // First, disconnect the current block from its successors.
383   for (VPBlockBase *Succ : Succs)
384     VPBlockUtils::disconnectBlocks(this, Succ);
385 
386   // Create new empty block after the block to split.
387   auto *SplitBlock = new VPBasicBlock(getName() + ".split");
388   VPBlockUtils::insertBlockAfter(SplitBlock, this);
389 
390   // Add successors for block to split to new block.
391   for (VPBlockBase *Succ : Succs)
392     VPBlockUtils::connectBlocks(SplitBlock, Succ);
393 
394   // Finally, move the recipes starting at SplitAt to new block.
395   for (VPRecipeBase &ToMove :
396        make_early_inc_range(make_range(SplitAt, this->end())))
397     ToMove.moveBefore(*SplitBlock, SplitBlock->end());
398 
399   return SplitBlock;
400 }
401 
402 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
403 void VPBlockBase::printSuccessors(raw_ostream &O, const Twine &Indent) const {
404   if (getSuccessors().empty()) {
405     O << Indent << "No successors\n";
406   } else {
407     O << Indent << "Successor(s): ";
408     ListSeparator LS;
409     for (auto *Succ : getSuccessors())
410       O << LS << Succ->getName();
411     O << '\n';
412   }
413 }
414 
415 void VPBasicBlock::print(raw_ostream &O, const Twine &Indent,
416                          VPSlotTracker &SlotTracker) const {
417   O << Indent << getName() << ":\n";
418   if (const VPValue *Pred = getPredicate()) {
419     O << Indent << "BlockPredicate:";
420     Pred->printAsOperand(O, SlotTracker);
421     if (const auto *PredInst = dyn_cast<VPInstruction>(Pred))
422       O << " (" << PredInst->getParent()->getName() << ")";
423     O << '\n';
424   }
425 
426   auto RecipeIndent = Indent + "  ";
427   for (const VPRecipeBase &Recipe : *this) {
428     Recipe.print(O, RecipeIndent, SlotTracker);
429     O << '\n';
430   }
431 
432   printSuccessors(O, Indent);
433 
434   if (const VPValue *CBV = getCondBit()) {
435     O << Indent << "CondBit: ";
436     CBV->printAsOperand(O, SlotTracker);
437     if (const auto *CBI = dyn_cast<VPInstruction>(CBV))
438       O << " (" << CBI->getParent()->getName() << ")";
439     O << '\n';
440   }
441 }
442 #endif
443 
444 void VPRegionBlock::dropAllReferences(VPValue *NewValue) {
445   for (VPBlockBase *Block : depth_first(Entry))
446     // Drop all references in VPBasicBlocks and replace all uses with
447     // DummyValue.
448     Block->dropAllReferences(NewValue);
449 }
450 
451 void VPRegionBlock::execute(VPTransformState *State) {
452   ReversePostOrderTraversal<VPBlockBase *> RPOT(Entry);
453 
454   if (!isReplicator()) {
455     // Create and register the new vector loop.
456     Loop *PrevLoop = State->CurrentVectorLoop;
457     State->CurrentVectorLoop = State->LI->AllocateLoop();
458     Loop *ParentLoop = State->LI->getLoopFor(State->CFG.VectorPreHeader);
459 
460     // Insert the new loop into the loop nest and register the new basic blocks
461     // before calling any utilities such as SCEV that require valid LoopInfo.
462     if (ParentLoop)
463       ParentLoop->addChildLoop(State->CurrentVectorLoop);
464     else
465       State->LI->addTopLevelLoop(State->CurrentVectorLoop);
466 
467     // Visit the VPBlocks connected to "this", starting from it.
468     for (VPBlockBase *Block : RPOT) {
469       if (EnableVPlanNativePath) {
470         // The inner loop vectorization path does not represent loop preheader
471         // and exit blocks as part of the VPlan. In the VPlan-native path, skip
472         // vectorizing loop preheader block. In future, we may replace this
473         // check with the check for loop preheader.
474         if (Block->getNumPredecessors() == 0)
475           continue;
476 
477         // Skip vectorizing loop exit block. In future, we may replace this
478         // check with the check for loop exit.
479         if (Block->getNumSuccessors() == 0)
480           continue;
481       }
482 
483       LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n');
484       Block->execute(State);
485     }
486 
487     State->CurrentVectorLoop = PrevLoop;
488     return;
489   }
490 
491   assert(!State->Instance && "Replicating a Region with non-null instance.");
492 
493   // Enter replicating mode.
494   State->Instance = VPIteration(0, 0);
495 
496   for (unsigned Part = 0, UF = State->UF; Part < UF; ++Part) {
497     State->Instance->Part = Part;
498     assert(!State->VF.isScalable() && "VF is assumed to be non scalable.");
499     for (unsigned Lane = 0, VF = State->VF.getKnownMinValue(); Lane < VF;
500          ++Lane) {
501       State->Instance->Lane = VPLane(Lane, VPLane::Kind::First);
502       // Visit the VPBlocks connected to \p this, starting from it.
503       for (VPBlockBase *Block : RPOT) {
504         LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n');
505         Block->execute(State);
506       }
507     }
508   }
509 
510   // Exit replicating mode.
511   State->Instance.reset();
512 }
513 
514 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
515 void VPRegionBlock::print(raw_ostream &O, const Twine &Indent,
516                           VPSlotTracker &SlotTracker) const {
517   O << Indent << (isReplicator() ? "<xVFxUF> " : "<x1> ") << getName() << ": {";
518   auto NewIndent = Indent + "  ";
519   for (auto *BlockBase : depth_first(Entry)) {
520     O << '\n';
521     BlockBase->print(O, NewIndent, SlotTracker);
522   }
523   O << Indent << "}\n";
524 
525   printSuccessors(O, Indent);
526 }
527 #endif
528 
529 bool VPRecipeBase::mayWriteToMemory() const {
530   switch (getVPDefID()) {
531   case VPWidenMemoryInstructionSC: {
532     return cast<VPWidenMemoryInstructionRecipe>(this)->isStore();
533   }
534   case VPReplicateSC:
535   case VPWidenCallSC:
536     return cast<Instruction>(getVPSingleValue()->getUnderlyingValue())
537         ->mayWriteToMemory();
538   case VPBranchOnMaskSC:
539     return false;
540   case VPWidenIntOrFpInductionSC:
541   case VPWidenCanonicalIVSC:
542   case VPWidenPHISC:
543   case VPBlendSC:
544   case VPWidenSC:
545   case VPWidenGEPSC:
546   case VPReductionSC:
547   case VPWidenSelectSC: {
548     const Instruction *I =
549         dyn_cast_or_null<Instruction>(getVPSingleValue()->getUnderlyingValue());
550     (void)I;
551     assert((!I || !I->mayWriteToMemory()) &&
552            "underlying instruction may write to memory");
553     return false;
554   }
555   default:
556     return true;
557   }
558 }
559 
560 bool VPRecipeBase::mayReadFromMemory() const {
561   switch (getVPDefID()) {
562   case VPWidenMemoryInstructionSC: {
563     return !cast<VPWidenMemoryInstructionRecipe>(this)->isStore();
564   }
565   case VPReplicateSC:
566   case VPWidenCallSC:
567     return cast<Instruction>(getVPSingleValue()->getUnderlyingValue())
568         ->mayReadFromMemory();
569   case VPBranchOnMaskSC:
570     return false;
571   case VPWidenIntOrFpInductionSC:
572   case VPWidenCanonicalIVSC:
573   case VPWidenPHISC:
574   case VPBlendSC:
575   case VPWidenSC:
576   case VPWidenGEPSC:
577   case VPReductionSC:
578   case VPWidenSelectSC: {
579     const Instruction *I =
580         dyn_cast_or_null<Instruction>(getVPSingleValue()->getUnderlyingValue());
581     (void)I;
582     assert((!I || !I->mayReadFromMemory()) &&
583            "underlying instruction may read from memory");
584     return false;
585   }
586   default:
587     return true;
588   }
589 }
590 
591 bool VPRecipeBase::mayHaveSideEffects() const {
592   switch (getVPDefID()) {
593   case VPBranchOnMaskSC:
594     return false;
595   case VPWidenIntOrFpInductionSC:
596   case VPWidenPointerInductionSC:
597   case VPWidenCanonicalIVSC:
598   case VPWidenPHISC:
599   case VPBlendSC:
600   case VPWidenSC:
601   case VPWidenGEPSC:
602   case VPReductionSC:
603   case VPWidenSelectSC:
604   case VPScalarIVStepsSC: {
605     const Instruction *I =
606         dyn_cast_or_null<Instruction>(getVPSingleValue()->getUnderlyingValue());
607     (void)I;
608     assert((!I || !I->mayHaveSideEffects()) &&
609            "underlying instruction has side-effects");
610     return false;
611   }
612   case VPReplicateSC: {
613     auto *R = cast<VPReplicateRecipe>(this);
614     return R->getUnderlyingInstr()->mayHaveSideEffects();
615   }
616   default:
617     return true;
618   }
619 }
620 
621 void VPRecipeBase::insertBefore(VPRecipeBase *InsertPos) {
622   assert(!Parent && "Recipe already in some VPBasicBlock");
623   assert(InsertPos->getParent() &&
624          "Insertion position not in any VPBasicBlock");
625   Parent = InsertPos->getParent();
626   Parent->getRecipeList().insert(InsertPos->getIterator(), this);
627 }
628 
629 void VPRecipeBase::insertBefore(VPBasicBlock &BB,
630                                 iplist<VPRecipeBase>::iterator I) {
631   assert(!Parent && "Recipe already in some VPBasicBlock");
632   assert(I == BB.end() || I->getParent() == &BB);
633   Parent = &BB;
634   BB.getRecipeList().insert(I, this);
635 }
636 
637 void VPRecipeBase::insertAfter(VPRecipeBase *InsertPos) {
638   assert(!Parent && "Recipe already in some VPBasicBlock");
639   assert(InsertPos->getParent() &&
640          "Insertion position not in any VPBasicBlock");
641   Parent = InsertPos->getParent();
642   Parent->getRecipeList().insertAfter(InsertPos->getIterator(), this);
643 }
644 
645 void VPRecipeBase::removeFromParent() {
646   assert(getParent() && "Recipe not in any VPBasicBlock");
647   getParent()->getRecipeList().remove(getIterator());
648   Parent = nullptr;
649 }
650 
651 iplist<VPRecipeBase>::iterator VPRecipeBase::eraseFromParent() {
652   assert(getParent() && "Recipe not in any VPBasicBlock");
653   return getParent()->getRecipeList().erase(getIterator());
654 }
655 
656 void VPRecipeBase::moveAfter(VPRecipeBase *InsertPos) {
657   removeFromParent();
658   insertAfter(InsertPos);
659 }
660 
661 void VPRecipeBase::moveBefore(VPBasicBlock &BB,
662                               iplist<VPRecipeBase>::iterator I) {
663   removeFromParent();
664   insertBefore(BB, I);
665 }
666 
667 void VPInstruction::generateInstruction(VPTransformState &State,
668                                         unsigned Part) {
669   IRBuilderBase &Builder = State.Builder;
670   Builder.SetCurrentDebugLocation(DL);
671 
672   if (Instruction::isBinaryOp(getOpcode())) {
673     Value *A = State.get(getOperand(0), Part);
674     Value *B = State.get(getOperand(1), Part);
675     Value *V = Builder.CreateBinOp((Instruction::BinaryOps)getOpcode(), A, B);
676     State.set(this, V, Part);
677     return;
678   }
679 
680   switch (getOpcode()) {
681   case VPInstruction::Not: {
682     Value *A = State.get(getOperand(0), Part);
683     Value *V = Builder.CreateNot(A);
684     State.set(this, V, Part);
685     break;
686   }
687   case VPInstruction::ICmpULE: {
688     Value *IV = State.get(getOperand(0), Part);
689     Value *TC = State.get(getOperand(1), Part);
690     Value *V = Builder.CreateICmpULE(IV, TC);
691     State.set(this, V, Part);
692     break;
693   }
694   case Instruction::Select: {
695     Value *Cond = State.get(getOperand(0), Part);
696     Value *Op1 = State.get(getOperand(1), Part);
697     Value *Op2 = State.get(getOperand(2), Part);
698     Value *V = Builder.CreateSelect(Cond, Op1, Op2);
699     State.set(this, V, Part);
700     break;
701   }
702   case VPInstruction::ActiveLaneMask: {
703     // Get first lane of vector induction variable.
704     Value *VIVElem0 = State.get(getOperand(0), VPIteration(Part, 0));
705     // Get the original loop tripcount.
706     Value *ScalarTC = State.get(getOperand(1), Part);
707 
708     auto *Int1Ty = Type::getInt1Ty(Builder.getContext());
709     auto *PredTy = VectorType::get(Int1Ty, State.VF);
710     Instruction *Call = Builder.CreateIntrinsic(
711         Intrinsic::get_active_lane_mask, {PredTy, ScalarTC->getType()},
712         {VIVElem0, ScalarTC}, nullptr, "active.lane.mask");
713     State.set(this, Call, Part);
714     break;
715   }
716   case VPInstruction::FirstOrderRecurrenceSplice: {
717     // Generate code to combine the previous and current values in vector v3.
718     //
719     //   vector.ph:
720     //     v_init = vector(..., ..., ..., a[-1])
721     //     br vector.body
722     //
723     //   vector.body
724     //     i = phi [0, vector.ph], [i+4, vector.body]
725     //     v1 = phi [v_init, vector.ph], [v2, vector.body]
726     //     v2 = a[i, i+1, i+2, i+3];
727     //     v3 = vector(v1(3), v2(0, 1, 2))
728 
729     // For the first part, use the recurrence phi (v1), otherwise v2.
730     auto *V1 = State.get(getOperand(0), 0);
731     Value *PartMinus1 = Part == 0 ? V1 : State.get(getOperand(1), Part - 1);
732     if (!PartMinus1->getType()->isVectorTy()) {
733       State.set(this, PartMinus1, Part);
734     } else {
735       Value *V2 = State.get(getOperand(1), Part);
736       State.set(this, Builder.CreateVectorSplice(PartMinus1, V2, -1), Part);
737     }
738     break;
739   }
740 
741   case VPInstruction::CanonicalIVIncrement:
742   case VPInstruction::CanonicalIVIncrementNUW: {
743     Value *Next = nullptr;
744     if (Part == 0) {
745       bool IsNUW = getOpcode() == VPInstruction::CanonicalIVIncrementNUW;
746       auto *Phi = State.get(getOperand(0), 0);
747       // The loop step is equal to the vectorization factor (num of SIMD
748       // elements) times the unroll factor (num of SIMD instructions).
749       Value *Step =
750           createStepForVF(Builder, Phi->getType(), State.VF, State.UF);
751       Next = Builder.CreateAdd(Phi, Step, "index.next", IsNUW, false);
752     } else {
753       Next = State.get(this, 0);
754     }
755 
756     State.set(this, Next, Part);
757     break;
758   }
759   case VPInstruction::BranchOnCount: {
760     if (Part != 0)
761       break;
762     // First create the compare.
763     Value *IV = State.get(getOperand(0), Part);
764     Value *TC = State.get(getOperand(1), Part);
765     Value *Cond = Builder.CreateICmpEQ(IV, TC);
766 
767     // Now create the branch.
768     auto *Plan = getParent()->getPlan();
769     VPRegionBlock *TopRegion = Plan->getVectorLoopRegion();
770     VPBasicBlock *Header = TopRegion->getEntry()->getEntryBasicBlock();
771     if (Header->empty()) {
772       assert(EnableVPlanNativePath &&
773              "empty entry block only expected in VPlanNativePath");
774       Header = cast<VPBasicBlock>(Header->getSingleSuccessor());
775     }
776     // TODO: Once the exit block is modeled in VPlan, use it instead of going
777     // through State.CFG.ExitBB.
778     BasicBlock *Exit = State.CFG.ExitBB;
779 
780     Builder.CreateCondBr(Cond, Exit, State.CFG.VPBB2IRBB[Header]);
781     Builder.GetInsertBlock()->getTerminator()->eraseFromParent();
782     break;
783   }
784   default:
785     llvm_unreachable("Unsupported opcode for instruction");
786   }
787 }
788 
789 void VPInstruction::execute(VPTransformState &State) {
790   assert(!State.Instance && "VPInstruction executing an Instance");
791   IRBuilderBase::FastMathFlagGuard FMFGuard(State.Builder);
792   State.Builder.setFastMathFlags(FMF);
793   for (unsigned Part = 0; Part < State.UF; ++Part)
794     generateInstruction(State, Part);
795 }
796 
797 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
798 void VPInstruction::dump() const {
799   VPSlotTracker SlotTracker(getParent()->getPlan());
800   print(dbgs(), "", SlotTracker);
801 }
802 
803 void VPInstruction::print(raw_ostream &O, const Twine &Indent,
804                           VPSlotTracker &SlotTracker) const {
805   O << Indent << "EMIT ";
806 
807   if (hasResult()) {
808     printAsOperand(O, SlotTracker);
809     O << " = ";
810   }
811 
812   switch (getOpcode()) {
813   case VPInstruction::Not:
814     O << "not";
815     break;
816   case VPInstruction::ICmpULE:
817     O << "icmp ule";
818     break;
819   case VPInstruction::SLPLoad:
820     O << "combined load";
821     break;
822   case VPInstruction::SLPStore:
823     O << "combined store";
824     break;
825   case VPInstruction::ActiveLaneMask:
826     O << "active lane mask";
827     break;
828   case VPInstruction::FirstOrderRecurrenceSplice:
829     O << "first-order splice";
830     break;
831   case VPInstruction::CanonicalIVIncrement:
832     O << "VF * UF + ";
833     break;
834   case VPInstruction::CanonicalIVIncrementNUW:
835     O << "VF * UF +(nuw) ";
836     break;
837   case VPInstruction::BranchOnCount:
838     O << "branch-on-count ";
839     break;
840   default:
841     O << Instruction::getOpcodeName(getOpcode());
842   }
843 
844   O << FMF;
845 
846   for (const VPValue *Operand : operands()) {
847     O << " ";
848     Operand->printAsOperand(O, SlotTracker);
849   }
850 
851   if (DL) {
852     O << ", !dbg ";
853     DL.print(O);
854   }
855 }
856 #endif
857 
858 void VPInstruction::setFastMathFlags(FastMathFlags FMFNew) {
859   // Make sure the VPInstruction is a floating-point operation.
860   assert((Opcode == Instruction::FAdd || Opcode == Instruction::FMul ||
861           Opcode == Instruction::FNeg || Opcode == Instruction::FSub ||
862           Opcode == Instruction::FDiv || Opcode == Instruction::FRem ||
863           Opcode == Instruction::FCmp) &&
864          "this op can't take fast-math flags");
865   FMF = FMFNew;
866 }
867 
868 void VPlan::prepareToExecute(Value *TripCountV, Value *VectorTripCountV,
869                              Value *CanonicalIVStartValue,
870                              VPTransformState &State) {
871   // Check if the trip count is needed, and if so build it.
872   if (TripCount && TripCount->getNumUsers()) {
873     for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part)
874       State.set(TripCount, TripCountV, Part);
875   }
876 
877   // Check if the backedge taken count is needed, and if so build it.
878   if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) {
879     IRBuilder<> Builder(State.CFG.VectorPreHeader->getTerminator());
880     auto *TCMO = Builder.CreateSub(TripCountV,
881                                    ConstantInt::get(TripCountV->getType(), 1),
882                                    "trip.count.minus.1");
883     auto VF = State.VF;
884     Value *VTCMO =
885         VF.isScalar() ? TCMO : Builder.CreateVectorSplat(VF, TCMO, "broadcast");
886     for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part)
887       State.set(BackedgeTakenCount, VTCMO, Part);
888   }
889 
890   for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part)
891     State.set(&VectorTripCount, VectorTripCountV, Part);
892 
893   // When vectorizing the epilogue loop, the canonical induction start value
894   // needs to be changed from zero to the value after the main vector loop.
895   if (CanonicalIVStartValue) {
896     VPValue *VPV = new VPValue(CanonicalIVStartValue);
897     addExternalDef(VPV);
898     auto *IV = getCanonicalIV();
899     assert(all_of(IV->users(),
900                   [](const VPUser *U) {
901                     if (isa<VPScalarIVStepsRecipe>(U))
902                       return true;
903                     auto *VPI = cast<VPInstruction>(U);
904                     return VPI->getOpcode() ==
905                                VPInstruction::CanonicalIVIncrement ||
906                            VPI->getOpcode() ==
907                                VPInstruction::CanonicalIVIncrementNUW;
908                   }) &&
909            "the canonical IV should only be used by its increments or "
910            "ScalarIVSteps when "
911            "resetting the start value");
912     IV->setOperand(0, VPV);
913   }
914 }
915 
916 /// Generate the code inside the body of the vectorized loop. Assumes a single
917 /// LoopVectorBody basic-block was created for this. Introduce additional
918 /// basic-blocks as needed, and fill them all.
919 void VPlan::execute(VPTransformState *State) {
920   // Set the reverse mapping from VPValues to Values for code generation.
921   for (auto &Entry : Value2VPValue)
922     State->VPValue2Value[Entry.second] = Entry.first;
923 
924   // Initialize CFG state.
925   State->CFG.PrevVPBB = nullptr;
926   BasicBlock *VectorHeaderBB = State->CFG.VectorPreHeader->getSingleSuccessor();
927   State->CFG.PrevBB = VectorHeaderBB;
928   State->CFG.ExitBB = VectorHeaderBB->getSingleSuccessor();
929   State->CurrentVectorLoop = State->LI->getLoopFor(VectorHeaderBB);
930 
931   // Remove the edge between Header and Latch to allow other connections.
932   // Temporarily terminate with unreachable until CFG is rewired.
933   // Note: this asserts the generated code's assumption that
934   // getFirstInsertionPt() can be dereferenced into an Instruction.
935   VectorHeaderBB->getTerminator()->eraseFromParent();
936   State->Builder.SetInsertPoint(VectorHeaderBB);
937   UnreachableInst *Terminator = State->Builder.CreateUnreachable();
938   State->Builder.SetInsertPoint(Terminator);
939 
940   // Generate code in loop body.
941   for (VPBlockBase *Block : depth_first(Entry))
942     Block->execute(State);
943 
944   // Setup branch terminator successors for VPBBs in VPBBsToFix based on
945   // VPBB's successors.
946   for (auto VPBB : State->CFG.VPBBsToFix) {
947     assert(EnableVPlanNativePath &&
948            "Unexpected VPBBsToFix in non VPlan-native path");
949     BasicBlock *BB = State->CFG.VPBB2IRBB[VPBB];
950     assert(BB && "Unexpected null basic block for VPBB");
951 
952     unsigned Idx = 0;
953     auto *BBTerminator = BB->getTerminator();
954 
955     for (VPBlockBase *SuccVPBlock : VPBB->getHierarchicalSuccessors()) {
956       VPBasicBlock *SuccVPBB = SuccVPBlock->getEntryBasicBlock();
957       BBTerminator->setSuccessor(Idx, State->CFG.VPBB2IRBB[SuccVPBB]);
958       ++Idx;
959     }
960   }
961 
962   BasicBlock *VectorLatchBB = State->CFG.PrevBB;
963 
964   // Fix the latch value of canonical, reduction and first-order recurrences
965   // phis in the vector loop.
966   VPBasicBlock *Header = getVectorLoopRegion()->getEntryBasicBlock();
967   if (Header->empty()) {
968     assert(EnableVPlanNativePath);
969     Header = cast<VPBasicBlock>(Header->getSingleSuccessor());
970   }
971   for (VPRecipeBase &R : Header->phis()) {
972     // Skip phi-like recipes that generate their backedege values themselves.
973     if (isa<VPWidenPHIRecipe>(&R))
974       continue;
975 
976     if (isa<VPWidenPointerInductionRecipe>(&R) ||
977         isa<VPWidenIntOrFpInductionRecipe>(&R)) {
978       PHINode *Phi = nullptr;
979       if (isa<VPWidenIntOrFpInductionRecipe>(&R)) {
980         Phi = cast<PHINode>(State->get(R.getVPSingleValue(), 0));
981       } else {
982         auto *WidenPhi = cast<VPWidenPointerInductionRecipe>(&R);
983         // TODO: Split off the case that all users of a pointer phi are scalar
984         // from the VPWidenPointerInductionRecipe.
985         if (all_of(WidenPhi->users(), [WidenPhi](const VPUser *U) {
986               return cast<VPRecipeBase>(U)->usesScalars(WidenPhi);
987             }))
988           continue;
989 
990         auto *GEP = cast<GetElementPtrInst>(State->get(WidenPhi, 0));
991         Phi = cast<PHINode>(GEP->getPointerOperand());
992       }
993 
994       Phi->setIncomingBlock(1, VectorLatchBB);
995 
996       // Move the last step to the end of the latch block. This ensures
997       // consistent placement of all induction updates.
998       Instruction *Inc = cast<Instruction>(Phi->getIncomingValue(1));
999       Inc->moveBefore(VectorLatchBB->getTerminator()->getPrevNode());
1000       continue;
1001     }
1002 
1003     auto *PhiR = cast<VPHeaderPHIRecipe>(&R);
1004     // For  canonical IV, first-order recurrences and in-order reduction phis,
1005     // only a single part is generated, which provides the last part from the
1006     // previous iteration. For non-ordered reductions all UF parts are
1007     // generated.
1008     bool SinglePartNeeded = isa<VPCanonicalIVPHIRecipe>(PhiR) ||
1009                             isa<VPFirstOrderRecurrencePHIRecipe>(PhiR) ||
1010                             cast<VPReductionPHIRecipe>(PhiR)->isOrdered();
1011     unsigned LastPartForNewPhi = SinglePartNeeded ? 1 : State->UF;
1012 
1013     for (unsigned Part = 0; Part < LastPartForNewPhi; ++Part) {
1014       Value *Phi = State->get(PhiR, Part);
1015       Value *Val = State->get(PhiR->getBackedgeValue(),
1016                               SinglePartNeeded ? State->UF - 1 : Part);
1017       cast<PHINode>(Phi)->addIncoming(Val, VectorLatchBB);
1018     }
1019   }
1020 
1021   // We do not attempt to preserve DT for outer loop vectorization currently.
1022   if (!EnableVPlanNativePath)
1023     updateDominatorTree(State->DT, VectorHeaderBB, VectorLatchBB,
1024                         State->CFG.ExitBB);
1025 }
1026 
1027 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1028 LLVM_DUMP_METHOD
1029 void VPlan::print(raw_ostream &O) const {
1030   VPSlotTracker SlotTracker(this);
1031 
1032   O << "VPlan '" << Name << "' {";
1033 
1034   if (VectorTripCount.getNumUsers() > 0) {
1035     O << "\nLive-in ";
1036     VectorTripCount.printAsOperand(O, SlotTracker);
1037     O << " = vector-trip-count\n";
1038   }
1039 
1040   if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) {
1041     O << "\nLive-in ";
1042     BackedgeTakenCount->printAsOperand(O, SlotTracker);
1043     O << " = backedge-taken count\n";
1044   }
1045 
1046   for (const VPBlockBase *Block : depth_first(getEntry())) {
1047     O << '\n';
1048     Block->print(O, "", SlotTracker);
1049   }
1050   O << "}\n";
1051 }
1052 
1053 LLVM_DUMP_METHOD
1054 void VPlan::printDOT(raw_ostream &O) const {
1055   VPlanPrinter Printer(O, *this);
1056   Printer.dump();
1057 }
1058 
1059 LLVM_DUMP_METHOD
1060 void VPlan::dump() const { print(dbgs()); }
1061 #endif
1062 
1063 void VPlan::updateDominatorTree(DominatorTree *DT, BasicBlock *LoopHeaderBB,
1064                                 BasicBlock *LoopLatchBB,
1065                                 BasicBlock *LoopExitBB) {
1066   // The vector body may be more than a single basic-block by this point.
1067   // Update the dominator tree information inside the vector body by propagating
1068   // it from header to latch, expecting only triangular control-flow, if any.
1069   BasicBlock *PostDomSucc = nullptr;
1070   for (auto *BB = LoopHeaderBB; BB != LoopLatchBB; BB = PostDomSucc) {
1071     // Get the list of successors of this block.
1072     std::vector<BasicBlock *> Succs(succ_begin(BB), succ_end(BB));
1073     assert(Succs.size() <= 2 &&
1074            "Basic block in vector loop has more than 2 successors.");
1075     PostDomSucc = Succs[0];
1076     if (Succs.size() == 1) {
1077       assert(PostDomSucc->getSinglePredecessor() &&
1078              "PostDom successor has more than one predecessor.");
1079       DT->addNewBlock(PostDomSucc, BB);
1080       continue;
1081     }
1082     BasicBlock *InterimSucc = Succs[1];
1083     if (PostDomSucc->getSingleSuccessor() == InterimSucc) {
1084       PostDomSucc = Succs[1];
1085       InterimSucc = Succs[0];
1086     }
1087     assert(InterimSucc->getSingleSuccessor() == PostDomSucc &&
1088            "One successor of a basic block does not lead to the other.");
1089     assert(InterimSucc->getSinglePredecessor() &&
1090            "Interim successor has more than one predecessor.");
1091     assert(PostDomSucc->hasNPredecessors(2) &&
1092            "PostDom successor has more than two predecessors.");
1093     DT->addNewBlock(InterimSucc, BB);
1094     DT->addNewBlock(PostDomSucc, BB);
1095   }
1096   // Latch block is a new dominator for the loop exit.
1097   DT->changeImmediateDominator(LoopExitBB, LoopLatchBB);
1098   assert(DT->verify(DominatorTree::VerificationLevel::Fast));
1099 }
1100 
1101 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1102 Twine VPlanPrinter::getUID(const VPBlockBase *Block) {
1103   return (isa<VPRegionBlock>(Block) ? "cluster_N" : "N") +
1104          Twine(getOrCreateBID(Block));
1105 }
1106 
1107 Twine VPlanPrinter::getOrCreateName(const VPBlockBase *Block) {
1108   const std::string &Name = Block->getName();
1109   if (!Name.empty())
1110     return Name;
1111   return "VPB" + Twine(getOrCreateBID(Block));
1112 }
1113 
1114 void VPlanPrinter::dump() {
1115   Depth = 1;
1116   bumpIndent(0);
1117   OS << "digraph VPlan {\n";
1118   OS << "graph [labelloc=t, fontsize=30; label=\"Vectorization Plan";
1119   if (!Plan.getName().empty())
1120     OS << "\\n" << DOT::EscapeString(Plan.getName());
1121   if (Plan.BackedgeTakenCount) {
1122     OS << ", where:\\n";
1123     Plan.BackedgeTakenCount->print(OS, SlotTracker);
1124     OS << " := BackedgeTakenCount";
1125   }
1126   OS << "\"]\n";
1127   OS << "node [shape=rect, fontname=Courier, fontsize=30]\n";
1128   OS << "edge [fontname=Courier, fontsize=30]\n";
1129   OS << "compound=true\n";
1130 
1131   for (const VPBlockBase *Block : depth_first(Plan.getEntry()))
1132     dumpBlock(Block);
1133 
1134   OS << "}\n";
1135 }
1136 
1137 void VPlanPrinter::dumpBlock(const VPBlockBase *Block) {
1138   if (const VPBasicBlock *BasicBlock = dyn_cast<VPBasicBlock>(Block))
1139     dumpBasicBlock(BasicBlock);
1140   else if (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
1141     dumpRegion(Region);
1142   else
1143     llvm_unreachable("Unsupported kind of VPBlock.");
1144 }
1145 
1146 void VPlanPrinter::drawEdge(const VPBlockBase *From, const VPBlockBase *To,
1147                             bool Hidden, const Twine &Label) {
1148   // Due to "dot" we print an edge between two regions as an edge between the
1149   // exit basic block and the entry basic of the respective regions.
1150   const VPBlockBase *Tail = From->getExitBasicBlock();
1151   const VPBlockBase *Head = To->getEntryBasicBlock();
1152   OS << Indent << getUID(Tail) << " -> " << getUID(Head);
1153   OS << " [ label=\"" << Label << '\"';
1154   if (Tail != From)
1155     OS << " ltail=" << getUID(From);
1156   if (Head != To)
1157     OS << " lhead=" << getUID(To);
1158   if (Hidden)
1159     OS << "; splines=none";
1160   OS << "]\n";
1161 }
1162 
1163 void VPlanPrinter::dumpEdges(const VPBlockBase *Block) {
1164   auto &Successors = Block->getSuccessors();
1165   if (Successors.size() == 1)
1166     drawEdge(Block, Successors.front(), false, "");
1167   else if (Successors.size() == 2) {
1168     drawEdge(Block, Successors.front(), false, "T");
1169     drawEdge(Block, Successors.back(), false, "F");
1170   } else {
1171     unsigned SuccessorNumber = 0;
1172     for (auto *Successor : Successors)
1173       drawEdge(Block, Successor, false, Twine(SuccessorNumber++));
1174   }
1175 }
1176 
1177 void VPlanPrinter::dumpBasicBlock(const VPBasicBlock *BasicBlock) {
1178   // Implement dot-formatted dump by performing plain-text dump into the
1179   // temporary storage followed by some post-processing.
1180   OS << Indent << getUID(BasicBlock) << " [label =\n";
1181   bumpIndent(1);
1182   std::string Str;
1183   raw_string_ostream SS(Str);
1184   // Use no indentation as we need to wrap the lines into quotes ourselves.
1185   BasicBlock->print(SS, "", SlotTracker);
1186 
1187   // We need to process each line of the output separately, so split
1188   // single-string plain-text dump.
1189   SmallVector<StringRef, 0> Lines;
1190   StringRef(Str).rtrim('\n').split(Lines, "\n");
1191 
1192   auto EmitLine = [&](StringRef Line, StringRef Suffix) {
1193     OS << Indent << '"' << DOT::EscapeString(Line.str()) << "\\l\"" << Suffix;
1194   };
1195 
1196   // Don't need the "+" after the last line.
1197   for (auto Line : make_range(Lines.begin(), Lines.end() - 1))
1198     EmitLine(Line, " +\n");
1199   EmitLine(Lines.back(), "\n");
1200 
1201   bumpIndent(-1);
1202   OS << Indent << "]\n";
1203 
1204   dumpEdges(BasicBlock);
1205 }
1206 
1207 void VPlanPrinter::dumpRegion(const VPRegionBlock *Region) {
1208   OS << Indent << "subgraph " << getUID(Region) << " {\n";
1209   bumpIndent(1);
1210   OS << Indent << "fontname=Courier\n"
1211      << Indent << "label=\""
1212      << DOT::EscapeString(Region->isReplicator() ? "<xVFxUF> " : "<x1> ")
1213      << DOT::EscapeString(Region->getName()) << "\"\n";
1214   // Dump the blocks of the region.
1215   assert(Region->getEntry() && "Region contains no inner blocks.");
1216   for (const VPBlockBase *Block : depth_first(Region->getEntry()))
1217     dumpBlock(Block);
1218   bumpIndent(-1);
1219   OS << Indent << "}\n";
1220   dumpEdges(Region);
1221 }
1222 
1223 void VPlanIngredient::print(raw_ostream &O) const {
1224   if (auto *Inst = dyn_cast<Instruction>(V)) {
1225     if (!Inst->getType()->isVoidTy()) {
1226       Inst->printAsOperand(O, false);
1227       O << " = ";
1228     }
1229     O << Inst->getOpcodeName() << " ";
1230     unsigned E = Inst->getNumOperands();
1231     if (E > 0) {
1232       Inst->getOperand(0)->printAsOperand(O, false);
1233       for (unsigned I = 1; I < E; ++I)
1234         Inst->getOperand(I)->printAsOperand(O << ", ", false);
1235     }
1236   } else // !Inst
1237     V->printAsOperand(O, false);
1238 }
1239 
1240 void VPWidenCallRecipe::print(raw_ostream &O, const Twine &Indent,
1241                               VPSlotTracker &SlotTracker) const {
1242   O << Indent << "WIDEN-CALL ";
1243 
1244   auto *CI = cast<CallInst>(getUnderlyingInstr());
1245   if (CI->getType()->isVoidTy())
1246     O << "void ";
1247   else {
1248     printAsOperand(O, SlotTracker);
1249     O << " = ";
1250   }
1251 
1252   O << "call @" << CI->getCalledFunction()->getName() << "(";
1253   printOperands(O, SlotTracker);
1254   O << ")";
1255 }
1256 
1257 void VPWidenSelectRecipe::print(raw_ostream &O, const Twine &Indent,
1258                                 VPSlotTracker &SlotTracker) const {
1259   O << Indent << "WIDEN-SELECT ";
1260   printAsOperand(O, SlotTracker);
1261   O << " = select ";
1262   getOperand(0)->printAsOperand(O, SlotTracker);
1263   O << ", ";
1264   getOperand(1)->printAsOperand(O, SlotTracker);
1265   O << ", ";
1266   getOperand(2)->printAsOperand(O, SlotTracker);
1267   O << (InvariantCond ? " (condition is loop invariant)" : "");
1268 }
1269 
1270 void VPWidenRecipe::print(raw_ostream &O, const Twine &Indent,
1271                           VPSlotTracker &SlotTracker) const {
1272   O << Indent << "WIDEN ";
1273   printAsOperand(O, SlotTracker);
1274   O << " = " << getUnderlyingInstr()->getOpcodeName() << " ";
1275   printOperands(O, SlotTracker);
1276 }
1277 
1278 void VPWidenIntOrFpInductionRecipe::print(raw_ostream &O, const Twine &Indent,
1279                                           VPSlotTracker &SlotTracker) const {
1280   O << Indent << "WIDEN-INDUCTION";
1281   if (getTruncInst()) {
1282     O << "\\l\"";
1283     O << " +\n" << Indent << "\"  " << VPlanIngredient(IV) << "\\l\"";
1284     O << " +\n" << Indent << "\"  ";
1285     getVPValue(0)->printAsOperand(O, SlotTracker);
1286   } else
1287     O << " " << VPlanIngredient(IV);
1288 }
1289 
1290 void VPWidenPointerInductionRecipe::print(raw_ostream &O, const Twine &Indent,
1291                                           VPSlotTracker &SlotTracker) const {
1292   O << Indent << "EMIT ";
1293   printAsOperand(O, SlotTracker);
1294   O << " = WIDEN-POINTER-INDUCTION ";
1295   getStartValue()->printAsOperand(O, SlotTracker);
1296   O << ", " << *IndDesc.getStep();
1297 }
1298 
1299 #endif
1300 
1301 bool VPWidenIntOrFpInductionRecipe::isCanonical() const {
1302   auto *StartC = dyn_cast<ConstantInt>(getStartValue()->getLiveInIRValue());
1303   auto *StepC = dyn_cast<SCEVConstant>(getInductionDescriptor().getStep());
1304   return StartC && StartC->isZero() && StepC && StepC->isOne();
1305 }
1306 
1307 VPCanonicalIVPHIRecipe *VPScalarIVStepsRecipe::getCanonicalIV() const {
1308   return cast<VPCanonicalIVPHIRecipe>(getOperand(0));
1309 }
1310 
1311 bool VPScalarIVStepsRecipe::isCanonical() const {
1312   auto *CanIV = getCanonicalIV();
1313   // The start value of the steps-recipe must match the start value of the
1314   // canonical induction and it must step by 1.
1315   if (CanIV->getStartValue() != getStartValue())
1316     return false;
1317   auto *StepVPV = getStepValue();
1318   if (StepVPV->getDef())
1319     return false;
1320   auto *StepC = dyn_cast_or_null<ConstantInt>(StepVPV->getLiveInIRValue());
1321   return StepC && StepC->isOne();
1322 }
1323 
1324 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1325 void VPScalarIVStepsRecipe::print(raw_ostream &O, const Twine &Indent,
1326                                   VPSlotTracker &SlotTracker) const {
1327   O << Indent;
1328   printAsOperand(O, SlotTracker);
1329   O << Indent << "= SCALAR-STEPS ";
1330   printOperands(O, SlotTracker);
1331 }
1332 
1333 void VPWidenGEPRecipe::print(raw_ostream &O, const Twine &Indent,
1334                              VPSlotTracker &SlotTracker) const {
1335   O << Indent << "WIDEN-GEP ";
1336   O << (IsPtrLoopInvariant ? "Inv" : "Var");
1337   size_t IndicesNumber = IsIndexLoopInvariant.size();
1338   for (size_t I = 0; I < IndicesNumber; ++I)
1339     O << "[" << (IsIndexLoopInvariant[I] ? "Inv" : "Var") << "]";
1340 
1341   O << " ";
1342   printAsOperand(O, SlotTracker);
1343   O << " = getelementptr ";
1344   printOperands(O, SlotTracker);
1345 }
1346 
1347 void VPWidenPHIRecipe::print(raw_ostream &O, const Twine &Indent,
1348                              VPSlotTracker &SlotTracker) const {
1349   O << Indent << "WIDEN-PHI ";
1350 
1351   auto *OriginalPhi = cast<PHINode>(getUnderlyingValue());
1352   // Unless all incoming values are modeled in VPlan  print the original PHI
1353   // directly.
1354   // TODO: Remove once all VPWidenPHIRecipe instances keep all relevant incoming
1355   // values as VPValues.
1356   if (getNumOperands() != OriginalPhi->getNumOperands()) {
1357     O << VPlanIngredient(OriginalPhi);
1358     return;
1359   }
1360 
1361   printAsOperand(O, SlotTracker);
1362   O << " = phi ";
1363   printOperands(O, SlotTracker);
1364 }
1365 
1366 void VPBlendRecipe::print(raw_ostream &O, const Twine &Indent,
1367                           VPSlotTracker &SlotTracker) const {
1368   O << Indent << "BLEND ";
1369   Phi->printAsOperand(O, false);
1370   O << " =";
1371   if (getNumIncomingValues() == 1) {
1372     // Not a User of any mask: not really blending, this is a
1373     // single-predecessor phi.
1374     O << " ";
1375     getIncomingValue(0)->printAsOperand(O, SlotTracker);
1376   } else {
1377     for (unsigned I = 0, E = getNumIncomingValues(); I < E; ++I) {
1378       O << " ";
1379       getIncomingValue(I)->printAsOperand(O, SlotTracker);
1380       O << "/";
1381       getMask(I)->printAsOperand(O, SlotTracker);
1382     }
1383   }
1384 }
1385 
1386 void VPReductionRecipe::print(raw_ostream &O, const Twine &Indent,
1387                               VPSlotTracker &SlotTracker) const {
1388   O << Indent << "REDUCE ";
1389   printAsOperand(O, SlotTracker);
1390   O << " = ";
1391   getChainOp()->printAsOperand(O, SlotTracker);
1392   O << " +";
1393   if (isa<FPMathOperator>(getUnderlyingInstr()))
1394     O << getUnderlyingInstr()->getFastMathFlags();
1395   O << " reduce." << Instruction::getOpcodeName(RdxDesc->getOpcode()) << " (";
1396   getVecOp()->printAsOperand(O, SlotTracker);
1397   if (getCondOp()) {
1398     O << ", ";
1399     getCondOp()->printAsOperand(O, SlotTracker);
1400   }
1401   O << ")";
1402 }
1403 
1404 void VPReplicateRecipe::print(raw_ostream &O, const Twine &Indent,
1405                               VPSlotTracker &SlotTracker) const {
1406   O << Indent << (IsUniform ? "CLONE " : "REPLICATE ");
1407 
1408   if (!getUnderlyingInstr()->getType()->isVoidTy()) {
1409     printAsOperand(O, SlotTracker);
1410     O << " = ";
1411   }
1412   O << Instruction::getOpcodeName(getUnderlyingInstr()->getOpcode()) << " ";
1413   printOperands(O, SlotTracker);
1414 
1415   if (AlsoPack)
1416     O << " (S->V)";
1417 }
1418 
1419 void VPPredInstPHIRecipe::print(raw_ostream &O, const Twine &Indent,
1420                                 VPSlotTracker &SlotTracker) const {
1421   O << Indent << "PHI-PREDICATED-INSTRUCTION ";
1422   printAsOperand(O, SlotTracker);
1423   O << " = ";
1424   printOperands(O, SlotTracker);
1425 }
1426 
1427 void VPWidenMemoryInstructionRecipe::print(raw_ostream &O, const Twine &Indent,
1428                                            VPSlotTracker &SlotTracker) const {
1429   O << Indent << "WIDEN ";
1430 
1431   if (!isStore()) {
1432     printAsOperand(O, SlotTracker);
1433     O << " = ";
1434   }
1435   O << Instruction::getOpcodeName(Ingredient.getOpcode()) << " ";
1436 
1437   printOperands(O, SlotTracker);
1438 }
1439 #endif
1440 
1441 void VPCanonicalIVPHIRecipe::execute(VPTransformState &State) {
1442   Value *Start = getStartValue()->getLiveInIRValue();
1443   PHINode *EntryPart = PHINode::Create(
1444       Start->getType(), 2, "index", &*State.CFG.PrevBB->getFirstInsertionPt());
1445   EntryPart->addIncoming(Start, State.CFG.VectorPreHeader);
1446   EntryPart->setDebugLoc(DL);
1447   for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part)
1448     State.set(this, EntryPart, Part);
1449 }
1450 
1451 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1452 void VPCanonicalIVPHIRecipe::print(raw_ostream &O, const Twine &Indent,
1453                                    VPSlotTracker &SlotTracker) const {
1454   O << Indent << "EMIT ";
1455   printAsOperand(O, SlotTracker);
1456   O << " = CANONICAL-INDUCTION";
1457 }
1458 #endif
1459 
1460 void VPExpandSCEVRecipe::execute(VPTransformState &State) {
1461   assert(!State.Instance && "cannot be used in per-lane");
1462   const DataLayout &DL =
1463       State.CFG.VectorPreHeader->getModule()->getDataLayout();
1464   SCEVExpander Exp(SE, DL, "induction");
1465   Value *Res = Exp.expandCodeFor(Expr, Expr->getType(),
1466                                  State.CFG.VectorPreHeader->getTerminator());
1467 
1468   for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part)
1469     State.set(this, Res, Part);
1470 }
1471 
1472 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1473 void VPExpandSCEVRecipe::print(raw_ostream &O, const Twine &Indent,
1474                                VPSlotTracker &SlotTracker) const {
1475   O << Indent << "EMIT ";
1476   getVPSingleValue()->printAsOperand(O, SlotTracker);
1477   O << " = EXPAND SCEV " << *Expr;
1478 }
1479 #endif
1480 
1481 void VPWidenCanonicalIVRecipe::execute(VPTransformState &State) {
1482   Value *CanonicalIV = State.get(getOperand(0), 0);
1483   Type *STy = CanonicalIV->getType();
1484   IRBuilder<> Builder(State.CFG.PrevBB->getTerminator());
1485   ElementCount VF = State.VF;
1486   Value *VStart = VF.isScalar()
1487                       ? CanonicalIV
1488                       : Builder.CreateVectorSplat(VF, CanonicalIV, "broadcast");
1489   for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part) {
1490     Value *VStep = createStepForVF(Builder, STy, VF, Part);
1491     if (VF.isVector()) {
1492       VStep = Builder.CreateVectorSplat(VF, VStep);
1493       VStep = Builder.CreateAdd(VStep, Builder.CreateStepVector(VStep->getType()));
1494     }
1495     Value *CanonicalVectorIV = Builder.CreateAdd(VStart, VStep, "vec.iv");
1496     State.set(this, CanonicalVectorIV, Part);
1497   }
1498 }
1499 
1500 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1501 void VPWidenCanonicalIVRecipe::print(raw_ostream &O, const Twine &Indent,
1502                                      VPSlotTracker &SlotTracker) const {
1503   O << Indent << "EMIT ";
1504   printAsOperand(O, SlotTracker);
1505   O << " = WIDEN-CANONICAL-INDUCTION ";
1506   printOperands(O, SlotTracker);
1507 }
1508 #endif
1509 
1510 void VPFirstOrderRecurrencePHIRecipe::execute(VPTransformState &State) {
1511   auto &Builder = State.Builder;
1512   // Create a vector from the initial value.
1513   auto *VectorInit = getStartValue()->getLiveInIRValue();
1514 
1515   Type *VecTy = State.VF.isScalar()
1516                     ? VectorInit->getType()
1517                     : VectorType::get(VectorInit->getType(), State.VF);
1518 
1519   if (State.VF.isVector()) {
1520     auto *IdxTy = Builder.getInt32Ty();
1521     auto *One = ConstantInt::get(IdxTy, 1);
1522     IRBuilder<>::InsertPointGuard Guard(Builder);
1523     Builder.SetInsertPoint(State.CFG.VectorPreHeader->getTerminator());
1524     auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, State.VF);
1525     auto *LastIdx = Builder.CreateSub(RuntimeVF, One);
1526     VectorInit = Builder.CreateInsertElement(
1527         PoisonValue::get(VecTy), VectorInit, LastIdx, "vector.recur.init");
1528   }
1529 
1530   // Create a phi node for the new recurrence.
1531   PHINode *EntryPart = PHINode::Create(
1532       VecTy, 2, "vector.recur", &*State.CFG.PrevBB->getFirstInsertionPt());
1533   EntryPart->addIncoming(VectorInit, State.CFG.VectorPreHeader);
1534   State.set(this, EntryPart, 0);
1535 }
1536 
1537 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1538 void VPFirstOrderRecurrencePHIRecipe::print(raw_ostream &O, const Twine &Indent,
1539                                             VPSlotTracker &SlotTracker) const {
1540   O << Indent << "FIRST-ORDER-RECURRENCE-PHI ";
1541   printAsOperand(O, SlotTracker);
1542   O << " = phi ";
1543   printOperands(O, SlotTracker);
1544 }
1545 #endif
1546 
1547 void VPReductionPHIRecipe::execute(VPTransformState &State) {
1548   PHINode *PN = cast<PHINode>(getUnderlyingValue());
1549   auto &Builder = State.Builder;
1550 
1551   // In order to support recurrences we need to be able to vectorize Phi nodes.
1552   // Phi nodes have cycles, so we need to vectorize them in two stages. This is
1553   // stage #1: We create a new vector PHI node with no incoming edges. We'll use
1554   // this value when we vectorize all of the instructions that use the PHI.
1555   bool ScalarPHI = State.VF.isScalar() || IsInLoop;
1556   Type *VecTy =
1557       ScalarPHI ? PN->getType() : VectorType::get(PN->getType(), State.VF);
1558 
1559   BasicBlock *HeaderBB = State.CFG.PrevBB;
1560   assert(State.CurrentVectorLoop->getHeader() == HeaderBB &&
1561          "recipe must be in the vector loop header");
1562   unsigned LastPartForNewPhi = isOrdered() ? 1 : State.UF;
1563   for (unsigned Part = 0; Part < LastPartForNewPhi; ++Part) {
1564     Value *EntryPart =
1565         PHINode::Create(VecTy, 2, "vec.phi", &*HeaderBB->getFirstInsertionPt());
1566     State.set(this, EntryPart, Part);
1567   }
1568 
1569   // Reductions do not have to start at zero. They can start with
1570   // any loop invariant values.
1571   VPValue *StartVPV = getStartValue();
1572   Value *StartV = StartVPV->getLiveInIRValue();
1573 
1574   Value *Iden = nullptr;
1575   RecurKind RK = RdxDesc.getRecurrenceKind();
1576   if (RecurrenceDescriptor::isMinMaxRecurrenceKind(RK) ||
1577       RecurrenceDescriptor::isSelectCmpRecurrenceKind(RK)) {
1578     // MinMax reduction have the start value as their identify.
1579     if (ScalarPHI) {
1580       Iden = StartV;
1581     } else {
1582       IRBuilderBase::InsertPointGuard IPBuilder(Builder);
1583       Builder.SetInsertPoint(State.CFG.VectorPreHeader->getTerminator());
1584       StartV = Iden =
1585           Builder.CreateVectorSplat(State.VF, StartV, "minmax.ident");
1586     }
1587   } else {
1588     Iden = RdxDesc.getRecurrenceIdentity(RK, VecTy->getScalarType(),
1589                                          RdxDesc.getFastMathFlags());
1590 
1591     if (!ScalarPHI) {
1592       Iden = Builder.CreateVectorSplat(State.VF, Iden);
1593       IRBuilderBase::InsertPointGuard IPBuilder(Builder);
1594       Builder.SetInsertPoint(State.CFG.VectorPreHeader->getTerminator());
1595       Constant *Zero = Builder.getInt32(0);
1596       StartV = Builder.CreateInsertElement(Iden, StartV, Zero);
1597     }
1598   }
1599 
1600   for (unsigned Part = 0; Part < LastPartForNewPhi; ++Part) {
1601     Value *EntryPart = State.get(this, Part);
1602     // Make sure to add the reduction start value only to the
1603     // first unroll part.
1604     Value *StartVal = (Part == 0) ? StartV : Iden;
1605     cast<PHINode>(EntryPart)->addIncoming(StartVal, State.CFG.VectorPreHeader);
1606   }
1607 }
1608 
1609 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1610 void VPReductionPHIRecipe::print(raw_ostream &O, const Twine &Indent,
1611                                  VPSlotTracker &SlotTracker) const {
1612   O << Indent << "WIDEN-REDUCTION-PHI ";
1613 
1614   printAsOperand(O, SlotTracker);
1615   O << " = phi ";
1616   printOperands(O, SlotTracker);
1617 }
1618 #endif
1619 
1620 template void DomTreeBuilder::Calculate<VPDominatorTree>(VPDominatorTree &DT);
1621 
1622 void VPValue::replaceAllUsesWith(VPValue *New) {
1623   for (unsigned J = 0; J < getNumUsers();) {
1624     VPUser *User = Users[J];
1625     unsigned NumUsers = getNumUsers();
1626     for (unsigned I = 0, E = User->getNumOperands(); I < E; ++I)
1627       if (User->getOperand(I) == this)
1628         User->setOperand(I, New);
1629     // If a user got removed after updating the current user, the next user to
1630     // update will be moved to the current position, so we only need to
1631     // increment the index if the number of users did not change.
1632     if (NumUsers == getNumUsers())
1633       J++;
1634   }
1635 }
1636 
1637 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1638 void VPValue::printAsOperand(raw_ostream &OS, VPSlotTracker &Tracker) const {
1639   if (const Value *UV = getUnderlyingValue()) {
1640     OS << "ir<";
1641     UV->printAsOperand(OS, false);
1642     OS << ">";
1643     return;
1644   }
1645 
1646   unsigned Slot = Tracker.getSlot(this);
1647   if (Slot == unsigned(-1))
1648     OS << "<badref>";
1649   else
1650     OS << "vp<%" << Tracker.getSlot(this) << ">";
1651 }
1652 
1653 void VPUser::printOperands(raw_ostream &O, VPSlotTracker &SlotTracker) const {
1654   interleaveComma(operands(), O, [&O, &SlotTracker](VPValue *Op) {
1655     Op->printAsOperand(O, SlotTracker);
1656   });
1657 }
1658 #endif
1659 
1660 void VPInterleavedAccessInfo::visitRegion(VPRegionBlock *Region,
1661                                           Old2NewTy &Old2New,
1662                                           InterleavedAccessInfo &IAI) {
1663   ReversePostOrderTraversal<VPBlockBase *> RPOT(Region->getEntry());
1664   for (VPBlockBase *Base : RPOT) {
1665     visitBlock(Base, Old2New, IAI);
1666   }
1667 }
1668 
1669 void VPInterleavedAccessInfo::visitBlock(VPBlockBase *Block, Old2NewTy &Old2New,
1670                                          InterleavedAccessInfo &IAI) {
1671   if (VPBasicBlock *VPBB = dyn_cast<VPBasicBlock>(Block)) {
1672     for (VPRecipeBase &VPI : *VPBB) {
1673       if (isa<VPHeaderPHIRecipe>(&VPI))
1674         continue;
1675       assert(isa<VPInstruction>(&VPI) && "Can only handle VPInstructions");
1676       auto *VPInst = cast<VPInstruction>(&VPI);
1677       auto *Inst = cast<Instruction>(VPInst->getUnderlyingValue());
1678       auto *IG = IAI.getInterleaveGroup(Inst);
1679       if (!IG)
1680         continue;
1681 
1682       auto NewIGIter = Old2New.find(IG);
1683       if (NewIGIter == Old2New.end())
1684         Old2New[IG] = new InterleaveGroup<VPInstruction>(
1685             IG->getFactor(), IG->isReverse(), IG->getAlign());
1686 
1687       if (Inst == IG->getInsertPos())
1688         Old2New[IG]->setInsertPos(VPInst);
1689 
1690       InterleaveGroupMap[VPInst] = Old2New[IG];
1691       InterleaveGroupMap[VPInst]->insertMember(
1692           VPInst, IG->getIndex(Inst),
1693           Align(IG->isReverse() ? (-1) * int(IG->getFactor())
1694                                 : IG->getFactor()));
1695     }
1696   } else if (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
1697     visitRegion(Region, Old2New, IAI);
1698   else
1699     llvm_unreachable("Unsupported kind of VPBlock.");
1700 }
1701 
1702 VPInterleavedAccessInfo::VPInterleavedAccessInfo(VPlan &Plan,
1703                                                  InterleavedAccessInfo &IAI) {
1704   Old2NewTy Old2New;
1705   visitRegion(cast<VPRegionBlock>(Plan.getEntry()), Old2New, IAI);
1706 }
1707 
1708 void VPSlotTracker::assignSlot(const VPValue *V) {
1709   assert(Slots.find(V) == Slots.end() && "VPValue already has a slot!");
1710   Slots[V] = NextSlot++;
1711 }
1712 
1713 void VPSlotTracker::assignSlots(const VPlan &Plan) {
1714 
1715   for (const VPValue *V : Plan.VPExternalDefs)
1716     assignSlot(V);
1717 
1718   assignSlot(&Plan.VectorTripCount);
1719   if (Plan.BackedgeTakenCount)
1720     assignSlot(Plan.BackedgeTakenCount);
1721 
1722   ReversePostOrderTraversal<
1723       VPBlockRecursiveTraversalWrapper<const VPBlockBase *>>
1724       RPOT(VPBlockRecursiveTraversalWrapper<const VPBlockBase *>(
1725           Plan.getEntry()));
1726   for (const VPBasicBlock *VPBB :
1727        VPBlockUtils::blocksOnly<const VPBasicBlock>(RPOT))
1728     for (const VPRecipeBase &Recipe : *VPBB)
1729       for (VPValue *Def : Recipe.definedValues())
1730         assignSlot(Def);
1731 }
1732 
1733 bool vputils::onlyFirstLaneUsed(VPValue *Def) {
1734   return all_of(Def->users(), [Def](VPUser *U) {
1735     return cast<VPRecipeBase>(U)->onlyFirstLaneUsed(Def);
1736   });
1737 }
1738