1 //===- VPlan.cpp - Vectorizer Plan ----------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This is the LLVM vectorization plan. It represents a candidate for 11 /// vectorization, allowing to plan and optimize how to vectorize a given loop 12 /// before generating LLVM-IR. 13 /// The vectorizer uses vectorization plans to estimate the costs of potential 14 /// candidates and if profitable to execute the desired plan, generating vector 15 /// LLVM-IR code. 16 /// 17 //===----------------------------------------------------------------------===// 18 19 #include "VPlan.h" 20 #include "LoopVectorizationPlanner.h" 21 #include "VPlanCFG.h" 22 #include "VPlanPatternMatch.h" 23 #include "VPlanTransforms.h" 24 #include "VPlanUtils.h" 25 #include "llvm/ADT/PostOrderIterator.h" 26 #include "llvm/ADT/STLExtras.h" 27 #include "llvm/ADT/SmallVector.h" 28 #include "llvm/ADT/StringExtras.h" 29 #include "llvm/ADT/Twine.h" 30 #include "llvm/Analysis/DomTreeUpdater.h" 31 #include "llvm/Analysis/LoopInfo.h" 32 #include "llvm/IR/BasicBlock.h" 33 #include "llvm/IR/CFG.h" 34 #include "llvm/IR/IRBuilder.h" 35 #include "llvm/IR/Instruction.h" 36 #include "llvm/IR/Instructions.h" 37 #include "llvm/IR/Type.h" 38 #include "llvm/IR/Value.h" 39 #include "llvm/Support/Casting.h" 40 #include "llvm/Support/CommandLine.h" 41 #include "llvm/Support/Debug.h" 42 #include "llvm/Support/GraphWriter.h" 43 #include "llvm/Support/raw_ostream.h" 44 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 45 #include "llvm/Transforms/Utils/LoopVersioning.h" 46 #include <cassert> 47 #include <string> 48 49 using namespace llvm; 50 using namespace llvm::VPlanPatternMatch; 51 52 namespace llvm { 53 extern cl::opt<bool> EnableVPlanNativePath; 54 } 55 extern cl::opt<unsigned> ForceTargetInstructionCost; 56 57 static cl::opt<bool> PrintVPlansInDotFormat( 58 "vplan-print-in-dot-format", cl::Hidden, 59 cl::desc("Use dot format instead of plain text when dumping VPlans")); 60 61 #define DEBUG_TYPE "loop-vectorize" 62 63 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 64 raw_ostream &llvm::operator<<(raw_ostream &OS, const VPValue &V) { 65 const VPInstruction *Instr = dyn_cast<VPInstruction>(&V); 66 VPSlotTracker SlotTracker( 67 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr); 68 V.print(OS, SlotTracker); 69 return OS; 70 } 71 #endif 72 73 Value *VPLane::getAsRuntimeExpr(IRBuilderBase &Builder, 74 const ElementCount &VF) const { 75 switch (LaneKind) { 76 case VPLane::Kind::ScalableLast: 77 // Lane = RuntimeVF - VF.getKnownMinValue() + Lane 78 return Builder.CreateSub(getRuntimeVF(Builder, Builder.getInt32Ty(), VF), 79 Builder.getInt32(VF.getKnownMinValue() - Lane)); 80 case VPLane::Kind::First: 81 return Builder.getInt32(Lane); 82 } 83 llvm_unreachable("Unknown lane kind"); 84 } 85 86 VPValue::VPValue(const unsigned char SC, Value *UV, VPDef *Def) 87 : SubclassID(SC), UnderlyingVal(UV), Def(Def) { 88 if (Def) 89 Def->addDefinedValue(this); 90 } 91 92 VPValue::~VPValue() { 93 assert(Users.empty() && "trying to delete a VPValue with remaining users"); 94 if (Def) 95 Def->removeDefinedValue(this); 96 } 97 98 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 99 void VPValue::print(raw_ostream &OS, VPSlotTracker &SlotTracker) const { 100 if (const VPRecipeBase *R = dyn_cast_or_null<VPRecipeBase>(Def)) 101 R->print(OS, "", SlotTracker); 102 else 103 printAsOperand(OS, SlotTracker); 104 } 105 106 void VPValue::dump() const { 107 const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this->Def); 108 VPSlotTracker SlotTracker( 109 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr); 110 print(dbgs(), SlotTracker); 111 dbgs() << "\n"; 112 } 113 114 void VPDef::dump() const { 115 const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this); 116 VPSlotTracker SlotTracker( 117 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr); 118 print(dbgs(), "", SlotTracker); 119 dbgs() << "\n"; 120 } 121 #endif 122 123 VPRecipeBase *VPValue::getDefiningRecipe() { 124 return cast_or_null<VPRecipeBase>(Def); 125 } 126 127 const VPRecipeBase *VPValue::getDefiningRecipe() const { 128 return cast_or_null<VPRecipeBase>(Def); 129 } 130 131 // Get the top-most entry block of \p Start. This is the entry block of the 132 // containing VPlan. This function is templated to support both const and non-const blocks 133 template <typename T> static T *getPlanEntry(T *Start) { 134 T *Next = Start; 135 T *Current = Start; 136 while ((Next = Next->getParent())) 137 Current = Next; 138 139 SmallSetVector<T *, 8> WorkList; 140 WorkList.insert(Current); 141 142 for (unsigned i = 0; i < WorkList.size(); i++) { 143 T *Current = WorkList[i]; 144 if (Current->getNumPredecessors() == 0) 145 return Current; 146 auto &Predecessors = Current->getPredecessors(); 147 WorkList.insert(Predecessors.begin(), Predecessors.end()); 148 } 149 150 llvm_unreachable("VPlan without any entry node without predecessors"); 151 } 152 153 VPlan *VPBlockBase::getPlan() { return getPlanEntry(this)->Plan; } 154 155 const VPlan *VPBlockBase::getPlan() const { return getPlanEntry(this)->Plan; } 156 157 /// \return the VPBasicBlock that is the entry of Block, possibly indirectly. 158 const VPBasicBlock *VPBlockBase::getEntryBasicBlock() const { 159 const VPBlockBase *Block = this; 160 while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 161 Block = Region->getEntry(); 162 return cast<VPBasicBlock>(Block); 163 } 164 165 VPBasicBlock *VPBlockBase::getEntryBasicBlock() { 166 VPBlockBase *Block = this; 167 while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 168 Block = Region->getEntry(); 169 return cast<VPBasicBlock>(Block); 170 } 171 172 void VPBlockBase::setPlan(VPlan *ParentPlan) { 173 assert( 174 (ParentPlan->getEntry() == this || ParentPlan->getPreheader() == this) && 175 "Can only set plan on its entry or preheader block."); 176 Plan = ParentPlan; 177 } 178 179 /// \return the VPBasicBlock that is the exit of Block, possibly indirectly. 180 const VPBasicBlock *VPBlockBase::getExitingBasicBlock() const { 181 const VPBlockBase *Block = this; 182 while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 183 Block = Region->getExiting(); 184 return cast<VPBasicBlock>(Block); 185 } 186 187 VPBasicBlock *VPBlockBase::getExitingBasicBlock() { 188 VPBlockBase *Block = this; 189 while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 190 Block = Region->getExiting(); 191 return cast<VPBasicBlock>(Block); 192 } 193 194 VPBlockBase *VPBlockBase::getEnclosingBlockWithSuccessors() { 195 if (!Successors.empty() || !Parent) 196 return this; 197 assert(Parent->getExiting() == this && 198 "Block w/o successors not the exiting block of its parent."); 199 return Parent->getEnclosingBlockWithSuccessors(); 200 } 201 202 VPBlockBase *VPBlockBase::getEnclosingBlockWithPredecessors() { 203 if (!Predecessors.empty() || !Parent) 204 return this; 205 assert(Parent->getEntry() == this && 206 "Block w/o predecessors not the entry of its parent."); 207 return Parent->getEnclosingBlockWithPredecessors(); 208 } 209 210 void VPBlockBase::deleteCFG(VPBlockBase *Entry) { 211 for (VPBlockBase *Block : to_vector(vp_depth_first_shallow(Entry))) 212 delete Block; 213 } 214 215 VPBasicBlock::iterator VPBasicBlock::getFirstNonPhi() { 216 iterator It = begin(); 217 while (It != end() && It->isPhi()) 218 It++; 219 return It; 220 } 221 222 VPTransformState::VPTransformState(const TargetTransformInfo *TTI, 223 ElementCount VF, unsigned UF, LoopInfo *LI, 224 DominatorTree *DT, IRBuilderBase &Builder, 225 InnerLoopVectorizer *ILV, VPlan *Plan) 226 : TTI(TTI), VF(VF), CFG(DT), LI(LI), Builder(Builder), ILV(ILV), Plan(Plan), 227 LVer(nullptr), TypeAnalysis(Plan->getCanonicalIV()->getScalarType()) {} 228 229 Value *VPTransformState::get(VPValue *Def, const VPLane &Lane) { 230 if (Def->isLiveIn()) 231 return Def->getLiveInIRValue(); 232 233 if (hasScalarValue(Def, Lane)) 234 return Data.VPV2Scalars[Def][Lane.mapToCacheIndex(VF)]; 235 236 if (!Lane.isFirstLane() && vputils::isUniformAfterVectorization(Def) && 237 hasScalarValue(Def, VPLane::getFirstLane())) { 238 return Data.VPV2Scalars[Def][0]; 239 } 240 241 assert(hasVectorValue(Def)); 242 auto *VecPart = Data.VPV2Vector[Def]; 243 if (!VecPart->getType()->isVectorTy()) { 244 assert(Lane.isFirstLane() && "cannot get lane > 0 for scalar"); 245 return VecPart; 246 } 247 // TODO: Cache created scalar values. 248 Value *LaneV = Lane.getAsRuntimeExpr(Builder, VF); 249 auto *Extract = Builder.CreateExtractElement(VecPart, LaneV); 250 // set(Def, Extract, Instance); 251 return Extract; 252 } 253 254 Value *VPTransformState::get(VPValue *Def, bool NeedsScalar) { 255 if (NeedsScalar) { 256 assert((VF.isScalar() || Def->isLiveIn() || hasVectorValue(Def) || 257 !vputils::onlyFirstLaneUsed(Def) || 258 (hasScalarValue(Def, VPLane(0)) && 259 Data.VPV2Scalars[Def].size() == 1)) && 260 "Trying to access a single scalar per part but has multiple scalars " 261 "per part."); 262 return get(Def, VPLane(0)); 263 } 264 265 // If Values have been set for this Def return the one relevant for \p Part. 266 if (hasVectorValue(Def)) 267 return Data.VPV2Vector[Def]; 268 269 auto GetBroadcastInstrs = [this, Def](Value *V) { 270 bool SafeToHoist = Def->isDefinedOutsideLoopRegions(); 271 if (VF.isScalar()) 272 return V; 273 // Place the code for broadcasting invariant variables in the new preheader. 274 IRBuilder<>::InsertPointGuard Guard(Builder); 275 if (SafeToHoist) { 276 BasicBlock *LoopVectorPreHeader = 277 CFG.VPBB2IRBB[Plan->getVectorPreheader()]; 278 if (LoopVectorPreHeader) 279 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 280 } 281 282 // Place the code for broadcasting invariant variables in the new preheader. 283 // Broadcast the scalar into all locations in the vector. 284 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 285 286 return Shuf; 287 }; 288 289 if (!hasScalarValue(Def, {0})) { 290 assert(Def->isLiveIn() && "expected a live-in"); 291 Value *IRV = Def->getLiveInIRValue(); 292 Value *B = GetBroadcastInstrs(IRV); 293 set(Def, B); 294 return B; 295 } 296 297 Value *ScalarValue = get(Def, VPLane(0)); 298 // If we aren't vectorizing, we can just copy the scalar map values over 299 // to the vector map. 300 if (VF.isScalar()) { 301 set(Def, ScalarValue); 302 return ScalarValue; 303 } 304 305 bool IsUniform = vputils::isUniformAfterVectorization(Def); 306 307 VPLane LastLane(IsUniform ? 0 : VF.getKnownMinValue() - 1); 308 // Check if there is a scalar value for the selected lane. 309 if (!hasScalarValue(Def, LastLane)) { 310 // At the moment, VPWidenIntOrFpInductionRecipes, VPScalarIVStepsRecipes and 311 // VPExpandSCEVRecipes can also be uniform. 312 assert((isa<VPWidenIntOrFpInductionRecipe>(Def->getDefiningRecipe()) || 313 isa<VPScalarIVStepsRecipe>(Def->getDefiningRecipe()) || 314 isa<VPExpandSCEVRecipe>(Def->getDefiningRecipe())) && 315 "unexpected recipe found to be invariant"); 316 IsUniform = true; 317 LastLane = 0; 318 } 319 320 auto *LastInst = cast<Instruction>(get(Def, LastLane)); 321 // Set the insert point after the last scalarized instruction or after the 322 // last PHI, if LastInst is a PHI. This ensures the insertelement sequence 323 // will directly follow the scalar definitions. 324 auto OldIP = Builder.saveIP(); 325 auto NewIP = 326 isa<PHINode>(LastInst) 327 ? BasicBlock::iterator(LastInst->getParent()->getFirstNonPHI()) 328 : std::next(BasicBlock::iterator(LastInst)); 329 Builder.SetInsertPoint(&*NewIP); 330 331 // However, if we are vectorizing, we need to construct the vector values. 332 // If the value is known to be uniform after vectorization, we can just 333 // broadcast the scalar value corresponding to lane zero. Otherwise, we 334 // construct the vector values using insertelement instructions. Since the 335 // resulting vectors are stored in State, we will only generate the 336 // insertelements once. 337 Value *VectorValue = nullptr; 338 if (IsUniform) { 339 VectorValue = GetBroadcastInstrs(ScalarValue); 340 set(Def, VectorValue); 341 } else { 342 // Initialize packing with insertelements to start from undef. 343 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 344 Value *Undef = PoisonValue::get(VectorType::get(LastInst->getType(), VF)); 345 set(Def, Undef); 346 for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane) 347 packScalarIntoVectorValue(Def, Lane); 348 VectorValue = get(Def); 349 } 350 Builder.restoreIP(OldIP); 351 return VectorValue; 352 } 353 354 BasicBlock *VPTransformState::CFGState::getPreheaderBBFor(VPRecipeBase *R) { 355 VPRegionBlock *LoopRegion = R->getParent()->getEnclosingLoopRegion(); 356 return VPBB2IRBB[LoopRegion->getPreheaderVPBB()]; 357 } 358 359 void VPTransformState::addNewMetadata(Instruction *To, 360 const Instruction *Orig) { 361 // If the loop was versioned with memchecks, add the corresponding no-alias 362 // metadata. 363 if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig))) 364 LVer->annotateInstWithNoAlias(To, Orig); 365 } 366 367 void VPTransformState::addMetadata(Value *To, Instruction *From) { 368 // No source instruction to transfer metadata from? 369 if (!From) 370 return; 371 372 if (Instruction *ToI = dyn_cast<Instruction>(To)) { 373 propagateMetadata(ToI, From); 374 addNewMetadata(ToI, From); 375 } 376 } 377 378 void VPTransformState::setDebugLocFrom(DebugLoc DL) { 379 const DILocation *DIL = DL; 380 // When a FSDiscriminator is enabled, we don't need to add the multiply 381 // factors to the discriminators. 382 if (DIL && 383 Builder.GetInsertBlock() 384 ->getParent() 385 ->shouldEmitDebugInfoForProfiling() && 386 !EnableFSDiscriminator) { 387 // FIXME: For scalable vectors, assume vscale=1. 388 unsigned UF = Plan->getUF(); 389 auto NewDIL = 390 DIL->cloneByMultiplyingDuplicationFactor(UF * VF.getKnownMinValue()); 391 if (NewDIL) 392 Builder.SetCurrentDebugLocation(*NewDIL); 393 else 394 LLVM_DEBUG(dbgs() << "Failed to create new discriminator: " 395 << DIL->getFilename() << " Line: " << DIL->getLine()); 396 } else 397 Builder.SetCurrentDebugLocation(DIL); 398 } 399 400 void VPTransformState::packScalarIntoVectorValue(VPValue *Def, 401 const VPLane &Lane) { 402 Value *ScalarInst = get(Def, Lane); 403 Value *VectorValue = get(Def); 404 VectorValue = Builder.CreateInsertElement(VectorValue, ScalarInst, 405 Lane.getAsRuntimeExpr(Builder, VF)); 406 set(Def, VectorValue); 407 } 408 409 BasicBlock * 410 VPBasicBlock::createEmptyBasicBlock(VPTransformState::CFGState &CFG) { 411 // BB stands for IR BasicBlocks. VPBB stands for VPlan VPBasicBlocks. 412 // Pred stands for Predessor. Prev stands for Previous - last visited/created. 413 BasicBlock *PrevBB = CFG.PrevBB; 414 BasicBlock *NewBB = BasicBlock::Create(PrevBB->getContext(), getName(), 415 PrevBB->getParent(), CFG.ExitBB); 416 LLVM_DEBUG(dbgs() << "LV: created " << NewBB->getName() << '\n'); 417 418 return NewBB; 419 } 420 421 void VPBasicBlock::connectToPredecessors(VPTransformState::CFGState &CFG) { 422 BasicBlock *NewBB = CFG.VPBB2IRBB[this]; 423 // Hook up the new basic block to its predecessors. 424 for (VPBlockBase *PredVPBlock : getHierarchicalPredecessors()) { 425 VPBasicBlock *PredVPBB = PredVPBlock->getExitingBasicBlock(); 426 auto &PredVPSuccessors = PredVPBB->getHierarchicalSuccessors(); 427 BasicBlock *PredBB = CFG.VPBB2IRBB[PredVPBB]; 428 429 assert(PredBB && "Predecessor basic-block not found building successor."); 430 auto *PredBBTerminator = PredBB->getTerminator(); 431 LLVM_DEBUG(dbgs() << "LV: draw edge from" << PredBB->getName() << '\n'); 432 433 auto *TermBr = dyn_cast<BranchInst>(PredBBTerminator); 434 if (isa<UnreachableInst>(PredBBTerminator)) { 435 assert(PredVPSuccessors.size() == 1 && 436 "Predecessor ending w/o branch must have single successor."); 437 DebugLoc DL = PredBBTerminator->getDebugLoc(); 438 PredBBTerminator->eraseFromParent(); 439 auto *Br = BranchInst::Create(NewBB, PredBB); 440 Br->setDebugLoc(DL); 441 } else if (TermBr && !TermBr->isConditional()) { 442 TermBr->setSuccessor(0, NewBB); 443 } else { 444 // Set each forward successor here when it is created, excluding 445 // backedges. A backward successor is set when the branch is created. 446 unsigned idx = PredVPSuccessors.front() == this ? 0 : 1; 447 assert( 448 (!TermBr->getSuccessor(idx) || 449 (isa<VPIRBasicBlock>(this) && TermBr->getSuccessor(idx) == NewBB)) && 450 "Trying to reset an existing successor block."); 451 TermBr->setSuccessor(idx, NewBB); 452 } 453 CFG.DTU.applyUpdates({{DominatorTree::Insert, PredBB, NewBB}}); 454 } 455 } 456 457 void VPIRBasicBlock::execute(VPTransformState *State) { 458 assert(getHierarchicalSuccessors().size() <= 2 && 459 "VPIRBasicBlock can have at most two successors at the moment!"); 460 State->Builder.SetInsertPoint(IRBB->getTerminator()); 461 State->CFG.PrevBB = IRBB; 462 State->CFG.VPBB2IRBB[this] = IRBB; 463 executeRecipes(State, IRBB); 464 // Create a branch instruction to terminate IRBB if one was not created yet 465 // and is needed. 466 if (getSingleSuccessor() && isa<UnreachableInst>(IRBB->getTerminator())) { 467 auto *Br = State->Builder.CreateBr(IRBB); 468 Br->setOperand(0, nullptr); 469 IRBB->getTerminator()->eraseFromParent(); 470 } else { 471 assert( 472 (getNumSuccessors() == 0 || isa<BranchInst>(IRBB->getTerminator())) && 473 "other blocks must be terminated by a branch"); 474 } 475 476 connectToPredecessors(State->CFG); 477 } 478 479 void VPBasicBlock::execute(VPTransformState *State) { 480 bool Replica = bool(State->Lane); 481 VPBasicBlock *PrevVPBB = State->CFG.PrevVPBB; 482 VPBlockBase *SingleHPred = nullptr; 483 BasicBlock *NewBB = State->CFG.PrevBB; // Reuse it if possible. 484 485 auto IsLoopRegion = [](VPBlockBase *BB) { 486 auto *R = dyn_cast<VPRegionBlock>(BB); 487 return R && !R->isReplicator(); 488 }; 489 490 // 1. Create an IR basic block. 491 if (PrevVPBB && /* A */ 492 !((SingleHPred = getSingleHierarchicalPredecessor()) && 493 SingleHPred->getExitingBasicBlock() == PrevVPBB && 494 PrevVPBB->getSingleHierarchicalSuccessor() && 495 (SingleHPred->getParent() == getEnclosingLoopRegion() && 496 !IsLoopRegion(SingleHPred))) && /* B */ 497 !(Replica && getPredecessors().empty())) { /* C */ 498 // The last IR basic block is reused, as an optimization, in three cases: 499 // A. the first VPBB reuses the loop pre-header BB - when PrevVPBB is null; 500 // B. when the current VPBB has a single (hierarchical) predecessor which 501 // is PrevVPBB and the latter has a single (hierarchical) successor which 502 // both are in the same non-replicator region; and 503 // C. when the current VPBB is an entry of a region replica - where PrevVPBB 504 // is the exiting VPBB of this region from a previous instance, or the 505 // predecessor of this region. 506 507 NewBB = createEmptyBasicBlock(State->CFG); 508 509 State->Builder.SetInsertPoint(NewBB); 510 // Temporarily terminate with unreachable until CFG is rewired. 511 UnreachableInst *Terminator = State->Builder.CreateUnreachable(); 512 // Register NewBB in its loop. In innermost loops its the same for all 513 // BB's. 514 if (State->CurrentVectorLoop) 515 State->CurrentVectorLoop->addBasicBlockToLoop(NewBB, *State->LI); 516 State->Builder.SetInsertPoint(Terminator); 517 518 State->CFG.PrevBB = NewBB; 519 State->CFG.VPBB2IRBB[this] = NewBB; 520 connectToPredecessors(State->CFG); 521 } else { 522 State->CFG.VPBB2IRBB[this] = NewBB; 523 } 524 525 // 2. Fill the IR basic block with IR instructions. 526 executeRecipes(State, NewBB); 527 } 528 529 void VPBasicBlock::dropAllReferences(VPValue *NewValue) { 530 for (VPRecipeBase &R : Recipes) { 531 for (auto *Def : R.definedValues()) 532 Def->replaceAllUsesWith(NewValue); 533 534 for (unsigned I = 0, E = R.getNumOperands(); I != E; I++) 535 R.setOperand(I, NewValue); 536 } 537 } 538 539 void VPBasicBlock::executeRecipes(VPTransformState *State, BasicBlock *BB) { 540 LLVM_DEBUG(dbgs() << "LV: vectorizing VPBB:" << getName() 541 << " in BB:" << BB->getName() << '\n'); 542 543 State->CFG.PrevVPBB = this; 544 545 for (VPRecipeBase &Recipe : Recipes) 546 Recipe.execute(*State); 547 548 LLVM_DEBUG(dbgs() << "LV: filled BB:" << *BB); 549 } 550 551 VPBasicBlock *VPBasicBlock::splitAt(iterator SplitAt) { 552 assert((SplitAt == end() || SplitAt->getParent() == this) && 553 "can only split at a position in the same block"); 554 555 SmallVector<VPBlockBase *, 2> Succs(successors()); 556 // Create new empty block after the block to split. 557 auto *SplitBlock = new VPBasicBlock(getName() + ".split"); 558 VPBlockUtils::insertBlockAfter(SplitBlock, this); 559 560 // Finally, move the recipes starting at SplitAt to new block. 561 for (VPRecipeBase &ToMove : 562 make_early_inc_range(make_range(SplitAt, this->end()))) 563 ToMove.moveBefore(*SplitBlock, SplitBlock->end()); 564 565 return SplitBlock; 566 } 567 568 /// Return the enclosing loop region for region \p P. The templated version is 569 /// used to support both const and non-const block arguments. 570 template <typename T> static T *getEnclosingLoopRegionForRegion(T *P) { 571 if (P && P->isReplicator()) { 572 P = P->getParent(); 573 assert(!cast<VPRegionBlock>(P)->isReplicator() && 574 "unexpected nested replicate regions"); 575 } 576 return P; 577 } 578 579 VPRegionBlock *VPBasicBlock::getEnclosingLoopRegion() { 580 return getEnclosingLoopRegionForRegion(getParent()); 581 } 582 583 const VPRegionBlock *VPBasicBlock::getEnclosingLoopRegion() const { 584 return getEnclosingLoopRegionForRegion(getParent()); 585 } 586 587 static bool hasConditionalTerminator(const VPBasicBlock *VPBB) { 588 if (VPBB->empty()) { 589 assert( 590 VPBB->getNumSuccessors() < 2 && 591 "block with multiple successors doesn't have a recipe as terminator"); 592 return false; 593 } 594 595 const VPRecipeBase *R = &VPBB->back(); 596 bool IsCondBranch = isa<VPBranchOnMaskRecipe>(R) || 597 match(R, m_BranchOnCond(m_VPValue())) || 598 match(R, m_BranchOnCount(m_VPValue(), m_VPValue())); 599 (void)IsCondBranch; 600 601 if (VPBB->getNumSuccessors() >= 2 || 602 (VPBB->isExiting() && !VPBB->getParent()->isReplicator())) { 603 assert(IsCondBranch && "block with multiple successors not terminated by " 604 "conditional branch recipe"); 605 606 return true; 607 } 608 609 assert( 610 !IsCondBranch && 611 "block with 0 or 1 successors terminated by conditional branch recipe"); 612 return false; 613 } 614 615 VPRecipeBase *VPBasicBlock::getTerminator() { 616 if (hasConditionalTerminator(this)) 617 return &back(); 618 return nullptr; 619 } 620 621 const VPRecipeBase *VPBasicBlock::getTerminator() const { 622 if (hasConditionalTerminator(this)) 623 return &back(); 624 return nullptr; 625 } 626 627 bool VPBasicBlock::isExiting() const { 628 return getParent() && getParent()->getExitingBasicBlock() == this; 629 } 630 631 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 632 void VPBlockBase::printSuccessors(raw_ostream &O, const Twine &Indent) const { 633 if (getSuccessors().empty()) { 634 O << Indent << "No successors\n"; 635 } else { 636 O << Indent << "Successor(s): "; 637 ListSeparator LS; 638 for (auto *Succ : getSuccessors()) 639 O << LS << Succ->getName(); 640 O << '\n'; 641 } 642 } 643 644 void VPBasicBlock::print(raw_ostream &O, const Twine &Indent, 645 VPSlotTracker &SlotTracker) const { 646 O << Indent << getName() << ":\n"; 647 648 auto RecipeIndent = Indent + " "; 649 for (const VPRecipeBase &Recipe : *this) { 650 Recipe.print(O, RecipeIndent, SlotTracker); 651 O << '\n'; 652 } 653 654 printSuccessors(O, Indent); 655 } 656 #endif 657 658 static std::pair<VPBlockBase *, VPBlockBase *> cloneFrom(VPBlockBase *Entry); 659 660 // Clone the CFG for all nodes reachable from \p Entry, this includes cloning 661 // the blocks and their recipes. Operands of cloned recipes will NOT be updated. 662 // Remapping of operands must be done separately. Returns a pair with the new 663 // entry and exiting blocks of the cloned region. If \p Entry isn't part of a 664 // region, return nullptr for the exiting block. 665 static std::pair<VPBlockBase *, VPBlockBase *> cloneFrom(VPBlockBase *Entry) { 666 DenseMap<VPBlockBase *, VPBlockBase *> Old2NewVPBlocks; 667 VPBlockBase *Exiting = nullptr; 668 bool InRegion = Entry->getParent(); 669 // First, clone blocks reachable from Entry. 670 for (VPBlockBase *BB : vp_depth_first_shallow(Entry)) { 671 VPBlockBase *NewBB = BB->clone(); 672 Old2NewVPBlocks[BB] = NewBB; 673 if (InRegion && BB->getNumSuccessors() == 0) { 674 assert(!Exiting && "Multiple exiting blocks?"); 675 Exiting = BB; 676 } 677 } 678 assert((!InRegion || Exiting) && "regions must have a single exiting block"); 679 680 // Second, update the predecessors & successors of the cloned blocks. 681 for (VPBlockBase *BB : vp_depth_first_shallow(Entry)) { 682 VPBlockBase *NewBB = Old2NewVPBlocks[BB]; 683 SmallVector<VPBlockBase *> NewPreds; 684 for (VPBlockBase *Pred : BB->getPredecessors()) { 685 NewPreds.push_back(Old2NewVPBlocks[Pred]); 686 } 687 NewBB->setPredecessors(NewPreds); 688 SmallVector<VPBlockBase *> NewSuccs; 689 for (VPBlockBase *Succ : BB->successors()) { 690 NewSuccs.push_back(Old2NewVPBlocks[Succ]); 691 } 692 NewBB->setSuccessors(NewSuccs); 693 } 694 695 #if !defined(NDEBUG) 696 // Verify that the order of predecessors and successors matches in the cloned 697 // version. 698 for (const auto &[OldBB, NewBB] : 699 zip(vp_depth_first_shallow(Entry), 700 vp_depth_first_shallow(Old2NewVPBlocks[Entry]))) { 701 for (const auto &[OldPred, NewPred] : 702 zip(OldBB->getPredecessors(), NewBB->getPredecessors())) 703 assert(NewPred == Old2NewVPBlocks[OldPred] && "Different predecessors"); 704 705 for (const auto &[OldSucc, NewSucc] : 706 zip(OldBB->successors(), NewBB->successors())) 707 assert(NewSucc == Old2NewVPBlocks[OldSucc] && "Different successors"); 708 } 709 #endif 710 711 return std::make_pair(Old2NewVPBlocks[Entry], 712 Exiting ? Old2NewVPBlocks[Exiting] : nullptr); 713 } 714 715 VPRegionBlock *VPRegionBlock::clone() { 716 const auto &[NewEntry, NewExiting] = cloneFrom(getEntry()); 717 auto *NewRegion = 718 new VPRegionBlock(NewEntry, NewExiting, getName(), isReplicator()); 719 for (VPBlockBase *Block : vp_depth_first_shallow(NewEntry)) 720 Block->setParent(NewRegion); 721 return NewRegion; 722 } 723 724 void VPRegionBlock::dropAllReferences(VPValue *NewValue) { 725 for (VPBlockBase *Block : vp_depth_first_shallow(Entry)) 726 // Drop all references in VPBasicBlocks and replace all uses with 727 // DummyValue. 728 Block->dropAllReferences(NewValue); 729 } 730 731 void VPRegionBlock::execute(VPTransformState *State) { 732 ReversePostOrderTraversal<VPBlockShallowTraversalWrapper<VPBlockBase *>> 733 RPOT(Entry); 734 735 if (!isReplicator()) { 736 // Create and register the new vector loop. 737 Loop *PrevLoop = State->CurrentVectorLoop; 738 State->CurrentVectorLoop = State->LI->AllocateLoop(); 739 BasicBlock *VectorPH = State->CFG.VPBB2IRBB[getPreheaderVPBB()]; 740 Loop *ParentLoop = State->LI->getLoopFor(VectorPH); 741 742 // Insert the new loop into the loop nest and register the new basic blocks 743 // before calling any utilities such as SCEV that require valid LoopInfo. 744 if (ParentLoop) 745 ParentLoop->addChildLoop(State->CurrentVectorLoop); 746 else 747 State->LI->addTopLevelLoop(State->CurrentVectorLoop); 748 749 // Visit the VPBlocks connected to "this", starting from it. 750 for (VPBlockBase *Block : RPOT) { 751 LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n'); 752 Block->execute(State); 753 } 754 755 State->CurrentVectorLoop = PrevLoop; 756 return; 757 } 758 759 assert(!State->Lane && "Replicating a Region with non-null instance."); 760 761 // Enter replicating mode. 762 assert(!State->VF.isScalable() && "VF is assumed to be non scalable."); 763 State->Lane = VPLane(0); 764 for (unsigned Lane = 0, VF = State->VF.getKnownMinValue(); Lane < VF; 765 ++Lane) { 766 State->Lane = VPLane(Lane, VPLane::Kind::First); 767 // Visit the VPBlocks connected to \p this, starting from it. 768 for (VPBlockBase *Block : RPOT) { 769 LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n'); 770 Block->execute(State); 771 } 772 } 773 774 // Exit replicating mode. 775 State->Lane.reset(); 776 } 777 778 InstructionCost VPBasicBlock::cost(ElementCount VF, VPCostContext &Ctx) { 779 InstructionCost Cost = 0; 780 for (VPRecipeBase &R : Recipes) 781 Cost += R.cost(VF, Ctx); 782 return Cost; 783 } 784 785 InstructionCost VPRegionBlock::cost(ElementCount VF, VPCostContext &Ctx) { 786 if (!isReplicator()) { 787 InstructionCost Cost = 0; 788 for (VPBlockBase *Block : vp_depth_first_shallow(getEntry())) 789 Cost += Block->cost(VF, Ctx); 790 InstructionCost BackedgeCost = 791 ForceTargetInstructionCost.getNumOccurrences() 792 ? InstructionCost(ForceTargetInstructionCost.getNumOccurrences()) 793 : Ctx.TTI.getCFInstrCost(Instruction::Br, TTI::TCK_RecipThroughput); 794 LLVM_DEBUG(dbgs() << "Cost of " << BackedgeCost << " for VF " << VF 795 << ": vector loop backedge\n"); 796 Cost += BackedgeCost; 797 return Cost; 798 } 799 800 // Compute the cost of a replicate region. Replicating isn't supported for 801 // scalable vectors, return an invalid cost for them. 802 // TODO: Discard scalable VPlans with replicate recipes earlier after 803 // construction. 804 if (VF.isScalable()) 805 return InstructionCost::getInvalid(); 806 807 // First compute the cost of the conditionally executed recipes, followed by 808 // account for the branching cost, except if the mask is a header mask or 809 // uniform condition. 810 using namespace llvm::VPlanPatternMatch; 811 VPBasicBlock *Then = cast<VPBasicBlock>(getEntry()->getSuccessors()[0]); 812 InstructionCost ThenCost = Then->cost(VF, Ctx); 813 814 // For the scalar case, we may not always execute the original predicated 815 // block, Thus, scale the block's cost by the probability of executing it. 816 if (VF.isScalar()) 817 return ThenCost / getReciprocalPredBlockProb(); 818 819 return ThenCost; 820 } 821 822 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 823 void VPRegionBlock::print(raw_ostream &O, const Twine &Indent, 824 VPSlotTracker &SlotTracker) const { 825 O << Indent << (isReplicator() ? "<xVFxUF> " : "<x1> ") << getName() << ": {"; 826 auto NewIndent = Indent + " "; 827 for (auto *BlockBase : vp_depth_first_shallow(Entry)) { 828 O << '\n'; 829 BlockBase->print(O, NewIndent, SlotTracker); 830 } 831 O << Indent << "}\n"; 832 833 printSuccessors(O, Indent); 834 } 835 #endif 836 837 VPlan::~VPlan() { 838 if (Entry) { 839 VPValue DummyValue; 840 for (VPBlockBase *Block : vp_depth_first_shallow(Entry)) 841 Block->dropAllReferences(&DummyValue); 842 843 VPBlockBase::deleteCFG(Entry); 844 845 Preheader->dropAllReferences(&DummyValue); 846 delete Preheader; 847 } 848 for (VPValue *VPV : VPLiveInsToFree) 849 delete VPV; 850 if (BackedgeTakenCount) 851 delete BackedgeTakenCount; 852 } 853 854 VPIRBasicBlock *VPIRBasicBlock::fromBasicBlock(BasicBlock *IRBB) { 855 auto *VPIRBB = new VPIRBasicBlock(IRBB); 856 for (Instruction &I : 857 make_range(IRBB->begin(), IRBB->getTerminator()->getIterator())) 858 VPIRBB->appendRecipe(new VPIRInstruction(I)); 859 return VPIRBB; 860 } 861 862 VPlanPtr VPlan::createInitialVPlan(Type *InductionTy, 863 PredicatedScalarEvolution &PSE, 864 bool RequiresScalarEpilogueCheck, 865 bool TailFolded, Loop *TheLoop) { 866 VPIRBasicBlock *Entry = 867 VPIRBasicBlock::fromBasicBlock(TheLoop->getLoopPreheader()); 868 VPBasicBlock *VecPreheader = new VPBasicBlock("vector.ph"); 869 VPIRBasicBlock *ScalarHeader = 870 VPIRBasicBlock::fromBasicBlock(TheLoop->getHeader()); 871 auto Plan = std::make_unique<VPlan>(Entry, VecPreheader, ScalarHeader); 872 873 // Create SCEV and VPValue for the trip count. 874 875 // Currently only loops with countable exits are vectorized, but calling 876 // getSymbolicMaxBackedgeTakenCount allows enablement work for loops with 877 // uncountable exits whilst also ensuring the symbolic maximum and known 878 // back-edge taken count remain identical for loops with countable exits. 879 const SCEV *BackedgeTakenCountSCEV = PSE.getSymbolicMaxBackedgeTakenCount(); 880 assert((!isa<SCEVCouldNotCompute>(BackedgeTakenCountSCEV) && 881 BackedgeTakenCountSCEV == PSE.getBackedgeTakenCount()) && 882 "Invalid loop count"); 883 ScalarEvolution &SE = *PSE.getSE(); 884 const SCEV *TripCount = SE.getTripCountFromExitCount(BackedgeTakenCountSCEV, 885 InductionTy, TheLoop); 886 Plan->TripCount = 887 vputils::getOrCreateVPValueForSCEVExpr(*Plan, TripCount, SE); 888 889 // Create VPRegionBlock, with empty header and latch blocks, to be filled 890 // during processing later. 891 VPBasicBlock *HeaderVPBB = new VPBasicBlock("vector.body"); 892 VPBasicBlock *LatchVPBB = new VPBasicBlock("vector.latch"); 893 VPBlockUtils::insertBlockAfter(LatchVPBB, HeaderVPBB); 894 auto *TopRegion = new VPRegionBlock(HeaderVPBB, LatchVPBB, "vector loop", 895 false /*isReplicator*/); 896 897 VPBlockUtils::insertBlockAfter(TopRegion, VecPreheader); 898 VPBasicBlock *MiddleVPBB = new VPBasicBlock("middle.block"); 899 VPBlockUtils::insertBlockAfter(MiddleVPBB, TopRegion); 900 901 VPBasicBlock *ScalarPH = new VPBasicBlock("scalar.ph"); 902 VPBlockUtils::connectBlocks(ScalarPH, ScalarHeader); 903 if (!RequiresScalarEpilogueCheck) { 904 VPBlockUtils::connectBlocks(MiddleVPBB, ScalarPH); 905 return Plan; 906 } 907 908 // If needed, add a check in the middle block to see if we have completed 909 // all of the iterations in the first vector loop. Three cases: 910 // 1) If (N - N%VF) == N, then we *don't* need to run the remainder. 911 // Thus if tail is to be folded, we know we don't need to run the 912 // remainder and we can set the condition to true. 913 // 2) If we require a scalar epilogue, there is no conditional branch as 914 // we unconditionally branch to the scalar preheader. Do nothing. 915 // 3) Otherwise, construct a runtime check. 916 BasicBlock *IRExitBlock = TheLoop->getUniqueExitBlock(); 917 auto *VPExitBlock = VPIRBasicBlock::fromBasicBlock(IRExitBlock); 918 // The connection order corresponds to the operands of the conditional branch. 919 VPBlockUtils::insertBlockAfter(VPExitBlock, MiddleVPBB); 920 VPBlockUtils::connectBlocks(MiddleVPBB, ScalarPH); 921 922 auto *ScalarLatchTerm = TheLoop->getLoopLatch()->getTerminator(); 923 // Here we use the same DebugLoc as the scalar loop latch terminator instead 924 // of the corresponding compare because they may have ended up with 925 // different line numbers and we want to avoid awkward line stepping while 926 // debugging. Eg. if the compare has got a line number inside the loop. 927 VPBuilder Builder(MiddleVPBB); 928 VPValue *Cmp = 929 TailFolded 930 ? Plan->getOrAddLiveIn(ConstantInt::getTrue( 931 IntegerType::getInt1Ty(TripCount->getType()->getContext()))) 932 : Builder.createICmp(CmpInst::ICMP_EQ, Plan->getTripCount(), 933 &Plan->getVectorTripCount(), 934 ScalarLatchTerm->getDebugLoc(), "cmp.n"); 935 Builder.createNaryOp(VPInstruction::BranchOnCond, {Cmp}, 936 ScalarLatchTerm->getDebugLoc()); 937 return Plan; 938 } 939 940 void VPlan::prepareToExecute(Value *TripCountV, Value *VectorTripCountV, 941 Value *CanonicalIVStartValue, 942 VPTransformState &State) { 943 Type *TCTy = TripCountV->getType(); 944 // Check if the backedge taken count is needed, and if so build it. 945 if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) { 946 IRBuilder<> Builder(State.CFG.PrevBB->getTerminator()); 947 auto *TCMO = Builder.CreateSub(TripCountV, ConstantInt::get(TCTy, 1), 948 "trip.count.minus.1"); 949 BackedgeTakenCount->setUnderlyingValue(TCMO); 950 } 951 952 VectorTripCount.setUnderlyingValue(VectorTripCountV); 953 954 IRBuilder<> Builder(State.CFG.PrevBB->getTerminator()); 955 // FIXME: Model VF * UF computation completely in VPlan. 956 assert(VFxUF.getNumUsers() && "VFxUF expected to always have users"); 957 unsigned UF = getUF(); 958 if (VF.getNumUsers()) { 959 Value *RuntimeVF = getRuntimeVF(Builder, TCTy, State.VF); 960 VF.setUnderlyingValue(RuntimeVF); 961 VFxUF.setUnderlyingValue( 962 UF > 1 ? Builder.CreateMul(RuntimeVF, ConstantInt::get(TCTy, UF)) 963 : RuntimeVF); 964 } else { 965 VFxUF.setUnderlyingValue(createStepForVF(Builder, TCTy, State.VF, UF)); 966 } 967 968 // When vectorizing the epilogue loop, the canonical induction start value 969 // needs to be changed from zero to the value after the main vector loop. 970 // FIXME: Improve modeling for canonical IV start values in the epilogue loop. 971 if (CanonicalIVStartValue) { 972 VPValue *VPV = getOrAddLiveIn(CanonicalIVStartValue); 973 auto *IV = getCanonicalIV(); 974 assert(all_of(IV->users(), 975 [](const VPUser *U) { 976 return isa<VPScalarIVStepsRecipe>(U) || 977 isa<VPScalarCastRecipe>(U) || 978 isa<VPDerivedIVRecipe>(U) || 979 cast<VPInstruction>(U)->getOpcode() == 980 Instruction::Add; 981 }) && 982 "the canonical IV should only be used by its increment or " 983 "ScalarIVSteps when resetting the start value"); 984 IV->setOperand(0, VPV); 985 } 986 } 987 988 /// Replace \p VPBB with a VPIRBasicBlock wrapping \p IRBB. All recipes from \p 989 /// VPBB are moved to the end of the newly created VPIRBasicBlock. VPBB must 990 /// have a single predecessor, which is rewired to the new VPIRBasicBlock. All 991 /// successors of VPBB, if any, are rewired to the new VPIRBasicBlock. 992 static void replaceVPBBWithIRVPBB(VPBasicBlock *VPBB, BasicBlock *IRBB) { 993 VPIRBasicBlock *IRVPBB = VPIRBasicBlock::fromBasicBlock(IRBB); 994 for (auto &R : make_early_inc_range(*VPBB)) { 995 assert(!R.isPhi() && "Tried to move phi recipe to end of block"); 996 R.moveBefore(*IRVPBB, IRVPBB->end()); 997 } 998 999 VPBlockUtils::reassociateBlocks(VPBB, IRVPBB); 1000 1001 delete VPBB; 1002 } 1003 1004 /// Generate the code inside the preheader and body of the vectorized loop. 1005 /// Assumes a single pre-header basic-block was created for this. Introduce 1006 /// additional basic-blocks as needed, and fill them all. 1007 void VPlan::execute(VPTransformState *State) { 1008 // Initialize CFG state. 1009 State->CFG.PrevVPBB = nullptr; 1010 State->CFG.ExitBB = State->CFG.PrevBB->getSingleSuccessor(); 1011 BasicBlock *VectorPreHeader = State->CFG.PrevBB; 1012 State->Builder.SetInsertPoint(VectorPreHeader->getTerminator()); 1013 1014 // Disconnect VectorPreHeader from ExitBB in both the CFG and DT. 1015 cast<BranchInst>(VectorPreHeader->getTerminator())->setSuccessor(0, nullptr); 1016 State->CFG.DTU.applyUpdates( 1017 {{DominatorTree::Delete, VectorPreHeader, State->CFG.ExitBB}}); 1018 1019 // Replace regular VPBB's for the middle and scalar preheader blocks with 1020 // VPIRBasicBlocks wrapping their IR blocks. The IR blocks are created during 1021 // skeleton creation, so we can only create the VPIRBasicBlocks now during 1022 // VPlan execution rather than earlier during VPlan construction. 1023 BasicBlock *MiddleBB = State->CFG.ExitBB; 1024 VPBasicBlock *MiddleVPBB = getMiddleBlock(); 1025 BasicBlock *ScalarPh = MiddleBB->getSingleSuccessor(); 1026 replaceVPBBWithIRVPBB(getScalarPreheader(), ScalarPh); 1027 replaceVPBBWithIRVPBB(MiddleVPBB, MiddleBB); 1028 1029 // Disconnect the middle block from its single successor (the scalar loop 1030 // header) in both the CFG and DT. The branch will be recreated during VPlan 1031 // execution. 1032 auto *BrInst = new UnreachableInst(MiddleBB->getContext()); 1033 BrInst->insertBefore(MiddleBB->getTerminator()); 1034 MiddleBB->getTerminator()->eraseFromParent(); 1035 State->CFG.DTU.applyUpdates({{DominatorTree::Delete, MiddleBB, ScalarPh}}); 1036 // Disconnect scalar preheader and scalar header, as the dominator tree edge 1037 // will be updated as part of VPlan execution. This allows keeping the DTU 1038 // logic generic during VPlan execution. 1039 State->CFG.DTU.applyUpdates( 1040 {{DominatorTree::Delete, ScalarPh, ScalarPh->getSingleSuccessor()}}); 1041 1042 // Generate code in the loop pre-header and body. 1043 for (VPBlockBase *Block : vp_depth_first_shallow(Entry)) 1044 Block->execute(State); 1045 1046 VPBasicBlock *LatchVPBB = getVectorLoopRegion()->getExitingBasicBlock(); 1047 BasicBlock *VectorLatchBB = State->CFG.VPBB2IRBB[LatchVPBB]; 1048 1049 // Fix the latch value of canonical, reduction and first-order recurrences 1050 // phis in the vector loop. 1051 VPBasicBlock *Header = getVectorLoopRegion()->getEntryBasicBlock(); 1052 for (VPRecipeBase &R : Header->phis()) { 1053 // Skip phi-like recipes that generate their backedege values themselves. 1054 if (isa<VPWidenPHIRecipe>(&R)) 1055 continue; 1056 1057 if (isa<VPWidenPointerInductionRecipe>(&R) || 1058 isa<VPWidenIntOrFpInductionRecipe>(&R)) { 1059 PHINode *Phi = nullptr; 1060 if (isa<VPWidenIntOrFpInductionRecipe>(&R)) { 1061 Phi = cast<PHINode>(State->get(R.getVPSingleValue())); 1062 } else { 1063 auto *WidenPhi = cast<VPWidenPointerInductionRecipe>(&R); 1064 assert(!WidenPhi->onlyScalarsGenerated(State->VF.isScalable()) && 1065 "recipe generating only scalars should have been replaced"); 1066 auto *GEP = cast<GetElementPtrInst>(State->get(WidenPhi)); 1067 Phi = cast<PHINode>(GEP->getPointerOperand()); 1068 } 1069 1070 Phi->setIncomingBlock(1, VectorLatchBB); 1071 1072 // Move the last step to the end of the latch block. This ensures 1073 // consistent placement of all induction updates. 1074 Instruction *Inc = cast<Instruction>(Phi->getIncomingValue(1)); 1075 Inc->moveBefore(VectorLatchBB->getTerminator()->getPrevNode()); 1076 1077 // Use the steps for the last part as backedge value for the induction. 1078 if (auto *IV = dyn_cast<VPWidenIntOrFpInductionRecipe>(&R)) 1079 Inc->setOperand(0, State->get(IV->getLastUnrolledPartOperand())); 1080 continue; 1081 } 1082 1083 auto *PhiR = cast<VPHeaderPHIRecipe>(&R); 1084 bool NeedsScalar = 1085 isa<VPCanonicalIVPHIRecipe, VPEVLBasedIVPHIRecipe>(PhiR) || 1086 (isa<VPReductionPHIRecipe>(PhiR) && 1087 cast<VPReductionPHIRecipe>(PhiR)->isInLoop()); 1088 Value *Phi = State->get(PhiR, NeedsScalar); 1089 Value *Val = State->get(PhiR->getBackedgeValue(), NeedsScalar); 1090 cast<PHINode>(Phi)->addIncoming(Val, VectorLatchBB); 1091 } 1092 1093 State->CFG.DTU.flush(); 1094 assert(State->CFG.DTU.getDomTree().verify( 1095 DominatorTree::VerificationLevel::Fast) && 1096 "DT not preserved correctly"); 1097 } 1098 1099 InstructionCost VPlan::cost(ElementCount VF, VPCostContext &Ctx) { 1100 // For now only return the cost of the vector loop region, ignoring any other 1101 // blocks, like the preheader or middle blocks. 1102 return getVectorLoopRegion()->cost(VF, Ctx); 1103 } 1104 1105 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1106 void VPlan::printLiveIns(raw_ostream &O) const { 1107 VPSlotTracker SlotTracker(this); 1108 1109 if (VF.getNumUsers() > 0) { 1110 O << "\nLive-in "; 1111 VF.printAsOperand(O, SlotTracker); 1112 O << " = VF"; 1113 } 1114 1115 if (VFxUF.getNumUsers() > 0) { 1116 O << "\nLive-in "; 1117 VFxUF.printAsOperand(O, SlotTracker); 1118 O << " = VF * UF"; 1119 } 1120 1121 if (VectorTripCount.getNumUsers() > 0) { 1122 O << "\nLive-in "; 1123 VectorTripCount.printAsOperand(O, SlotTracker); 1124 O << " = vector-trip-count"; 1125 } 1126 1127 if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) { 1128 O << "\nLive-in "; 1129 BackedgeTakenCount->printAsOperand(O, SlotTracker); 1130 O << " = backedge-taken count"; 1131 } 1132 1133 O << "\n"; 1134 if (TripCount->isLiveIn()) 1135 O << "Live-in "; 1136 TripCount->printAsOperand(O, SlotTracker); 1137 O << " = original trip-count"; 1138 O << "\n"; 1139 } 1140 1141 LLVM_DUMP_METHOD 1142 void VPlan::print(raw_ostream &O) const { 1143 VPSlotTracker SlotTracker(this); 1144 1145 O << "VPlan '" << getName() << "' {"; 1146 1147 printLiveIns(O); 1148 1149 if (!getPreheader()->empty()) { 1150 O << "\n"; 1151 getPreheader()->print(O, "", SlotTracker); 1152 } 1153 1154 for (const VPBlockBase *Block : vp_depth_first_shallow(getEntry())) { 1155 O << '\n'; 1156 Block->print(O, "", SlotTracker); 1157 } 1158 1159 O << "}\n"; 1160 } 1161 1162 std::string VPlan::getName() const { 1163 std::string Out; 1164 raw_string_ostream RSO(Out); 1165 RSO << Name << " for "; 1166 if (!VFs.empty()) { 1167 RSO << "VF={" << VFs[0]; 1168 for (ElementCount VF : drop_begin(VFs)) 1169 RSO << "," << VF; 1170 RSO << "},"; 1171 } 1172 1173 if (UFs.empty()) { 1174 RSO << "UF>=1"; 1175 } else { 1176 RSO << "UF={" << UFs[0]; 1177 for (unsigned UF : drop_begin(UFs)) 1178 RSO << "," << UF; 1179 RSO << "}"; 1180 } 1181 1182 return Out; 1183 } 1184 1185 LLVM_DUMP_METHOD 1186 void VPlan::printDOT(raw_ostream &O) const { 1187 VPlanPrinter Printer(O, *this); 1188 Printer.dump(); 1189 } 1190 1191 LLVM_DUMP_METHOD 1192 void VPlan::dump() const { print(dbgs()); } 1193 #endif 1194 1195 static void remapOperands(VPBlockBase *Entry, VPBlockBase *NewEntry, 1196 DenseMap<VPValue *, VPValue *> &Old2NewVPValues) { 1197 // Update the operands of all cloned recipes starting at NewEntry. This 1198 // traverses all reachable blocks. This is done in two steps, to handle cycles 1199 // in PHI recipes. 1200 ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<VPBlockBase *>> 1201 OldDeepRPOT(Entry); 1202 ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<VPBlockBase *>> 1203 NewDeepRPOT(NewEntry); 1204 // First, collect all mappings from old to new VPValues defined by cloned 1205 // recipes. 1206 for (const auto &[OldBB, NewBB] : 1207 zip(VPBlockUtils::blocksOnly<VPBasicBlock>(OldDeepRPOT), 1208 VPBlockUtils::blocksOnly<VPBasicBlock>(NewDeepRPOT))) { 1209 assert(OldBB->getRecipeList().size() == NewBB->getRecipeList().size() && 1210 "blocks must have the same number of recipes"); 1211 for (const auto &[OldR, NewR] : zip(*OldBB, *NewBB)) { 1212 assert(OldR.getNumOperands() == NewR.getNumOperands() && 1213 "recipes must have the same number of operands"); 1214 assert(OldR.getNumDefinedValues() == NewR.getNumDefinedValues() && 1215 "recipes must define the same number of operands"); 1216 for (const auto &[OldV, NewV] : 1217 zip(OldR.definedValues(), NewR.definedValues())) 1218 Old2NewVPValues[OldV] = NewV; 1219 } 1220 } 1221 1222 // Update all operands to use cloned VPValues. 1223 for (VPBasicBlock *NewBB : 1224 VPBlockUtils::blocksOnly<VPBasicBlock>(NewDeepRPOT)) { 1225 for (VPRecipeBase &NewR : *NewBB) 1226 for (unsigned I = 0, E = NewR.getNumOperands(); I != E; ++I) { 1227 VPValue *NewOp = Old2NewVPValues.lookup(NewR.getOperand(I)); 1228 NewR.setOperand(I, NewOp); 1229 } 1230 } 1231 } 1232 1233 VPlan *VPlan::duplicate() { 1234 // Clone blocks. 1235 VPBasicBlock *NewPreheader = Preheader->clone(); 1236 const auto &[NewEntry, __] = cloneFrom(Entry); 1237 1238 BasicBlock *ScalarHeaderIRBB = getScalarHeader()->getIRBasicBlock(); 1239 VPIRBasicBlock *NewScalarHeader = cast<VPIRBasicBlock>(*find_if( 1240 vp_depth_first_shallow(NewEntry), [ScalarHeaderIRBB](VPBlockBase *VPB) { 1241 auto *VPIRBB = dyn_cast<VPIRBasicBlock>(VPB); 1242 return VPIRBB && VPIRBB->getIRBasicBlock() == ScalarHeaderIRBB; 1243 })); 1244 // Create VPlan, clone live-ins and remap operands in the cloned blocks. 1245 auto *NewPlan = 1246 new VPlan(NewPreheader, cast<VPBasicBlock>(NewEntry), NewScalarHeader); 1247 DenseMap<VPValue *, VPValue *> Old2NewVPValues; 1248 for (VPValue *OldLiveIn : VPLiveInsToFree) { 1249 Old2NewVPValues[OldLiveIn] = 1250 NewPlan->getOrAddLiveIn(OldLiveIn->getLiveInIRValue()); 1251 } 1252 Old2NewVPValues[&VectorTripCount] = &NewPlan->VectorTripCount; 1253 Old2NewVPValues[&VF] = &NewPlan->VF; 1254 Old2NewVPValues[&VFxUF] = &NewPlan->VFxUF; 1255 if (BackedgeTakenCount) { 1256 NewPlan->BackedgeTakenCount = new VPValue(); 1257 Old2NewVPValues[BackedgeTakenCount] = NewPlan->BackedgeTakenCount; 1258 } 1259 assert(TripCount && "trip count must be set"); 1260 if (TripCount->isLiveIn()) 1261 Old2NewVPValues[TripCount] = 1262 NewPlan->getOrAddLiveIn(TripCount->getLiveInIRValue()); 1263 // else NewTripCount will be created and inserted into Old2NewVPValues when 1264 // TripCount is cloned. In any case NewPlan->TripCount is updated below. 1265 1266 remapOperands(Preheader, NewPreheader, Old2NewVPValues); 1267 remapOperands(Entry, NewEntry, Old2NewVPValues); 1268 1269 // Initialize remaining fields of cloned VPlan. 1270 NewPlan->VFs = VFs; 1271 NewPlan->UFs = UFs; 1272 // TODO: Adjust names. 1273 NewPlan->Name = Name; 1274 assert(Old2NewVPValues.contains(TripCount) && 1275 "TripCount must have been added to Old2NewVPValues"); 1276 NewPlan->TripCount = Old2NewVPValues[TripCount]; 1277 return NewPlan; 1278 } 1279 1280 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1281 1282 Twine VPlanPrinter::getUID(const VPBlockBase *Block) { 1283 return (isa<VPRegionBlock>(Block) ? "cluster_N" : "N") + 1284 Twine(getOrCreateBID(Block)); 1285 } 1286 1287 Twine VPlanPrinter::getOrCreateName(const VPBlockBase *Block) { 1288 const std::string &Name = Block->getName(); 1289 if (!Name.empty()) 1290 return Name; 1291 return "VPB" + Twine(getOrCreateBID(Block)); 1292 } 1293 1294 void VPlanPrinter::dump() { 1295 Depth = 1; 1296 bumpIndent(0); 1297 OS << "digraph VPlan {\n"; 1298 OS << "graph [labelloc=t, fontsize=30; label=\"Vectorization Plan"; 1299 if (!Plan.getName().empty()) 1300 OS << "\\n" << DOT::EscapeString(Plan.getName()); 1301 1302 { 1303 // Print live-ins. 1304 std::string Str; 1305 raw_string_ostream SS(Str); 1306 Plan.printLiveIns(SS); 1307 SmallVector<StringRef, 0> Lines; 1308 StringRef(Str).rtrim('\n').split(Lines, "\n"); 1309 for (auto Line : Lines) 1310 OS << DOT::EscapeString(Line.str()) << "\\n"; 1311 } 1312 1313 OS << "\"]\n"; 1314 OS << "node [shape=rect, fontname=Courier, fontsize=30]\n"; 1315 OS << "edge [fontname=Courier, fontsize=30]\n"; 1316 OS << "compound=true\n"; 1317 1318 dumpBlock(Plan.getPreheader()); 1319 1320 for (const VPBlockBase *Block : vp_depth_first_shallow(Plan.getEntry())) 1321 dumpBlock(Block); 1322 1323 OS << "}\n"; 1324 } 1325 1326 void VPlanPrinter::dumpBlock(const VPBlockBase *Block) { 1327 if (const VPBasicBlock *BasicBlock = dyn_cast<VPBasicBlock>(Block)) 1328 dumpBasicBlock(BasicBlock); 1329 else if (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 1330 dumpRegion(Region); 1331 else 1332 llvm_unreachable("Unsupported kind of VPBlock."); 1333 } 1334 1335 void VPlanPrinter::drawEdge(const VPBlockBase *From, const VPBlockBase *To, 1336 bool Hidden, const Twine &Label) { 1337 // Due to "dot" we print an edge between two regions as an edge between the 1338 // exiting basic block and the entry basic of the respective regions. 1339 const VPBlockBase *Tail = From->getExitingBasicBlock(); 1340 const VPBlockBase *Head = To->getEntryBasicBlock(); 1341 OS << Indent << getUID(Tail) << " -> " << getUID(Head); 1342 OS << " [ label=\"" << Label << '\"'; 1343 if (Tail != From) 1344 OS << " ltail=" << getUID(From); 1345 if (Head != To) 1346 OS << " lhead=" << getUID(To); 1347 if (Hidden) 1348 OS << "; splines=none"; 1349 OS << "]\n"; 1350 } 1351 1352 void VPlanPrinter::dumpEdges(const VPBlockBase *Block) { 1353 auto &Successors = Block->getSuccessors(); 1354 if (Successors.size() == 1) 1355 drawEdge(Block, Successors.front(), false, ""); 1356 else if (Successors.size() == 2) { 1357 drawEdge(Block, Successors.front(), false, "T"); 1358 drawEdge(Block, Successors.back(), false, "F"); 1359 } else { 1360 unsigned SuccessorNumber = 0; 1361 for (auto *Successor : Successors) 1362 drawEdge(Block, Successor, false, Twine(SuccessorNumber++)); 1363 } 1364 } 1365 1366 void VPlanPrinter::dumpBasicBlock(const VPBasicBlock *BasicBlock) { 1367 // Implement dot-formatted dump by performing plain-text dump into the 1368 // temporary storage followed by some post-processing. 1369 OS << Indent << getUID(BasicBlock) << " [label =\n"; 1370 bumpIndent(1); 1371 std::string Str; 1372 raw_string_ostream SS(Str); 1373 // Use no indentation as we need to wrap the lines into quotes ourselves. 1374 BasicBlock->print(SS, "", SlotTracker); 1375 1376 // We need to process each line of the output separately, so split 1377 // single-string plain-text dump. 1378 SmallVector<StringRef, 0> Lines; 1379 StringRef(Str).rtrim('\n').split(Lines, "\n"); 1380 1381 auto EmitLine = [&](StringRef Line, StringRef Suffix) { 1382 OS << Indent << '"' << DOT::EscapeString(Line.str()) << "\\l\"" << Suffix; 1383 }; 1384 1385 // Don't need the "+" after the last line. 1386 for (auto Line : make_range(Lines.begin(), Lines.end() - 1)) 1387 EmitLine(Line, " +\n"); 1388 EmitLine(Lines.back(), "\n"); 1389 1390 bumpIndent(-1); 1391 OS << Indent << "]\n"; 1392 1393 dumpEdges(BasicBlock); 1394 } 1395 1396 void VPlanPrinter::dumpRegion(const VPRegionBlock *Region) { 1397 OS << Indent << "subgraph " << getUID(Region) << " {\n"; 1398 bumpIndent(1); 1399 OS << Indent << "fontname=Courier\n" 1400 << Indent << "label=\"" 1401 << DOT::EscapeString(Region->isReplicator() ? "<xVFxUF> " : "<x1> ") 1402 << DOT::EscapeString(Region->getName()) << "\"\n"; 1403 // Dump the blocks of the region. 1404 assert(Region->getEntry() && "Region contains no inner blocks."); 1405 for (const VPBlockBase *Block : vp_depth_first_shallow(Region->getEntry())) 1406 dumpBlock(Block); 1407 bumpIndent(-1); 1408 OS << Indent << "}\n"; 1409 dumpEdges(Region); 1410 } 1411 1412 void VPlanIngredient::print(raw_ostream &O) const { 1413 if (auto *Inst = dyn_cast<Instruction>(V)) { 1414 if (!Inst->getType()->isVoidTy()) { 1415 Inst->printAsOperand(O, false); 1416 O << " = "; 1417 } 1418 O << Inst->getOpcodeName() << " "; 1419 unsigned E = Inst->getNumOperands(); 1420 if (E > 0) { 1421 Inst->getOperand(0)->printAsOperand(O, false); 1422 for (unsigned I = 1; I < E; ++I) 1423 Inst->getOperand(I)->printAsOperand(O << ", ", false); 1424 } 1425 } else // !Inst 1426 V->printAsOperand(O, false); 1427 } 1428 1429 #endif 1430 1431 bool VPValue::isDefinedOutsideLoopRegions() const { 1432 return !hasDefiningRecipe() || 1433 !getDefiningRecipe()->getParent()->getEnclosingLoopRegion(); 1434 } 1435 1436 void VPValue::replaceAllUsesWith(VPValue *New) { 1437 replaceUsesWithIf(New, [](VPUser &, unsigned) { return true; }); 1438 } 1439 1440 void VPValue::replaceUsesWithIf( 1441 VPValue *New, 1442 llvm::function_ref<bool(VPUser &U, unsigned Idx)> ShouldReplace) { 1443 // Note that this early exit is required for correctness; the implementation 1444 // below relies on the number of users for this VPValue to decrease, which 1445 // isn't the case if this == New. 1446 if (this == New) 1447 return; 1448 1449 for (unsigned J = 0; J < getNumUsers();) { 1450 VPUser *User = Users[J]; 1451 bool RemovedUser = false; 1452 for (unsigned I = 0, E = User->getNumOperands(); I < E; ++I) { 1453 if (User->getOperand(I) != this || !ShouldReplace(*User, I)) 1454 continue; 1455 1456 RemovedUser = true; 1457 User->setOperand(I, New); 1458 } 1459 // If a user got removed after updating the current user, the next user to 1460 // update will be moved to the current position, so we only need to 1461 // increment the index if the number of users did not change. 1462 if (!RemovedUser) 1463 J++; 1464 } 1465 } 1466 1467 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1468 void VPValue::printAsOperand(raw_ostream &OS, VPSlotTracker &Tracker) const { 1469 OS << Tracker.getOrCreateName(this); 1470 } 1471 1472 void VPUser::printOperands(raw_ostream &O, VPSlotTracker &SlotTracker) const { 1473 interleaveComma(operands(), O, [&O, &SlotTracker](VPValue *Op) { 1474 Op->printAsOperand(O, SlotTracker); 1475 }); 1476 } 1477 #endif 1478 1479 void VPInterleavedAccessInfo::visitRegion(VPRegionBlock *Region, 1480 Old2NewTy &Old2New, 1481 InterleavedAccessInfo &IAI) { 1482 ReversePostOrderTraversal<VPBlockShallowTraversalWrapper<VPBlockBase *>> 1483 RPOT(Region->getEntry()); 1484 for (VPBlockBase *Base : RPOT) { 1485 visitBlock(Base, Old2New, IAI); 1486 } 1487 } 1488 1489 void VPInterleavedAccessInfo::visitBlock(VPBlockBase *Block, Old2NewTy &Old2New, 1490 InterleavedAccessInfo &IAI) { 1491 if (VPBasicBlock *VPBB = dyn_cast<VPBasicBlock>(Block)) { 1492 for (VPRecipeBase &VPI : *VPBB) { 1493 if (isa<VPWidenPHIRecipe>(&VPI)) 1494 continue; 1495 assert(isa<VPInstruction>(&VPI) && "Can only handle VPInstructions"); 1496 auto *VPInst = cast<VPInstruction>(&VPI); 1497 1498 auto *Inst = dyn_cast_or_null<Instruction>(VPInst->getUnderlyingValue()); 1499 if (!Inst) 1500 continue; 1501 auto *IG = IAI.getInterleaveGroup(Inst); 1502 if (!IG) 1503 continue; 1504 1505 auto NewIGIter = Old2New.find(IG); 1506 if (NewIGIter == Old2New.end()) 1507 Old2New[IG] = new InterleaveGroup<VPInstruction>( 1508 IG->getFactor(), IG->isReverse(), IG->getAlign()); 1509 1510 if (Inst == IG->getInsertPos()) 1511 Old2New[IG]->setInsertPos(VPInst); 1512 1513 InterleaveGroupMap[VPInst] = Old2New[IG]; 1514 InterleaveGroupMap[VPInst]->insertMember( 1515 VPInst, IG->getIndex(Inst), 1516 Align(IG->isReverse() ? (-1) * int(IG->getFactor()) 1517 : IG->getFactor())); 1518 } 1519 } else if (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 1520 visitRegion(Region, Old2New, IAI); 1521 else 1522 llvm_unreachable("Unsupported kind of VPBlock."); 1523 } 1524 1525 VPInterleavedAccessInfo::VPInterleavedAccessInfo(VPlan &Plan, 1526 InterleavedAccessInfo &IAI) { 1527 Old2NewTy Old2New; 1528 visitRegion(Plan.getVectorLoopRegion(), Old2New, IAI); 1529 } 1530 1531 void VPSlotTracker::assignName(const VPValue *V) { 1532 assert(!VPValue2Name.contains(V) && "VPValue already has a name!"); 1533 auto *UV = V->getUnderlyingValue(); 1534 auto *VPI = dyn_cast_or_null<VPInstruction>(V->getDefiningRecipe()); 1535 if (!UV && !(VPI && !VPI->getName().empty())) { 1536 VPValue2Name[V] = (Twine("vp<%") + Twine(NextSlot) + ">").str(); 1537 NextSlot++; 1538 return; 1539 } 1540 1541 // Use the name of the underlying Value, wrapped in "ir<>", and versioned by 1542 // appending ".Number" to the name if there are multiple uses. 1543 std::string Name; 1544 if (UV) { 1545 raw_string_ostream S(Name); 1546 UV->printAsOperand(S, false); 1547 } else 1548 Name = VPI->getName(); 1549 1550 assert(!Name.empty() && "Name cannot be empty."); 1551 StringRef Prefix = UV ? "ir<" : "vp<%"; 1552 std::string BaseName = (Twine(Prefix) + Name + Twine(">")).str(); 1553 1554 // First assign the base name for V. 1555 const auto &[A, _] = VPValue2Name.insert({V, BaseName}); 1556 // Integer or FP constants with different types will result in he same string 1557 // due to stripping types. 1558 if (V->isLiveIn() && isa<ConstantInt, ConstantFP>(UV)) 1559 return; 1560 1561 // If it is already used by C > 0 other VPValues, increase the version counter 1562 // C and use it for V. 1563 const auto &[C, UseInserted] = BaseName2Version.insert({BaseName, 0}); 1564 if (!UseInserted) { 1565 C->second++; 1566 A->second = (BaseName + Twine(".") + Twine(C->second)).str(); 1567 } 1568 } 1569 1570 void VPSlotTracker::assignNames(const VPlan &Plan) { 1571 if (Plan.VF.getNumUsers() > 0) 1572 assignName(&Plan.VF); 1573 if (Plan.VFxUF.getNumUsers() > 0) 1574 assignName(&Plan.VFxUF); 1575 assignName(&Plan.VectorTripCount); 1576 if (Plan.BackedgeTakenCount) 1577 assignName(Plan.BackedgeTakenCount); 1578 for (VPValue *LI : Plan.VPLiveInsToFree) 1579 assignName(LI); 1580 assignNames(Plan.getPreheader()); 1581 1582 ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<const VPBlockBase *>> 1583 RPOT(VPBlockDeepTraversalWrapper<const VPBlockBase *>(Plan.getEntry())); 1584 for (const VPBasicBlock *VPBB : 1585 VPBlockUtils::blocksOnly<const VPBasicBlock>(RPOT)) 1586 assignNames(VPBB); 1587 } 1588 1589 void VPSlotTracker::assignNames(const VPBasicBlock *VPBB) { 1590 for (const VPRecipeBase &Recipe : *VPBB) 1591 for (VPValue *Def : Recipe.definedValues()) 1592 assignName(Def); 1593 } 1594 1595 std::string VPSlotTracker::getOrCreateName(const VPValue *V) const { 1596 std::string Name = VPValue2Name.lookup(V); 1597 if (!Name.empty()) 1598 return Name; 1599 1600 // If no name was assigned, no VPlan was provided when creating the slot 1601 // tracker or it is not reachable from the provided VPlan. This can happen, 1602 // e.g. when trying to print a recipe that has not been inserted into a VPlan 1603 // in a debugger. 1604 // TODO: Update VPSlotTracker constructor to assign names to recipes & 1605 // VPValues not associated with a VPlan, instead of constructing names ad-hoc 1606 // here. 1607 const VPRecipeBase *DefR = V->getDefiningRecipe(); 1608 (void)DefR; 1609 assert((!DefR || !DefR->getParent() || !DefR->getParent()->getPlan()) && 1610 "VPValue defined by a recipe in a VPlan?"); 1611 1612 // Use the underlying value's name, if there is one. 1613 if (auto *UV = V->getUnderlyingValue()) { 1614 std::string Name; 1615 raw_string_ostream S(Name); 1616 UV->printAsOperand(S, false); 1617 return (Twine("ir<") + Name + ">").str(); 1618 } 1619 1620 return "<badref>"; 1621 } 1622 1623 bool LoopVectorizationPlanner::getDecisionAndClampRange( 1624 const std::function<bool(ElementCount)> &Predicate, VFRange &Range) { 1625 assert(!Range.isEmpty() && "Trying to test an empty VF range."); 1626 bool PredicateAtRangeStart = Predicate(Range.Start); 1627 1628 for (ElementCount TmpVF : VFRange(Range.Start * 2, Range.End)) 1629 if (Predicate(TmpVF) != PredicateAtRangeStart) { 1630 Range.End = TmpVF; 1631 break; 1632 } 1633 1634 return PredicateAtRangeStart; 1635 } 1636 1637 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF, 1638 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range 1639 /// of VF's starting at a given VF and extending it as much as possible. Each 1640 /// vectorization decision can potentially shorten this sub-range during 1641 /// buildVPlan(). 1642 void LoopVectorizationPlanner::buildVPlans(ElementCount MinVF, 1643 ElementCount MaxVF) { 1644 auto MaxVFTimes2 = MaxVF * 2; 1645 for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFTimes2);) { 1646 VFRange SubRange = {VF, MaxVFTimes2}; 1647 auto Plan = buildVPlan(SubRange); 1648 VPlanTransforms::optimize(*Plan); 1649 VPlans.push_back(std::move(Plan)); 1650 VF = SubRange.End; 1651 } 1652 } 1653 1654 VPlan &LoopVectorizationPlanner::getPlanFor(ElementCount VF) const { 1655 assert(count_if(VPlans, 1656 [VF](const VPlanPtr &Plan) { return Plan->hasVF(VF); }) == 1657 1 && 1658 "Multiple VPlans for VF."); 1659 1660 for (const VPlanPtr &Plan : VPlans) { 1661 if (Plan->hasVF(VF)) 1662 return *Plan.get(); 1663 } 1664 llvm_unreachable("No plan found!"); 1665 } 1666 1667 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1668 void LoopVectorizationPlanner::printPlans(raw_ostream &O) { 1669 if (VPlans.empty()) { 1670 O << "LV: No VPlans built.\n"; 1671 return; 1672 } 1673 for (const auto &Plan : VPlans) 1674 if (PrintVPlansInDotFormat) 1675 Plan->printDOT(O); 1676 else 1677 Plan->print(O); 1678 } 1679 #endif 1680 1681 TargetTransformInfo::OperandValueInfo 1682 VPCostContext::getOperandInfo(VPValue *V) const { 1683 if (!V->isLiveIn()) 1684 return {}; 1685 1686 return TTI::getOperandInfo(V->getLiveInIRValue()); 1687 } 1688