xref: /llvm-project/llvm/lib/Transforms/Vectorize/VPlan.cpp (revision 67d840b60fbd75ca1b52d77bd3353771ec853735)
1 //===- VPlan.cpp - Vectorizer Plan ----------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This is the LLVM vectorization plan. It represents a candidate for
11 /// vectorization, allowing to plan and optimize how to vectorize a given loop
12 /// before generating LLVM-IR.
13 /// The vectorizer uses vectorization plans to estimate the costs of potential
14 /// candidates and if profitable to execute the desired plan, generating vector
15 /// LLVM-IR code.
16 ///
17 //===----------------------------------------------------------------------===//
18 
19 #include "VPlan.h"
20 #include "VPlanCFG.h"
21 #include "VPlanDominatorTree.h"
22 #include "VPlanPatternMatch.h"
23 #include "llvm/ADT/PostOrderIterator.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/StringExtras.h"
27 #include "llvm/ADT/Twine.h"
28 #include "llvm/Analysis/LoopInfo.h"
29 #include "llvm/IR/BasicBlock.h"
30 #include "llvm/IR/CFG.h"
31 #include "llvm/IR/IRBuilder.h"
32 #include "llvm/IR/Instruction.h"
33 #include "llvm/IR/Instructions.h"
34 #include "llvm/IR/Type.h"
35 #include "llvm/IR/Value.h"
36 #include "llvm/Support/Casting.h"
37 #include "llvm/Support/CommandLine.h"
38 #include "llvm/Support/Debug.h"
39 #include "llvm/Support/GenericDomTreeConstruction.h"
40 #include "llvm/Support/GraphWriter.h"
41 #include "llvm/Support/raw_ostream.h"
42 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
43 #include "llvm/Transforms/Utils/LoopVersioning.h"
44 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
45 #include <cassert>
46 #include <string>
47 #include <vector>
48 
49 using namespace llvm;
50 using namespace llvm::VPlanPatternMatch;
51 
52 namespace llvm {
53 extern cl::opt<bool> EnableVPlanNativePath;
54 }
55 
56 #define DEBUG_TYPE "vplan"
57 
58 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
59 raw_ostream &llvm::operator<<(raw_ostream &OS, const VPValue &V) {
60   const VPInstruction *Instr = dyn_cast<VPInstruction>(&V);
61   VPSlotTracker SlotTracker(
62       (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr);
63   V.print(OS, SlotTracker);
64   return OS;
65 }
66 #endif
67 
68 Value *VPLane::getAsRuntimeExpr(IRBuilderBase &Builder,
69                                 const ElementCount &VF) const {
70   switch (LaneKind) {
71   case VPLane::Kind::ScalableLast:
72     // Lane = RuntimeVF - VF.getKnownMinValue() + Lane
73     return Builder.CreateSub(getRuntimeVF(Builder, Builder.getInt32Ty(), VF),
74                              Builder.getInt32(VF.getKnownMinValue() - Lane));
75   case VPLane::Kind::First:
76     return Builder.getInt32(Lane);
77   }
78   llvm_unreachable("Unknown lane kind");
79 }
80 
81 VPValue::VPValue(const unsigned char SC, Value *UV, VPDef *Def)
82     : SubclassID(SC), UnderlyingVal(UV), Def(Def) {
83   if (Def)
84     Def->addDefinedValue(this);
85 }
86 
87 VPValue::~VPValue() {
88   assert(Users.empty() && "trying to delete a VPValue with remaining users");
89   if (Def)
90     Def->removeDefinedValue(this);
91 }
92 
93 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
94 void VPValue::print(raw_ostream &OS, VPSlotTracker &SlotTracker) const {
95   if (const VPRecipeBase *R = dyn_cast_or_null<VPRecipeBase>(Def))
96     R->print(OS, "", SlotTracker);
97   else
98     printAsOperand(OS, SlotTracker);
99 }
100 
101 void VPValue::dump() const {
102   const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this->Def);
103   VPSlotTracker SlotTracker(
104       (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr);
105   print(dbgs(), SlotTracker);
106   dbgs() << "\n";
107 }
108 
109 void VPDef::dump() const {
110   const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this);
111   VPSlotTracker SlotTracker(
112       (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr);
113   print(dbgs(), "", SlotTracker);
114   dbgs() << "\n";
115 }
116 #endif
117 
118 VPRecipeBase *VPValue::getDefiningRecipe() {
119   return cast_or_null<VPRecipeBase>(Def);
120 }
121 
122 const VPRecipeBase *VPValue::getDefiningRecipe() const {
123   return cast_or_null<VPRecipeBase>(Def);
124 }
125 
126 // Get the top-most entry block of \p Start. This is the entry block of the
127 // containing VPlan. This function is templated to support both const and non-const blocks
128 template <typename T> static T *getPlanEntry(T *Start) {
129   T *Next = Start;
130   T *Current = Start;
131   while ((Next = Next->getParent()))
132     Current = Next;
133 
134   SmallSetVector<T *, 8> WorkList;
135   WorkList.insert(Current);
136 
137   for (unsigned i = 0; i < WorkList.size(); i++) {
138     T *Current = WorkList[i];
139     if (Current->getNumPredecessors() == 0)
140       return Current;
141     auto &Predecessors = Current->getPredecessors();
142     WorkList.insert(Predecessors.begin(), Predecessors.end());
143   }
144 
145   llvm_unreachable("VPlan without any entry node without predecessors");
146 }
147 
148 VPlan *VPBlockBase::getPlan() { return getPlanEntry(this)->Plan; }
149 
150 const VPlan *VPBlockBase::getPlan() const { return getPlanEntry(this)->Plan; }
151 
152 /// \return the VPBasicBlock that is the entry of Block, possibly indirectly.
153 const VPBasicBlock *VPBlockBase::getEntryBasicBlock() const {
154   const VPBlockBase *Block = this;
155   while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
156     Block = Region->getEntry();
157   return cast<VPBasicBlock>(Block);
158 }
159 
160 VPBasicBlock *VPBlockBase::getEntryBasicBlock() {
161   VPBlockBase *Block = this;
162   while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
163     Block = Region->getEntry();
164   return cast<VPBasicBlock>(Block);
165 }
166 
167 void VPBlockBase::setPlan(VPlan *ParentPlan) {
168   assert(
169       (ParentPlan->getEntry() == this || ParentPlan->getPreheader() == this) &&
170       "Can only set plan on its entry or preheader block.");
171   Plan = ParentPlan;
172 }
173 
174 /// \return the VPBasicBlock that is the exit of Block, possibly indirectly.
175 const VPBasicBlock *VPBlockBase::getExitingBasicBlock() const {
176   const VPBlockBase *Block = this;
177   while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
178     Block = Region->getExiting();
179   return cast<VPBasicBlock>(Block);
180 }
181 
182 VPBasicBlock *VPBlockBase::getExitingBasicBlock() {
183   VPBlockBase *Block = this;
184   while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
185     Block = Region->getExiting();
186   return cast<VPBasicBlock>(Block);
187 }
188 
189 VPBlockBase *VPBlockBase::getEnclosingBlockWithSuccessors() {
190   if (!Successors.empty() || !Parent)
191     return this;
192   assert(Parent->getExiting() == this &&
193          "Block w/o successors not the exiting block of its parent.");
194   return Parent->getEnclosingBlockWithSuccessors();
195 }
196 
197 VPBlockBase *VPBlockBase::getEnclosingBlockWithPredecessors() {
198   if (!Predecessors.empty() || !Parent)
199     return this;
200   assert(Parent->getEntry() == this &&
201          "Block w/o predecessors not the entry of its parent.");
202   return Parent->getEnclosingBlockWithPredecessors();
203 }
204 
205 void VPBlockBase::deleteCFG(VPBlockBase *Entry) {
206   for (VPBlockBase *Block : to_vector(vp_depth_first_shallow(Entry)))
207     delete Block;
208 }
209 
210 VPBasicBlock::iterator VPBasicBlock::getFirstNonPhi() {
211   iterator It = begin();
212   while (It != end() && It->isPhi())
213     It++;
214   return It;
215 }
216 
217 VPTransformState::VPTransformState(ElementCount VF, unsigned UF, LoopInfo *LI,
218                                    DominatorTree *DT, IRBuilderBase &Builder,
219                                    InnerLoopVectorizer *ILV, VPlan *Plan,
220                                    LLVMContext &Ctx)
221     : VF(VF), UF(UF), LI(LI), DT(DT), Builder(Builder), ILV(ILV), Plan(Plan),
222       LVer(nullptr),
223       TypeAnalysis(Plan->getCanonicalIV()->getScalarType(), Ctx) {}
224 
225 Value *VPTransformState::get(VPValue *Def, const VPIteration &Instance) {
226   if (Def->isLiveIn())
227     return Def->getLiveInIRValue();
228 
229   if (hasScalarValue(Def, Instance)) {
230     return Data
231         .PerPartScalars[Def][Instance.Part][Instance.Lane.mapToCacheIndex(VF)];
232   }
233 
234   assert(hasVectorValue(Def, Instance.Part));
235   auto *VecPart = Data.PerPartOutput[Def][Instance.Part];
236   if (!VecPart->getType()->isVectorTy()) {
237     assert(Instance.Lane.isFirstLane() && "cannot get lane > 0 for scalar");
238     return VecPart;
239   }
240   // TODO: Cache created scalar values.
241   Value *Lane = Instance.Lane.getAsRuntimeExpr(Builder, VF);
242   auto *Extract = Builder.CreateExtractElement(VecPart, Lane);
243   // set(Def, Extract, Instance);
244   return Extract;
245 }
246 
247 Value *VPTransformState::get(VPValue *Def, unsigned Part, bool NeedsScalar) {
248   if (NeedsScalar) {
249     assert((VF.isScalar() || Def->isLiveIn() || hasVectorValue(Def, Part) ||
250             (hasScalarValue(Def, VPIteration(Part, 0)) &&
251              Data.PerPartScalars[Def][Part].size() == 1)) &&
252            "Trying to access a single scalar per part but has multiple scalars "
253            "per part.");
254     return get(Def, VPIteration(Part, 0));
255   }
256 
257   // If Values have been set for this Def return the one relevant for \p Part.
258   if (hasVectorValue(Def, Part))
259     return Data.PerPartOutput[Def][Part];
260 
261   auto GetBroadcastInstrs = [this, Def](Value *V) {
262     bool SafeToHoist = Def->isDefinedOutsideVectorRegions();
263     if (VF.isScalar())
264       return V;
265     // Place the code for broadcasting invariant variables in the new preheader.
266     IRBuilder<>::InsertPointGuard Guard(Builder);
267     if (SafeToHoist) {
268       BasicBlock *LoopVectorPreHeader = CFG.VPBB2IRBB[cast<VPBasicBlock>(
269           Plan->getVectorLoopRegion()->getSinglePredecessor())];
270       if (LoopVectorPreHeader)
271         Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
272     }
273 
274     // Place the code for broadcasting invariant variables in the new preheader.
275     // Broadcast the scalar into all locations in the vector.
276     Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast");
277 
278     return Shuf;
279   };
280 
281   if (!hasScalarValue(Def, {Part, 0})) {
282     assert(Def->isLiveIn() && "expected a live-in");
283     if (Part != 0)
284       return get(Def, 0);
285     Value *IRV = Def->getLiveInIRValue();
286     Value *B = GetBroadcastInstrs(IRV);
287     set(Def, B, Part);
288     return B;
289   }
290 
291   Value *ScalarValue = get(Def, {Part, 0});
292   // If we aren't vectorizing, we can just copy the scalar map values over
293   // to the vector map.
294   if (VF.isScalar()) {
295     set(Def, ScalarValue, Part);
296     return ScalarValue;
297   }
298 
299   bool IsUniform = vputils::isUniformAfterVectorization(Def);
300 
301   unsigned LastLane = IsUniform ? 0 : VF.getKnownMinValue() - 1;
302   // Check if there is a scalar value for the selected lane.
303   if (!hasScalarValue(Def, {Part, LastLane})) {
304     // At the moment, VPWidenIntOrFpInductionRecipes, VPScalarIVStepsRecipes and
305     // VPExpandSCEVRecipes can also be uniform.
306     assert((isa<VPWidenIntOrFpInductionRecipe>(Def->getDefiningRecipe()) ||
307             isa<VPScalarIVStepsRecipe>(Def->getDefiningRecipe()) ||
308             isa<VPExpandSCEVRecipe>(Def->getDefiningRecipe())) &&
309            "unexpected recipe found to be invariant");
310     IsUniform = true;
311     LastLane = 0;
312   }
313 
314   auto *LastInst = cast<Instruction>(get(Def, {Part, LastLane}));
315   // Set the insert point after the last scalarized instruction or after the
316   // last PHI, if LastInst is a PHI. This ensures the insertelement sequence
317   // will directly follow the scalar definitions.
318   auto OldIP = Builder.saveIP();
319   auto NewIP =
320       isa<PHINode>(LastInst)
321           ? BasicBlock::iterator(LastInst->getParent()->getFirstNonPHI())
322           : std::next(BasicBlock::iterator(LastInst));
323   Builder.SetInsertPoint(&*NewIP);
324 
325   // However, if we are vectorizing, we need to construct the vector values.
326   // If the value is known to be uniform after vectorization, we can just
327   // broadcast the scalar value corresponding to lane zero for each unroll
328   // iteration. Otherwise, we construct the vector values using
329   // insertelement instructions. Since the resulting vectors are stored in
330   // State, we will only generate the insertelements once.
331   Value *VectorValue = nullptr;
332   if (IsUniform) {
333     VectorValue = GetBroadcastInstrs(ScalarValue);
334     set(Def, VectorValue, Part);
335   } else {
336     // Initialize packing with insertelements to start from undef.
337     assert(!VF.isScalable() && "VF is assumed to be non scalable.");
338     Value *Undef = PoisonValue::get(VectorType::get(LastInst->getType(), VF));
339     set(Def, Undef, Part);
340     for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane)
341       packScalarIntoVectorValue(Def, {Part, Lane});
342     VectorValue = get(Def, Part);
343   }
344   Builder.restoreIP(OldIP);
345   return VectorValue;
346 }
347 
348 BasicBlock *VPTransformState::CFGState::getPreheaderBBFor(VPRecipeBase *R) {
349   VPRegionBlock *LoopRegion = R->getParent()->getEnclosingLoopRegion();
350   return VPBB2IRBB[LoopRegion->getPreheaderVPBB()];
351 }
352 
353 void VPTransformState::addNewMetadata(Instruction *To,
354                                       const Instruction *Orig) {
355   // If the loop was versioned with memchecks, add the corresponding no-alias
356   // metadata.
357   if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig)))
358     LVer->annotateInstWithNoAlias(To, Orig);
359 }
360 
361 void VPTransformState::addMetadata(Value *To, Instruction *From) {
362   // No source instruction to transfer metadata from?
363   if (!From)
364     return;
365 
366   if (Instruction *ToI = dyn_cast<Instruction>(To)) {
367     propagateMetadata(ToI, From);
368     addNewMetadata(ToI, From);
369   }
370 }
371 
372 void VPTransformState::setDebugLocFrom(DebugLoc DL) {
373   const DILocation *DIL = DL;
374   // When a FSDiscriminator is enabled, we don't need to add the multiply
375   // factors to the discriminators.
376   if (DIL &&
377       Builder.GetInsertBlock()
378           ->getParent()
379           ->shouldEmitDebugInfoForProfiling() &&
380       !EnableFSDiscriminator) {
381     // FIXME: For scalable vectors, assume vscale=1.
382     auto NewDIL =
383         DIL->cloneByMultiplyingDuplicationFactor(UF * VF.getKnownMinValue());
384     if (NewDIL)
385       Builder.SetCurrentDebugLocation(*NewDIL);
386     else
387       LLVM_DEBUG(dbgs() << "Failed to create new discriminator: "
388                         << DIL->getFilename() << " Line: " << DIL->getLine());
389   } else
390     Builder.SetCurrentDebugLocation(DIL);
391 }
392 
393 void VPTransformState::packScalarIntoVectorValue(VPValue *Def,
394                                                  const VPIteration &Instance) {
395   Value *ScalarInst = get(Def, Instance);
396   Value *VectorValue = get(Def, Instance.Part);
397   VectorValue = Builder.CreateInsertElement(
398       VectorValue, ScalarInst, Instance.Lane.getAsRuntimeExpr(Builder, VF));
399   set(Def, VectorValue, Instance.Part);
400 }
401 
402 BasicBlock *
403 VPBasicBlock::createEmptyBasicBlock(VPTransformState::CFGState &CFG) {
404   // BB stands for IR BasicBlocks. VPBB stands for VPlan VPBasicBlocks.
405   // Pred stands for Predessor. Prev stands for Previous - last visited/created.
406   BasicBlock *PrevBB = CFG.PrevBB;
407   BasicBlock *NewBB = BasicBlock::Create(PrevBB->getContext(), getName(),
408                                          PrevBB->getParent(), CFG.ExitBB);
409   LLVM_DEBUG(dbgs() << "LV: created " << NewBB->getName() << '\n');
410 
411   // Hook up the new basic block to its predecessors.
412   for (VPBlockBase *PredVPBlock : getHierarchicalPredecessors()) {
413     VPBasicBlock *PredVPBB = PredVPBlock->getExitingBasicBlock();
414     auto &PredVPSuccessors = PredVPBB->getHierarchicalSuccessors();
415     BasicBlock *PredBB = CFG.VPBB2IRBB[PredVPBB];
416 
417     assert(PredBB && "Predecessor basic-block not found building successor.");
418     auto *PredBBTerminator = PredBB->getTerminator();
419     LLVM_DEBUG(dbgs() << "LV: draw edge from" << PredBB->getName() << '\n');
420 
421     auto *TermBr = dyn_cast<BranchInst>(PredBBTerminator);
422     if (isa<UnreachableInst>(PredBBTerminator)) {
423       assert(PredVPSuccessors.size() == 1 &&
424              "Predecessor ending w/o branch must have single successor.");
425       DebugLoc DL = PredBBTerminator->getDebugLoc();
426       PredBBTerminator->eraseFromParent();
427       auto *Br = BranchInst::Create(NewBB, PredBB);
428       Br->setDebugLoc(DL);
429     } else if (TermBr && !TermBr->isConditional()) {
430       TermBr->setSuccessor(0, NewBB);
431     } else {
432       // Set each forward successor here when it is created, excluding
433       // backedges. A backward successor is set when the branch is created.
434       unsigned idx = PredVPSuccessors.front() == this ? 0 : 1;
435       assert(!TermBr->getSuccessor(idx) &&
436              "Trying to reset an existing successor block.");
437       TermBr->setSuccessor(idx, NewBB);
438     }
439   }
440   return NewBB;
441 }
442 
443 void VPBasicBlock::execute(VPTransformState *State) {
444   bool Replica = State->Instance && !State->Instance->isFirstIteration();
445   VPBasicBlock *PrevVPBB = State->CFG.PrevVPBB;
446   VPBlockBase *SingleHPred = nullptr;
447   BasicBlock *NewBB = State->CFG.PrevBB; // Reuse it if possible.
448 
449   auto IsLoopRegion = [](VPBlockBase *BB) {
450     auto *R = dyn_cast<VPRegionBlock>(BB);
451     return R && !R->isReplicator();
452   };
453 
454   // 1. Create an IR basic block, or reuse the last one or ExitBB if possible.
455   if (getPlan()->getVectorLoopRegion()->getSingleSuccessor() == this) {
456     // ExitBB can be re-used for the exit block of the Plan.
457     NewBB = State->CFG.ExitBB;
458     State->CFG.PrevBB = NewBB;
459     State->Builder.SetInsertPoint(NewBB->getFirstNonPHI());
460 
461     // Update the branch instruction in the predecessor to branch to ExitBB.
462     VPBlockBase *PredVPB = getSingleHierarchicalPredecessor();
463     VPBasicBlock *ExitingVPBB = PredVPB->getExitingBasicBlock();
464     assert(PredVPB->getSingleSuccessor() == this &&
465            "predecessor must have the current block as only successor");
466     BasicBlock *ExitingBB = State->CFG.VPBB2IRBB[ExitingVPBB];
467     // The Exit block of a loop is always set to be successor 0 of the Exiting
468     // block.
469     cast<BranchInst>(ExitingBB->getTerminator())->setSuccessor(0, NewBB);
470   } else if (PrevVPBB && /* A */
471              !((SingleHPred = getSingleHierarchicalPredecessor()) &&
472                SingleHPred->getExitingBasicBlock() == PrevVPBB &&
473                PrevVPBB->getSingleHierarchicalSuccessor() &&
474                (SingleHPred->getParent() == getEnclosingLoopRegion() &&
475                 !IsLoopRegion(SingleHPred))) &&         /* B */
476              !(Replica && getPredecessors().empty())) { /* C */
477     // The last IR basic block is reused, as an optimization, in three cases:
478     // A. the first VPBB reuses the loop pre-header BB - when PrevVPBB is null;
479     // B. when the current VPBB has a single (hierarchical) predecessor which
480     //    is PrevVPBB and the latter has a single (hierarchical) successor which
481     //    both are in the same non-replicator region; and
482     // C. when the current VPBB is an entry of a region replica - where PrevVPBB
483     //    is the exiting VPBB of this region from a previous instance, or the
484     //    predecessor of this region.
485 
486     NewBB = createEmptyBasicBlock(State->CFG);
487     State->Builder.SetInsertPoint(NewBB);
488     // Temporarily terminate with unreachable until CFG is rewired.
489     UnreachableInst *Terminator = State->Builder.CreateUnreachable();
490     // Register NewBB in its loop. In innermost loops its the same for all
491     // BB's.
492     if (State->CurrentVectorLoop)
493       State->CurrentVectorLoop->addBasicBlockToLoop(NewBB, *State->LI);
494     State->Builder.SetInsertPoint(Terminator);
495     State->CFG.PrevBB = NewBB;
496   }
497 
498   // 2. Fill the IR basic block with IR instructions.
499   LLVM_DEBUG(dbgs() << "LV: vectorizing VPBB:" << getName()
500                     << " in BB:" << NewBB->getName() << '\n');
501 
502   State->CFG.VPBB2IRBB[this] = NewBB;
503   State->CFG.PrevVPBB = this;
504 
505   for (VPRecipeBase &Recipe : Recipes)
506     Recipe.execute(*State);
507 
508   LLVM_DEBUG(dbgs() << "LV: filled BB:" << *NewBB);
509 }
510 
511 void VPBasicBlock::dropAllReferences(VPValue *NewValue) {
512   for (VPRecipeBase &R : Recipes) {
513     for (auto *Def : R.definedValues())
514       Def->replaceAllUsesWith(NewValue);
515 
516     for (unsigned I = 0, E = R.getNumOperands(); I != E; I++)
517       R.setOperand(I, NewValue);
518   }
519 }
520 
521 VPBasicBlock *VPBasicBlock::splitAt(iterator SplitAt) {
522   assert((SplitAt == end() || SplitAt->getParent() == this) &&
523          "can only split at a position in the same block");
524 
525   SmallVector<VPBlockBase *, 2> Succs(successors());
526   // First, disconnect the current block from its successors.
527   for (VPBlockBase *Succ : Succs)
528     VPBlockUtils::disconnectBlocks(this, Succ);
529 
530   // Create new empty block after the block to split.
531   auto *SplitBlock = new VPBasicBlock(getName() + ".split");
532   VPBlockUtils::insertBlockAfter(SplitBlock, this);
533 
534   // Add successors for block to split to new block.
535   for (VPBlockBase *Succ : Succs)
536     VPBlockUtils::connectBlocks(SplitBlock, Succ);
537 
538   // Finally, move the recipes starting at SplitAt to new block.
539   for (VPRecipeBase &ToMove :
540        make_early_inc_range(make_range(SplitAt, this->end())))
541     ToMove.moveBefore(*SplitBlock, SplitBlock->end());
542 
543   return SplitBlock;
544 }
545 
546 VPRegionBlock *VPBasicBlock::getEnclosingLoopRegion() {
547   VPRegionBlock *P = getParent();
548   if (P && P->isReplicator()) {
549     P = P->getParent();
550     assert(!cast<VPRegionBlock>(P)->isReplicator() &&
551            "unexpected nested replicate regions");
552   }
553   return P;
554 }
555 
556 static bool hasConditionalTerminator(const VPBasicBlock *VPBB) {
557   if (VPBB->empty()) {
558     assert(
559         VPBB->getNumSuccessors() < 2 &&
560         "block with multiple successors doesn't have a recipe as terminator");
561     return false;
562   }
563 
564   const VPRecipeBase *R = &VPBB->back();
565   bool IsCondBranch = isa<VPBranchOnMaskRecipe>(R) ||
566                       match(R, m_BranchOnCond(m_VPValue())) ||
567                       match(R, m_BranchOnCount(m_VPValue(), m_VPValue()));
568   (void)IsCondBranch;
569 
570   if (VPBB->getNumSuccessors() >= 2 ||
571       (VPBB->isExiting() && !VPBB->getParent()->isReplicator())) {
572     assert(IsCondBranch && "block with multiple successors not terminated by "
573                            "conditional branch recipe");
574 
575     return true;
576   }
577 
578   assert(
579       !IsCondBranch &&
580       "block with 0 or 1 successors terminated by conditional branch recipe");
581   return false;
582 }
583 
584 VPRecipeBase *VPBasicBlock::getTerminator() {
585   if (hasConditionalTerminator(this))
586     return &back();
587   return nullptr;
588 }
589 
590 const VPRecipeBase *VPBasicBlock::getTerminator() const {
591   if (hasConditionalTerminator(this))
592     return &back();
593   return nullptr;
594 }
595 
596 bool VPBasicBlock::isExiting() const {
597   return getParent() && getParent()->getExitingBasicBlock() == this;
598 }
599 
600 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
601 void VPBlockBase::printSuccessors(raw_ostream &O, const Twine &Indent) const {
602   if (getSuccessors().empty()) {
603     O << Indent << "No successors\n";
604   } else {
605     O << Indent << "Successor(s): ";
606     ListSeparator LS;
607     for (auto *Succ : getSuccessors())
608       O << LS << Succ->getName();
609     O << '\n';
610   }
611 }
612 
613 void VPBasicBlock::print(raw_ostream &O, const Twine &Indent,
614                          VPSlotTracker &SlotTracker) const {
615   O << Indent << getName() << ":\n";
616 
617   auto RecipeIndent = Indent + "  ";
618   for (const VPRecipeBase &Recipe : *this) {
619     Recipe.print(O, RecipeIndent, SlotTracker);
620     O << '\n';
621   }
622 
623   printSuccessors(O, Indent);
624 }
625 #endif
626 
627 static std::pair<VPBlockBase *, VPBlockBase *> cloneSESE(VPBlockBase *Entry);
628 
629 // Clone the CFG for all nodes in the single-entry-single-exit region reachable
630 // from \p Entry, this includes cloning the blocks and their recipes. Operands
631 // of cloned recipes will NOT be updated. Remapping of operands must be done
632 // separately. Returns a pair with the the new entry and exiting blocks of the
633 // cloned region.
634 static std::pair<VPBlockBase *, VPBlockBase *> cloneSESE(VPBlockBase *Entry) {
635   DenseMap<VPBlockBase *, VPBlockBase *> Old2NewVPBlocks;
636   ReversePostOrderTraversal<VPBlockShallowTraversalWrapper<VPBlockBase *>> RPOT(
637       Entry);
638   for (VPBlockBase *BB : RPOT) {
639     VPBlockBase *NewBB = BB->clone();
640     for (VPBlockBase *Pred : BB->getPredecessors())
641       VPBlockUtils::connectBlocks(Old2NewVPBlocks[Pred], NewBB);
642 
643     Old2NewVPBlocks[BB] = NewBB;
644   }
645 
646 #if !defined(NDEBUG)
647   // Verify that the order of predecessors and successors matches in the cloned
648   // version.
649   ReversePostOrderTraversal<VPBlockShallowTraversalWrapper<VPBlockBase *>>
650       NewRPOT(Old2NewVPBlocks[Entry]);
651   for (const auto &[OldBB, NewBB] : zip(RPOT, NewRPOT)) {
652     for (const auto &[OldPred, NewPred] :
653          zip(OldBB->getPredecessors(), NewBB->getPredecessors()))
654       assert(NewPred == Old2NewVPBlocks[OldPred] && "Different predecessors");
655 
656     for (const auto &[OldSucc, NewSucc] :
657          zip(OldBB->successors(), NewBB->successors()))
658       assert(NewSucc == Old2NewVPBlocks[OldSucc] && "Different successors");
659   }
660 #endif
661 
662   return std::make_pair(Old2NewVPBlocks[Entry],
663                         Old2NewVPBlocks[*reverse(RPOT).begin()]);
664 }
665 
666 VPRegionBlock *VPRegionBlock::clone() {
667   const auto &[NewEntry, NewExiting] = cloneSESE(getEntry());
668   auto *NewRegion =
669       new VPRegionBlock(NewEntry, NewExiting, getName(), isReplicator());
670   for (VPBlockBase *Block : vp_depth_first_shallow(NewEntry))
671     Block->setParent(NewRegion);
672   return NewRegion;
673 }
674 
675 void VPRegionBlock::dropAllReferences(VPValue *NewValue) {
676   for (VPBlockBase *Block : vp_depth_first_shallow(Entry))
677     // Drop all references in VPBasicBlocks and replace all uses with
678     // DummyValue.
679     Block->dropAllReferences(NewValue);
680 }
681 
682 void VPRegionBlock::execute(VPTransformState *State) {
683   ReversePostOrderTraversal<VPBlockShallowTraversalWrapper<VPBlockBase *>>
684       RPOT(Entry);
685 
686   if (!isReplicator()) {
687     // Create and register the new vector loop.
688     Loop *PrevLoop = State->CurrentVectorLoop;
689     State->CurrentVectorLoop = State->LI->AllocateLoop();
690     BasicBlock *VectorPH = State->CFG.VPBB2IRBB[getPreheaderVPBB()];
691     Loop *ParentLoop = State->LI->getLoopFor(VectorPH);
692 
693     // Insert the new loop into the loop nest and register the new basic blocks
694     // before calling any utilities such as SCEV that require valid LoopInfo.
695     if (ParentLoop)
696       ParentLoop->addChildLoop(State->CurrentVectorLoop);
697     else
698       State->LI->addTopLevelLoop(State->CurrentVectorLoop);
699 
700     // Visit the VPBlocks connected to "this", starting from it.
701     for (VPBlockBase *Block : RPOT) {
702       LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n');
703       Block->execute(State);
704     }
705 
706     State->CurrentVectorLoop = PrevLoop;
707     return;
708   }
709 
710   assert(!State->Instance && "Replicating a Region with non-null instance.");
711 
712   // Enter replicating mode.
713   State->Instance = VPIteration(0, 0);
714 
715   for (unsigned Part = 0, UF = State->UF; Part < UF; ++Part) {
716     State->Instance->Part = Part;
717     assert(!State->VF.isScalable() && "VF is assumed to be non scalable.");
718     for (unsigned Lane = 0, VF = State->VF.getKnownMinValue(); Lane < VF;
719          ++Lane) {
720       State->Instance->Lane = VPLane(Lane, VPLane::Kind::First);
721       // Visit the VPBlocks connected to \p this, starting from it.
722       for (VPBlockBase *Block : RPOT) {
723         LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n');
724         Block->execute(State);
725       }
726     }
727   }
728 
729   // Exit replicating mode.
730   State->Instance.reset();
731 }
732 
733 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
734 void VPRegionBlock::print(raw_ostream &O, const Twine &Indent,
735                           VPSlotTracker &SlotTracker) const {
736   O << Indent << (isReplicator() ? "<xVFxUF> " : "<x1> ") << getName() << ": {";
737   auto NewIndent = Indent + "  ";
738   for (auto *BlockBase : vp_depth_first_shallow(Entry)) {
739     O << '\n';
740     BlockBase->print(O, NewIndent, SlotTracker);
741   }
742   O << Indent << "}\n";
743 
744   printSuccessors(O, Indent);
745 }
746 #endif
747 
748 VPlan::~VPlan() {
749   for (auto &KV : LiveOuts)
750     delete KV.second;
751   LiveOuts.clear();
752 
753   if (Entry) {
754     VPValue DummyValue;
755     for (VPBlockBase *Block : vp_depth_first_shallow(Entry))
756       Block->dropAllReferences(&DummyValue);
757 
758     VPBlockBase::deleteCFG(Entry);
759 
760     Preheader->dropAllReferences(&DummyValue);
761     delete Preheader;
762   }
763   for (VPValue *VPV : VPLiveInsToFree)
764     delete VPV;
765   if (BackedgeTakenCount)
766     delete BackedgeTakenCount;
767 }
768 
769 VPlanPtr VPlan::createInitialVPlan(const SCEV *TripCount, ScalarEvolution &SE) {
770   VPBasicBlock *Preheader = new VPBasicBlock("ph");
771   VPBasicBlock *VecPreheader = new VPBasicBlock("vector.ph");
772   auto Plan = std::make_unique<VPlan>(Preheader, VecPreheader);
773   Plan->TripCount =
774       vputils::getOrCreateVPValueForSCEVExpr(*Plan, TripCount, SE);
775   // Create empty VPRegionBlock, to be filled during processing later.
776   auto *TopRegion = new VPRegionBlock("vector loop", false /*isReplicator*/);
777   VPBlockUtils::insertBlockAfter(TopRegion, VecPreheader);
778   VPBasicBlock *MiddleVPBB = new VPBasicBlock("middle.block");
779   VPBlockUtils::insertBlockAfter(MiddleVPBB, TopRegion);
780   return Plan;
781 }
782 
783 void VPlan::prepareToExecute(Value *TripCountV, Value *VectorTripCountV,
784                              Value *CanonicalIVStartValue,
785                              VPTransformState &State) {
786   // Check if the backedge taken count is needed, and if so build it.
787   if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) {
788     IRBuilder<> Builder(State.CFG.PrevBB->getTerminator());
789     auto *TCMO = Builder.CreateSub(TripCountV,
790                                    ConstantInt::get(TripCountV->getType(), 1),
791                                    "trip.count.minus.1");
792     BackedgeTakenCount->setUnderlyingValue(TCMO);
793   }
794 
795   VectorTripCount.setUnderlyingValue(VectorTripCountV);
796 
797   IRBuilder<> Builder(State.CFG.PrevBB->getTerminator());
798   // FIXME: Model VF * UF computation completely in VPlan.
799   VFxUF.setUnderlyingValue(
800       createStepForVF(Builder, TripCountV->getType(), State.VF, State.UF));
801 
802   // When vectorizing the epilogue loop, the canonical induction start value
803   // needs to be changed from zero to the value after the main vector loop.
804   // FIXME: Improve modeling for canonical IV start values in the epilogue loop.
805   if (CanonicalIVStartValue) {
806     VPValue *VPV = getOrAddLiveIn(CanonicalIVStartValue);
807     auto *IV = getCanonicalIV();
808     assert(all_of(IV->users(),
809                   [](const VPUser *U) {
810                     return isa<VPScalarIVStepsRecipe>(U) ||
811                            isa<VPScalarCastRecipe>(U) ||
812                            isa<VPDerivedIVRecipe>(U) ||
813                            cast<VPInstruction>(U)->getOpcode() ==
814                                Instruction::Add;
815                   }) &&
816            "the canonical IV should only be used by its increment or "
817            "ScalarIVSteps when resetting the start value");
818     IV->setOperand(0, VPV);
819   }
820 }
821 
822 /// Generate the code inside the preheader and body of the vectorized loop.
823 /// Assumes a single pre-header basic-block was created for this. Introduce
824 /// additional basic-blocks as needed, and fill them all.
825 void VPlan::execute(VPTransformState *State) {
826   // Initialize CFG state.
827   State->CFG.PrevVPBB = nullptr;
828   State->CFG.ExitBB = State->CFG.PrevBB->getSingleSuccessor();
829   BasicBlock *VectorPreHeader = State->CFG.PrevBB;
830   State->Builder.SetInsertPoint(VectorPreHeader->getTerminator());
831 
832   // Generate code in the loop pre-header and body.
833   for (VPBlockBase *Block : vp_depth_first_shallow(Entry))
834     Block->execute(State);
835 
836   VPBasicBlock *LatchVPBB = getVectorLoopRegion()->getExitingBasicBlock();
837   BasicBlock *VectorLatchBB = State->CFG.VPBB2IRBB[LatchVPBB];
838 
839   // Fix the latch value of canonical, reduction and first-order recurrences
840   // phis in the vector loop.
841   VPBasicBlock *Header = getVectorLoopRegion()->getEntryBasicBlock();
842   for (VPRecipeBase &R : Header->phis()) {
843     // Skip phi-like recipes that generate their backedege values themselves.
844     if (isa<VPWidenPHIRecipe>(&R))
845       continue;
846 
847     if (isa<VPWidenPointerInductionRecipe>(&R) ||
848         isa<VPWidenIntOrFpInductionRecipe>(&R)) {
849       PHINode *Phi = nullptr;
850       if (isa<VPWidenIntOrFpInductionRecipe>(&R)) {
851         Phi = cast<PHINode>(State->get(R.getVPSingleValue(), 0));
852       } else {
853         auto *WidenPhi = cast<VPWidenPointerInductionRecipe>(&R);
854         assert(!WidenPhi->onlyScalarsGenerated(State->VF.isScalable()) &&
855                "recipe generating only scalars should have been replaced");
856         auto *GEP = cast<GetElementPtrInst>(State->get(WidenPhi, 0));
857         Phi = cast<PHINode>(GEP->getPointerOperand());
858       }
859 
860       Phi->setIncomingBlock(1, VectorLatchBB);
861 
862       // Move the last step to the end of the latch block. This ensures
863       // consistent placement of all induction updates.
864       Instruction *Inc = cast<Instruction>(Phi->getIncomingValue(1));
865       Inc->moveBefore(VectorLatchBB->getTerminator()->getPrevNode());
866       continue;
867     }
868 
869     auto *PhiR = cast<VPHeaderPHIRecipe>(&R);
870     // For  canonical IV, first-order recurrences and in-order reduction phis,
871     // only a single part is generated, which provides the last part from the
872     // previous iteration. For non-ordered reductions all UF parts are
873     // generated.
874     bool SinglePartNeeded =
875         isa<VPCanonicalIVPHIRecipe>(PhiR) ||
876         isa<VPFirstOrderRecurrencePHIRecipe, VPEVLBasedIVPHIRecipe>(PhiR) ||
877         (isa<VPReductionPHIRecipe>(PhiR) &&
878          cast<VPReductionPHIRecipe>(PhiR)->isOrdered());
879     bool NeedsScalar =
880         isa<VPCanonicalIVPHIRecipe, VPEVLBasedIVPHIRecipe>(PhiR) ||
881         (isa<VPReductionPHIRecipe>(PhiR) &&
882          cast<VPReductionPHIRecipe>(PhiR)->isInLoop());
883     unsigned LastPartForNewPhi = SinglePartNeeded ? 1 : State->UF;
884 
885     for (unsigned Part = 0; Part < LastPartForNewPhi; ++Part) {
886       Value *Phi = State->get(PhiR, Part, NeedsScalar);
887       Value *Val =
888           State->get(PhiR->getBackedgeValue(),
889                      SinglePartNeeded ? State->UF - 1 : Part, NeedsScalar);
890       cast<PHINode>(Phi)->addIncoming(Val, VectorLatchBB);
891     }
892   }
893 
894   // We do not attempt to preserve DT for outer loop vectorization currently.
895   if (!EnableVPlanNativePath) {
896     BasicBlock *VectorHeaderBB = State->CFG.VPBB2IRBB[Header];
897     State->DT->addNewBlock(VectorHeaderBB, VectorPreHeader);
898     updateDominatorTree(State->DT, VectorHeaderBB, VectorLatchBB,
899                         State->CFG.ExitBB);
900   }
901 }
902 
903 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
904 void VPlan::printLiveIns(raw_ostream &O) const {
905   VPSlotTracker SlotTracker(this);
906 
907   if (VFxUF.getNumUsers() > 0) {
908     O << "\nLive-in ";
909     VFxUF.printAsOperand(O, SlotTracker);
910     O << " = VF * UF";
911   }
912 
913   if (VectorTripCount.getNumUsers() > 0) {
914     O << "\nLive-in ";
915     VectorTripCount.printAsOperand(O, SlotTracker);
916     O << " = vector-trip-count";
917   }
918 
919   if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) {
920     O << "\nLive-in ";
921     BackedgeTakenCount->printAsOperand(O, SlotTracker);
922     O << " = backedge-taken count";
923   }
924 
925   O << "\n";
926   if (TripCount->isLiveIn())
927     O << "Live-in ";
928   TripCount->printAsOperand(O, SlotTracker);
929   O << " = original trip-count";
930   O << "\n";
931 }
932 
933 LLVM_DUMP_METHOD
934 void VPlan::print(raw_ostream &O) const {
935   VPSlotTracker SlotTracker(this);
936 
937   O << "VPlan '" << getName() << "' {";
938 
939   printLiveIns(O);
940 
941   if (!getPreheader()->empty()) {
942     O << "\n";
943     getPreheader()->print(O, "", SlotTracker);
944   }
945 
946   for (const VPBlockBase *Block : vp_depth_first_shallow(getEntry())) {
947     O << '\n';
948     Block->print(O, "", SlotTracker);
949   }
950 
951   if (!LiveOuts.empty())
952     O << "\n";
953   for (const auto &KV : LiveOuts) {
954     KV.second->print(O, SlotTracker);
955   }
956 
957   O << "}\n";
958 }
959 
960 std::string VPlan::getName() const {
961   std::string Out;
962   raw_string_ostream RSO(Out);
963   RSO << Name << " for ";
964   if (!VFs.empty()) {
965     RSO << "VF={" << VFs[0];
966     for (ElementCount VF : drop_begin(VFs))
967       RSO << "," << VF;
968     RSO << "},";
969   }
970 
971   if (UFs.empty()) {
972     RSO << "UF>=1";
973   } else {
974     RSO << "UF={" << UFs[0];
975     for (unsigned UF : drop_begin(UFs))
976       RSO << "," << UF;
977     RSO << "}";
978   }
979 
980   return Out;
981 }
982 
983 LLVM_DUMP_METHOD
984 void VPlan::printDOT(raw_ostream &O) const {
985   VPlanPrinter Printer(O, *this);
986   Printer.dump();
987 }
988 
989 LLVM_DUMP_METHOD
990 void VPlan::dump() const { print(dbgs()); }
991 #endif
992 
993 void VPlan::addLiveOut(PHINode *PN, VPValue *V) {
994   assert(LiveOuts.count(PN) == 0 && "an exit value for PN already exists");
995   LiveOuts.insert({PN, new VPLiveOut(PN, V)});
996 }
997 
998 void VPlan::updateDominatorTree(DominatorTree *DT, BasicBlock *LoopHeaderBB,
999                                 BasicBlock *LoopLatchBB,
1000                                 BasicBlock *LoopExitBB) {
1001   // The vector body may be more than a single basic-block by this point.
1002   // Update the dominator tree information inside the vector body by propagating
1003   // it from header to latch, expecting only triangular control-flow, if any.
1004   BasicBlock *PostDomSucc = nullptr;
1005   for (auto *BB = LoopHeaderBB; BB != LoopLatchBB; BB = PostDomSucc) {
1006     // Get the list of successors of this block.
1007     std::vector<BasicBlock *> Succs(succ_begin(BB), succ_end(BB));
1008     assert(Succs.size() <= 2 &&
1009            "Basic block in vector loop has more than 2 successors.");
1010     PostDomSucc = Succs[0];
1011     if (Succs.size() == 1) {
1012       assert(PostDomSucc->getSinglePredecessor() &&
1013              "PostDom successor has more than one predecessor.");
1014       DT->addNewBlock(PostDomSucc, BB);
1015       continue;
1016     }
1017     BasicBlock *InterimSucc = Succs[1];
1018     if (PostDomSucc->getSingleSuccessor() == InterimSucc) {
1019       PostDomSucc = Succs[1];
1020       InterimSucc = Succs[0];
1021     }
1022     assert(InterimSucc->getSingleSuccessor() == PostDomSucc &&
1023            "One successor of a basic block does not lead to the other.");
1024     assert(InterimSucc->getSinglePredecessor() &&
1025            "Interim successor has more than one predecessor.");
1026     assert(PostDomSucc->hasNPredecessors(2) &&
1027            "PostDom successor has more than two predecessors.");
1028     DT->addNewBlock(InterimSucc, BB);
1029     DT->addNewBlock(PostDomSucc, BB);
1030   }
1031   // Latch block is a new dominator for the loop exit.
1032   DT->changeImmediateDominator(LoopExitBB, LoopLatchBB);
1033   assert(DT->verify(DominatorTree::VerificationLevel::Fast));
1034 }
1035 
1036 static void remapOperands(VPBlockBase *Entry, VPBlockBase *NewEntry,
1037                           DenseMap<VPValue *, VPValue *> &Old2NewVPValues) {
1038   // Update the operands of all cloned recipes starting at NewEntry. This
1039   // traverses all reachable blocks. This is done in two steps, to handle cycles
1040   // in PHI recipes.
1041   ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<VPBlockBase *>>
1042       OldDeepRPOT(Entry);
1043   ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<VPBlockBase *>>
1044       NewDeepRPOT(NewEntry);
1045   // First, collect all mappings from old to new VPValues defined by cloned
1046   // recipes.
1047   for (const auto &[OldBB, NewBB] :
1048        zip(VPBlockUtils::blocksOnly<VPBasicBlock>(OldDeepRPOT),
1049            VPBlockUtils::blocksOnly<VPBasicBlock>(NewDeepRPOT))) {
1050     assert(OldBB->getRecipeList().size() == NewBB->getRecipeList().size() &&
1051            "blocks must have the same number of recipes");
1052     for (const auto &[OldR, NewR] : zip(*OldBB, *NewBB)) {
1053       assert(OldR.getNumOperands() == NewR.getNumOperands() &&
1054              "recipes must have the same number of operands");
1055       assert(OldR.getNumDefinedValues() == NewR.getNumDefinedValues() &&
1056              "recipes must define the same number of operands");
1057       for (const auto &[OldV, NewV] :
1058            zip(OldR.definedValues(), NewR.definedValues()))
1059         Old2NewVPValues[OldV] = NewV;
1060     }
1061   }
1062 
1063   // Update all operands to use cloned VPValues.
1064   for (VPBasicBlock *NewBB :
1065        VPBlockUtils::blocksOnly<VPBasicBlock>(NewDeepRPOT)) {
1066     for (VPRecipeBase &NewR : *NewBB)
1067       for (unsigned I = 0, E = NewR.getNumOperands(); I != E; ++I) {
1068         VPValue *NewOp = Old2NewVPValues.lookup(NewR.getOperand(I));
1069         NewR.setOperand(I, NewOp);
1070       }
1071   }
1072 }
1073 
1074 VPlan *VPlan::duplicate() {
1075   // Clone blocks.
1076   VPBasicBlock *NewPreheader = Preheader->clone();
1077   const auto &[NewEntry, __] = cloneSESE(Entry);
1078 
1079   // Create VPlan, clone live-ins and remap operands in the cloned blocks.
1080   auto *NewPlan = new VPlan(NewPreheader, cast<VPBasicBlock>(NewEntry));
1081   DenseMap<VPValue *, VPValue *> Old2NewVPValues;
1082   for (VPValue *OldLiveIn : VPLiveInsToFree) {
1083     Old2NewVPValues[OldLiveIn] =
1084         NewPlan->getOrAddLiveIn(OldLiveIn->getLiveInIRValue());
1085   }
1086   Old2NewVPValues[&VectorTripCount] = &NewPlan->VectorTripCount;
1087   Old2NewVPValues[&VFxUF] = &NewPlan->VFxUF;
1088   if (BackedgeTakenCount) {
1089     NewPlan->BackedgeTakenCount = new VPValue();
1090     Old2NewVPValues[BackedgeTakenCount] = NewPlan->BackedgeTakenCount;
1091   }
1092   assert(TripCount && "trip count must be set");
1093   if (TripCount->isLiveIn())
1094     Old2NewVPValues[TripCount] =
1095         NewPlan->getOrAddLiveIn(TripCount->getLiveInIRValue());
1096   // else NewTripCount will be created and inserted into Old2NewVPValues when
1097   // TripCount is cloned. In any case NewPlan->TripCount is updated below.
1098 
1099   remapOperands(Preheader, NewPreheader, Old2NewVPValues);
1100   remapOperands(Entry, NewEntry, Old2NewVPValues);
1101 
1102   // Clone live-outs.
1103   for (const auto &[_, LO] : LiveOuts)
1104     NewPlan->addLiveOut(LO->getPhi(), Old2NewVPValues[LO->getOperand(0)]);
1105 
1106   // Initialize remaining fields of cloned VPlan.
1107   NewPlan->VFs = VFs;
1108   NewPlan->UFs = UFs;
1109   // TODO: Adjust names.
1110   NewPlan->Name = Name;
1111   assert(Old2NewVPValues.contains(TripCount) &&
1112          "TripCount must have been added to Old2NewVPValues");
1113   NewPlan->TripCount = Old2NewVPValues[TripCount];
1114   return NewPlan;
1115 }
1116 
1117 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1118 
1119 Twine VPlanPrinter::getUID(const VPBlockBase *Block) {
1120   return (isa<VPRegionBlock>(Block) ? "cluster_N" : "N") +
1121          Twine(getOrCreateBID(Block));
1122 }
1123 
1124 Twine VPlanPrinter::getOrCreateName(const VPBlockBase *Block) {
1125   const std::string &Name = Block->getName();
1126   if (!Name.empty())
1127     return Name;
1128   return "VPB" + Twine(getOrCreateBID(Block));
1129 }
1130 
1131 void VPlanPrinter::dump() {
1132   Depth = 1;
1133   bumpIndent(0);
1134   OS << "digraph VPlan {\n";
1135   OS << "graph [labelloc=t, fontsize=30; label=\"Vectorization Plan";
1136   if (!Plan.getName().empty())
1137     OS << "\\n" << DOT::EscapeString(Plan.getName());
1138 
1139   {
1140     // Print live-ins.
1141   std::string Str;
1142   raw_string_ostream SS(Str);
1143   Plan.printLiveIns(SS);
1144   SmallVector<StringRef, 0> Lines;
1145   StringRef(Str).rtrim('\n').split(Lines, "\n");
1146   for (auto Line : Lines)
1147     OS << DOT::EscapeString(Line.str()) << "\\n";
1148   }
1149 
1150   OS << "\"]\n";
1151   OS << "node [shape=rect, fontname=Courier, fontsize=30]\n";
1152   OS << "edge [fontname=Courier, fontsize=30]\n";
1153   OS << "compound=true\n";
1154 
1155   dumpBlock(Plan.getPreheader());
1156 
1157   for (const VPBlockBase *Block : vp_depth_first_shallow(Plan.getEntry()))
1158     dumpBlock(Block);
1159 
1160   OS << "}\n";
1161 }
1162 
1163 void VPlanPrinter::dumpBlock(const VPBlockBase *Block) {
1164   if (const VPBasicBlock *BasicBlock = dyn_cast<VPBasicBlock>(Block))
1165     dumpBasicBlock(BasicBlock);
1166   else if (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
1167     dumpRegion(Region);
1168   else
1169     llvm_unreachable("Unsupported kind of VPBlock.");
1170 }
1171 
1172 void VPlanPrinter::drawEdge(const VPBlockBase *From, const VPBlockBase *To,
1173                             bool Hidden, const Twine &Label) {
1174   // Due to "dot" we print an edge between two regions as an edge between the
1175   // exiting basic block and the entry basic of the respective regions.
1176   const VPBlockBase *Tail = From->getExitingBasicBlock();
1177   const VPBlockBase *Head = To->getEntryBasicBlock();
1178   OS << Indent << getUID(Tail) << " -> " << getUID(Head);
1179   OS << " [ label=\"" << Label << '\"';
1180   if (Tail != From)
1181     OS << " ltail=" << getUID(From);
1182   if (Head != To)
1183     OS << " lhead=" << getUID(To);
1184   if (Hidden)
1185     OS << "; splines=none";
1186   OS << "]\n";
1187 }
1188 
1189 void VPlanPrinter::dumpEdges(const VPBlockBase *Block) {
1190   auto &Successors = Block->getSuccessors();
1191   if (Successors.size() == 1)
1192     drawEdge(Block, Successors.front(), false, "");
1193   else if (Successors.size() == 2) {
1194     drawEdge(Block, Successors.front(), false, "T");
1195     drawEdge(Block, Successors.back(), false, "F");
1196   } else {
1197     unsigned SuccessorNumber = 0;
1198     for (auto *Successor : Successors)
1199       drawEdge(Block, Successor, false, Twine(SuccessorNumber++));
1200   }
1201 }
1202 
1203 void VPlanPrinter::dumpBasicBlock(const VPBasicBlock *BasicBlock) {
1204   // Implement dot-formatted dump by performing plain-text dump into the
1205   // temporary storage followed by some post-processing.
1206   OS << Indent << getUID(BasicBlock) << " [label =\n";
1207   bumpIndent(1);
1208   std::string Str;
1209   raw_string_ostream SS(Str);
1210   // Use no indentation as we need to wrap the lines into quotes ourselves.
1211   BasicBlock->print(SS, "", SlotTracker);
1212 
1213   // We need to process each line of the output separately, so split
1214   // single-string plain-text dump.
1215   SmallVector<StringRef, 0> Lines;
1216   StringRef(Str).rtrim('\n').split(Lines, "\n");
1217 
1218   auto EmitLine = [&](StringRef Line, StringRef Suffix) {
1219     OS << Indent << '"' << DOT::EscapeString(Line.str()) << "\\l\"" << Suffix;
1220   };
1221 
1222   // Don't need the "+" after the last line.
1223   for (auto Line : make_range(Lines.begin(), Lines.end() - 1))
1224     EmitLine(Line, " +\n");
1225   EmitLine(Lines.back(), "\n");
1226 
1227   bumpIndent(-1);
1228   OS << Indent << "]\n";
1229 
1230   dumpEdges(BasicBlock);
1231 }
1232 
1233 void VPlanPrinter::dumpRegion(const VPRegionBlock *Region) {
1234   OS << Indent << "subgraph " << getUID(Region) << " {\n";
1235   bumpIndent(1);
1236   OS << Indent << "fontname=Courier\n"
1237      << Indent << "label=\""
1238      << DOT::EscapeString(Region->isReplicator() ? "<xVFxUF> " : "<x1> ")
1239      << DOT::EscapeString(Region->getName()) << "\"\n";
1240   // Dump the blocks of the region.
1241   assert(Region->getEntry() && "Region contains no inner blocks.");
1242   for (const VPBlockBase *Block : vp_depth_first_shallow(Region->getEntry()))
1243     dumpBlock(Block);
1244   bumpIndent(-1);
1245   OS << Indent << "}\n";
1246   dumpEdges(Region);
1247 }
1248 
1249 void VPlanIngredient::print(raw_ostream &O) const {
1250   if (auto *Inst = dyn_cast<Instruction>(V)) {
1251     if (!Inst->getType()->isVoidTy()) {
1252       Inst->printAsOperand(O, false);
1253       O << " = ";
1254     }
1255     O << Inst->getOpcodeName() << " ";
1256     unsigned E = Inst->getNumOperands();
1257     if (E > 0) {
1258       Inst->getOperand(0)->printAsOperand(O, false);
1259       for (unsigned I = 1; I < E; ++I)
1260         Inst->getOperand(I)->printAsOperand(O << ", ", false);
1261     }
1262   } else // !Inst
1263     V->printAsOperand(O, false);
1264 }
1265 
1266 #endif
1267 
1268 template void DomTreeBuilder::Calculate<VPDominatorTree>(VPDominatorTree &DT);
1269 
1270 void VPValue::replaceAllUsesWith(VPValue *New) {
1271   replaceUsesWithIf(New, [](VPUser &, unsigned) { return true; });
1272 }
1273 
1274 void VPValue::replaceUsesWithIf(
1275     VPValue *New,
1276     llvm::function_ref<bool(VPUser &U, unsigned Idx)> ShouldReplace) {
1277   // Note that this early exit is required for correctness; the implementation
1278   // below relies on the number of users for this VPValue to decrease, which
1279   // isn't the case if this == New.
1280   if (this == New)
1281     return;
1282 
1283   for (unsigned J = 0; J < getNumUsers();) {
1284     VPUser *User = Users[J];
1285     bool RemovedUser = false;
1286     for (unsigned I = 0, E = User->getNumOperands(); I < E; ++I) {
1287       if (User->getOperand(I) != this || !ShouldReplace(*User, I))
1288         continue;
1289 
1290       RemovedUser = true;
1291       User->setOperand(I, New);
1292     }
1293     // If a user got removed after updating the current user, the next user to
1294     // update will be moved to the current position, so we only need to
1295     // increment the index if the number of users did not change.
1296     if (!RemovedUser)
1297       J++;
1298   }
1299 }
1300 
1301 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1302 void VPValue::printAsOperand(raw_ostream &OS, VPSlotTracker &Tracker) const {
1303   OS << Tracker.getOrCreateName(this);
1304 }
1305 
1306 void VPUser::printOperands(raw_ostream &O, VPSlotTracker &SlotTracker) const {
1307   interleaveComma(operands(), O, [&O, &SlotTracker](VPValue *Op) {
1308     Op->printAsOperand(O, SlotTracker);
1309   });
1310 }
1311 #endif
1312 
1313 void VPInterleavedAccessInfo::visitRegion(VPRegionBlock *Region,
1314                                           Old2NewTy &Old2New,
1315                                           InterleavedAccessInfo &IAI) {
1316   ReversePostOrderTraversal<VPBlockShallowTraversalWrapper<VPBlockBase *>>
1317       RPOT(Region->getEntry());
1318   for (VPBlockBase *Base : RPOT) {
1319     visitBlock(Base, Old2New, IAI);
1320   }
1321 }
1322 
1323 void VPInterleavedAccessInfo::visitBlock(VPBlockBase *Block, Old2NewTy &Old2New,
1324                                          InterleavedAccessInfo &IAI) {
1325   if (VPBasicBlock *VPBB = dyn_cast<VPBasicBlock>(Block)) {
1326     for (VPRecipeBase &VPI : *VPBB) {
1327       if (isa<VPWidenPHIRecipe>(&VPI))
1328         continue;
1329       assert(isa<VPInstruction>(&VPI) && "Can only handle VPInstructions");
1330       auto *VPInst = cast<VPInstruction>(&VPI);
1331 
1332       auto *Inst = dyn_cast_or_null<Instruction>(VPInst->getUnderlyingValue());
1333       if (!Inst)
1334         continue;
1335       auto *IG = IAI.getInterleaveGroup(Inst);
1336       if (!IG)
1337         continue;
1338 
1339       auto NewIGIter = Old2New.find(IG);
1340       if (NewIGIter == Old2New.end())
1341         Old2New[IG] = new InterleaveGroup<VPInstruction>(
1342             IG->getFactor(), IG->isReverse(), IG->getAlign());
1343 
1344       if (Inst == IG->getInsertPos())
1345         Old2New[IG]->setInsertPos(VPInst);
1346 
1347       InterleaveGroupMap[VPInst] = Old2New[IG];
1348       InterleaveGroupMap[VPInst]->insertMember(
1349           VPInst, IG->getIndex(Inst),
1350           Align(IG->isReverse() ? (-1) * int(IG->getFactor())
1351                                 : IG->getFactor()));
1352     }
1353   } else if (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
1354     visitRegion(Region, Old2New, IAI);
1355   else
1356     llvm_unreachable("Unsupported kind of VPBlock.");
1357 }
1358 
1359 VPInterleavedAccessInfo::VPInterleavedAccessInfo(VPlan &Plan,
1360                                                  InterleavedAccessInfo &IAI) {
1361   Old2NewTy Old2New;
1362   visitRegion(Plan.getVectorLoopRegion(), Old2New, IAI);
1363 }
1364 
1365 void VPSlotTracker::assignName(const VPValue *V) {
1366   assert(!VPValue2Name.contains(V) && "VPValue already has a name!");
1367   auto *UV = V->getUnderlyingValue();
1368   if (!UV) {
1369     VPValue2Name[V] = (Twine("vp<%") + Twine(NextSlot) + ">").str();
1370     NextSlot++;
1371     return;
1372   }
1373 
1374   // Use the name of the underlying Value, wrapped in "ir<>", and versioned by
1375   // appending ".Number" to the name if there are multiple uses.
1376   std::string Name;
1377   raw_string_ostream S(Name);
1378   UV->printAsOperand(S, false);
1379   assert(!Name.empty() && "Name cannot be empty.");
1380   std::string BaseName = (Twine("ir<") + Name + Twine(">")).str();
1381 
1382   // First assign the base name for V.
1383   const auto &[A, _] = VPValue2Name.insert({V, BaseName});
1384   // Integer or FP constants with different types will result in he same string
1385   // due to stripping types.
1386   if (V->isLiveIn() && isa<ConstantInt, ConstantFP>(UV))
1387     return;
1388 
1389   // If it is already used by C > 0 other VPValues, increase the version counter
1390   // C and use it for V.
1391   const auto &[C, UseInserted] = BaseName2Version.insert({BaseName, 0});
1392   if (!UseInserted) {
1393     C->second++;
1394     A->second = (BaseName + Twine(".") + Twine(C->second)).str();
1395   }
1396 }
1397 
1398 void VPSlotTracker::assignNames(const VPlan &Plan) {
1399   if (Plan.VFxUF.getNumUsers() > 0)
1400     assignName(&Plan.VFxUF);
1401   assignName(&Plan.VectorTripCount);
1402   if (Plan.BackedgeTakenCount)
1403     assignName(Plan.BackedgeTakenCount);
1404   for (VPValue *LI : Plan.VPLiveInsToFree)
1405     assignName(LI);
1406   assignNames(Plan.getPreheader());
1407 
1408   ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<const VPBlockBase *>>
1409       RPOT(VPBlockDeepTraversalWrapper<const VPBlockBase *>(Plan.getEntry()));
1410   for (const VPBasicBlock *VPBB :
1411        VPBlockUtils::blocksOnly<const VPBasicBlock>(RPOT))
1412     assignNames(VPBB);
1413 }
1414 
1415 void VPSlotTracker::assignNames(const VPBasicBlock *VPBB) {
1416   for (const VPRecipeBase &Recipe : *VPBB)
1417     for (VPValue *Def : Recipe.definedValues())
1418       assignName(Def);
1419 }
1420 
1421 std::string VPSlotTracker::getOrCreateName(const VPValue *V) const {
1422   std::string Name = VPValue2Name.lookup(V);
1423   if (!Name.empty())
1424     return Name;
1425 
1426   // If no name was assigned, no VPlan was provided when creating the slot
1427   // tracker or it is not reachable from the provided VPlan. This can happen,
1428   // e.g. when trying to print a recipe that has not been inserted into a VPlan
1429   // in a debugger.
1430   // TODO: Update VPSlotTracker constructor to assign names to recipes &
1431   // VPValues not associated with a VPlan, instead of constructing names ad-hoc
1432   // here.
1433   const VPRecipeBase *DefR = V->getDefiningRecipe();
1434   (void)DefR;
1435   assert((!DefR || !DefR->getParent() || !DefR->getParent()->getPlan()) &&
1436          "VPValue defined by a recipe in a VPlan?");
1437 
1438   // Use the underlying value's name, if there is one.
1439   if (auto *UV = V->getUnderlyingValue()) {
1440     std::string Name;
1441     raw_string_ostream S(Name);
1442     UV->printAsOperand(S, false);
1443     return (Twine("ir<") + Name + ">").str();
1444   }
1445 
1446   return "<badref>";
1447 }
1448 
1449 bool vputils::onlyFirstLaneUsed(const VPValue *Def) {
1450   return all_of(Def->users(),
1451                 [Def](const VPUser *U) { return U->onlyFirstLaneUsed(Def); });
1452 }
1453 
1454 bool vputils::onlyFirstPartUsed(const VPValue *Def) {
1455   return all_of(Def->users(),
1456                 [Def](const VPUser *U) { return U->onlyFirstPartUsed(Def); });
1457 }
1458 
1459 VPValue *vputils::getOrCreateVPValueForSCEVExpr(VPlan &Plan, const SCEV *Expr,
1460                                                 ScalarEvolution &SE) {
1461   if (auto *Expanded = Plan.getSCEVExpansion(Expr))
1462     return Expanded;
1463   VPValue *Expanded = nullptr;
1464   if (auto *E = dyn_cast<SCEVConstant>(Expr))
1465     Expanded = Plan.getOrAddLiveIn(E->getValue());
1466   else if (auto *E = dyn_cast<SCEVUnknown>(Expr))
1467     Expanded = Plan.getOrAddLiveIn(E->getValue());
1468   else {
1469     Expanded = new VPExpandSCEVRecipe(Expr, SE);
1470     Plan.getPreheader()->appendRecipe(Expanded->getDefiningRecipe());
1471   }
1472   Plan.addSCEVExpansion(Expr, Expanded);
1473   return Expanded;
1474 }
1475