1 //===- VPlan.cpp - Vectorizer Plan ----------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This is the LLVM vectorization plan. It represents a candidate for 11 /// vectorization, allowing to plan and optimize how to vectorize a given loop 12 /// before generating LLVM-IR. 13 /// The vectorizer uses vectorization plans to estimate the costs of potential 14 /// candidates and if profitable to execute the desired plan, generating vector 15 /// LLVM-IR code. 16 /// 17 //===----------------------------------------------------------------------===// 18 19 #include "VPlan.h" 20 #include "VPlanDominatorTree.h" 21 #include "llvm/ADT/DepthFirstIterator.h" 22 #include "llvm/ADT/PostOrderIterator.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/Twine.h" 25 #include "llvm/Analysis/LoopInfo.h" 26 #include "llvm/IR/BasicBlock.h" 27 #include "llvm/IR/CFG.h" 28 #include "llvm/IR/InstrTypes.h" 29 #include "llvm/IR/Instruction.h" 30 #include "llvm/IR/Instructions.h" 31 #include "llvm/IR/Type.h" 32 #include "llvm/IR/Value.h" 33 #include "llvm/Support/Casting.h" 34 #include "llvm/Support/CommandLine.h" 35 #include "llvm/Support/Debug.h" 36 #include "llvm/Support/ErrorHandling.h" 37 #include "llvm/Support/GenericDomTreeConstruction.h" 38 #include "llvm/Support/GraphWriter.h" 39 #include "llvm/Support/raw_ostream.h" 40 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 41 #include <cassert> 42 #include <iterator> 43 #include <string> 44 #include <vector> 45 46 using namespace llvm; 47 extern cl::opt<bool> EnableVPlanNativePath; 48 49 #define DEBUG_TYPE "vplan" 50 51 raw_ostream &llvm::operator<<(raw_ostream &OS, const VPValue &V) { 52 const VPInstruction *Instr = dyn_cast<VPInstruction>(&V); 53 VPSlotTracker SlotTracker( 54 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr); 55 V.print(OS, SlotTracker); 56 return OS; 57 } 58 59 void VPValue::print(raw_ostream &OS, VPSlotTracker &SlotTracker) const { 60 if (const VPInstruction *Instr = dyn_cast<VPInstruction>(this)) 61 Instr->print(OS, SlotTracker); 62 else 63 printAsOperand(OS, SlotTracker); 64 } 65 66 void VPValue::dump() const { 67 const VPInstruction *Instr = dyn_cast<VPInstruction>(this); 68 VPSlotTracker SlotTracker( 69 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr); 70 print(dbgs(), SlotTracker); 71 dbgs() << "\n"; 72 } 73 74 void VPRecipeBase::dump() const { 75 VPSlotTracker SlotTracker(nullptr); 76 print(dbgs(), "", SlotTracker); 77 dbgs() << "\n"; 78 } 79 80 VPUser *VPRecipeBase::toVPUser() { 81 if (auto *U = dyn_cast<VPInstruction>(this)) 82 return U; 83 if (auto *U = dyn_cast<VPWidenRecipe>(this)) 84 return U; 85 if (auto *U = dyn_cast<VPWidenCallRecipe>(this)) 86 return U; 87 if (auto *U = dyn_cast<VPWidenSelectRecipe>(this)) 88 return U; 89 if (auto *U = dyn_cast<VPWidenGEPRecipe>(this)) 90 return U; 91 if (auto *U = dyn_cast<VPBlendRecipe>(this)) 92 return U; 93 if (auto *U = dyn_cast<VPInterleaveRecipe>(this)) 94 return U; 95 if (auto *U = dyn_cast<VPReplicateRecipe>(this)) 96 return U; 97 if (auto *U = dyn_cast<VPBranchOnMaskRecipe>(this)) 98 return U; 99 if (auto *U = dyn_cast<VPWidenMemoryInstructionRecipe>(this)) 100 return U; 101 return nullptr; 102 } 103 104 // Get the top-most entry block of \p Start. This is the entry block of the 105 // containing VPlan. This function is templated to support both const and non-const blocks 106 template <typename T> static T *getPlanEntry(T *Start) { 107 T *Next = Start; 108 T *Current = Start; 109 while ((Next = Next->getParent())) 110 Current = Next; 111 112 SmallSetVector<T *, 8> WorkList; 113 WorkList.insert(Current); 114 115 for (unsigned i = 0; i < WorkList.size(); i++) { 116 T *Current = WorkList[i]; 117 if (Current->getNumPredecessors() == 0) 118 return Current; 119 auto &Predecessors = Current->getPredecessors(); 120 WorkList.insert(Predecessors.begin(), Predecessors.end()); 121 } 122 123 llvm_unreachable("VPlan without any entry node without predecessors"); 124 } 125 126 VPlan *VPBlockBase::getPlan() { return getPlanEntry(this)->Plan; } 127 128 const VPlan *VPBlockBase::getPlan() const { return getPlanEntry(this)->Plan; } 129 130 /// \return the VPBasicBlock that is the entry of Block, possibly indirectly. 131 const VPBasicBlock *VPBlockBase::getEntryBasicBlock() const { 132 const VPBlockBase *Block = this; 133 while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 134 Block = Region->getEntry(); 135 return cast<VPBasicBlock>(Block); 136 } 137 138 VPBasicBlock *VPBlockBase::getEntryBasicBlock() { 139 VPBlockBase *Block = this; 140 while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 141 Block = Region->getEntry(); 142 return cast<VPBasicBlock>(Block); 143 } 144 145 void VPBlockBase::setPlan(VPlan *ParentPlan) { 146 assert(ParentPlan->getEntry() == this && 147 "Can only set plan on its entry block."); 148 Plan = ParentPlan; 149 } 150 151 /// \return the VPBasicBlock that is the exit of Block, possibly indirectly. 152 const VPBasicBlock *VPBlockBase::getExitBasicBlock() const { 153 const VPBlockBase *Block = this; 154 while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 155 Block = Region->getExit(); 156 return cast<VPBasicBlock>(Block); 157 } 158 159 VPBasicBlock *VPBlockBase::getExitBasicBlock() { 160 VPBlockBase *Block = this; 161 while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 162 Block = Region->getExit(); 163 return cast<VPBasicBlock>(Block); 164 } 165 166 VPBlockBase *VPBlockBase::getEnclosingBlockWithSuccessors() { 167 if (!Successors.empty() || !Parent) 168 return this; 169 assert(Parent->getExit() == this && 170 "Block w/o successors not the exit of its parent."); 171 return Parent->getEnclosingBlockWithSuccessors(); 172 } 173 174 VPBlockBase *VPBlockBase::getEnclosingBlockWithPredecessors() { 175 if (!Predecessors.empty() || !Parent) 176 return this; 177 assert(Parent->getEntry() == this && 178 "Block w/o predecessors not the entry of its parent."); 179 return Parent->getEnclosingBlockWithPredecessors(); 180 } 181 182 void VPBlockBase::deleteCFG(VPBlockBase *Entry) { 183 SmallVector<VPBlockBase *, 8> Blocks; 184 185 VPValue DummyValue; 186 for (VPBlockBase *Block : depth_first(Entry)) { 187 // Drop all references in VPBasicBlocks and replace all uses with 188 // DummyValue. 189 if (auto *VPBB = dyn_cast<VPBasicBlock>(Block)) 190 VPBB->dropAllReferences(&DummyValue); 191 Blocks.push_back(Block); 192 } 193 194 for (VPBlockBase *Block : Blocks) 195 delete Block; 196 } 197 198 VPBasicBlock::iterator VPBasicBlock::getFirstNonPhi() { 199 iterator It = begin(); 200 while (It != end() && 201 (It->getVPRecipeID() == VPRecipeBase::VPWidenPHISC || 202 It->getVPRecipeID() == VPRecipeBase::VPWidenIntOrFpInductionSC || 203 It->getVPRecipeID() == VPRecipeBase::VPPredInstPHISC || 204 It->getVPRecipeID() == VPRecipeBase::VPWidenCanonicalIVSC)) 205 It++; 206 return It; 207 } 208 209 BasicBlock * 210 VPBasicBlock::createEmptyBasicBlock(VPTransformState::CFGState &CFG) { 211 // BB stands for IR BasicBlocks. VPBB stands for VPlan VPBasicBlocks. 212 // Pred stands for Predessor. Prev stands for Previous - last visited/created. 213 BasicBlock *PrevBB = CFG.PrevBB; 214 BasicBlock *NewBB = BasicBlock::Create(PrevBB->getContext(), getName(), 215 PrevBB->getParent(), CFG.LastBB); 216 LLVM_DEBUG(dbgs() << "LV: created " << NewBB->getName() << '\n'); 217 218 // Hook up the new basic block to its predecessors. 219 for (VPBlockBase *PredVPBlock : getHierarchicalPredecessors()) { 220 VPBasicBlock *PredVPBB = PredVPBlock->getExitBasicBlock(); 221 auto &PredVPSuccessors = PredVPBB->getSuccessors(); 222 BasicBlock *PredBB = CFG.VPBB2IRBB[PredVPBB]; 223 224 // In outer loop vectorization scenario, the predecessor BBlock may not yet 225 // be visited(backedge). Mark the VPBasicBlock for fixup at the end of 226 // vectorization. We do not encounter this case in inner loop vectorization 227 // as we start out by building a loop skeleton with the vector loop header 228 // and latch blocks. As a result, we never enter this function for the 229 // header block in the non VPlan-native path. 230 if (!PredBB) { 231 assert(EnableVPlanNativePath && 232 "Unexpected null predecessor in non VPlan-native path"); 233 CFG.VPBBsToFix.push_back(PredVPBB); 234 continue; 235 } 236 237 assert(PredBB && "Predecessor basic-block not found building successor."); 238 auto *PredBBTerminator = PredBB->getTerminator(); 239 LLVM_DEBUG(dbgs() << "LV: draw edge from" << PredBB->getName() << '\n'); 240 if (isa<UnreachableInst>(PredBBTerminator)) { 241 assert(PredVPSuccessors.size() == 1 && 242 "Predecessor ending w/o branch must have single successor."); 243 PredBBTerminator->eraseFromParent(); 244 BranchInst::Create(NewBB, PredBB); 245 } else { 246 assert(PredVPSuccessors.size() == 2 && 247 "Predecessor ending with branch must have two successors."); 248 unsigned idx = PredVPSuccessors.front() == this ? 0 : 1; 249 assert(!PredBBTerminator->getSuccessor(idx) && 250 "Trying to reset an existing successor block."); 251 PredBBTerminator->setSuccessor(idx, NewBB); 252 } 253 } 254 return NewBB; 255 } 256 257 void VPBasicBlock::execute(VPTransformState *State) { 258 bool Replica = State->Instance && 259 !(State->Instance->Part == 0 && State->Instance->Lane == 0); 260 VPBasicBlock *PrevVPBB = State->CFG.PrevVPBB; 261 VPBlockBase *SingleHPred = nullptr; 262 BasicBlock *NewBB = State->CFG.PrevBB; // Reuse it if possible. 263 264 // 1. Create an IR basic block, or reuse the last one if possible. 265 // The last IR basic block is reused, as an optimization, in three cases: 266 // A. the first VPBB reuses the loop header BB - when PrevVPBB is null; 267 // B. when the current VPBB has a single (hierarchical) predecessor which 268 // is PrevVPBB and the latter has a single (hierarchical) successor; and 269 // C. when the current VPBB is an entry of a region replica - where PrevVPBB 270 // is the exit of this region from a previous instance, or the predecessor 271 // of this region. 272 if (PrevVPBB && /* A */ 273 !((SingleHPred = getSingleHierarchicalPredecessor()) && 274 SingleHPred->getExitBasicBlock() == PrevVPBB && 275 PrevVPBB->getSingleHierarchicalSuccessor()) && /* B */ 276 !(Replica && getPredecessors().empty())) { /* C */ 277 NewBB = createEmptyBasicBlock(State->CFG); 278 State->Builder.SetInsertPoint(NewBB); 279 // Temporarily terminate with unreachable until CFG is rewired. 280 UnreachableInst *Terminator = State->Builder.CreateUnreachable(); 281 State->Builder.SetInsertPoint(Terminator); 282 // Register NewBB in its loop. In innermost loops its the same for all BB's. 283 Loop *L = State->LI->getLoopFor(State->CFG.LastBB); 284 L->addBasicBlockToLoop(NewBB, *State->LI); 285 State->CFG.PrevBB = NewBB; 286 } 287 288 // 2. Fill the IR basic block with IR instructions. 289 LLVM_DEBUG(dbgs() << "LV: vectorizing VPBB:" << getName() 290 << " in BB:" << NewBB->getName() << '\n'); 291 292 State->CFG.VPBB2IRBB[this] = NewBB; 293 State->CFG.PrevVPBB = this; 294 295 for (VPRecipeBase &Recipe : Recipes) 296 Recipe.execute(*State); 297 298 VPValue *CBV; 299 if (EnableVPlanNativePath && (CBV = getCondBit())) { 300 Value *IRCBV = CBV->getUnderlyingValue(); 301 assert(IRCBV && "Unexpected null underlying value for condition bit"); 302 303 // Condition bit value in a VPBasicBlock is used as the branch selector. In 304 // the VPlan-native path case, since all branches are uniform we generate a 305 // branch instruction using the condition value from vector lane 0 and dummy 306 // successors. The successors are fixed later when the successor blocks are 307 // visited. 308 Value *NewCond = State->Callback.getOrCreateVectorValues(IRCBV, 0); 309 NewCond = State->Builder.CreateExtractElement(NewCond, 310 State->Builder.getInt32(0)); 311 312 // Replace the temporary unreachable terminator with the new conditional 313 // branch. 314 auto *CurrentTerminator = NewBB->getTerminator(); 315 assert(isa<UnreachableInst>(CurrentTerminator) && 316 "Expected to replace unreachable terminator with conditional " 317 "branch."); 318 auto *CondBr = BranchInst::Create(NewBB, nullptr, NewCond); 319 CondBr->setSuccessor(0, nullptr); 320 ReplaceInstWithInst(CurrentTerminator, CondBr); 321 } 322 323 LLVM_DEBUG(dbgs() << "LV: filled BB:" << *NewBB); 324 } 325 326 void VPBasicBlock::dropAllReferences(VPValue *NewValue) { 327 for (VPRecipeBase &R : Recipes) { 328 if (auto *VPV = R.toVPValue()) 329 VPV->replaceAllUsesWith(NewValue); 330 331 if (auto *User = R.toVPUser()) 332 for (unsigned I = 0, E = User->getNumOperands(); I != E; I++) 333 User->setOperand(I, NewValue); 334 } 335 } 336 337 void VPRegionBlock::execute(VPTransformState *State) { 338 ReversePostOrderTraversal<VPBlockBase *> RPOT(Entry); 339 340 if (!isReplicator()) { 341 // Visit the VPBlocks connected to "this", starting from it. 342 for (VPBlockBase *Block : RPOT) { 343 if (EnableVPlanNativePath) { 344 // The inner loop vectorization path does not represent loop preheader 345 // and exit blocks as part of the VPlan. In the VPlan-native path, skip 346 // vectorizing loop preheader block. In future, we may replace this 347 // check with the check for loop preheader. 348 if (Block->getNumPredecessors() == 0) 349 continue; 350 351 // Skip vectorizing loop exit block. In future, we may replace this 352 // check with the check for loop exit. 353 if (Block->getNumSuccessors() == 0) 354 continue; 355 } 356 357 LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n'); 358 Block->execute(State); 359 } 360 return; 361 } 362 363 assert(!State->Instance && "Replicating a Region with non-null instance."); 364 365 // Enter replicating mode. 366 State->Instance = {0, 0}; 367 368 for (unsigned Part = 0, UF = State->UF; Part < UF; ++Part) { 369 State->Instance->Part = Part; 370 assert(!State->VF.isScalable() && "VF is assumed to be non scalable."); 371 for (unsigned Lane = 0, VF = State->VF.getKnownMinValue(); Lane < VF; 372 ++Lane) { 373 State->Instance->Lane = Lane; 374 // Visit the VPBlocks connected to \p this, starting from it. 375 for (VPBlockBase *Block : RPOT) { 376 LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n'); 377 Block->execute(State); 378 } 379 } 380 } 381 382 // Exit replicating mode. 383 State->Instance.reset(); 384 } 385 386 void VPRecipeBase::insertBefore(VPRecipeBase *InsertPos) { 387 assert(!Parent && "Recipe already in some VPBasicBlock"); 388 assert(InsertPos->getParent() && 389 "Insertion position not in any VPBasicBlock"); 390 Parent = InsertPos->getParent(); 391 Parent->getRecipeList().insert(InsertPos->getIterator(), this); 392 } 393 394 void VPRecipeBase::insertAfter(VPRecipeBase *InsertPos) { 395 assert(!Parent && "Recipe already in some VPBasicBlock"); 396 assert(InsertPos->getParent() && 397 "Insertion position not in any VPBasicBlock"); 398 Parent = InsertPos->getParent(); 399 Parent->getRecipeList().insertAfter(InsertPos->getIterator(), this); 400 } 401 402 void VPRecipeBase::removeFromParent() { 403 assert(getParent() && "Recipe not in any VPBasicBlock"); 404 getParent()->getRecipeList().remove(getIterator()); 405 Parent = nullptr; 406 } 407 408 VPValue *VPRecipeBase::toVPValue() { 409 if (auto *V = dyn_cast<VPInstruction>(this)) 410 return V; 411 return nullptr; 412 } 413 414 iplist<VPRecipeBase>::iterator VPRecipeBase::eraseFromParent() { 415 assert(getParent() && "Recipe not in any VPBasicBlock"); 416 return getParent()->getRecipeList().erase(getIterator()); 417 } 418 419 void VPRecipeBase::moveAfter(VPRecipeBase *InsertPos) { 420 removeFromParent(); 421 insertAfter(InsertPos); 422 } 423 424 void VPInstruction::generateInstruction(VPTransformState &State, 425 unsigned Part) { 426 IRBuilder<> &Builder = State.Builder; 427 428 if (Instruction::isBinaryOp(getOpcode())) { 429 Value *A = State.get(getOperand(0), Part); 430 Value *B = State.get(getOperand(1), Part); 431 Value *V = Builder.CreateBinOp((Instruction::BinaryOps)getOpcode(), A, B); 432 State.set(this, V, Part); 433 return; 434 } 435 436 switch (getOpcode()) { 437 case VPInstruction::Not: { 438 Value *A = State.get(getOperand(0), Part); 439 Value *V = Builder.CreateNot(A); 440 State.set(this, V, Part); 441 break; 442 } 443 case VPInstruction::ICmpULE: { 444 Value *IV = State.get(getOperand(0), Part); 445 Value *TC = State.get(getOperand(1), Part); 446 Value *V = Builder.CreateICmpULE(IV, TC); 447 State.set(this, V, Part); 448 break; 449 } 450 case Instruction::Select: { 451 Value *Cond = State.get(getOperand(0), Part); 452 Value *Op1 = State.get(getOperand(1), Part); 453 Value *Op2 = State.get(getOperand(2), Part); 454 Value *V = Builder.CreateSelect(Cond, Op1, Op2); 455 State.set(this, V, Part); 456 break; 457 } 458 case VPInstruction::ActiveLaneMask: { 459 // Get first lane of vector induction variable. 460 Value *VIVElem0 = State.get(getOperand(0), {Part, 0}); 461 // Get the original loop tripcount. 462 Value *ScalarTC = State.TripCount; 463 464 auto *Int1Ty = Type::getInt1Ty(Builder.getContext()); 465 auto *PredTy = FixedVectorType::get(Int1Ty, State.VF.getKnownMinValue()); 466 Instruction *Call = Builder.CreateIntrinsic( 467 Intrinsic::get_active_lane_mask, {PredTy, ScalarTC->getType()}, 468 {VIVElem0, ScalarTC}, nullptr, "active.lane.mask"); 469 State.set(this, Call, Part); 470 break; 471 } 472 default: 473 llvm_unreachable("Unsupported opcode for instruction"); 474 } 475 } 476 477 void VPInstruction::execute(VPTransformState &State) { 478 assert(!State.Instance && "VPInstruction executing an Instance"); 479 for (unsigned Part = 0; Part < State.UF; ++Part) 480 generateInstruction(State, Part); 481 } 482 483 void VPInstruction::print(raw_ostream &O, const Twine &Indent, 484 VPSlotTracker &SlotTracker) const { 485 O << "\"EMIT "; 486 print(O, SlotTracker); 487 } 488 489 void VPInstruction::print(raw_ostream &O) const { 490 VPSlotTracker SlotTracker(getParent()->getPlan()); 491 print(O, SlotTracker); 492 } 493 494 void VPInstruction::print(raw_ostream &O, VPSlotTracker &SlotTracker) const { 495 if (hasResult()) { 496 printAsOperand(O, SlotTracker); 497 O << " = "; 498 } 499 500 switch (getOpcode()) { 501 case VPInstruction::Not: 502 O << "not"; 503 break; 504 case VPInstruction::ICmpULE: 505 O << "icmp ule"; 506 break; 507 case VPInstruction::SLPLoad: 508 O << "combined load"; 509 break; 510 case VPInstruction::SLPStore: 511 O << "combined store"; 512 break; 513 case VPInstruction::ActiveLaneMask: 514 O << "active lane mask"; 515 break; 516 517 default: 518 O << Instruction::getOpcodeName(getOpcode()); 519 } 520 521 for (const VPValue *Operand : operands()) { 522 O << " "; 523 Operand->printAsOperand(O, SlotTracker); 524 } 525 } 526 527 /// Generate the code inside the body of the vectorized loop. Assumes a single 528 /// LoopVectorBody basic-block was created for this. Introduce additional 529 /// basic-blocks as needed, and fill them all. 530 void VPlan::execute(VPTransformState *State) { 531 // -1. Check if the backedge taken count is needed, and if so build it. 532 if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) { 533 Value *TC = State->TripCount; 534 IRBuilder<> Builder(State->CFG.PrevBB->getTerminator()); 535 auto *TCMO = Builder.CreateSub(TC, ConstantInt::get(TC->getType(), 1), 536 "trip.count.minus.1"); 537 auto VF = State->VF; 538 Value *VTCMO = 539 VF.isScalar() ? TCMO : Builder.CreateVectorSplat(VF, TCMO, "broadcast"); 540 for (unsigned Part = 0, UF = State->UF; Part < UF; ++Part) 541 State->set(BackedgeTakenCount, VTCMO, Part); 542 } 543 544 // 0. Set the reverse mapping from VPValues to Values for code generation. 545 for (auto &Entry : Value2VPValue) 546 State->VPValue2Value[Entry.second] = Entry.first; 547 548 BasicBlock *VectorPreHeaderBB = State->CFG.PrevBB; 549 BasicBlock *VectorHeaderBB = VectorPreHeaderBB->getSingleSuccessor(); 550 assert(VectorHeaderBB && "Loop preheader does not have a single successor."); 551 552 // 1. Make room to generate basic-blocks inside loop body if needed. 553 BasicBlock *VectorLatchBB = VectorHeaderBB->splitBasicBlock( 554 VectorHeaderBB->getFirstInsertionPt(), "vector.body.latch"); 555 Loop *L = State->LI->getLoopFor(VectorHeaderBB); 556 L->addBasicBlockToLoop(VectorLatchBB, *State->LI); 557 // Remove the edge between Header and Latch to allow other connections. 558 // Temporarily terminate with unreachable until CFG is rewired. 559 // Note: this asserts the generated code's assumption that 560 // getFirstInsertionPt() can be dereferenced into an Instruction. 561 VectorHeaderBB->getTerminator()->eraseFromParent(); 562 State->Builder.SetInsertPoint(VectorHeaderBB); 563 UnreachableInst *Terminator = State->Builder.CreateUnreachable(); 564 State->Builder.SetInsertPoint(Terminator); 565 566 // 2. Generate code in loop body. 567 State->CFG.PrevVPBB = nullptr; 568 State->CFG.PrevBB = VectorHeaderBB; 569 State->CFG.LastBB = VectorLatchBB; 570 571 for (VPBlockBase *Block : depth_first(Entry)) 572 Block->execute(State); 573 574 // Setup branch terminator successors for VPBBs in VPBBsToFix based on 575 // VPBB's successors. 576 for (auto VPBB : State->CFG.VPBBsToFix) { 577 assert(EnableVPlanNativePath && 578 "Unexpected VPBBsToFix in non VPlan-native path"); 579 BasicBlock *BB = State->CFG.VPBB2IRBB[VPBB]; 580 assert(BB && "Unexpected null basic block for VPBB"); 581 582 unsigned Idx = 0; 583 auto *BBTerminator = BB->getTerminator(); 584 585 for (VPBlockBase *SuccVPBlock : VPBB->getHierarchicalSuccessors()) { 586 VPBasicBlock *SuccVPBB = SuccVPBlock->getEntryBasicBlock(); 587 BBTerminator->setSuccessor(Idx, State->CFG.VPBB2IRBB[SuccVPBB]); 588 ++Idx; 589 } 590 } 591 592 // 3. Merge the temporary latch created with the last basic-block filled. 593 BasicBlock *LastBB = State->CFG.PrevBB; 594 // Connect LastBB to VectorLatchBB to facilitate their merge. 595 assert((EnableVPlanNativePath || 596 isa<UnreachableInst>(LastBB->getTerminator())) && 597 "Expected InnerLoop VPlan CFG to terminate with unreachable"); 598 assert((!EnableVPlanNativePath || isa<BranchInst>(LastBB->getTerminator())) && 599 "Expected VPlan CFG to terminate with branch in NativePath"); 600 LastBB->getTerminator()->eraseFromParent(); 601 BranchInst::Create(VectorLatchBB, LastBB); 602 603 // Merge LastBB with Latch. 604 bool Merged = MergeBlockIntoPredecessor(VectorLatchBB, nullptr, State->LI); 605 (void)Merged; 606 assert(Merged && "Could not merge last basic block with latch."); 607 VectorLatchBB = LastBB; 608 609 // We do not attempt to preserve DT for outer loop vectorization currently. 610 if (!EnableVPlanNativePath) 611 updateDominatorTree(State->DT, VectorPreHeaderBB, VectorLatchBB, 612 L->getExitBlock()); 613 } 614 615 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 616 LLVM_DUMP_METHOD 617 void VPlan::dump() const { dbgs() << *this << '\n'; } 618 #endif 619 620 void VPlan::updateDominatorTree(DominatorTree *DT, BasicBlock *LoopPreHeaderBB, 621 BasicBlock *LoopLatchBB, 622 BasicBlock *LoopExitBB) { 623 BasicBlock *LoopHeaderBB = LoopPreHeaderBB->getSingleSuccessor(); 624 assert(LoopHeaderBB && "Loop preheader does not have a single successor."); 625 // The vector body may be more than a single basic-block by this point. 626 // Update the dominator tree information inside the vector body by propagating 627 // it from header to latch, expecting only triangular control-flow, if any. 628 BasicBlock *PostDomSucc = nullptr; 629 for (auto *BB = LoopHeaderBB; BB != LoopLatchBB; BB = PostDomSucc) { 630 // Get the list of successors of this block. 631 std::vector<BasicBlock *> Succs(succ_begin(BB), succ_end(BB)); 632 assert(Succs.size() <= 2 && 633 "Basic block in vector loop has more than 2 successors."); 634 PostDomSucc = Succs[0]; 635 if (Succs.size() == 1) { 636 assert(PostDomSucc->getSinglePredecessor() && 637 "PostDom successor has more than one predecessor."); 638 DT->addNewBlock(PostDomSucc, BB); 639 continue; 640 } 641 BasicBlock *InterimSucc = Succs[1]; 642 if (PostDomSucc->getSingleSuccessor() == InterimSucc) { 643 PostDomSucc = Succs[1]; 644 InterimSucc = Succs[0]; 645 } 646 assert(InterimSucc->getSingleSuccessor() == PostDomSucc && 647 "One successor of a basic block does not lead to the other."); 648 assert(InterimSucc->getSinglePredecessor() && 649 "Interim successor has more than one predecessor."); 650 assert(PostDomSucc->hasNPredecessors(2) && 651 "PostDom successor has more than two predecessors."); 652 DT->addNewBlock(InterimSucc, BB); 653 DT->addNewBlock(PostDomSucc, BB); 654 } 655 // Latch block is a new dominator for the loop exit. 656 DT->changeImmediateDominator(LoopExitBB, LoopLatchBB); 657 assert(DT->verify(DominatorTree::VerificationLevel::Fast)); 658 } 659 660 const Twine VPlanPrinter::getUID(const VPBlockBase *Block) { 661 return (isa<VPRegionBlock>(Block) ? "cluster_N" : "N") + 662 Twine(getOrCreateBID(Block)); 663 } 664 665 const Twine VPlanPrinter::getOrCreateName(const VPBlockBase *Block) { 666 const std::string &Name = Block->getName(); 667 if (!Name.empty()) 668 return Name; 669 return "VPB" + Twine(getOrCreateBID(Block)); 670 } 671 672 void VPlanPrinter::dump() { 673 Depth = 1; 674 bumpIndent(0); 675 OS << "digraph VPlan {\n"; 676 OS << "graph [labelloc=t, fontsize=30; label=\"Vectorization Plan"; 677 if (!Plan.getName().empty()) 678 OS << "\\n" << DOT::EscapeString(Plan.getName()); 679 if (Plan.BackedgeTakenCount) { 680 OS << ", where:\\n"; 681 Plan.BackedgeTakenCount->print(OS, SlotTracker); 682 OS << " := BackedgeTakenCount"; 683 } 684 OS << "\"]\n"; 685 OS << "node [shape=rect, fontname=Courier, fontsize=30]\n"; 686 OS << "edge [fontname=Courier, fontsize=30]\n"; 687 OS << "compound=true\n"; 688 689 for (const VPBlockBase *Block : depth_first(Plan.getEntry())) 690 dumpBlock(Block); 691 692 OS << "}\n"; 693 } 694 695 void VPlanPrinter::dumpBlock(const VPBlockBase *Block) { 696 if (const VPBasicBlock *BasicBlock = dyn_cast<VPBasicBlock>(Block)) 697 dumpBasicBlock(BasicBlock); 698 else if (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 699 dumpRegion(Region); 700 else 701 llvm_unreachable("Unsupported kind of VPBlock."); 702 } 703 704 void VPlanPrinter::drawEdge(const VPBlockBase *From, const VPBlockBase *To, 705 bool Hidden, const Twine &Label) { 706 // Due to "dot" we print an edge between two regions as an edge between the 707 // exit basic block and the entry basic of the respective regions. 708 const VPBlockBase *Tail = From->getExitBasicBlock(); 709 const VPBlockBase *Head = To->getEntryBasicBlock(); 710 OS << Indent << getUID(Tail) << " -> " << getUID(Head); 711 OS << " [ label=\"" << Label << '\"'; 712 if (Tail != From) 713 OS << " ltail=" << getUID(From); 714 if (Head != To) 715 OS << " lhead=" << getUID(To); 716 if (Hidden) 717 OS << "; splines=none"; 718 OS << "]\n"; 719 } 720 721 void VPlanPrinter::dumpEdges(const VPBlockBase *Block) { 722 auto &Successors = Block->getSuccessors(); 723 if (Successors.size() == 1) 724 drawEdge(Block, Successors.front(), false, ""); 725 else if (Successors.size() == 2) { 726 drawEdge(Block, Successors.front(), false, "T"); 727 drawEdge(Block, Successors.back(), false, "F"); 728 } else { 729 unsigned SuccessorNumber = 0; 730 for (auto *Successor : Successors) 731 drawEdge(Block, Successor, false, Twine(SuccessorNumber++)); 732 } 733 } 734 735 void VPlanPrinter::dumpBasicBlock(const VPBasicBlock *BasicBlock) { 736 OS << Indent << getUID(BasicBlock) << " [label =\n"; 737 bumpIndent(1); 738 OS << Indent << "\"" << DOT::EscapeString(BasicBlock->getName()) << ":\\n\""; 739 bumpIndent(1); 740 741 // Dump the block predicate. 742 const VPValue *Pred = BasicBlock->getPredicate(); 743 if (Pred) { 744 OS << " +\n" << Indent << " \"BlockPredicate: "; 745 if (const VPInstruction *PredI = dyn_cast<VPInstruction>(Pred)) { 746 PredI->printAsOperand(OS, SlotTracker); 747 OS << " (" << DOT::EscapeString(PredI->getParent()->getName()) 748 << ")\\l\""; 749 } else 750 Pred->printAsOperand(OS, SlotTracker); 751 } 752 753 for (const VPRecipeBase &Recipe : *BasicBlock) { 754 OS << " +\n" << Indent; 755 Recipe.print(OS, Indent, SlotTracker); 756 OS << "\\l\""; 757 } 758 759 // Dump the condition bit. 760 const VPValue *CBV = BasicBlock->getCondBit(); 761 if (CBV) { 762 OS << " +\n" << Indent << " \"CondBit: "; 763 if (const VPInstruction *CBI = dyn_cast<VPInstruction>(CBV)) { 764 CBI->printAsOperand(OS, SlotTracker); 765 OS << " (" << DOT::EscapeString(CBI->getParent()->getName()) << ")\\l\""; 766 } else { 767 CBV->printAsOperand(OS, SlotTracker); 768 OS << "\""; 769 } 770 } 771 772 bumpIndent(-2); 773 OS << "\n" << Indent << "]\n"; 774 dumpEdges(BasicBlock); 775 } 776 777 void VPlanPrinter::dumpRegion(const VPRegionBlock *Region) { 778 OS << Indent << "subgraph " << getUID(Region) << " {\n"; 779 bumpIndent(1); 780 OS << Indent << "fontname=Courier\n" 781 << Indent << "label=\"" 782 << DOT::EscapeString(Region->isReplicator() ? "<xVFxUF> " : "<x1> ") 783 << DOT::EscapeString(Region->getName()) << "\"\n"; 784 // Dump the blocks of the region. 785 assert(Region->getEntry() && "Region contains no inner blocks."); 786 for (const VPBlockBase *Block : depth_first(Region->getEntry())) 787 dumpBlock(Block); 788 bumpIndent(-1); 789 OS << Indent << "}\n"; 790 dumpEdges(Region); 791 } 792 793 void VPlanPrinter::printAsIngredient(raw_ostream &O, const Value *V) { 794 std::string IngredientString; 795 raw_string_ostream RSO(IngredientString); 796 if (auto *Inst = dyn_cast<Instruction>(V)) { 797 if (!Inst->getType()->isVoidTy()) { 798 Inst->printAsOperand(RSO, false); 799 RSO << " = "; 800 } 801 RSO << Inst->getOpcodeName() << " "; 802 unsigned E = Inst->getNumOperands(); 803 if (E > 0) { 804 Inst->getOperand(0)->printAsOperand(RSO, false); 805 for (unsigned I = 1; I < E; ++I) 806 Inst->getOperand(I)->printAsOperand(RSO << ", ", false); 807 } 808 } else // !Inst 809 V->printAsOperand(RSO, false); 810 RSO.flush(); 811 O << DOT::EscapeString(IngredientString); 812 } 813 814 void VPWidenCallRecipe::print(raw_ostream &O, const Twine &Indent, 815 VPSlotTracker &SlotTracker) const { 816 O << "\"WIDEN-CALL " << VPlanIngredient(&Ingredient); 817 } 818 819 void VPWidenSelectRecipe::print(raw_ostream &O, const Twine &Indent, 820 VPSlotTracker &SlotTracker) const { 821 O << "\"WIDEN-SELECT" << VPlanIngredient(&Ingredient) 822 << (InvariantCond ? " (condition is loop invariant)" : ""); 823 } 824 825 void VPWidenRecipe::print(raw_ostream &O, const Twine &Indent, 826 VPSlotTracker &SlotTracker) const { 827 O << "\"WIDEN\\l\""; 828 O << "\" " << VPlanIngredient(&Ingredient); 829 } 830 831 void VPWidenIntOrFpInductionRecipe::print(raw_ostream &O, const Twine &Indent, 832 VPSlotTracker &SlotTracker) const { 833 O << "\"WIDEN-INDUCTION"; 834 if (Trunc) { 835 O << "\\l\""; 836 O << " +\n" << Indent << "\" " << VPlanIngredient(IV) << "\\l\""; 837 O << " +\n" << Indent << "\" " << VPlanIngredient(Trunc); 838 } else 839 O << " " << VPlanIngredient(IV); 840 } 841 842 void VPWidenGEPRecipe::print(raw_ostream &O, const Twine &Indent, 843 VPSlotTracker &SlotTracker) const { 844 O << "\"WIDEN-GEP "; 845 O << (IsPtrLoopInvariant ? "Inv" : "Var"); 846 size_t IndicesNumber = IsIndexLoopInvariant.size(); 847 for (size_t I = 0; I < IndicesNumber; ++I) 848 O << "[" << (IsIndexLoopInvariant[I] ? "Inv" : "Var") << "]"; 849 O << "\\l\""; 850 O << " +\n" << Indent << "\" " << VPlanIngredient(GEP); 851 } 852 853 void VPWidenPHIRecipe::print(raw_ostream &O, const Twine &Indent, 854 VPSlotTracker &SlotTracker) const { 855 O << "\"WIDEN-PHI " << VPlanIngredient(Phi); 856 } 857 858 void VPBlendRecipe::print(raw_ostream &O, const Twine &Indent, 859 VPSlotTracker &SlotTracker) const { 860 O << "\"BLEND "; 861 Phi->printAsOperand(O, false); 862 O << " ="; 863 if (getNumIncomingValues() == 1) { 864 // Not a User of any mask: not really blending, this is a 865 // single-predecessor phi. 866 O << " "; 867 getIncomingValue(0)->printAsOperand(O, SlotTracker); 868 } else { 869 for (unsigned I = 0, E = getNumIncomingValues(); I < E; ++I) { 870 O << " "; 871 getIncomingValue(I)->printAsOperand(O, SlotTracker); 872 O << "/"; 873 getMask(I)->printAsOperand(O, SlotTracker); 874 } 875 } 876 } 877 878 void VPReductionRecipe::print(raw_ostream &O, const Twine &Indent, 879 VPSlotTracker &SlotTracker) const { 880 O << "\"REDUCE of" << *I << " as "; 881 ChainOp->printAsOperand(O, SlotTracker); 882 O << " + reduce("; 883 VecOp->printAsOperand(O, SlotTracker); 884 if (CondOp) { 885 O << ", "; 886 CondOp->printAsOperand(O, SlotTracker); 887 } 888 O << ")"; 889 } 890 891 void VPReplicateRecipe::print(raw_ostream &O, const Twine &Indent, 892 VPSlotTracker &SlotTracker) const { 893 O << "\"" << (IsUniform ? "CLONE " : "REPLICATE ") 894 << VPlanIngredient(Ingredient); 895 if (AlsoPack) 896 O << " (S->V)"; 897 } 898 899 void VPPredInstPHIRecipe::print(raw_ostream &O, const Twine &Indent, 900 VPSlotTracker &SlotTracker) const { 901 O << "\"PHI-PREDICATED-INSTRUCTION " << VPlanIngredient(PredInst); 902 } 903 904 void VPWidenMemoryInstructionRecipe::print(raw_ostream &O, const Twine &Indent, 905 VPSlotTracker &SlotTracker) const { 906 O << "\"WIDEN " << Instruction::getOpcodeName(Instr.getOpcode()) << " "; 907 908 bool First = true; 909 for (VPValue *Op : operands()) { 910 if (!First) 911 O << ", "; 912 Op->printAsOperand(O, SlotTracker); 913 First = false; 914 } 915 } 916 917 void VPWidenCanonicalIVRecipe::execute(VPTransformState &State) { 918 Value *CanonicalIV = State.CanonicalIV; 919 Type *STy = CanonicalIV->getType(); 920 IRBuilder<> Builder(State.CFG.PrevBB->getTerminator()); 921 ElementCount VF = State.VF; 922 assert(!VF.isScalable() && "the code following assumes non scalables ECs"); 923 Value *VStart = VF.isScalar() 924 ? CanonicalIV 925 : Builder.CreateVectorSplat(VF.getKnownMinValue(), 926 CanonicalIV, "broadcast"); 927 for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part) { 928 SmallVector<Constant *, 8> Indices; 929 for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane) 930 Indices.push_back( 931 ConstantInt::get(STy, Part * VF.getKnownMinValue() + Lane)); 932 // If VF == 1, there is only one iteration in the loop above, thus the 933 // element pushed back into Indices is ConstantInt::get(STy, Part) 934 Constant *VStep = 935 VF.isScalar() ? Indices.back() : ConstantVector::get(Indices); 936 // Add the consecutive indices to the vector value. 937 Value *CanonicalVectorIV = Builder.CreateAdd(VStart, VStep, "vec.iv"); 938 State.set(getVPValue(), CanonicalVectorIV, Part); 939 } 940 } 941 942 void VPWidenCanonicalIVRecipe::print(raw_ostream &O, const Twine &Indent, 943 VPSlotTracker &SlotTracker) const { 944 O << "\"EMIT "; 945 getVPValue()->printAsOperand(O, SlotTracker); 946 O << " = WIDEN-CANONICAL-INDUCTION"; 947 } 948 949 template void DomTreeBuilder::Calculate<VPDominatorTree>(VPDominatorTree &DT); 950 951 void VPValue::replaceAllUsesWith(VPValue *New) { 952 for (unsigned J = 0; J < getNumUsers();) { 953 VPUser *User = Users[J]; 954 unsigned NumUsers = getNumUsers(); 955 for (unsigned I = 0, E = User->getNumOperands(); I < E; ++I) 956 if (User->getOperand(I) == this) 957 User->setOperand(I, New); 958 // If a user got removed after updating the current user, the next user to 959 // update will be moved to the current position, so we only need to 960 // increment the index if the number of users did not change. 961 if (NumUsers == getNumUsers()) 962 J++; 963 } 964 } 965 966 void VPValue::printAsOperand(raw_ostream &OS, VPSlotTracker &Tracker) const { 967 if (const Value *UV = getUnderlyingValue()) { 968 OS << "ir<"; 969 UV->printAsOperand(OS, false); 970 OS << ">"; 971 return; 972 } 973 974 unsigned Slot = Tracker.getSlot(this); 975 if (Slot == unsigned(-1)) 976 OS << "<badref>"; 977 else 978 OS << "vp<%" << Tracker.getSlot(this) << ">"; 979 } 980 981 void VPInterleavedAccessInfo::visitRegion(VPRegionBlock *Region, 982 Old2NewTy &Old2New, 983 InterleavedAccessInfo &IAI) { 984 ReversePostOrderTraversal<VPBlockBase *> RPOT(Region->getEntry()); 985 for (VPBlockBase *Base : RPOT) { 986 visitBlock(Base, Old2New, IAI); 987 } 988 } 989 990 void VPInterleavedAccessInfo::visitBlock(VPBlockBase *Block, Old2NewTy &Old2New, 991 InterleavedAccessInfo &IAI) { 992 if (VPBasicBlock *VPBB = dyn_cast<VPBasicBlock>(Block)) { 993 for (VPRecipeBase &VPI : *VPBB) { 994 assert(isa<VPInstruction>(&VPI) && "Can only handle VPInstructions"); 995 auto *VPInst = cast<VPInstruction>(&VPI); 996 auto *Inst = cast<Instruction>(VPInst->getUnderlyingValue()); 997 auto *IG = IAI.getInterleaveGroup(Inst); 998 if (!IG) 999 continue; 1000 1001 auto NewIGIter = Old2New.find(IG); 1002 if (NewIGIter == Old2New.end()) 1003 Old2New[IG] = new InterleaveGroup<VPInstruction>( 1004 IG->getFactor(), IG->isReverse(), IG->getAlign()); 1005 1006 if (Inst == IG->getInsertPos()) 1007 Old2New[IG]->setInsertPos(VPInst); 1008 1009 InterleaveGroupMap[VPInst] = Old2New[IG]; 1010 InterleaveGroupMap[VPInst]->insertMember( 1011 VPInst, IG->getIndex(Inst), 1012 Align(IG->isReverse() ? (-1) * int(IG->getFactor()) 1013 : IG->getFactor())); 1014 } 1015 } else if (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 1016 visitRegion(Region, Old2New, IAI); 1017 else 1018 llvm_unreachable("Unsupported kind of VPBlock."); 1019 } 1020 1021 VPInterleavedAccessInfo::VPInterleavedAccessInfo(VPlan &Plan, 1022 InterleavedAccessInfo &IAI) { 1023 Old2NewTy Old2New; 1024 visitRegion(cast<VPRegionBlock>(Plan.getEntry()), Old2New, IAI); 1025 } 1026 1027 void VPSlotTracker::assignSlot(const VPValue *V) { 1028 assert(Slots.find(V) == Slots.end() && "VPValue already has a slot!"); 1029 const Value *UV = V->getUnderlyingValue(); 1030 if (UV) 1031 return; 1032 const auto *VPI = dyn_cast<VPInstruction>(V); 1033 if (VPI && !VPI->hasResult()) 1034 return; 1035 1036 Slots[V] = NextSlot++; 1037 } 1038 1039 void VPSlotTracker::assignSlots(const VPBlockBase *VPBB) { 1040 if (auto *Region = dyn_cast<VPRegionBlock>(VPBB)) 1041 assignSlots(Region); 1042 else 1043 assignSlots(cast<VPBasicBlock>(VPBB)); 1044 } 1045 1046 void VPSlotTracker::assignSlots(const VPRegionBlock *Region) { 1047 ReversePostOrderTraversal<const VPBlockBase *> RPOT(Region->getEntry()); 1048 for (const VPBlockBase *Block : RPOT) 1049 assignSlots(Block); 1050 } 1051 1052 void VPSlotTracker::assignSlots(const VPBasicBlock *VPBB) { 1053 for (const VPRecipeBase &Recipe : *VPBB) { 1054 if (const auto *VPI = dyn_cast<VPInstruction>(&Recipe)) 1055 assignSlot(VPI); 1056 else if (const auto *VPIV = dyn_cast<VPWidenCanonicalIVRecipe>(&Recipe)) 1057 assignSlot(VPIV->getVPValue()); 1058 } 1059 } 1060 1061 void VPSlotTracker::assignSlots(const VPlan &Plan) { 1062 1063 for (const VPValue *V : Plan.VPExternalDefs) 1064 assignSlot(V); 1065 1066 for (auto &E : Plan.Value2VPValue) 1067 if (!isa<VPInstruction>(E.second)) 1068 assignSlot(E.second); 1069 1070 for (const VPValue *V : Plan.VPCBVs) 1071 assignSlot(V); 1072 1073 if (Plan.BackedgeTakenCount) 1074 assignSlot(Plan.BackedgeTakenCount); 1075 1076 ReversePostOrderTraversal<const VPBlockBase *> RPOT(Plan.getEntry()); 1077 for (const VPBlockBase *Block : RPOT) 1078 assignSlots(Block); 1079 } 1080