1 //===- VPlan.cpp - Vectorizer Plan ----------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This is the LLVM vectorization plan. It represents a candidate for 11 /// vectorization, allowing to plan and optimize how to vectorize a given loop 12 /// before generating LLVM-IR. 13 /// The vectorizer uses vectorization plans to estimate the costs of potential 14 /// candidates and if profitable to execute the desired plan, generating vector 15 /// LLVM-IR code. 16 /// 17 //===----------------------------------------------------------------------===// 18 19 #include "VPlan.h" 20 #include "VPlanDominatorTree.h" 21 #include "llvm/ADT/DepthFirstIterator.h" 22 #include "llvm/ADT/PostOrderIterator.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/Twine.h" 25 #include "llvm/Analysis/LoopInfo.h" 26 #include "llvm/IR/BasicBlock.h" 27 #include "llvm/IR/CFG.h" 28 #include "llvm/IR/InstrTypes.h" 29 #include "llvm/IR/Instruction.h" 30 #include "llvm/IR/Instructions.h" 31 #include "llvm/IR/Type.h" 32 #include "llvm/IR/Value.h" 33 #include "llvm/Support/Casting.h" 34 #include "llvm/Support/Debug.h" 35 #include "llvm/Support/ErrorHandling.h" 36 #include "llvm/Support/GenericDomTreeConstruction.h" 37 #include "llvm/Support/GraphWriter.h" 38 #include "llvm/Support/raw_ostream.h" 39 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 40 #include <cassert> 41 #include <iterator> 42 #include <string> 43 #include <vector> 44 45 using namespace llvm; 46 extern cl::opt<bool> EnableVPlanNativePath; 47 48 #define DEBUG_TYPE "vplan" 49 50 raw_ostream &llvm::operator<<(raw_ostream &OS, const VPValue &V) { 51 if (const VPInstruction *Instr = dyn_cast<VPInstruction>(&V)) 52 Instr->print(OS); 53 else 54 V.printAsOperand(OS); 55 return OS; 56 } 57 58 /// \return the VPBasicBlock that is the entry of Block, possibly indirectly. 59 const VPBasicBlock *VPBlockBase::getEntryBasicBlock() const { 60 const VPBlockBase *Block = this; 61 while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 62 Block = Region->getEntry(); 63 return cast<VPBasicBlock>(Block); 64 } 65 66 VPBasicBlock *VPBlockBase::getEntryBasicBlock() { 67 VPBlockBase *Block = this; 68 while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 69 Block = Region->getEntry(); 70 return cast<VPBasicBlock>(Block); 71 } 72 73 /// \return the VPBasicBlock that is the exit of Block, possibly indirectly. 74 const VPBasicBlock *VPBlockBase::getExitBasicBlock() const { 75 const VPBlockBase *Block = this; 76 while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 77 Block = Region->getExit(); 78 return cast<VPBasicBlock>(Block); 79 } 80 81 VPBasicBlock *VPBlockBase::getExitBasicBlock() { 82 VPBlockBase *Block = this; 83 while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 84 Block = Region->getExit(); 85 return cast<VPBasicBlock>(Block); 86 } 87 88 VPBlockBase *VPBlockBase::getEnclosingBlockWithSuccessors() { 89 if (!Successors.empty() || !Parent) 90 return this; 91 assert(Parent->getExit() == this && 92 "Block w/o successors not the exit of its parent."); 93 return Parent->getEnclosingBlockWithSuccessors(); 94 } 95 96 VPBlockBase *VPBlockBase::getEnclosingBlockWithPredecessors() { 97 if (!Predecessors.empty() || !Parent) 98 return this; 99 assert(Parent->getEntry() == this && 100 "Block w/o predecessors not the entry of its parent."); 101 return Parent->getEnclosingBlockWithPredecessors(); 102 } 103 104 void VPBlockBase::deleteCFG(VPBlockBase *Entry) { 105 SmallVector<VPBlockBase *, 8> Blocks; 106 for (VPBlockBase *Block : depth_first(Entry)) 107 Blocks.push_back(Block); 108 109 for (VPBlockBase *Block : Blocks) 110 delete Block; 111 } 112 113 BasicBlock * 114 VPBasicBlock::createEmptyBasicBlock(VPTransformState::CFGState &CFG) { 115 // BB stands for IR BasicBlocks. VPBB stands for VPlan VPBasicBlocks. 116 // Pred stands for Predessor. Prev stands for Previous - last visited/created. 117 BasicBlock *PrevBB = CFG.PrevBB; 118 BasicBlock *NewBB = BasicBlock::Create(PrevBB->getContext(), getName(), 119 PrevBB->getParent(), CFG.LastBB); 120 LLVM_DEBUG(dbgs() << "LV: created " << NewBB->getName() << '\n'); 121 122 // Hook up the new basic block to its predecessors. 123 for (VPBlockBase *PredVPBlock : getHierarchicalPredecessors()) { 124 VPBasicBlock *PredVPBB = PredVPBlock->getExitBasicBlock(); 125 auto &PredVPSuccessors = PredVPBB->getSuccessors(); 126 BasicBlock *PredBB = CFG.VPBB2IRBB[PredVPBB]; 127 128 // In outer loop vectorization scenario, the predecessor BBlock may not yet 129 // be visited(backedge). Mark the VPBasicBlock for fixup at the end of 130 // vectorization. We do not encounter this case in inner loop vectorization 131 // as we start out by building a loop skeleton with the vector loop header 132 // and latch blocks. As a result, we never enter this function for the 133 // header block in the non VPlan-native path. 134 if (!PredBB) { 135 assert(EnableVPlanNativePath && 136 "Unexpected null predecessor in non VPlan-native path"); 137 CFG.VPBBsToFix.push_back(PredVPBB); 138 continue; 139 } 140 141 assert(PredBB && "Predecessor basic-block not found building successor."); 142 auto *PredBBTerminator = PredBB->getTerminator(); 143 LLVM_DEBUG(dbgs() << "LV: draw edge from" << PredBB->getName() << '\n'); 144 if (isa<UnreachableInst>(PredBBTerminator)) { 145 assert(PredVPSuccessors.size() == 1 && 146 "Predecessor ending w/o branch must have single successor."); 147 PredBBTerminator->eraseFromParent(); 148 BranchInst::Create(NewBB, PredBB); 149 } else { 150 assert(PredVPSuccessors.size() == 2 && 151 "Predecessor ending with branch must have two successors."); 152 unsigned idx = PredVPSuccessors.front() == this ? 0 : 1; 153 assert(!PredBBTerminator->getSuccessor(idx) && 154 "Trying to reset an existing successor block."); 155 PredBBTerminator->setSuccessor(idx, NewBB); 156 } 157 } 158 return NewBB; 159 } 160 161 void VPBasicBlock::execute(VPTransformState *State) { 162 bool Replica = State->Instance && 163 !(State->Instance->Part == 0 && State->Instance->Lane == 0); 164 VPBasicBlock *PrevVPBB = State->CFG.PrevVPBB; 165 VPBlockBase *SingleHPred = nullptr; 166 BasicBlock *NewBB = State->CFG.PrevBB; // Reuse it if possible. 167 168 // 1. Create an IR basic block, or reuse the last one if possible. 169 // The last IR basic block is reused, as an optimization, in three cases: 170 // A. the first VPBB reuses the loop header BB - when PrevVPBB is null; 171 // B. when the current VPBB has a single (hierarchical) predecessor which 172 // is PrevVPBB and the latter has a single (hierarchical) successor; and 173 // C. when the current VPBB is an entry of a region replica - where PrevVPBB 174 // is the exit of this region from a previous instance, or the predecessor 175 // of this region. 176 if (PrevVPBB && /* A */ 177 !((SingleHPred = getSingleHierarchicalPredecessor()) && 178 SingleHPred->getExitBasicBlock() == PrevVPBB && 179 PrevVPBB->getSingleHierarchicalSuccessor()) && /* B */ 180 !(Replica && getPredecessors().empty())) { /* C */ 181 NewBB = createEmptyBasicBlock(State->CFG); 182 State->Builder.SetInsertPoint(NewBB); 183 // Temporarily terminate with unreachable until CFG is rewired. 184 UnreachableInst *Terminator = State->Builder.CreateUnreachable(); 185 State->Builder.SetInsertPoint(Terminator); 186 // Register NewBB in its loop. In innermost loops its the same for all BB's. 187 Loop *L = State->LI->getLoopFor(State->CFG.LastBB); 188 L->addBasicBlockToLoop(NewBB, *State->LI); 189 State->CFG.PrevBB = NewBB; 190 } 191 192 // 2. Fill the IR basic block with IR instructions. 193 LLVM_DEBUG(dbgs() << "LV: vectorizing VPBB:" << getName() 194 << " in BB:" << NewBB->getName() << '\n'); 195 196 State->CFG.VPBB2IRBB[this] = NewBB; 197 State->CFG.PrevVPBB = this; 198 199 for (VPRecipeBase &Recipe : Recipes) 200 Recipe.execute(*State); 201 202 VPValue *CBV; 203 if (EnableVPlanNativePath && (CBV = getCondBit())) { 204 Value *IRCBV = CBV->getUnderlyingValue(); 205 assert(IRCBV && "Unexpected null underlying value for condition bit"); 206 207 // Condition bit value in a VPBasicBlock is used as the branch selector. In 208 // the VPlan-native path case, since all branches are uniform we generate a 209 // branch instruction using the condition value from vector lane 0 and dummy 210 // successors. The successors are fixed later when the successor blocks are 211 // visited. 212 Value *NewCond = State->Callback.getOrCreateVectorValues(IRCBV, 0); 213 NewCond = State->Builder.CreateExtractElement(NewCond, 214 State->Builder.getInt32(0)); 215 216 // Replace the temporary unreachable terminator with the new conditional 217 // branch. 218 auto *CurrentTerminator = NewBB->getTerminator(); 219 assert(isa<UnreachableInst>(CurrentTerminator) && 220 "Expected to replace unreachable terminator with conditional " 221 "branch."); 222 auto *CondBr = BranchInst::Create(NewBB, nullptr, NewCond); 223 CondBr->setSuccessor(0, nullptr); 224 ReplaceInstWithInst(CurrentTerminator, CondBr); 225 } 226 227 LLVM_DEBUG(dbgs() << "LV: filled BB:" << *NewBB); 228 } 229 230 void VPRegionBlock::execute(VPTransformState *State) { 231 ReversePostOrderTraversal<VPBlockBase *> RPOT(Entry); 232 233 if (!isReplicator()) { 234 // Visit the VPBlocks connected to "this", starting from it. 235 for (VPBlockBase *Block : RPOT) { 236 if (EnableVPlanNativePath) { 237 // The inner loop vectorization path does not represent loop preheader 238 // and exit blocks as part of the VPlan. In the VPlan-native path, skip 239 // vectorizing loop preheader block. In future, we may replace this 240 // check with the check for loop preheader. 241 if (Block->getNumPredecessors() == 0) 242 continue; 243 244 // Skip vectorizing loop exit block. In future, we may replace this 245 // check with the check for loop exit. 246 if (Block->getNumSuccessors() == 0) 247 continue; 248 } 249 250 LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n'); 251 Block->execute(State); 252 } 253 return; 254 } 255 256 assert(!State->Instance && "Replicating a Region with non-null instance."); 257 258 // Enter replicating mode. 259 State->Instance = {0, 0}; 260 261 for (unsigned Part = 0, UF = State->UF; Part < UF; ++Part) { 262 State->Instance->Part = Part; 263 for (unsigned Lane = 0, VF = State->VF; Lane < VF; ++Lane) { 264 State->Instance->Lane = Lane; 265 // Visit the VPBlocks connected to \p this, starting from it. 266 for (VPBlockBase *Block : RPOT) { 267 LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n'); 268 Block->execute(State); 269 } 270 } 271 } 272 273 // Exit replicating mode. 274 State->Instance.reset(); 275 } 276 277 void VPRecipeBase::insertBefore(VPRecipeBase *InsertPos) { 278 Parent = InsertPos->getParent(); 279 Parent->getRecipeList().insert(InsertPos->getIterator(), this); 280 } 281 282 iplist<VPRecipeBase>::iterator VPRecipeBase::eraseFromParent() { 283 return getParent()->getRecipeList().erase(getIterator()); 284 } 285 286 void VPInstruction::generateInstruction(VPTransformState &State, 287 unsigned Part) { 288 IRBuilder<> &Builder = State.Builder; 289 290 if (Instruction::isBinaryOp(getOpcode())) { 291 Value *A = State.get(getOperand(0), Part); 292 Value *B = State.get(getOperand(1), Part); 293 Value *V = Builder.CreateBinOp((Instruction::BinaryOps)getOpcode(), A, B); 294 State.set(this, V, Part); 295 return; 296 } 297 298 switch (getOpcode()) { 299 case VPInstruction::Not: { 300 Value *A = State.get(getOperand(0), Part); 301 Value *V = Builder.CreateNot(A); 302 State.set(this, V, Part); 303 break; 304 } 305 case VPInstruction::ICmpULE: { 306 Value *IV = State.get(getOperand(0), Part); 307 Value *TC = State.get(getOperand(1), Part); 308 Value *V = Builder.CreateICmpULE(IV, TC); 309 State.set(this, V, Part); 310 break; 311 } 312 case Instruction::Select: { 313 Value *Cond = State.get(getOperand(0), Part); 314 Value *Op1 = State.get(getOperand(1), Part); 315 Value *Op2 = State.get(getOperand(2), Part); 316 Value *V = Builder.CreateSelect(Cond, Op1, Op2); 317 State.set(this, V, Part); 318 break; 319 } 320 default: 321 llvm_unreachable("Unsupported opcode for instruction"); 322 } 323 } 324 325 void VPInstruction::execute(VPTransformState &State) { 326 assert(!State.Instance && "VPInstruction executing an Instance"); 327 for (unsigned Part = 0; Part < State.UF; ++Part) 328 generateInstruction(State, Part); 329 } 330 331 void VPInstruction::print(raw_ostream &O, const Twine &Indent) const { 332 O << " +\n" << Indent << "\"EMIT "; 333 print(O); 334 O << "\\l\""; 335 } 336 337 void VPInstruction::print(raw_ostream &O) const { 338 printAsOperand(O); 339 O << " = "; 340 341 switch (getOpcode()) { 342 case VPInstruction::Not: 343 O << "not"; 344 break; 345 case VPInstruction::ICmpULE: 346 O << "icmp ule"; 347 break; 348 case VPInstruction::SLPLoad: 349 O << "combined load"; 350 break; 351 case VPInstruction::SLPStore: 352 O << "combined store"; 353 break; 354 default: 355 O << Instruction::getOpcodeName(getOpcode()); 356 } 357 358 for (const VPValue *Operand : operands()) { 359 O << " "; 360 Operand->printAsOperand(O); 361 } 362 } 363 364 /// Generate the code inside the body of the vectorized loop. Assumes a single 365 /// LoopVectorBody basic-block was created for this. Introduce additional 366 /// basic-blocks as needed, and fill them all. 367 void VPlan::execute(VPTransformState *State) { 368 // -1. Check if the backedge taken count is needed, and if so build it. 369 if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) { 370 Value *TC = State->TripCount; 371 IRBuilder<> Builder(State->CFG.PrevBB->getTerminator()); 372 auto *TCMO = Builder.CreateSub(TC, ConstantInt::get(TC->getType(), 1), 373 "trip.count.minus.1"); 374 Value2VPValue[TCMO] = BackedgeTakenCount; 375 } 376 377 // 0. Set the reverse mapping from VPValues to Values for code generation. 378 for (auto &Entry : Value2VPValue) 379 State->VPValue2Value[Entry.second] = Entry.first; 380 381 BasicBlock *VectorPreHeaderBB = State->CFG.PrevBB; 382 BasicBlock *VectorHeaderBB = VectorPreHeaderBB->getSingleSuccessor(); 383 assert(VectorHeaderBB && "Loop preheader does not have a single successor."); 384 385 // 1. Make room to generate basic-blocks inside loop body if needed. 386 BasicBlock *VectorLatchBB = VectorHeaderBB->splitBasicBlock( 387 VectorHeaderBB->getFirstInsertionPt(), "vector.body.latch"); 388 Loop *L = State->LI->getLoopFor(VectorHeaderBB); 389 L->addBasicBlockToLoop(VectorLatchBB, *State->LI); 390 // Remove the edge between Header and Latch to allow other connections. 391 // Temporarily terminate with unreachable until CFG is rewired. 392 // Note: this asserts the generated code's assumption that 393 // getFirstInsertionPt() can be dereferenced into an Instruction. 394 VectorHeaderBB->getTerminator()->eraseFromParent(); 395 State->Builder.SetInsertPoint(VectorHeaderBB); 396 UnreachableInst *Terminator = State->Builder.CreateUnreachable(); 397 State->Builder.SetInsertPoint(Terminator); 398 399 // 2. Generate code in loop body. 400 State->CFG.PrevVPBB = nullptr; 401 State->CFG.PrevBB = VectorHeaderBB; 402 State->CFG.LastBB = VectorLatchBB; 403 404 for (VPBlockBase *Block : depth_first(Entry)) 405 Block->execute(State); 406 407 // Setup branch terminator successors for VPBBs in VPBBsToFix based on 408 // VPBB's successors. 409 for (auto VPBB : State->CFG.VPBBsToFix) { 410 assert(EnableVPlanNativePath && 411 "Unexpected VPBBsToFix in non VPlan-native path"); 412 BasicBlock *BB = State->CFG.VPBB2IRBB[VPBB]; 413 assert(BB && "Unexpected null basic block for VPBB"); 414 415 unsigned Idx = 0; 416 auto *BBTerminator = BB->getTerminator(); 417 418 for (VPBlockBase *SuccVPBlock : VPBB->getHierarchicalSuccessors()) { 419 VPBasicBlock *SuccVPBB = SuccVPBlock->getEntryBasicBlock(); 420 BBTerminator->setSuccessor(Idx, State->CFG.VPBB2IRBB[SuccVPBB]); 421 ++Idx; 422 } 423 } 424 425 // 3. Merge the temporary latch created with the last basic-block filled. 426 BasicBlock *LastBB = State->CFG.PrevBB; 427 // Connect LastBB to VectorLatchBB to facilitate their merge. 428 assert((EnableVPlanNativePath || 429 isa<UnreachableInst>(LastBB->getTerminator())) && 430 "Expected InnerLoop VPlan CFG to terminate with unreachable"); 431 assert((!EnableVPlanNativePath || isa<BranchInst>(LastBB->getTerminator())) && 432 "Expected VPlan CFG to terminate with branch in NativePath"); 433 LastBB->getTerminator()->eraseFromParent(); 434 BranchInst::Create(VectorLatchBB, LastBB); 435 436 // Merge LastBB with Latch. 437 bool Merged = MergeBlockIntoPredecessor(VectorLatchBB, nullptr, State->LI); 438 (void)Merged; 439 assert(Merged && "Could not merge last basic block with latch."); 440 VectorLatchBB = LastBB; 441 442 // We do not attempt to preserve DT for outer loop vectorization currently. 443 if (!EnableVPlanNativePath) 444 updateDominatorTree(State->DT, VectorPreHeaderBB, VectorLatchBB); 445 } 446 447 void VPlan::updateDominatorTree(DominatorTree *DT, BasicBlock *LoopPreHeaderBB, 448 BasicBlock *LoopLatchBB) { 449 BasicBlock *LoopHeaderBB = LoopPreHeaderBB->getSingleSuccessor(); 450 assert(LoopHeaderBB && "Loop preheader does not have a single successor."); 451 DT->addNewBlock(LoopHeaderBB, LoopPreHeaderBB); 452 // The vector body may be more than a single basic-block by this point. 453 // Update the dominator tree information inside the vector body by propagating 454 // it from header to latch, expecting only triangular control-flow, if any. 455 BasicBlock *PostDomSucc = nullptr; 456 for (auto *BB = LoopHeaderBB; BB != LoopLatchBB; BB = PostDomSucc) { 457 // Get the list of successors of this block. 458 std::vector<BasicBlock *> Succs(succ_begin(BB), succ_end(BB)); 459 assert(Succs.size() <= 2 && 460 "Basic block in vector loop has more than 2 successors."); 461 PostDomSucc = Succs[0]; 462 if (Succs.size() == 1) { 463 assert(PostDomSucc->getSinglePredecessor() && 464 "PostDom successor has more than one predecessor."); 465 DT->addNewBlock(PostDomSucc, BB); 466 continue; 467 } 468 BasicBlock *InterimSucc = Succs[1]; 469 if (PostDomSucc->getSingleSuccessor() == InterimSucc) { 470 PostDomSucc = Succs[1]; 471 InterimSucc = Succs[0]; 472 } 473 assert(InterimSucc->getSingleSuccessor() == PostDomSucc && 474 "One successor of a basic block does not lead to the other."); 475 assert(InterimSucc->getSinglePredecessor() && 476 "Interim successor has more than one predecessor."); 477 assert(PostDomSucc->hasNPredecessors(2) && 478 "PostDom successor has more than two predecessors."); 479 DT->addNewBlock(InterimSucc, BB); 480 DT->addNewBlock(PostDomSucc, BB); 481 } 482 } 483 484 const Twine VPlanPrinter::getUID(const VPBlockBase *Block) { 485 return (isa<VPRegionBlock>(Block) ? "cluster_N" : "N") + 486 Twine(getOrCreateBID(Block)); 487 } 488 489 const Twine VPlanPrinter::getOrCreateName(const VPBlockBase *Block) { 490 const std::string &Name = Block->getName(); 491 if (!Name.empty()) 492 return Name; 493 return "VPB" + Twine(getOrCreateBID(Block)); 494 } 495 496 void VPlanPrinter::dump() { 497 Depth = 1; 498 bumpIndent(0); 499 OS << "digraph VPlan {\n"; 500 OS << "graph [labelloc=t, fontsize=30; label=\"Vectorization Plan"; 501 if (!Plan.getName().empty()) 502 OS << "\\n" << DOT::EscapeString(Plan.getName()); 503 if (!Plan.Value2VPValue.empty() || Plan.BackedgeTakenCount) { 504 OS << ", where:"; 505 if (Plan.BackedgeTakenCount) 506 OS << "\\n" 507 << *Plan.getOrCreateBackedgeTakenCount() << " := BackedgeTakenCount"; 508 for (auto Entry : Plan.Value2VPValue) { 509 OS << "\\n" << *Entry.second; 510 OS << DOT::EscapeString(" := "); 511 Entry.first->printAsOperand(OS, false); 512 } 513 } 514 OS << "\"]\n"; 515 OS << "node [shape=rect, fontname=Courier, fontsize=30]\n"; 516 OS << "edge [fontname=Courier, fontsize=30]\n"; 517 OS << "compound=true\n"; 518 519 for (VPBlockBase *Block : depth_first(Plan.getEntry())) 520 dumpBlock(Block); 521 522 OS << "}\n"; 523 } 524 525 void VPlanPrinter::dumpBlock(const VPBlockBase *Block) { 526 if (const VPBasicBlock *BasicBlock = dyn_cast<VPBasicBlock>(Block)) 527 dumpBasicBlock(BasicBlock); 528 else if (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 529 dumpRegion(Region); 530 else 531 llvm_unreachable("Unsupported kind of VPBlock."); 532 } 533 534 void VPlanPrinter::drawEdge(const VPBlockBase *From, const VPBlockBase *To, 535 bool Hidden, const Twine &Label) { 536 // Due to "dot" we print an edge between two regions as an edge between the 537 // exit basic block and the entry basic of the respective regions. 538 const VPBlockBase *Tail = From->getExitBasicBlock(); 539 const VPBlockBase *Head = To->getEntryBasicBlock(); 540 OS << Indent << getUID(Tail) << " -> " << getUID(Head); 541 OS << " [ label=\"" << Label << '\"'; 542 if (Tail != From) 543 OS << " ltail=" << getUID(From); 544 if (Head != To) 545 OS << " lhead=" << getUID(To); 546 if (Hidden) 547 OS << "; splines=none"; 548 OS << "]\n"; 549 } 550 551 void VPlanPrinter::dumpEdges(const VPBlockBase *Block) { 552 auto &Successors = Block->getSuccessors(); 553 if (Successors.size() == 1) 554 drawEdge(Block, Successors.front(), false, ""); 555 else if (Successors.size() == 2) { 556 drawEdge(Block, Successors.front(), false, "T"); 557 drawEdge(Block, Successors.back(), false, "F"); 558 } else { 559 unsigned SuccessorNumber = 0; 560 for (auto *Successor : Successors) 561 drawEdge(Block, Successor, false, Twine(SuccessorNumber++)); 562 } 563 } 564 565 void VPlanPrinter::dumpBasicBlock(const VPBasicBlock *BasicBlock) { 566 OS << Indent << getUID(BasicBlock) << " [label =\n"; 567 bumpIndent(1); 568 OS << Indent << "\"" << DOT::EscapeString(BasicBlock->getName()) << ":\\n\""; 569 bumpIndent(1); 570 571 // Dump the block predicate. 572 const VPValue *Pred = BasicBlock->getPredicate(); 573 if (Pred) { 574 OS << " +\n" << Indent << " \"BlockPredicate: "; 575 if (const VPInstruction *PredI = dyn_cast<VPInstruction>(Pred)) { 576 PredI->printAsOperand(OS); 577 OS << " (" << DOT::EscapeString(PredI->getParent()->getName()) 578 << ")\\l\""; 579 } else 580 Pred->printAsOperand(OS); 581 } 582 583 for (const VPRecipeBase &Recipe : *BasicBlock) 584 Recipe.print(OS, Indent); 585 586 // Dump the condition bit. 587 const VPValue *CBV = BasicBlock->getCondBit(); 588 if (CBV) { 589 OS << " +\n" << Indent << " \"CondBit: "; 590 if (const VPInstruction *CBI = dyn_cast<VPInstruction>(CBV)) { 591 CBI->printAsOperand(OS); 592 OS << " (" << DOT::EscapeString(CBI->getParent()->getName()) << ")\\l\""; 593 } else { 594 CBV->printAsOperand(OS); 595 OS << "\""; 596 } 597 } 598 599 bumpIndent(-2); 600 OS << "\n" << Indent << "]\n"; 601 dumpEdges(BasicBlock); 602 } 603 604 void VPlanPrinter::dumpRegion(const VPRegionBlock *Region) { 605 OS << Indent << "subgraph " << getUID(Region) << " {\n"; 606 bumpIndent(1); 607 OS << Indent << "fontname=Courier\n" 608 << Indent << "label=\"" 609 << DOT::EscapeString(Region->isReplicator() ? "<xVFxUF> " : "<x1> ") 610 << DOT::EscapeString(Region->getName()) << "\"\n"; 611 // Dump the blocks of the region. 612 assert(Region->getEntry() && "Region contains no inner blocks."); 613 for (const VPBlockBase *Block : depth_first(Region->getEntry())) 614 dumpBlock(Block); 615 bumpIndent(-1); 616 OS << Indent << "}\n"; 617 dumpEdges(Region); 618 } 619 620 void VPlanPrinter::printAsIngredient(raw_ostream &O, Value *V) { 621 std::string IngredientString; 622 raw_string_ostream RSO(IngredientString); 623 if (auto *Inst = dyn_cast<Instruction>(V)) { 624 if (!Inst->getType()->isVoidTy()) { 625 Inst->printAsOperand(RSO, false); 626 RSO << " = "; 627 } 628 RSO << Inst->getOpcodeName() << " "; 629 unsigned E = Inst->getNumOperands(); 630 if (E > 0) { 631 Inst->getOperand(0)->printAsOperand(RSO, false); 632 for (unsigned I = 1; I < E; ++I) 633 Inst->getOperand(I)->printAsOperand(RSO << ", ", false); 634 } 635 } else // !Inst 636 V->printAsOperand(RSO, false); 637 RSO.flush(); 638 O << DOT::EscapeString(IngredientString); 639 } 640 641 void VPWidenRecipe::print(raw_ostream &O, const Twine &Indent) const { 642 O << " +\n" << Indent << "\"WIDEN\\l\""; 643 for (auto &Instr : make_range(Begin, End)) 644 O << " +\n" << Indent << "\" " << VPlanIngredient(&Instr) << "\\l\""; 645 } 646 647 void VPWidenIntOrFpInductionRecipe::print(raw_ostream &O, 648 const Twine &Indent) const { 649 O << " +\n" << Indent << "\"WIDEN-INDUCTION"; 650 if (Trunc) { 651 O << "\\l\""; 652 O << " +\n" << Indent << "\" " << VPlanIngredient(IV) << "\\l\""; 653 O << " +\n" << Indent << "\" " << VPlanIngredient(Trunc) << "\\l\""; 654 } else 655 O << " " << VPlanIngredient(IV) << "\\l\""; 656 } 657 658 void VPWidenPHIRecipe::print(raw_ostream &O, const Twine &Indent) const { 659 O << " +\n" << Indent << "\"WIDEN-PHI " << VPlanIngredient(Phi) << "\\l\""; 660 } 661 662 void VPBlendRecipe::print(raw_ostream &O, const Twine &Indent) const { 663 O << " +\n" << Indent << "\"BLEND "; 664 Phi->printAsOperand(O, false); 665 O << " ="; 666 if (!User) { 667 // Not a User of any mask: not really blending, this is a 668 // single-predecessor phi. 669 O << " "; 670 Phi->getIncomingValue(0)->printAsOperand(O, false); 671 } else { 672 for (unsigned I = 0, E = User->getNumOperands(); I < E; ++I) { 673 O << " "; 674 Phi->getIncomingValue(I)->printAsOperand(O, false); 675 O << "/"; 676 User->getOperand(I)->printAsOperand(O); 677 } 678 } 679 O << "\\l\""; 680 } 681 682 void VPReplicateRecipe::print(raw_ostream &O, const Twine &Indent) const { 683 O << " +\n" 684 << Indent << "\"" << (IsUniform ? "CLONE " : "REPLICATE ") 685 << VPlanIngredient(Ingredient); 686 if (AlsoPack) 687 O << " (S->V)"; 688 O << "\\l\""; 689 } 690 691 void VPPredInstPHIRecipe::print(raw_ostream &O, const Twine &Indent) const { 692 O << " +\n" 693 << Indent << "\"PHI-PREDICATED-INSTRUCTION " << VPlanIngredient(PredInst) 694 << "\\l\""; 695 } 696 697 void VPWidenMemoryInstructionRecipe::print(raw_ostream &O, 698 const Twine &Indent) const { 699 O << " +\n" << Indent << "\"WIDEN " << VPlanIngredient(&Instr); 700 if (User) { 701 O << ", "; 702 User->getOperand(0)->printAsOperand(O); 703 } 704 O << "\\l\""; 705 } 706 707 template void DomTreeBuilder::Calculate<VPDominatorTree>(VPDominatorTree &DT); 708 709 void VPValue::replaceAllUsesWith(VPValue *New) { 710 for (VPUser *User : users()) 711 for (unsigned I = 0, E = User->getNumOperands(); I < E; ++I) 712 if (User->getOperand(I) == this) 713 User->setOperand(I, New); 714 } 715 716 void VPInterleavedAccessInfo::visitRegion(VPRegionBlock *Region, 717 Old2NewTy &Old2New, 718 InterleavedAccessInfo &IAI) { 719 ReversePostOrderTraversal<VPBlockBase *> RPOT(Region->getEntry()); 720 for (VPBlockBase *Base : RPOT) { 721 visitBlock(Base, Old2New, IAI); 722 } 723 } 724 725 void VPInterleavedAccessInfo::visitBlock(VPBlockBase *Block, Old2NewTy &Old2New, 726 InterleavedAccessInfo &IAI) { 727 if (VPBasicBlock *VPBB = dyn_cast<VPBasicBlock>(Block)) { 728 for (VPRecipeBase &VPI : *VPBB) { 729 assert(isa<VPInstruction>(&VPI) && "Can only handle VPInstructions"); 730 auto *VPInst = cast<VPInstruction>(&VPI); 731 auto *Inst = cast<Instruction>(VPInst->getUnderlyingValue()); 732 auto *IG = IAI.getInterleaveGroup(Inst); 733 if (!IG) 734 continue; 735 736 auto NewIGIter = Old2New.find(IG); 737 if (NewIGIter == Old2New.end()) 738 Old2New[IG] = new InterleaveGroup<VPInstruction>( 739 IG->getFactor(), IG->isReverse(), Align(IG->getAlignment())); 740 741 if (Inst == IG->getInsertPos()) 742 Old2New[IG]->setInsertPos(VPInst); 743 744 InterleaveGroupMap[VPInst] = Old2New[IG]; 745 InterleaveGroupMap[VPInst]->insertMember( 746 VPInst, IG->getIndex(Inst), 747 Align(IG->isReverse() ? (-1) * int(IG->getFactor()) 748 : IG->getFactor())); 749 } 750 } else if (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 751 visitRegion(Region, Old2New, IAI); 752 else 753 llvm_unreachable("Unsupported kind of VPBlock."); 754 } 755 756 VPInterleavedAccessInfo::VPInterleavedAccessInfo(VPlan &Plan, 757 InterleavedAccessInfo &IAI) { 758 Old2NewTy Old2New; 759 visitRegion(cast<VPRegionBlock>(Plan.getEntry()), Old2New, IAI); 760 } 761