1 //===- VPlan.cpp - Vectorizer Plan ----------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This is the LLVM vectorization plan. It represents a candidate for 11 /// vectorization, allowing to plan and optimize how to vectorize a given loop 12 /// before generating LLVM-IR. 13 /// The vectorizer uses vectorization plans to estimate the costs of potential 14 /// candidates and if profitable to execute the desired plan, generating vector 15 /// LLVM-IR code. 16 /// 17 //===----------------------------------------------------------------------===// 18 19 #include "VPlan.h" 20 #include "VPlanDominatorTree.h" 21 #include "llvm/ADT/DepthFirstIterator.h" 22 #include "llvm/ADT/PostOrderIterator.h" 23 #include "llvm/ADT/STLExtras.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/Twine.h" 26 #include "llvm/Analysis/IVDescriptors.h" 27 #include "llvm/Analysis/LoopInfo.h" 28 #include "llvm/IR/BasicBlock.h" 29 #include "llvm/IR/CFG.h" 30 #include "llvm/IR/InstrTypes.h" 31 #include "llvm/IR/Instruction.h" 32 #include "llvm/IR/Instructions.h" 33 #include "llvm/IR/Type.h" 34 #include "llvm/IR/Value.h" 35 #include "llvm/Support/Casting.h" 36 #include "llvm/Support/CommandLine.h" 37 #include "llvm/Support/Debug.h" 38 #include "llvm/Support/ErrorHandling.h" 39 #include "llvm/Support/GenericDomTreeConstruction.h" 40 #include "llvm/Support/GraphWriter.h" 41 #include "llvm/Support/raw_ostream.h" 42 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 43 #include <cassert> 44 #include <iterator> 45 #include <string> 46 #include <vector> 47 48 using namespace llvm; 49 extern cl::opt<bool> EnableVPlanNativePath; 50 51 #define DEBUG_TYPE "vplan" 52 53 raw_ostream &llvm::operator<<(raw_ostream &OS, const VPValue &V) { 54 const VPInstruction *Instr = dyn_cast<VPInstruction>(&V); 55 VPSlotTracker SlotTracker( 56 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr); 57 V.print(OS, SlotTracker); 58 return OS; 59 } 60 61 VPValue::VPValue(const unsigned char SC, Value *UV, VPDef *Def) 62 : SubclassID(SC), UnderlyingVal(UV), Def(Def) { 63 if (Def) 64 Def->addDefinedValue(this); 65 } 66 67 VPValue::~VPValue() { 68 assert(Users.empty() && "trying to delete a VPValue with remaining users"); 69 if (Def) 70 Def->removeDefinedValue(this); 71 } 72 73 void VPValue::print(raw_ostream &OS, VPSlotTracker &SlotTracker) const { 74 if (const VPRecipeBase *R = dyn_cast_or_null<VPRecipeBase>(Def)) 75 R->print(OS, "", SlotTracker); 76 else 77 printAsOperand(OS, SlotTracker); 78 } 79 80 void VPValue::dump() const { 81 const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this->Def); 82 VPSlotTracker SlotTracker( 83 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr); 84 print(dbgs(), SlotTracker); 85 dbgs() << "\n"; 86 } 87 88 void VPDef::dump() const { 89 const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this); 90 VPSlotTracker SlotTracker( 91 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr); 92 print(dbgs(), "", SlotTracker); 93 dbgs() << "\n"; 94 } 95 96 // Get the top-most entry block of \p Start. This is the entry block of the 97 // containing VPlan. This function is templated to support both const and non-const blocks 98 template <typename T> static T *getPlanEntry(T *Start) { 99 T *Next = Start; 100 T *Current = Start; 101 while ((Next = Next->getParent())) 102 Current = Next; 103 104 SmallSetVector<T *, 8> WorkList; 105 WorkList.insert(Current); 106 107 for (unsigned i = 0; i < WorkList.size(); i++) { 108 T *Current = WorkList[i]; 109 if (Current->getNumPredecessors() == 0) 110 return Current; 111 auto &Predecessors = Current->getPredecessors(); 112 WorkList.insert(Predecessors.begin(), Predecessors.end()); 113 } 114 115 llvm_unreachable("VPlan without any entry node without predecessors"); 116 } 117 118 VPlan *VPBlockBase::getPlan() { return getPlanEntry(this)->Plan; } 119 120 const VPlan *VPBlockBase::getPlan() const { return getPlanEntry(this)->Plan; } 121 122 /// \return the VPBasicBlock that is the entry of Block, possibly indirectly. 123 const VPBasicBlock *VPBlockBase::getEntryBasicBlock() const { 124 const VPBlockBase *Block = this; 125 while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 126 Block = Region->getEntry(); 127 return cast<VPBasicBlock>(Block); 128 } 129 130 VPBasicBlock *VPBlockBase::getEntryBasicBlock() { 131 VPBlockBase *Block = this; 132 while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 133 Block = Region->getEntry(); 134 return cast<VPBasicBlock>(Block); 135 } 136 137 void VPBlockBase::setPlan(VPlan *ParentPlan) { 138 assert(ParentPlan->getEntry() == this && 139 "Can only set plan on its entry block."); 140 Plan = ParentPlan; 141 } 142 143 /// \return the VPBasicBlock that is the exit of Block, possibly indirectly. 144 const VPBasicBlock *VPBlockBase::getExitBasicBlock() const { 145 const VPBlockBase *Block = this; 146 while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 147 Block = Region->getExit(); 148 return cast<VPBasicBlock>(Block); 149 } 150 151 VPBasicBlock *VPBlockBase::getExitBasicBlock() { 152 VPBlockBase *Block = this; 153 while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 154 Block = Region->getExit(); 155 return cast<VPBasicBlock>(Block); 156 } 157 158 VPBlockBase *VPBlockBase::getEnclosingBlockWithSuccessors() { 159 if (!Successors.empty() || !Parent) 160 return this; 161 assert(Parent->getExit() == this && 162 "Block w/o successors not the exit of its parent."); 163 return Parent->getEnclosingBlockWithSuccessors(); 164 } 165 166 VPBlockBase *VPBlockBase::getEnclosingBlockWithPredecessors() { 167 if (!Predecessors.empty() || !Parent) 168 return this; 169 assert(Parent->getEntry() == this && 170 "Block w/o predecessors not the entry of its parent."); 171 return Parent->getEnclosingBlockWithPredecessors(); 172 } 173 174 void VPBlockBase::deleteCFG(VPBlockBase *Entry) { 175 SmallVector<VPBlockBase *, 8> Blocks(depth_first(Entry)); 176 177 for (VPBlockBase *Block : Blocks) 178 delete Block; 179 } 180 181 VPBasicBlock::iterator VPBasicBlock::getFirstNonPhi() { 182 iterator It = begin(); 183 while (It != end() && (isa<VPWidenPHIRecipe>(&*It) || 184 isa<VPWidenIntOrFpInductionRecipe>(&*It) || 185 isa<VPPredInstPHIRecipe>(&*It) || 186 isa<VPWidenCanonicalIVRecipe>(&*It))) 187 It++; 188 return It; 189 } 190 191 Value *VPTransformState::get(VPValue *Def, const VPIteration &Instance) { 192 if (!Def->getDef()) 193 return Def->getLiveInIRValue(); 194 195 if (hasScalarValue(Def, Instance)) 196 return Data.PerPartScalars[Def][Instance.Part][Instance.Lane]; 197 198 if (hasVectorValue(Def, Instance.Part)) { 199 assert(Data.PerPartOutput.count(Def)); 200 auto *VecPart = Data.PerPartOutput[Def][Instance.Part]; 201 if (!VecPart->getType()->isVectorTy()) { 202 assert(Instance.Lane == 0 && "cannot get lane > 0 for scalar"); 203 return VecPart; 204 } 205 // TODO: Cache created scalar values. 206 return Builder.CreateExtractElement(VecPart, 207 Builder.getInt32(Instance.Lane)); 208 } 209 return Callback.getOrCreateScalarValue(VPValue2Value[Def], Instance); 210 } 211 212 BasicBlock * 213 VPBasicBlock::createEmptyBasicBlock(VPTransformState::CFGState &CFG) { 214 // BB stands for IR BasicBlocks. VPBB stands for VPlan VPBasicBlocks. 215 // Pred stands for Predessor. Prev stands for Previous - last visited/created. 216 BasicBlock *PrevBB = CFG.PrevBB; 217 BasicBlock *NewBB = BasicBlock::Create(PrevBB->getContext(), getName(), 218 PrevBB->getParent(), CFG.LastBB); 219 LLVM_DEBUG(dbgs() << "LV: created " << NewBB->getName() << '\n'); 220 221 // Hook up the new basic block to its predecessors. 222 for (VPBlockBase *PredVPBlock : getHierarchicalPredecessors()) { 223 VPBasicBlock *PredVPBB = PredVPBlock->getExitBasicBlock(); 224 auto &PredVPSuccessors = PredVPBB->getSuccessors(); 225 BasicBlock *PredBB = CFG.VPBB2IRBB[PredVPBB]; 226 227 // In outer loop vectorization scenario, the predecessor BBlock may not yet 228 // be visited(backedge). Mark the VPBasicBlock for fixup at the end of 229 // vectorization. We do not encounter this case in inner loop vectorization 230 // as we start out by building a loop skeleton with the vector loop header 231 // and latch blocks. As a result, we never enter this function for the 232 // header block in the non VPlan-native path. 233 if (!PredBB) { 234 assert(EnableVPlanNativePath && 235 "Unexpected null predecessor in non VPlan-native path"); 236 CFG.VPBBsToFix.push_back(PredVPBB); 237 continue; 238 } 239 240 assert(PredBB && "Predecessor basic-block not found building successor."); 241 auto *PredBBTerminator = PredBB->getTerminator(); 242 LLVM_DEBUG(dbgs() << "LV: draw edge from" << PredBB->getName() << '\n'); 243 if (isa<UnreachableInst>(PredBBTerminator)) { 244 assert(PredVPSuccessors.size() == 1 && 245 "Predecessor ending w/o branch must have single successor."); 246 PredBBTerminator->eraseFromParent(); 247 BranchInst::Create(NewBB, PredBB); 248 } else { 249 assert(PredVPSuccessors.size() == 2 && 250 "Predecessor ending with branch must have two successors."); 251 unsigned idx = PredVPSuccessors.front() == this ? 0 : 1; 252 assert(!PredBBTerminator->getSuccessor(idx) && 253 "Trying to reset an existing successor block."); 254 PredBBTerminator->setSuccessor(idx, NewBB); 255 } 256 } 257 return NewBB; 258 } 259 260 void VPBasicBlock::execute(VPTransformState *State) { 261 bool Replica = State->Instance && !State->Instance->isFirstIteration(); 262 VPBasicBlock *PrevVPBB = State->CFG.PrevVPBB; 263 VPBlockBase *SingleHPred = nullptr; 264 BasicBlock *NewBB = State->CFG.PrevBB; // Reuse it if possible. 265 266 // 1. Create an IR basic block, or reuse the last one if possible. 267 // The last IR basic block is reused, as an optimization, in three cases: 268 // A. the first VPBB reuses the loop header BB - when PrevVPBB is null; 269 // B. when the current VPBB has a single (hierarchical) predecessor which 270 // is PrevVPBB and the latter has a single (hierarchical) successor; and 271 // C. when the current VPBB is an entry of a region replica - where PrevVPBB 272 // is the exit of this region from a previous instance, or the predecessor 273 // of this region. 274 if (PrevVPBB && /* A */ 275 !((SingleHPred = getSingleHierarchicalPredecessor()) && 276 SingleHPred->getExitBasicBlock() == PrevVPBB && 277 PrevVPBB->getSingleHierarchicalSuccessor()) && /* B */ 278 !(Replica && getPredecessors().empty())) { /* C */ 279 NewBB = createEmptyBasicBlock(State->CFG); 280 State->Builder.SetInsertPoint(NewBB); 281 // Temporarily terminate with unreachable until CFG is rewired. 282 UnreachableInst *Terminator = State->Builder.CreateUnreachable(); 283 State->Builder.SetInsertPoint(Terminator); 284 // Register NewBB in its loop. In innermost loops its the same for all BB's. 285 Loop *L = State->LI->getLoopFor(State->CFG.LastBB); 286 L->addBasicBlockToLoop(NewBB, *State->LI); 287 State->CFG.PrevBB = NewBB; 288 } 289 290 // 2. Fill the IR basic block with IR instructions. 291 LLVM_DEBUG(dbgs() << "LV: vectorizing VPBB:" << getName() 292 << " in BB:" << NewBB->getName() << '\n'); 293 294 State->CFG.VPBB2IRBB[this] = NewBB; 295 State->CFG.PrevVPBB = this; 296 297 for (VPRecipeBase &Recipe : Recipes) 298 Recipe.execute(*State); 299 300 VPValue *CBV; 301 if (EnableVPlanNativePath && (CBV = getCondBit())) { 302 Value *IRCBV = CBV->getUnderlyingValue(); 303 assert(IRCBV && "Unexpected null underlying value for condition bit"); 304 305 // Condition bit value in a VPBasicBlock is used as the branch selector. In 306 // the VPlan-native path case, since all branches are uniform we generate a 307 // branch instruction using the condition value from vector lane 0 and dummy 308 // successors. The successors are fixed later when the successor blocks are 309 // visited. 310 Value *NewCond = State->Callback.getOrCreateVectorValues(IRCBV, 0); 311 NewCond = State->Builder.CreateExtractElement(NewCond, 312 State->Builder.getInt32(0)); 313 314 // Replace the temporary unreachable terminator with the new conditional 315 // branch. 316 auto *CurrentTerminator = NewBB->getTerminator(); 317 assert(isa<UnreachableInst>(CurrentTerminator) && 318 "Expected to replace unreachable terminator with conditional " 319 "branch."); 320 auto *CondBr = BranchInst::Create(NewBB, nullptr, NewCond); 321 CondBr->setSuccessor(0, nullptr); 322 ReplaceInstWithInst(CurrentTerminator, CondBr); 323 } 324 325 LLVM_DEBUG(dbgs() << "LV: filled BB:" << *NewBB); 326 } 327 328 void VPBasicBlock::dropAllReferences(VPValue *NewValue) { 329 for (VPRecipeBase &R : Recipes) { 330 for (auto *Def : R.definedValues()) 331 Def->replaceAllUsesWith(NewValue); 332 333 for (unsigned I = 0, E = R.getNumOperands(); I != E; I++) 334 R.setOperand(I, NewValue); 335 } 336 } 337 338 void VPRegionBlock::dropAllReferences(VPValue *NewValue) { 339 for (VPBlockBase *Block : depth_first(Entry)) 340 // Drop all references in VPBasicBlocks and replace all uses with 341 // DummyValue. 342 Block->dropAllReferences(NewValue); 343 } 344 345 void VPRegionBlock::execute(VPTransformState *State) { 346 ReversePostOrderTraversal<VPBlockBase *> RPOT(Entry); 347 348 if (!isReplicator()) { 349 // Visit the VPBlocks connected to "this", starting from it. 350 for (VPBlockBase *Block : RPOT) { 351 if (EnableVPlanNativePath) { 352 // The inner loop vectorization path does not represent loop preheader 353 // and exit blocks as part of the VPlan. In the VPlan-native path, skip 354 // vectorizing loop preheader block. In future, we may replace this 355 // check with the check for loop preheader. 356 if (Block->getNumPredecessors() == 0) 357 continue; 358 359 // Skip vectorizing loop exit block. In future, we may replace this 360 // check with the check for loop exit. 361 if (Block->getNumSuccessors() == 0) 362 continue; 363 } 364 365 LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n'); 366 Block->execute(State); 367 } 368 return; 369 } 370 371 assert(!State->Instance && "Replicating a Region with non-null instance."); 372 373 // Enter replicating mode. 374 State->Instance = VPIteration(0, 0); 375 376 for (unsigned Part = 0, UF = State->UF; Part < UF; ++Part) { 377 State->Instance->Part = Part; 378 assert(!State->VF.isScalable() && "VF is assumed to be non scalable."); 379 for (unsigned Lane = 0, VF = State->VF.getKnownMinValue(); Lane < VF; 380 ++Lane) { 381 State->Instance->Lane = Lane; 382 // Visit the VPBlocks connected to \p this, starting from it. 383 for (VPBlockBase *Block : RPOT) { 384 LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n'); 385 Block->execute(State); 386 } 387 } 388 } 389 390 // Exit replicating mode. 391 State->Instance.reset(); 392 } 393 394 void VPRecipeBase::insertBefore(VPRecipeBase *InsertPos) { 395 assert(!Parent && "Recipe already in some VPBasicBlock"); 396 assert(InsertPos->getParent() && 397 "Insertion position not in any VPBasicBlock"); 398 Parent = InsertPos->getParent(); 399 Parent->getRecipeList().insert(InsertPos->getIterator(), this); 400 } 401 402 void VPRecipeBase::insertAfter(VPRecipeBase *InsertPos) { 403 assert(!Parent && "Recipe already in some VPBasicBlock"); 404 assert(InsertPos->getParent() && 405 "Insertion position not in any VPBasicBlock"); 406 Parent = InsertPos->getParent(); 407 Parent->getRecipeList().insertAfter(InsertPos->getIterator(), this); 408 } 409 410 void VPRecipeBase::removeFromParent() { 411 assert(getParent() && "Recipe not in any VPBasicBlock"); 412 getParent()->getRecipeList().remove(getIterator()); 413 Parent = nullptr; 414 } 415 416 iplist<VPRecipeBase>::iterator VPRecipeBase::eraseFromParent() { 417 assert(getParent() && "Recipe not in any VPBasicBlock"); 418 return getParent()->getRecipeList().erase(getIterator()); 419 } 420 421 void VPRecipeBase::moveAfter(VPRecipeBase *InsertPos) { 422 removeFromParent(); 423 insertAfter(InsertPos); 424 } 425 426 void VPRecipeBase::moveBefore(VPBasicBlock &BB, 427 iplist<VPRecipeBase>::iterator I) { 428 assert(I == BB.end() || I->getParent() == &BB); 429 removeFromParent(); 430 Parent = &BB; 431 BB.getRecipeList().insert(I, this); 432 } 433 434 void VPInstruction::generateInstruction(VPTransformState &State, 435 unsigned Part) { 436 IRBuilder<> &Builder = State.Builder; 437 438 if (Instruction::isBinaryOp(getOpcode())) { 439 Value *A = State.get(getOperand(0), Part); 440 Value *B = State.get(getOperand(1), Part); 441 Value *V = Builder.CreateBinOp((Instruction::BinaryOps)getOpcode(), A, B); 442 State.set(this, V, Part); 443 return; 444 } 445 446 switch (getOpcode()) { 447 case VPInstruction::Not: { 448 Value *A = State.get(getOperand(0), Part); 449 Value *V = Builder.CreateNot(A); 450 State.set(this, V, Part); 451 break; 452 } 453 case VPInstruction::ICmpULE: { 454 Value *IV = State.get(getOperand(0), Part); 455 Value *TC = State.get(getOperand(1), Part); 456 Value *V = Builder.CreateICmpULE(IV, TC); 457 State.set(this, V, Part); 458 break; 459 } 460 case Instruction::Select: { 461 Value *Cond = State.get(getOperand(0), Part); 462 Value *Op1 = State.get(getOperand(1), Part); 463 Value *Op2 = State.get(getOperand(2), Part); 464 Value *V = Builder.CreateSelect(Cond, Op1, Op2); 465 State.set(this, V, Part); 466 break; 467 } 468 case VPInstruction::ActiveLaneMask: { 469 // Get first lane of vector induction variable. 470 Value *VIVElem0 = State.get(getOperand(0), VPIteration(Part, 0)); 471 // Get the original loop tripcount. 472 Value *ScalarTC = State.TripCount; 473 474 auto *Int1Ty = Type::getInt1Ty(Builder.getContext()); 475 auto *PredTy = FixedVectorType::get(Int1Ty, State.VF.getKnownMinValue()); 476 Instruction *Call = Builder.CreateIntrinsic( 477 Intrinsic::get_active_lane_mask, {PredTy, ScalarTC->getType()}, 478 {VIVElem0, ScalarTC}, nullptr, "active.lane.mask"); 479 State.set(this, Call, Part); 480 break; 481 } 482 default: 483 llvm_unreachable("Unsupported opcode for instruction"); 484 } 485 } 486 487 void VPInstruction::execute(VPTransformState &State) { 488 assert(!State.Instance && "VPInstruction executing an Instance"); 489 for (unsigned Part = 0; Part < State.UF; ++Part) 490 generateInstruction(State, Part); 491 } 492 493 void VPInstruction::dump() const { 494 VPSlotTracker SlotTracker(getParent()->getPlan()); 495 print(dbgs(), "", SlotTracker); 496 } 497 498 void VPInstruction::print(raw_ostream &O, const Twine &Indent, 499 VPSlotTracker &SlotTracker) const { 500 O << "EMIT "; 501 502 if (hasResult()) { 503 printAsOperand(O, SlotTracker); 504 O << " = "; 505 } 506 507 switch (getOpcode()) { 508 case VPInstruction::Not: 509 O << "not"; 510 break; 511 case VPInstruction::ICmpULE: 512 O << "icmp ule"; 513 break; 514 case VPInstruction::SLPLoad: 515 O << "combined load"; 516 break; 517 case VPInstruction::SLPStore: 518 O << "combined store"; 519 break; 520 case VPInstruction::ActiveLaneMask: 521 O << "active lane mask"; 522 break; 523 524 default: 525 O << Instruction::getOpcodeName(getOpcode()); 526 } 527 528 for (const VPValue *Operand : operands()) { 529 O << " "; 530 Operand->printAsOperand(O, SlotTracker); 531 } 532 } 533 534 /// Generate the code inside the body of the vectorized loop. Assumes a single 535 /// LoopVectorBody basic-block was created for this. Introduce additional 536 /// basic-blocks as needed, and fill them all. 537 void VPlan::execute(VPTransformState *State) { 538 // -1. Check if the backedge taken count is needed, and if so build it. 539 if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) { 540 Value *TC = State->TripCount; 541 IRBuilder<> Builder(State->CFG.PrevBB->getTerminator()); 542 auto *TCMO = Builder.CreateSub(TC, ConstantInt::get(TC->getType(), 1), 543 "trip.count.minus.1"); 544 auto VF = State->VF; 545 Value *VTCMO = 546 VF.isScalar() ? TCMO : Builder.CreateVectorSplat(VF, TCMO, "broadcast"); 547 for (unsigned Part = 0, UF = State->UF; Part < UF; ++Part) 548 State->set(BackedgeTakenCount, VTCMO, Part); 549 } 550 551 // 0. Set the reverse mapping from VPValues to Values for code generation. 552 for (auto &Entry : Value2VPValue) 553 State->VPValue2Value[Entry.second] = Entry.first; 554 555 BasicBlock *VectorPreHeaderBB = State->CFG.PrevBB; 556 BasicBlock *VectorHeaderBB = VectorPreHeaderBB->getSingleSuccessor(); 557 assert(VectorHeaderBB && "Loop preheader does not have a single successor."); 558 559 // 1. Make room to generate basic-blocks inside loop body if needed. 560 BasicBlock *VectorLatchBB = VectorHeaderBB->splitBasicBlock( 561 VectorHeaderBB->getFirstInsertionPt(), "vector.body.latch"); 562 Loop *L = State->LI->getLoopFor(VectorHeaderBB); 563 L->addBasicBlockToLoop(VectorLatchBB, *State->LI); 564 // Remove the edge between Header and Latch to allow other connections. 565 // Temporarily terminate with unreachable until CFG is rewired. 566 // Note: this asserts the generated code's assumption that 567 // getFirstInsertionPt() can be dereferenced into an Instruction. 568 VectorHeaderBB->getTerminator()->eraseFromParent(); 569 State->Builder.SetInsertPoint(VectorHeaderBB); 570 UnreachableInst *Terminator = State->Builder.CreateUnreachable(); 571 State->Builder.SetInsertPoint(Terminator); 572 573 // 2. Generate code in loop body. 574 State->CFG.PrevVPBB = nullptr; 575 State->CFG.PrevBB = VectorHeaderBB; 576 State->CFG.LastBB = VectorLatchBB; 577 578 for (VPBlockBase *Block : depth_first(Entry)) 579 Block->execute(State); 580 581 // Setup branch terminator successors for VPBBs in VPBBsToFix based on 582 // VPBB's successors. 583 for (auto VPBB : State->CFG.VPBBsToFix) { 584 assert(EnableVPlanNativePath && 585 "Unexpected VPBBsToFix in non VPlan-native path"); 586 BasicBlock *BB = State->CFG.VPBB2IRBB[VPBB]; 587 assert(BB && "Unexpected null basic block for VPBB"); 588 589 unsigned Idx = 0; 590 auto *BBTerminator = BB->getTerminator(); 591 592 for (VPBlockBase *SuccVPBlock : VPBB->getHierarchicalSuccessors()) { 593 VPBasicBlock *SuccVPBB = SuccVPBlock->getEntryBasicBlock(); 594 BBTerminator->setSuccessor(Idx, State->CFG.VPBB2IRBB[SuccVPBB]); 595 ++Idx; 596 } 597 } 598 599 // 3. Merge the temporary latch created with the last basic-block filled. 600 BasicBlock *LastBB = State->CFG.PrevBB; 601 // Connect LastBB to VectorLatchBB to facilitate their merge. 602 assert((EnableVPlanNativePath || 603 isa<UnreachableInst>(LastBB->getTerminator())) && 604 "Expected InnerLoop VPlan CFG to terminate with unreachable"); 605 assert((!EnableVPlanNativePath || isa<BranchInst>(LastBB->getTerminator())) && 606 "Expected VPlan CFG to terminate with branch in NativePath"); 607 LastBB->getTerminator()->eraseFromParent(); 608 BranchInst::Create(VectorLatchBB, LastBB); 609 610 // Merge LastBB with Latch. 611 bool Merged = MergeBlockIntoPredecessor(VectorLatchBB, nullptr, State->LI); 612 (void)Merged; 613 assert(Merged && "Could not merge last basic block with latch."); 614 VectorLatchBB = LastBB; 615 616 // We do not attempt to preserve DT for outer loop vectorization currently. 617 if (!EnableVPlanNativePath) 618 updateDominatorTree(State->DT, VectorPreHeaderBB, VectorLatchBB, 619 L->getExitBlock()); 620 } 621 622 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 623 LLVM_DUMP_METHOD 624 void VPlan::dump() const { dbgs() << *this << '\n'; } 625 #endif 626 627 void VPlan::updateDominatorTree(DominatorTree *DT, BasicBlock *LoopPreHeaderBB, 628 BasicBlock *LoopLatchBB, 629 BasicBlock *LoopExitBB) { 630 BasicBlock *LoopHeaderBB = LoopPreHeaderBB->getSingleSuccessor(); 631 assert(LoopHeaderBB && "Loop preheader does not have a single successor."); 632 // The vector body may be more than a single basic-block by this point. 633 // Update the dominator tree information inside the vector body by propagating 634 // it from header to latch, expecting only triangular control-flow, if any. 635 BasicBlock *PostDomSucc = nullptr; 636 for (auto *BB = LoopHeaderBB; BB != LoopLatchBB; BB = PostDomSucc) { 637 // Get the list of successors of this block. 638 std::vector<BasicBlock *> Succs(succ_begin(BB), succ_end(BB)); 639 assert(Succs.size() <= 2 && 640 "Basic block in vector loop has more than 2 successors."); 641 PostDomSucc = Succs[0]; 642 if (Succs.size() == 1) { 643 assert(PostDomSucc->getSinglePredecessor() && 644 "PostDom successor has more than one predecessor."); 645 DT->addNewBlock(PostDomSucc, BB); 646 continue; 647 } 648 BasicBlock *InterimSucc = Succs[1]; 649 if (PostDomSucc->getSingleSuccessor() == InterimSucc) { 650 PostDomSucc = Succs[1]; 651 InterimSucc = Succs[0]; 652 } 653 assert(InterimSucc->getSingleSuccessor() == PostDomSucc && 654 "One successor of a basic block does not lead to the other."); 655 assert(InterimSucc->getSinglePredecessor() && 656 "Interim successor has more than one predecessor."); 657 assert(PostDomSucc->hasNPredecessors(2) && 658 "PostDom successor has more than two predecessors."); 659 DT->addNewBlock(InterimSucc, BB); 660 DT->addNewBlock(PostDomSucc, BB); 661 } 662 // Latch block is a new dominator for the loop exit. 663 DT->changeImmediateDominator(LoopExitBB, LoopLatchBB); 664 assert(DT->verify(DominatorTree::VerificationLevel::Fast)); 665 } 666 667 const Twine VPlanPrinter::getUID(const VPBlockBase *Block) { 668 return (isa<VPRegionBlock>(Block) ? "cluster_N" : "N") + 669 Twine(getOrCreateBID(Block)); 670 } 671 672 const Twine VPlanPrinter::getOrCreateName(const VPBlockBase *Block) { 673 const std::string &Name = Block->getName(); 674 if (!Name.empty()) 675 return Name; 676 return "VPB" + Twine(getOrCreateBID(Block)); 677 } 678 679 void VPlanPrinter::dump() { 680 Depth = 1; 681 bumpIndent(0); 682 OS << "digraph VPlan {\n"; 683 OS << "graph [labelloc=t, fontsize=30; label=\"Vectorization Plan"; 684 if (!Plan.getName().empty()) 685 OS << "\\n" << DOT::EscapeString(Plan.getName()); 686 if (Plan.BackedgeTakenCount) { 687 OS << ", where:\\n"; 688 Plan.BackedgeTakenCount->print(OS, SlotTracker); 689 OS << " := BackedgeTakenCount"; 690 } 691 OS << "\"]\n"; 692 OS << "node [shape=rect, fontname=Courier, fontsize=30]\n"; 693 OS << "edge [fontname=Courier, fontsize=30]\n"; 694 OS << "compound=true\n"; 695 696 for (const VPBlockBase *Block : depth_first(Plan.getEntry())) 697 dumpBlock(Block); 698 699 OS << "}\n"; 700 } 701 702 void VPlanPrinter::dumpBlock(const VPBlockBase *Block) { 703 if (const VPBasicBlock *BasicBlock = dyn_cast<VPBasicBlock>(Block)) 704 dumpBasicBlock(BasicBlock); 705 else if (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 706 dumpRegion(Region); 707 else 708 llvm_unreachable("Unsupported kind of VPBlock."); 709 } 710 711 void VPlanPrinter::drawEdge(const VPBlockBase *From, const VPBlockBase *To, 712 bool Hidden, const Twine &Label) { 713 // Due to "dot" we print an edge between two regions as an edge between the 714 // exit basic block and the entry basic of the respective regions. 715 const VPBlockBase *Tail = From->getExitBasicBlock(); 716 const VPBlockBase *Head = To->getEntryBasicBlock(); 717 OS << Indent << getUID(Tail) << " -> " << getUID(Head); 718 OS << " [ label=\"" << Label << '\"'; 719 if (Tail != From) 720 OS << " ltail=" << getUID(From); 721 if (Head != To) 722 OS << " lhead=" << getUID(To); 723 if (Hidden) 724 OS << "; splines=none"; 725 OS << "]\n"; 726 } 727 728 void VPlanPrinter::dumpEdges(const VPBlockBase *Block) { 729 auto &Successors = Block->getSuccessors(); 730 if (Successors.size() == 1) 731 drawEdge(Block, Successors.front(), false, ""); 732 else if (Successors.size() == 2) { 733 drawEdge(Block, Successors.front(), false, "T"); 734 drawEdge(Block, Successors.back(), false, "F"); 735 } else { 736 unsigned SuccessorNumber = 0; 737 for (auto *Successor : Successors) 738 drawEdge(Block, Successor, false, Twine(SuccessorNumber++)); 739 } 740 } 741 742 void VPlanPrinter::dumpBasicBlock(const VPBasicBlock *BasicBlock) { 743 OS << Indent << getUID(BasicBlock) << " [label =\n"; 744 bumpIndent(1); 745 OS << Indent << "\"" << DOT::EscapeString(BasicBlock->getName()) << ":\\n\""; 746 bumpIndent(1); 747 748 // Dump the block predicate. 749 const VPValue *Pred = BasicBlock->getPredicate(); 750 if (Pred) { 751 OS << " +\n" << Indent << " \"BlockPredicate: \""; 752 if (const VPInstruction *PredI = dyn_cast<VPInstruction>(Pred)) { 753 PredI->printAsOperand(OS, SlotTracker); 754 OS << " (" << DOT::EscapeString(PredI->getParent()->getName()) 755 << ")\\l\""; 756 } else 757 Pred->printAsOperand(OS, SlotTracker); 758 } 759 760 for (const VPRecipeBase &Recipe : *BasicBlock) { 761 OS << " +\n" << Indent << "\""; 762 Recipe.print(OS, Indent, SlotTracker); 763 OS << "\\l\""; 764 } 765 766 // Dump the condition bit. 767 const VPValue *CBV = BasicBlock->getCondBit(); 768 if (CBV) { 769 OS << " +\n" << Indent << " \"CondBit: "; 770 if (const VPInstruction *CBI = dyn_cast<VPInstruction>(CBV)) { 771 CBI->printAsOperand(OS, SlotTracker); 772 OS << " (" << DOT::EscapeString(CBI->getParent()->getName()) << ")\\l\""; 773 } else { 774 CBV->printAsOperand(OS, SlotTracker); 775 OS << "\""; 776 } 777 } 778 779 bumpIndent(-2); 780 OS << "\n" << Indent << "]\n"; 781 dumpEdges(BasicBlock); 782 } 783 784 void VPlanPrinter::dumpRegion(const VPRegionBlock *Region) { 785 OS << Indent << "subgraph " << getUID(Region) << " {\n"; 786 bumpIndent(1); 787 OS << Indent << "fontname=Courier\n" 788 << Indent << "label=\"" 789 << DOT::EscapeString(Region->isReplicator() ? "<xVFxUF> " : "<x1> ") 790 << DOT::EscapeString(Region->getName()) << "\"\n"; 791 // Dump the blocks of the region. 792 assert(Region->getEntry() && "Region contains no inner blocks."); 793 for (const VPBlockBase *Block : depth_first(Region->getEntry())) 794 dumpBlock(Block); 795 bumpIndent(-1); 796 OS << Indent << "}\n"; 797 dumpEdges(Region); 798 } 799 800 void VPlanPrinter::printAsIngredient(raw_ostream &O, const Value *V) { 801 std::string IngredientString; 802 raw_string_ostream RSO(IngredientString); 803 if (auto *Inst = dyn_cast<Instruction>(V)) { 804 if (!Inst->getType()->isVoidTy()) { 805 Inst->printAsOperand(RSO, false); 806 RSO << " = "; 807 } 808 RSO << Inst->getOpcodeName() << " "; 809 unsigned E = Inst->getNumOperands(); 810 if (E > 0) { 811 Inst->getOperand(0)->printAsOperand(RSO, false); 812 for (unsigned I = 1; I < E; ++I) 813 Inst->getOperand(I)->printAsOperand(RSO << ", ", false); 814 } 815 } else // !Inst 816 V->printAsOperand(RSO, false); 817 RSO.flush(); 818 O << DOT::EscapeString(IngredientString); 819 } 820 821 void VPWidenCallRecipe::print(raw_ostream &O, const Twine &Indent, 822 VPSlotTracker &SlotTracker) const { 823 O << "WIDEN-CALL "; 824 825 auto *CI = cast<CallInst>(getUnderlyingInstr()); 826 if (CI->getType()->isVoidTy()) 827 O << "void "; 828 else { 829 printAsOperand(O, SlotTracker); 830 O << " = "; 831 } 832 833 O << "call @" << CI->getCalledFunction()->getName() << "("; 834 printOperands(O, SlotTracker); 835 O << ")"; 836 } 837 838 void VPWidenSelectRecipe::print(raw_ostream &O, const Twine &Indent, 839 VPSlotTracker &SlotTracker) const { 840 O << "WIDEN-SELECT "; 841 printAsOperand(O, SlotTracker); 842 O << " = select "; 843 getOperand(0)->printAsOperand(O, SlotTracker); 844 O << ", "; 845 getOperand(1)->printAsOperand(O, SlotTracker); 846 O << ", "; 847 getOperand(2)->printAsOperand(O, SlotTracker); 848 O << (InvariantCond ? " (condition is loop invariant)" : ""); 849 } 850 851 void VPWidenRecipe::print(raw_ostream &O, const Twine &Indent, 852 VPSlotTracker &SlotTracker) const { 853 O << "WIDEN "; 854 printAsOperand(O, SlotTracker); 855 O << " = " << getUnderlyingInstr()->getOpcodeName() << " "; 856 printOperands(O, SlotTracker); 857 } 858 859 void VPWidenIntOrFpInductionRecipe::print(raw_ostream &O, const Twine &Indent, 860 VPSlotTracker &SlotTracker) const { 861 O << "WIDEN-INDUCTION"; 862 if (getTruncInst()) { 863 O << "\\l\""; 864 O << " +\n" << Indent << "\" " << VPlanIngredient(IV) << "\\l\""; 865 O << " +\n" << Indent << "\" "; 866 getVPValue(0)->printAsOperand(O, SlotTracker); 867 } else 868 O << " " << VPlanIngredient(IV); 869 } 870 871 void VPWidenGEPRecipe::print(raw_ostream &O, const Twine &Indent, 872 VPSlotTracker &SlotTracker) const { 873 O << "WIDEN-GEP "; 874 O << (IsPtrLoopInvariant ? "Inv" : "Var"); 875 size_t IndicesNumber = IsIndexLoopInvariant.size(); 876 for (size_t I = 0; I < IndicesNumber; ++I) 877 O << "[" << (IsIndexLoopInvariant[I] ? "Inv" : "Var") << "]"; 878 879 O << " "; 880 printAsOperand(O, SlotTracker); 881 O << " = getelementptr "; 882 printOperands(O, SlotTracker); 883 } 884 885 void VPWidenPHIRecipe::print(raw_ostream &O, const Twine &Indent, 886 VPSlotTracker &SlotTracker) const { 887 O << "WIDEN-PHI " << VPlanIngredient(Phi); 888 } 889 890 void VPBlendRecipe::print(raw_ostream &O, const Twine &Indent, 891 VPSlotTracker &SlotTracker) const { 892 O << "BLEND "; 893 Phi->printAsOperand(O, false); 894 O << " ="; 895 if (getNumIncomingValues() == 1) { 896 // Not a User of any mask: not really blending, this is a 897 // single-predecessor phi. 898 O << " "; 899 getIncomingValue(0)->printAsOperand(O, SlotTracker); 900 } else { 901 for (unsigned I = 0, E = getNumIncomingValues(); I < E; ++I) { 902 O << " "; 903 getIncomingValue(I)->printAsOperand(O, SlotTracker); 904 O << "/"; 905 getMask(I)->printAsOperand(O, SlotTracker); 906 } 907 } 908 } 909 910 void VPReductionRecipe::print(raw_ostream &O, const Twine &Indent, 911 VPSlotTracker &SlotTracker) const { 912 O << "REDUCE "; 913 printAsOperand(O, SlotTracker); 914 O << " = "; 915 getChainOp()->printAsOperand(O, SlotTracker); 916 O << " + reduce." << Instruction::getOpcodeName(RdxDesc->getOpcode()) 917 << " ("; 918 getVecOp()->printAsOperand(O, SlotTracker); 919 if (getCondOp()) { 920 O << ", "; 921 getCondOp()->printAsOperand(O, SlotTracker); 922 } 923 O << ")"; 924 } 925 926 void VPReplicateRecipe::print(raw_ostream &O, const Twine &Indent, 927 VPSlotTracker &SlotTracker) const { 928 O << (IsUniform ? "CLONE " : "REPLICATE "); 929 930 if (!getUnderlyingInstr()->getType()->isVoidTy()) { 931 printAsOperand(O, SlotTracker); 932 O << " = "; 933 } 934 O << Instruction::getOpcodeName(getUnderlyingInstr()->getOpcode()) << " "; 935 printOperands(O, SlotTracker); 936 937 if (AlsoPack) 938 O << " (S->V)"; 939 } 940 941 void VPPredInstPHIRecipe::print(raw_ostream &O, const Twine &Indent, 942 VPSlotTracker &SlotTracker) const { 943 O << "PHI-PREDICATED-INSTRUCTION "; 944 printOperands(O, SlotTracker); 945 } 946 947 void VPWidenMemoryInstructionRecipe::print(raw_ostream &O, const Twine &Indent, 948 VPSlotTracker &SlotTracker) const { 949 O << "WIDEN "; 950 951 if (!isStore()) { 952 getVPValue()->printAsOperand(O, SlotTracker); 953 O << " = "; 954 } 955 O << Instruction::getOpcodeName(Ingredient.getOpcode()) << " "; 956 957 printOperands(O, SlotTracker); 958 } 959 960 void VPWidenCanonicalIVRecipe::execute(VPTransformState &State) { 961 Value *CanonicalIV = State.CanonicalIV; 962 Type *STy = CanonicalIV->getType(); 963 IRBuilder<> Builder(State.CFG.PrevBB->getTerminator()); 964 ElementCount VF = State.VF; 965 assert(!VF.isScalable() && "the code following assumes non scalables ECs"); 966 Value *VStart = VF.isScalar() 967 ? CanonicalIV 968 : Builder.CreateVectorSplat(VF.getKnownMinValue(), 969 CanonicalIV, "broadcast"); 970 for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part) { 971 SmallVector<Constant *, 8> Indices; 972 for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane) 973 Indices.push_back( 974 ConstantInt::get(STy, Part * VF.getKnownMinValue() + Lane)); 975 // If VF == 1, there is only one iteration in the loop above, thus the 976 // element pushed back into Indices is ConstantInt::get(STy, Part) 977 Constant *VStep = 978 VF.isScalar() ? Indices.back() : ConstantVector::get(Indices); 979 // Add the consecutive indices to the vector value. 980 Value *CanonicalVectorIV = Builder.CreateAdd(VStart, VStep, "vec.iv"); 981 State.set(getVPValue(), CanonicalVectorIV, Part); 982 } 983 } 984 985 void VPWidenCanonicalIVRecipe::print(raw_ostream &O, const Twine &Indent, 986 VPSlotTracker &SlotTracker) const { 987 O << "EMIT "; 988 getVPValue()->printAsOperand(O, SlotTracker); 989 O << " = WIDEN-CANONICAL-INDUCTION"; 990 } 991 992 template void DomTreeBuilder::Calculate<VPDominatorTree>(VPDominatorTree &DT); 993 994 void VPValue::replaceAllUsesWith(VPValue *New) { 995 for (unsigned J = 0; J < getNumUsers();) { 996 VPUser *User = Users[J]; 997 unsigned NumUsers = getNumUsers(); 998 for (unsigned I = 0, E = User->getNumOperands(); I < E; ++I) 999 if (User->getOperand(I) == this) 1000 User->setOperand(I, New); 1001 // If a user got removed after updating the current user, the next user to 1002 // update will be moved to the current position, so we only need to 1003 // increment the index if the number of users did not change. 1004 if (NumUsers == getNumUsers()) 1005 J++; 1006 } 1007 } 1008 1009 void VPValue::printAsOperand(raw_ostream &OS, VPSlotTracker &Tracker) const { 1010 if (const Value *UV = getUnderlyingValue()) { 1011 OS << "ir<"; 1012 UV->printAsOperand(OS, false); 1013 OS << ">"; 1014 return; 1015 } 1016 1017 unsigned Slot = Tracker.getSlot(this); 1018 if (Slot == unsigned(-1)) 1019 OS << "<badref>"; 1020 else 1021 OS << "vp<%" << Tracker.getSlot(this) << ">"; 1022 } 1023 1024 void VPUser::printOperands(raw_ostream &O, VPSlotTracker &SlotTracker) const { 1025 interleaveComma(operands(), O, [&O, &SlotTracker](VPValue *Op) { 1026 Op->printAsOperand(O, SlotTracker); 1027 }); 1028 } 1029 1030 void VPInterleavedAccessInfo::visitRegion(VPRegionBlock *Region, 1031 Old2NewTy &Old2New, 1032 InterleavedAccessInfo &IAI) { 1033 ReversePostOrderTraversal<VPBlockBase *> RPOT(Region->getEntry()); 1034 for (VPBlockBase *Base : RPOT) { 1035 visitBlock(Base, Old2New, IAI); 1036 } 1037 } 1038 1039 void VPInterleavedAccessInfo::visitBlock(VPBlockBase *Block, Old2NewTy &Old2New, 1040 InterleavedAccessInfo &IAI) { 1041 if (VPBasicBlock *VPBB = dyn_cast<VPBasicBlock>(Block)) { 1042 for (VPRecipeBase &VPI : *VPBB) { 1043 assert(isa<VPInstruction>(&VPI) && "Can only handle VPInstructions"); 1044 auto *VPInst = cast<VPInstruction>(&VPI); 1045 auto *Inst = cast<Instruction>(VPInst->getUnderlyingValue()); 1046 auto *IG = IAI.getInterleaveGroup(Inst); 1047 if (!IG) 1048 continue; 1049 1050 auto NewIGIter = Old2New.find(IG); 1051 if (NewIGIter == Old2New.end()) 1052 Old2New[IG] = new InterleaveGroup<VPInstruction>( 1053 IG->getFactor(), IG->isReverse(), IG->getAlign()); 1054 1055 if (Inst == IG->getInsertPos()) 1056 Old2New[IG]->setInsertPos(VPInst); 1057 1058 InterleaveGroupMap[VPInst] = Old2New[IG]; 1059 InterleaveGroupMap[VPInst]->insertMember( 1060 VPInst, IG->getIndex(Inst), 1061 Align(IG->isReverse() ? (-1) * int(IG->getFactor()) 1062 : IG->getFactor())); 1063 } 1064 } else if (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 1065 visitRegion(Region, Old2New, IAI); 1066 else 1067 llvm_unreachable("Unsupported kind of VPBlock."); 1068 } 1069 1070 VPInterleavedAccessInfo::VPInterleavedAccessInfo(VPlan &Plan, 1071 InterleavedAccessInfo &IAI) { 1072 Old2NewTy Old2New; 1073 visitRegion(cast<VPRegionBlock>(Plan.getEntry()), Old2New, IAI); 1074 } 1075 1076 void VPSlotTracker::assignSlot(const VPValue *V) { 1077 assert(Slots.find(V) == Slots.end() && "VPValue already has a slot!"); 1078 Slots[V] = NextSlot++; 1079 } 1080 1081 void VPSlotTracker::assignSlots(const VPBlockBase *VPBB) { 1082 if (auto *Region = dyn_cast<VPRegionBlock>(VPBB)) 1083 assignSlots(Region); 1084 else 1085 assignSlots(cast<VPBasicBlock>(VPBB)); 1086 } 1087 1088 void VPSlotTracker::assignSlots(const VPRegionBlock *Region) { 1089 ReversePostOrderTraversal<const VPBlockBase *> RPOT(Region->getEntry()); 1090 for (const VPBlockBase *Block : RPOT) 1091 assignSlots(Block); 1092 } 1093 1094 void VPSlotTracker::assignSlots(const VPBasicBlock *VPBB) { 1095 for (const VPRecipeBase &Recipe : *VPBB) { 1096 for (VPValue *Def : Recipe.definedValues()) 1097 assignSlot(Def); 1098 } 1099 } 1100 1101 void VPSlotTracker::assignSlots(const VPlan &Plan) { 1102 1103 for (const VPValue *V : Plan.VPExternalDefs) 1104 assignSlot(V); 1105 1106 if (Plan.BackedgeTakenCount) 1107 assignSlot(Plan.BackedgeTakenCount); 1108 1109 ReversePostOrderTraversal<const VPBlockBase *> RPOT(Plan.getEntry()); 1110 for (const VPBlockBase *Block : RPOT) 1111 assignSlots(Block); 1112 } 1113