1 //===- VPlan.cpp - Vectorizer Plan ----------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This is the LLVM vectorization plan. It represents a candidate for 11 /// vectorization, allowing to plan and optimize how to vectorize a given loop 12 /// before generating LLVM-IR. 13 /// The vectorizer uses vectorization plans to estimate the costs of potential 14 /// candidates and if profitable to execute the desired plan, generating vector 15 /// LLVM-IR code. 16 /// 17 //===----------------------------------------------------------------------===// 18 19 #include "VPlan.h" 20 #include "VPlanCFG.h" 21 #include "VPlanDominatorTree.h" 22 #include "VPlanPatternMatch.h" 23 #include "llvm/ADT/PostOrderIterator.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/StringExtras.h" 27 #include "llvm/ADT/Twine.h" 28 #include "llvm/Analysis/LoopInfo.h" 29 #include "llvm/IR/BasicBlock.h" 30 #include "llvm/IR/CFG.h" 31 #include "llvm/IR/IRBuilder.h" 32 #include "llvm/IR/Instruction.h" 33 #include "llvm/IR/Instructions.h" 34 #include "llvm/IR/Type.h" 35 #include "llvm/IR/Value.h" 36 #include "llvm/Support/Casting.h" 37 #include "llvm/Support/CommandLine.h" 38 #include "llvm/Support/Debug.h" 39 #include "llvm/Support/GenericDomTreeConstruction.h" 40 #include "llvm/Support/GraphWriter.h" 41 #include "llvm/Support/raw_ostream.h" 42 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 43 #include "llvm/Transforms/Utils/LoopVersioning.h" 44 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 45 #include <cassert> 46 #include <string> 47 #include <vector> 48 49 using namespace llvm; 50 using namespace llvm::VPlanPatternMatch; 51 52 namespace llvm { 53 extern cl::opt<bool> EnableVPlanNativePath; 54 } 55 56 #define DEBUG_TYPE "vplan" 57 58 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 59 raw_ostream &llvm::operator<<(raw_ostream &OS, const VPValue &V) { 60 const VPInstruction *Instr = dyn_cast<VPInstruction>(&V); 61 VPSlotTracker SlotTracker( 62 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr); 63 V.print(OS, SlotTracker); 64 return OS; 65 } 66 #endif 67 68 Value *VPLane::getAsRuntimeExpr(IRBuilderBase &Builder, 69 const ElementCount &VF) const { 70 switch (LaneKind) { 71 case VPLane::Kind::ScalableLast: 72 // Lane = RuntimeVF - VF.getKnownMinValue() + Lane 73 return Builder.CreateSub(getRuntimeVF(Builder, Builder.getInt32Ty(), VF), 74 Builder.getInt32(VF.getKnownMinValue() - Lane)); 75 case VPLane::Kind::First: 76 return Builder.getInt32(Lane); 77 } 78 llvm_unreachable("Unknown lane kind"); 79 } 80 81 VPValue::VPValue(const unsigned char SC, Value *UV, VPDef *Def) 82 : SubclassID(SC), UnderlyingVal(UV), Def(Def) { 83 if (Def) 84 Def->addDefinedValue(this); 85 } 86 87 VPValue::~VPValue() { 88 assert(Users.empty() && "trying to delete a VPValue with remaining users"); 89 if (Def) 90 Def->removeDefinedValue(this); 91 } 92 93 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 94 void VPValue::print(raw_ostream &OS, VPSlotTracker &SlotTracker) const { 95 if (const VPRecipeBase *R = dyn_cast_or_null<VPRecipeBase>(Def)) 96 R->print(OS, "", SlotTracker); 97 else 98 printAsOperand(OS, SlotTracker); 99 } 100 101 void VPValue::dump() const { 102 const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this->Def); 103 VPSlotTracker SlotTracker( 104 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr); 105 print(dbgs(), SlotTracker); 106 dbgs() << "\n"; 107 } 108 109 void VPDef::dump() const { 110 const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this); 111 VPSlotTracker SlotTracker( 112 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr); 113 print(dbgs(), "", SlotTracker); 114 dbgs() << "\n"; 115 } 116 #endif 117 118 VPRecipeBase *VPValue::getDefiningRecipe() { 119 return cast_or_null<VPRecipeBase>(Def); 120 } 121 122 const VPRecipeBase *VPValue::getDefiningRecipe() const { 123 return cast_or_null<VPRecipeBase>(Def); 124 } 125 126 // Get the top-most entry block of \p Start. This is the entry block of the 127 // containing VPlan. This function is templated to support both const and non-const blocks 128 template <typename T> static T *getPlanEntry(T *Start) { 129 T *Next = Start; 130 T *Current = Start; 131 while ((Next = Next->getParent())) 132 Current = Next; 133 134 SmallSetVector<T *, 8> WorkList; 135 WorkList.insert(Current); 136 137 for (unsigned i = 0; i < WorkList.size(); i++) { 138 T *Current = WorkList[i]; 139 if (Current->getNumPredecessors() == 0) 140 return Current; 141 auto &Predecessors = Current->getPredecessors(); 142 WorkList.insert(Predecessors.begin(), Predecessors.end()); 143 } 144 145 llvm_unreachable("VPlan without any entry node without predecessors"); 146 } 147 148 VPlan *VPBlockBase::getPlan() { return getPlanEntry(this)->Plan; } 149 150 const VPlan *VPBlockBase::getPlan() const { return getPlanEntry(this)->Plan; } 151 152 /// \return the VPBasicBlock that is the entry of Block, possibly indirectly. 153 const VPBasicBlock *VPBlockBase::getEntryBasicBlock() const { 154 const VPBlockBase *Block = this; 155 while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 156 Block = Region->getEntry(); 157 return cast<VPBasicBlock>(Block); 158 } 159 160 VPBasicBlock *VPBlockBase::getEntryBasicBlock() { 161 VPBlockBase *Block = this; 162 while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 163 Block = Region->getEntry(); 164 return cast<VPBasicBlock>(Block); 165 } 166 167 void VPBlockBase::setPlan(VPlan *ParentPlan) { 168 assert( 169 (ParentPlan->getEntry() == this || ParentPlan->getPreheader() == this) && 170 "Can only set plan on its entry or preheader block."); 171 Plan = ParentPlan; 172 } 173 174 /// \return the VPBasicBlock that is the exit of Block, possibly indirectly. 175 const VPBasicBlock *VPBlockBase::getExitingBasicBlock() const { 176 const VPBlockBase *Block = this; 177 while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 178 Block = Region->getExiting(); 179 return cast<VPBasicBlock>(Block); 180 } 181 182 VPBasicBlock *VPBlockBase::getExitingBasicBlock() { 183 VPBlockBase *Block = this; 184 while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 185 Block = Region->getExiting(); 186 return cast<VPBasicBlock>(Block); 187 } 188 189 VPBlockBase *VPBlockBase::getEnclosingBlockWithSuccessors() { 190 if (!Successors.empty() || !Parent) 191 return this; 192 assert(Parent->getExiting() == this && 193 "Block w/o successors not the exiting block of its parent."); 194 return Parent->getEnclosingBlockWithSuccessors(); 195 } 196 197 VPBlockBase *VPBlockBase::getEnclosingBlockWithPredecessors() { 198 if (!Predecessors.empty() || !Parent) 199 return this; 200 assert(Parent->getEntry() == this && 201 "Block w/o predecessors not the entry of its parent."); 202 return Parent->getEnclosingBlockWithPredecessors(); 203 } 204 205 void VPBlockBase::deleteCFG(VPBlockBase *Entry) { 206 for (VPBlockBase *Block : to_vector(vp_depth_first_shallow(Entry))) 207 delete Block; 208 } 209 210 VPBasicBlock::iterator VPBasicBlock::getFirstNonPhi() { 211 iterator It = begin(); 212 while (It != end() && It->isPhi()) 213 It++; 214 return It; 215 } 216 217 VPTransformState::VPTransformState(ElementCount VF, unsigned UF, LoopInfo *LI, 218 DominatorTree *DT, IRBuilderBase &Builder, 219 InnerLoopVectorizer *ILV, VPlan *Plan, 220 LLVMContext &Ctx) 221 : VF(VF), UF(UF), LI(LI), DT(DT), Builder(Builder), ILV(ILV), Plan(Plan), 222 LVer(nullptr), 223 TypeAnalysis(Plan->getCanonicalIV()->getScalarType(), Ctx) {} 224 225 Value *VPTransformState::get(VPValue *Def, const VPIteration &Instance) { 226 if (Def->isLiveIn()) 227 return Def->getLiveInIRValue(); 228 229 if (hasScalarValue(Def, Instance)) { 230 return Data 231 .PerPartScalars[Def][Instance.Part][Instance.Lane.mapToCacheIndex(VF)]; 232 } 233 234 assert(hasVectorValue(Def, Instance.Part)); 235 auto *VecPart = Data.PerPartOutput[Def][Instance.Part]; 236 if (!VecPart->getType()->isVectorTy()) { 237 assert(Instance.Lane.isFirstLane() && "cannot get lane > 0 for scalar"); 238 return VecPart; 239 } 240 // TODO: Cache created scalar values. 241 Value *Lane = Instance.Lane.getAsRuntimeExpr(Builder, VF); 242 auto *Extract = Builder.CreateExtractElement(VecPart, Lane); 243 // set(Def, Extract, Instance); 244 return Extract; 245 } 246 247 Value *VPTransformState::get(VPValue *Def, unsigned Part, bool NeedsScalar) { 248 if (NeedsScalar) { 249 assert((VF.isScalar() || Def->isLiveIn() || hasVectorValue(Def, Part) || 250 (hasScalarValue(Def, VPIteration(Part, 0)) && 251 Data.PerPartScalars[Def][Part].size() == 1)) && 252 "Trying to access a single scalar per part but has multiple scalars " 253 "per part."); 254 return get(Def, VPIteration(Part, 0)); 255 } 256 257 // If Values have been set for this Def return the one relevant for \p Part. 258 if (hasVectorValue(Def, Part)) 259 return Data.PerPartOutput[Def][Part]; 260 261 auto GetBroadcastInstrs = [this, Def](Value *V) { 262 bool SafeToHoist = Def->isDefinedOutsideVectorRegions(); 263 if (VF.isScalar()) 264 return V; 265 // Place the code for broadcasting invariant variables in the new preheader. 266 IRBuilder<>::InsertPointGuard Guard(Builder); 267 if (SafeToHoist) { 268 BasicBlock *LoopVectorPreHeader = CFG.VPBB2IRBB[cast<VPBasicBlock>( 269 Plan->getVectorLoopRegion()->getSinglePredecessor())]; 270 if (LoopVectorPreHeader) 271 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 272 } 273 274 // Place the code for broadcasting invariant variables in the new preheader. 275 // Broadcast the scalar into all locations in the vector. 276 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 277 278 return Shuf; 279 }; 280 281 if (!hasScalarValue(Def, {Part, 0})) { 282 assert(Def->isLiveIn() && "expected a live-in"); 283 if (Part != 0) 284 return get(Def, 0); 285 Value *IRV = Def->getLiveInIRValue(); 286 Value *B = GetBroadcastInstrs(IRV); 287 set(Def, B, Part); 288 return B; 289 } 290 291 Value *ScalarValue = get(Def, {Part, 0}); 292 // If we aren't vectorizing, we can just copy the scalar map values over 293 // to the vector map. 294 if (VF.isScalar()) { 295 set(Def, ScalarValue, Part); 296 return ScalarValue; 297 } 298 299 bool IsUniform = vputils::isUniformAfterVectorization(Def); 300 301 unsigned LastLane = IsUniform ? 0 : VF.getKnownMinValue() - 1; 302 // Check if there is a scalar value for the selected lane. 303 if (!hasScalarValue(Def, {Part, LastLane})) { 304 // At the moment, VPWidenIntOrFpInductionRecipes, VPScalarIVStepsRecipes and 305 // VPExpandSCEVRecipes can also be uniform. 306 assert((isa<VPWidenIntOrFpInductionRecipe>(Def->getDefiningRecipe()) || 307 isa<VPScalarIVStepsRecipe>(Def->getDefiningRecipe()) || 308 isa<VPExpandSCEVRecipe>(Def->getDefiningRecipe())) && 309 "unexpected recipe found to be invariant"); 310 IsUniform = true; 311 LastLane = 0; 312 } 313 314 auto *LastInst = cast<Instruction>(get(Def, {Part, LastLane})); 315 // Set the insert point after the last scalarized instruction or after the 316 // last PHI, if LastInst is a PHI. This ensures the insertelement sequence 317 // will directly follow the scalar definitions. 318 auto OldIP = Builder.saveIP(); 319 auto NewIP = 320 isa<PHINode>(LastInst) 321 ? BasicBlock::iterator(LastInst->getParent()->getFirstNonPHI()) 322 : std::next(BasicBlock::iterator(LastInst)); 323 Builder.SetInsertPoint(&*NewIP); 324 325 // However, if we are vectorizing, we need to construct the vector values. 326 // If the value is known to be uniform after vectorization, we can just 327 // broadcast the scalar value corresponding to lane zero for each unroll 328 // iteration. Otherwise, we construct the vector values using 329 // insertelement instructions. Since the resulting vectors are stored in 330 // State, we will only generate the insertelements once. 331 Value *VectorValue = nullptr; 332 if (IsUniform) { 333 VectorValue = GetBroadcastInstrs(ScalarValue); 334 set(Def, VectorValue, Part); 335 } else { 336 // Initialize packing with insertelements to start from undef. 337 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 338 Value *Undef = PoisonValue::get(VectorType::get(LastInst->getType(), VF)); 339 set(Def, Undef, Part); 340 for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane) 341 packScalarIntoVectorValue(Def, {Part, Lane}); 342 VectorValue = get(Def, Part); 343 } 344 Builder.restoreIP(OldIP); 345 return VectorValue; 346 } 347 348 BasicBlock *VPTransformState::CFGState::getPreheaderBBFor(VPRecipeBase *R) { 349 VPRegionBlock *LoopRegion = R->getParent()->getEnclosingLoopRegion(); 350 return VPBB2IRBB[LoopRegion->getPreheaderVPBB()]; 351 } 352 353 void VPTransformState::addNewMetadata(Instruction *To, 354 const Instruction *Orig) { 355 // If the loop was versioned with memchecks, add the corresponding no-alias 356 // metadata. 357 if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig))) 358 LVer->annotateInstWithNoAlias(To, Orig); 359 } 360 361 void VPTransformState::addMetadata(Value *To, Instruction *From) { 362 // No source instruction to transfer metadata from? 363 if (!From) 364 return; 365 366 if (Instruction *ToI = dyn_cast<Instruction>(To)) { 367 propagateMetadata(ToI, From); 368 addNewMetadata(ToI, From); 369 } 370 } 371 372 void VPTransformState::setDebugLocFrom(DebugLoc DL) { 373 const DILocation *DIL = DL; 374 // When a FSDiscriminator is enabled, we don't need to add the multiply 375 // factors to the discriminators. 376 if (DIL && 377 Builder.GetInsertBlock() 378 ->getParent() 379 ->shouldEmitDebugInfoForProfiling() && 380 !EnableFSDiscriminator) { 381 // FIXME: For scalable vectors, assume vscale=1. 382 auto NewDIL = 383 DIL->cloneByMultiplyingDuplicationFactor(UF * VF.getKnownMinValue()); 384 if (NewDIL) 385 Builder.SetCurrentDebugLocation(*NewDIL); 386 else 387 LLVM_DEBUG(dbgs() << "Failed to create new discriminator: " 388 << DIL->getFilename() << " Line: " << DIL->getLine()); 389 } else 390 Builder.SetCurrentDebugLocation(DIL); 391 } 392 393 void VPTransformState::packScalarIntoVectorValue(VPValue *Def, 394 const VPIteration &Instance) { 395 Value *ScalarInst = get(Def, Instance); 396 Value *VectorValue = get(Def, Instance.Part); 397 VectorValue = Builder.CreateInsertElement( 398 VectorValue, ScalarInst, Instance.Lane.getAsRuntimeExpr(Builder, VF)); 399 set(Def, VectorValue, Instance.Part); 400 } 401 402 BasicBlock * 403 VPBasicBlock::createEmptyBasicBlock(VPTransformState::CFGState &CFG) { 404 // BB stands for IR BasicBlocks. VPBB stands for VPlan VPBasicBlocks. 405 // Pred stands for Predessor. Prev stands for Previous - last visited/created. 406 BasicBlock *PrevBB = CFG.PrevBB; 407 BasicBlock *NewBB = BasicBlock::Create(PrevBB->getContext(), getName(), 408 PrevBB->getParent(), CFG.ExitBB); 409 LLVM_DEBUG(dbgs() << "LV: created " << NewBB->getName() << '\n'); 410 411 // Hook up the new basic block to its predecessors. 412 for (VPBlockBase *PredVPBlock : getHierarchicalPredecessors()) { 413 VPBasicBlock *PredVPBB = PredVPBlock->getExitingBasicBlock(); 414 auto &PredVPSuccessors = PredVPBB->getHierarchicalSuccessors(); 415 BasicBlock *PredBB = CFG.VPBB2IRBB[PredVPBB]; 416 417 assert(PredBB && "Predecessor basic-block not found building successor."); 418 auto *PredBBTerminator = PredBB->getTerminator(); 419 LLVM_DEBUG(dbgs() << "LV: draw edge from" << PredBB->getName() << '\n'); 420 421 auto *TermBr = dyn_cast<BranchInst>(PredBBTerminator); 422 if (isa<UnreachableInst>(PredBBTerminator)) { 423 assert(PredVPSuccessors.size() == 1 && 424 "Predecessor ending w/o branch must have single successor."); 425 DebugLoc DL = PredBBTerminator->getDebugLoc(); 426 PredBBTerminator->eraseFromParent(); 427 auto *Br = BranchInst::Create(NewBB, PredBB); 428 Br->setDebugLoc(DL); 429 } else if (TermBr && !TermBr->isConditional()) { 430 TermBr->setSuccessor(0, NewBB); 431 } else { 432 // Set each forward successor here when it is created, excluding 433 // backedges. A backward successor is set when the branch is created. 434 unsigned idx = PredVPSuccessors.front() == this ? 0 : 1; 435 assert(!TermBr->getSuccessor(idx) && 436 "Trying to reset an existing successor block."); 437 TermBr->setSuccessor(idx, NewBB); 438 } 439 } 440 return NewBB; 441 } 442 443 void VPBasicBlock::execute(VPTransformState *State) { 444 bool Replica = State->Instance && !State->Instance->isFirstIteration(); 445 VPBasicBlock *PrevVPBB = State->CFG.PrevVPBB; 446 VPBlockBase *SingleHPred = nullptr; 447 BasicBlock *NewBB = State->CFG.PrevBB; // Reuse it if possible. 448 449 auto IsLoopRegion = [](VPBlockBase *BB) { 450 auto *R = dyn_cast<VPRegionBlock>(BB); 451 return R && !R->isReplicator(); 452 }; 453 454 // 1. Create an IR basic block, or reuse the last one or ExitBB if possible. 455 if (getPlan()->getVectorLoopRegion()->getSingleSuccessor() == this) { 456 // ExitBB can be re-used for the exit block of the Plan. 457 NewBB = State->CFG.ExitBB; 458 State->CFG.PrevBB = NewBB; 459 State->Builder.SetInsertPoint(NewBB->getFirstNonPHI()); 460 461 // Update the branch instruction in the predecessor to branch to ExitBB. 462 VPBlockBase *PredVPB = getSingleHierarchicalPredecessor(); 463 VPBasicBlock *ExitingVPBB = PredVPB->getExitingBasicBlock(); 464 assert(PredVPB->getSingleSuccessor() == this && 465 "predecessor must have the current block as only successor"); 466 BasicBlock *ExitingBB = State->CFG.VPBB2IRBB[ExitingVPBB]; 467 // The Exit block of a loop is always set to be successor 0 of the Exiting 468 // block. 469 cast<BranchInst>(ExitingBB->getTerminator())->setSuccessor(0, NewBB); 470 } else if (PrevVPBB && /* A */ 471 !((SingleHPred = getSingleHierarchicalPredecessor()) && 472 SingleHPred->getExitingBasicBlock() == PrevVPBB && 473 PrevVPBB->getSingleHierarchicalSuccessor() && 474 (SingleHPred->getParent() == getEnclosingLoopRegion() && 475 !IsLoopRegion(SingleHPred))) && /* B */ 476 !(Replica && getPredecessors().empty())) { /* C */ 477 // The last IR basic block is reused, as an optimization, in three cases: 478 // A. the first VPBB reuses the loop pre-header BB - when PrevVPBB is null; 479 // B. when the current VPBB has a single (hierarchical) predecessor which 480 // is PrevVPBB and the latter has a single (hierarchical) successor which 481 // both are in the same non-replicator region; and 482 // C. when the current VPBB is an entry of a region replica - where PrevVPBB 483 // is the exiting VPBB of this region from a previous instance, or the 484 // predecessor of this region. 485 486 NewBB = createEmptyBasicBlock(State->CFG); 487 State->Builder.SetInsertPoint(NewBB); 488 // Temporarily terminate with unreachable until CFG is rewired. 489 UnreachableInst *Terminator = State->Builder.CreateUnreachable(); 490 // Register NewBB in its loop. In innermost loops its the same for all 491 // BB's. 492 if (State->CurrentVectorLoop) 493 State->CurrentVectorLoop->addBasicBlockToLoop(NewBB, *State->LI); 494 State->Builder.SetInsertPoint(Terminator); 495 State->CFG.PrevBB = NewBB; 496 } 497 498 // 2. Fill the IR basic block with IR instructions. 499 LLVM_DEBUG(dbgs() << "LV: vectorizing VPBB:" << getName() 500 << " in BB:" << NewBB->getName() << '\n'); 501 502 State->CFG.VPBB2IRBB[this] = NewBB; 503 State->CFG.PrevVPBB = this; 504 505 for (VPRecipeBase &Recipe : Recipes) 506 Recipe.execute(*State); 507 508 LLVM_DEBUG(dbgs() << "LV: filled BB:" << *NewBB); 509 } 510 511 void VPBasicBlock::dropAllReferences(VPValue *NewValue) { 512 for (VPRecipeBase &R : Recipes) { 513 for (auto *Def : R.definedValues()) 514 Def->replaceAllUsesWith(NewValue); 515 516 for (unsigned I = 0, E = R.getNumOperands(); I != E; I++) 517 R.setOperand(I, NewValue); 518 } 519 } 520 521 VPBasicBlock *VPBasicBlock::splitAt(iterator SplitAt) { 522 assert((SplitAt == end() || SplitAt->getParent() == this) && 523 "can only split at a position in the same block"); 524 525 SmallVector<VPBlockBase *, 2> Succs(successors()); 526 // First, disconnect the current block from its successors. 527 for (VPBlockBase *Succ : Succs) 528 VPBlockUtils::disconnectBlocks(this, Succ); 529 530 // Create new empty block after the block to split. 531 auto *SplitBlock = new VPBasicBlock(getName() + ".split"); 532 VPBlockUtils::insertBlockAfter(SplitBlock, this); 533 534 // Add successors for block to split to new block. 535 for (VPBlockBase *Succ : Succs) 536 VPBlockUtils::connectBlocks(SplitBlock, Succ); 537 538 // Finally, move the recipes starting at SplitAt to new block. 539 for (VPRecipeBase &ToMove : 540 make_early_inc_range(make_range(SplitAt, this->end()))) 541 ToMove.moveBefore(*SplitBlock, SplitBlock->end()); 542 543 return SplitBlock; 544 } 545 546 VPRegionBlock *VPBasicBlock::getEnclosingLoopRegion() { 547 VPRegionBlock *P = getParent(); 548 if (P && P->isReplicator()) { 549 P = P->getParent(); 550 assert(!cast<VPRegionBlock>(P)->isReplicator() && 551 "unexpected nested replicate regions"); 552 } 553 return P; 554 } 555 556 static bool hasConditionalTerminator(const VPBasicBlock *VPBB) { 557 if (VPBB->empty()) { 558 assert( 559 VPBB->getNumSuccessors() < 2 && 560 "block with multiple successors doesn't have a recipe as terminator"); 561 return false; 562 } 563 564 const VPRecipeBase *R = &VPBB->back(); 565 bool IsCondBranch = isa<VPBranchOnMaskRecipe>(R) || 566 match(R, m_BranchOnCond(m_VPValue())) || 567 match(R, m_BranchOnCount(m_VPValue(), m_VPValue())); 568 (void)IsCondBranch; 569 570 if (VPBB->getNumSuccessors() >= 2 || 571 (VPBB->isExiting() && !VPBB->getParent()->isReplicator())) { 572 assert(IsCondBranch && "block with multiple successors not terminated by " 573 "conditional branch recipe"); 574 575 return true; 576 } 577 578 assert( 579 !IsCondBranch && 580 "block with 0 or 1 successors terminated by conditional branch recipe"); 581 return false; 582 } 583 584 VPRecipeBase *VPBasicBlock::getTerminator() { 585 if (hasConditionalTerminator(this)) 586 return &back(); 587 return nullptr; 588 } 589 590 const VPRecipeBase *VPBasicBlock::getTerminator() const { 591 if (hasConditionalTerminator(this)) 592 return &back(); 593 return nullptr; 594 } 595 596 bool VPBasicBlock::isExiting() const { 597 return getParent() && getParent()->getExitingBasicBlock() == this; 598 } 599 600 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 601 void VPBlockBase::printSuccessors(raw_ostream &O, const Twine &Indent) const { 602 if (getSuccessors().empty()) { 603 O << Indent << "No successors\n"; 604 } else { 605 O << Indent << "Successor(s): "; 606 ListSeparator LS; 607 for (auto *Succ : getSuccessors()) 608 O << LS << Succ->getName(); 609 O << '\n'; 610 } 611 } 612 613 void VPBasicBlock::print(raw_ostream &O, const Twine &Indent, 614 VPSlotTracker &SlotTracker) const { 615 O << Indent << getName() << ":\n"; 616 617 auto RecipeIndent = Indent + " "; 618 for (const VPRecipeBase &Recipe : *this) { 619 Recipe.print(O, RecipeIndent, SlotTracker); 620 O << '\n'; 621 } 622 623 printSuccessors(O, Indent); 624 } 625 #endif 626 627 static std::pair<VPBlockBase *, VPBlockBase *> cloneSESE(VPBlockBase *Entry); 628 629 // Clone the CFG for all nodes in the single-entry-single-exit region reachable 630 // from \p Entry, this includes cloning the blocks and their recipes. Operands 631 // of cloned recipes will NOT be updated. Remapping of operands must be done 632 // separately. Returns a pair with the the new entry and exiting blocks of the 633 // cloned region. 634 static std::pair<VPBlockBase *, VPBlockBase *> cloneSESE(VPBlockBase *Entry) { 635 DenseMap<VPBlockBase *, VPBlockBase *> Old2NewVPBlocks; 636 ReversePostOrderTraversal<VPBlockShallowTraversalWrapper<VPBlockBase *>> RPOT( 637 Entry); 638 for (VPBlockBase *BB : RPOT) { 639 VPBlockBase *NewBB = BB->clone(); 640 for (VPBlockBase *Pred : BB->getPredecessors()) 641 VPBlockUtils::connectBlocks(Old2NewVPBlocks[Pred], NewBB); 642 643 Old2NewVPBlocks[BB] = NewBB; 644 } 645 646 #if !defined(NDEBUG) 647 // Verify that the order of predecessors and successors matches in the cloned 648 // version. 649 ReversePostOrderTraversal<VPBlockShallowTraversalWrapper<VPBlockBase *>> 650 NewRPOT(Old2NewVPBlocks[Entry]); 651 for (const auto &[OldBB, NewBB] : zip(RPOT, NewRPOT)) { 652 for (const auto &[OldPred, NewPred] : 653 zip(OldBB->getPredecessors(), NewBB->getPredecessors())) 654 assert(NewPred == Old2NewVPBlocks[OldPred] && "Different predecessors"); 655 656 for (const auto &[OldSucc, NewSucc] : 657 zip(OldBB->successors(), NewBB->successors())) 658 assert(NewSucc == Old2NewVPBlocks[OldSucc] && "Different successors"); 659 } 660 #endif 661 662 return std::make_pair(Old2NewVPBlocks[Entry], 663 Old2NewVPBlocks[*reverse(RPOT).begin()]); 664 } 665 666 VPRegionBlock *VPRegionBlock::clone() { 667 const auto &[NewEntry, NewExiting] = cloneSESE(getEntry()); 668 auto *NewRegion = 669 new VPRegionBlock(NewEntry, NewExiting, getName(), isReplicator()); 670 for (VPBlockBase *Block : vp_depth_first_shallow(NewEntry)) 671 Block->setParent(NewRegion); 672 return NewRegion; 673 } 674 675 void VPRegionBlock::dropAllReferences(VPValue *NewValue) { 676 for (VPBlockBase *Block : vp_depth_first_shallow(Entry)) 677 // Drop all references in VPBasicBlocks and replace all uses with 678 // DummyValue. 679 Block->dropAllReferences(NewValue); 680 } 681 682 void VPRegionBlock::execute(VPTransformState *State) { 683 ReversePostOrderTraversal<VPBlockShallowTraversalWrapper<VPBlockBase *>> 684 RPOT(Entry); 685 686 if (!isReplicator()) { 687 // Create and register the new vector loop. 688 Loop *PrevLoop = State->CurrentVectorLoop; 689 State->CurrentVectorLoop = State->LI->AllocateLoop(); 690 BasicBlock *VectorPH = State->CFG.VPBB2IRBB[getPreheaderVPBB()]; 691 Loop *ParentLoop = State->LI->getLoopFor(VectorPH); 692 693 // Insert the new loop into the loop nest and register the new basic blocks 694 // before calling any utilities such as SCEV that require valid LoopInfo. 695 if (ParentLoop) 696 ParentLoop->addChildLoop(State->CurrentVectorLoop); 697 else 698 State->LI->addTopLevelLoop(State->CurrentVectorLoop); 699 700 // Visit the VPBlocks connected to "this", starting from it. 701 for (VPBlockBase *Block : RPOT) { 702 LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n'); 703 Block->execute(State); 704 } 705 706 State->CurrentVectorLoop = PrevLoop; 707 return; 708 } 709 710 assert(!State->Instance && "Replicating a Region with non-null instance."); 711 712 // Enter replicating mode. 713 State->Instance = VPIteration(0, 0); 714 715 for (unsigned Part = 0, UF = State->UF; Part < UF; ++Part) { 716 State->Instance->Part = Part; 717 assert(!State->VF.isScalable() && "VF is assumed to be non scalable."); 718 for (unsigned Lane = 0, VF = State->VF.getKnownMinValue(); Lane < VF; 719 ++Lane) { 720 State->Instance->Lane = VPLane(Lane, VPLane::Kind::First); 721 // Visit the VPBlocks connected to \p this, starting from it. 722 for (VPBlockBase *Block : RPOT) { 723 LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n'); 724 Block->execute(State); 725 } 726 } 727 } 728 729 // Exit replicating mode. 730 State->Instance.reset(); 731 } 732 733 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 734 void VPRegionBlock::print(raw_ostream &O, const Twine &Indent, 735 VPSlotTracker &SlotTracker) const { 736 O << Indent << (isReplicator() ? "<xVFxUF> " : "<x1> ") << getName() << ": {"; 737 auto NewIndent = Indent + " "; 738 for (auto *BlockBase : vp_depth_first_shallow(Entry)) { 739 O << '\n'; 740 BlockBase->print(O, NewIndent, SlotTracker); 741 } 742 O << Indent << "}\n"; 743 744 printSuccessors(O, Indent); 745 } 746 #endif 747 748 VPlan::~VPlan() { 749 for (auto &KV : LiveOuts) 750 delete KV.second; 751 LiveOuts.clear(); 752 753 if (Entry) { 754 VPValue DummyValue; 755 for (VPBlockBase *Block : vp_depth_first_shallow(Entry)) 756 Block->dropAllReferences(&DummyValue); 757 758 VPBlockBase::deleteCFG(Entry); 759 760 Preheader->dropAllReferences(&DummyValue); 761 delete Preheader; 762 } 763 for (VPValue *VPV : VPLiveInsToFree) 764 delete VPV; 765 if (BackedgeTakenCount) 766 delete BackedgeTakenCount; 767 } 768 769 VPlanPtr VPlan::createInitialVPlan(const SCEV *TripCount, ScalarEvolution &SE) { 770 VPBasicBlock *Preheader = new VPBasicBlock("ph"); 771 VPBasicBlock *VecPreheader = new VPBasicBlock("vector.ph"); 772 auto Plan = std::make_unique<VPlan>(Preheader, VecPreheader); 773 Plan->TripCount = 774 vputils::getOrCreateVPValueForSCEVExpr(*Plan, TripCount, SE); 775 // Create empty VPRegionBlock, to be filled during processing later. 776 auto *TopRegion = new VPRegionBlock("vector loop", false /*isReplicator*/); 777 VPBlockUtils::insertBlockAfter(TopRegion, VecPreheader); 778 VPBasicBlock *MiddleVPBB = new VPBasicBlock("middle.block"); 779 VPBlockUtils::insertBlockAfter(MiddleVPBB, TopRegion); 780 return Plan; 781 } 782 783 void VPlan::prepareToExecute(Value *TripCountV, Value *VectorTripCountV, 784 Value *CanonicalIVStartValue, 785 VPTransformState &State) { 786 // Check if the backedge taken count is needed, and if so build it. 787 if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) { 788 IRBuilder<> Builder(State.CFG.PrevBB->getTerminator()); 789 auto *TCMO = Builder.CreateSub(TripCountV, 790 ConstantInt::get(TripCountV->getType(), 1), 791 "trip.count.minus.1"); 792 BackedgeTakenCount->setUnderlyingValue(TCMO); 793 } 794 795 VectorTripCount.setUnderlyingValue(VectorTripCountV); 796 797 IRBuilder<> Builder(State.CFG.PrevBB->getTerminator()); 798 // FIXME: Model VF * UF computation completely in VPlan. 799 VFxUF.setUnderlyingValue( 800 createStepForVF(Builder, TripCountV->getType(), State.VF, State.UF)); 801 802 // When vectorizing the epilogue loop, the canonical induction start value 803 // needs to be changed from zero to the value after the main vector loop. 804 // FIXME: Improve modeling for canonical IV start values in the epilogue loop. 805 if (CanonicalIVStartValue) { 806 VPValue *VPV = getOrAddLiveIn(CanonicalIVStartValue); 807 auto *IV = getCanonicalIV(); 808 assert(all_of(IV->users(), 809 [](const VPUser *U) { 810 return isa<VPScalarIVStepsRecipe>(U) || 811 isa<VPScalarCastRecipe>(U) || 812 isa<VPDerivedIVRecipe>(U) || 813 cast<VPInstruction>(U)->getOpcode() == 814 Instruction::Add; 815 }) && 816 "the canonical IV should only be used by its increment or " 817 "ScalarIVSteps when resetting the start value"); 818 IV->setOperand(0, VPV); 819 } 820 } 821 822 /// Generate the code inside the preheader and body of the vectorized loop. 823 /// Assumes a single pre-header basic-block was created for this. Introduce 824 /// additional basic-blocks as needed, and fill them all. 825 void VPlan::execute(VPTransformState *State) { 826 // Initialize CFG state. 827 State->CFG.PrevVPBB = nullptr; 828 State->CFG.ExitBB = State->CFG.PrevBB->getSingleSuccessor(); 829 BasicBlock *VectorPreHeader = State->CFG.PrevBB; 830 State->Builder.SetInsertPoint(VectorPreHeader->getTerminator()); 831 832 // Generate code in the loop pre-header and body. 833 for (VPBlockBase *Block : vp_depth_first_shallow(Entry)) 834 Block->execute(State); 835 836 VPBasicBlock *LatchVPBB = getVectorLoopRegion()->getExitingBasicBlock(); 837 BasicBlock *VectorLatchBB = State->CFG.VPBB2IRBB[LatchVPBB]; 838 839 // Fix the latch value of canonical, reduction and first-order recurrences 840 // phis in the vector loop. 841 VPBasicBlock *Header = getVectorLoopRegion()->getEntryBasicBlock(); 842 for (VPRecipeBase &R : Header->phis()) { 843 // Skip phi-like recipes that generate their backedege values themselves. 844 if (isa<VPWidenPHIRecipe>(&R)) 845 continue; 846 847 if (isa<VPWidenPointerInductionRecipe>(&R) || 848 isa<VPWidenIntOrFpInductionRecipe>(&R)) { 849 PHINode *Phi = nullptr; 850 if (isa<VPWidenIntOrFpInductionRecipe>(&R)) { 851 Phi = cast<PHINode>(State->get(R.getVPSingleValue(), 0)); 852 } else { 853 auto *WidenPhi = cast<VPWidenPointerInductionRecipe>(&R); 854 assert(!WidenPhi->onlyScalarsGenerated(State->VF.isScalable()) && 855 "recipe generating only scalars should have been replaced"); 856 auto *GEP = cast<GetElementPtrInst>(State->get(WidenPhi, 0)); 857 Phi = cast<PHINode>(GEP->getPointerOperand()); 858 } 859 860 Phi->setIncomingBlock(1, VectorLatchBB); 861 862 // Move the last step to the end of the latch block. This ensures 863 // consistent placement of all induction updates. 864 Instruction *Inc = cast<Instruction>(Phi->getIncomingValue(1)); 865 Inc->moveBefore(VectorLatchBB->getTerminator()->getPrevNode()); 866 continue; 867 } 868 869 auto *PhiR = cast<VPHeaderPHIRecipe>(&R); 870 // For canonical IV, first-order recurrences and in-order reduction phis, 871 // only a single part is generated, which provides the last part from the 872 // previous iteration. For non-ordered reductions all UF parts are 873 // generated. 874 bool SinglePartNeeded = 875 isa<VPCanonicalIVPHIRecipe>(PhiR) || 876 isa<VPFirstOrderRecurrencePHIRecipe, VPEVLBasedIVPHIRecipe>(PhiR) || 877 (isa<VPReductionPHIRecipe>(PhiR) && 878 cast<VPReductionPHIRecipe>(PhiR)->isOrdered()); 879 bool NeedsScalar = 880 isa<VPCanonicalIVPHIRecipe, VPEVLBasedIVPHIRecipe>(PhiR) || 881 (isa<VPReductionPHIRecipe>(PhiR) && 882 cast<VPReductionPHIRecipe>(PhiR)->isInLoop()); 883 unsigned LastPartForNewPhi = SinglePartNeeded ? 1 : State->UF; 884 885 for (unsigned Part = 0; Part < LastPartForNewPhi; ++Part) { 886 Value *Phi = State->get(PhiR, Part, NeedsScalar); 887 Value *Val = 888 State->get(PhiR->getBackedgeValue(), 889 SinglePartNeeded ? State->UF - 1 : Part, NeedsScalar); 890 cast<PHINode>(Phi)->addIncoming(Val, VectorLatchBB); 891 } 892 } 893 894 // We do not attempt to preserve DT for outer loop vectorization currently. 895 if (!EnableVPlanNativePath) { 896 BasicBlock *VectorHeaderBB = State->CFG.VPBB2IRBB[Header]; 897 State->DT->addNewBlock(VectorHeaderBB, VectorPreHeader); 898 updateDominatorTree(State->DT, VectorHeaderBB, VectorLatchBB, 899 State->CFG.ExitBB); 900 } 901 } 902 903 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 904 void VPlan::printLiveIns(raw_ostream &O) const { 905 VPSlotTracker SlotTracker(this); 906 907 if (VFxUF.getNumUsers() > 0) { 908 O << "\nLive-in "; 909 VFxUF.printAsOperand(O, SlotTracker); 910 O << " = VF * UF"; 911 } 912 913 if (VectorTripCount.getNumUsers() > 0) { 914 O << "\nLive-in "; 915 VectorTripCount.printAsOperand(O, SlotTracker); 916 O << " = vector-trip-count"; 917 } 918 919 if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) { 920 O << "\nLive-in "; 921 BackedgeTakenCount->printAsOperand(O, SlotTracker); 922 O << " = backedge-taken count"; 923 } 924 925 O << "\n"; 926 if (TripCount->isLiveIn()) 927 O << "Live-in "; 928 TripCount->printAsOperand(O, SlotTracker); 929 O << " = original trip-count"; 930 O << "\n"; 931 } 932 933 LLVM_DUMP_METHOD 934 void VPlan::print(raw_ostream &O) const { 935 VPSlotTracker SlotTracker(this); 936 937 O << "VPlan '" << getName() << "' {"; 938 939 printLiveIns(O); 940 941 if (!getPreheader()->empty()) { 942 O << "\n"; 943 getPreheader()->print(O, "", SlotTracker); 944 } 945 946 for (const VPBlockBase *Block : vp_depth_first_shallow(getEntry())) { 947 O << '\n'; 948 Block->print(O, "", SlotTracker); 949 } 950 951 if (!LiveOuts.empty()) 952 O << "\n"; 953 for (const auto &KV : LiveOuts) { 954 KV.second->print(O, SlotTracker); 955 } 956 957 O << "}\n"; 958 } 959 960 std::string VPlan::getName() const { 961 std::string Out; 962 raw_string_ostream RSO(Out); 963 RSO << Name << " for "; 964 if (!VFs.empty()) { 965 RSO << "VF={" << VFs[0]; 966 for (ElementCount VF : drop_begin(VFs)) 967 RSO << "," << VF; 968 RSO << "},"; 969 } 970 971 if (UFs.empty()) { 972 RSO << "UF>=1"; 973 } else { 974 RSO << "UF={" << UFs[0]; 975 for (unsigned UF : drop_begin(UFs)) 976 RSO << "," << UF; 977 RSO << "}"; 978 } 979 980 return Out; 981 } 982 983 LLVM_DUMP_METHOD 984 void VPlan::printDOT(raw_ostream &O) const { 985 VPlanPrinter Printer(O, *this); 986 Printer.dump(); 987 } 988 989 LLVM_DUMP_METHOD 990 void VPlan::dump() const { print(dbgs()); } 991 #endif 992 993 void VPlan::addLiveOut(PHINode *PN, VPValue *V) { 994 assert(LiveOuts.count(PN) == 0 && "an exit value for PN already exists"); 995 LiveOuts.insert({PN, new VPLiveOut(PN, V)}); 996 } 997 998 void VPlan::updateDominatorTree(DominatorTree *DT, BasicBlock *LoopHeaderBB, 999 BasicBlock *LoopLatchBB, 1000 BasicBlock *LoopExitBB) { 1001 // The vector body may be more than a single basic-block by this point. 1002 // Update the dominator tree information inside the vector body by propagating 1003 // it from header to latch, expecting only triangular control-flow, if any. 1004 BasicBlock *PostDomSucc = nullptr; 1005 for (auto *BB = LoopHeaderBB; BB != LoopLatchBB; BB = PostDomSucc) { 1006 // Get the list of successors of this block. 1007 std::vector<BasicBlock *> Succs(succ_begin(BB), succ_end(BB)); 1008 assert(Succs.size() <= 2 && 1009 "Basic block in vector loop has more than 2 successors."); 1010 PostDomSucc = Succs[0]; 1011 if (Succs.size() == 1) { 1012 assert(PostDomSucc->getSinglePredecessor() && 1013 "PostDom successor has more than one predecessor."); 1014 DT->addNewBlock(PostDomSucc, BB); 1015 continue; 1016 } 1017 BasicBlock *InterimSucc = Succs[1]; 1018 if (PostDomSucc->getSingleSuccessor() == InterimSucc) { 1019 PostDomSucc = Succs[1]; 1020 InterimSucc = Succs[0]; 1021 } 1022 assert(InterimSucc->getSingleSuccessor() == PostDomSucc && 1023 "One successor of a basic block does not lead to the other."); 1024 assert(InterimSucc->getSinglePredecessor() && 1025 "Interim successor has more than one predecessor."); 1026 assert(PostDomSucc->hasNPredecessors(2) && 1027 "PostDom successor has more than two predecessors."); 1028 DT->addNewBlock(InterimSucc, BB); 1029 DT->addNewBlock(PostDomSucc, BB); 1030 } 1031 // Latch block is a new dominator for the loop exit. 1032 DT->changeImmediateDominator(LoopExitBB, LoopLatchBB); 1033 assert(DT->verify(DominatorTree::VerificationLevel::Fast)); 1034 } 1035 1036 static void remapOperands(VPBlockBase *Entry, VPBlockBase *NewEntry, 1037 DenseMap<VPValue *, VPValue *> &Old2NewVPValues) { 1038 // Update the operands of all cloned recipes starting at NewEntry. This 1039 // traverses all reachable blocks. This is done in two steps, to handle cycles 1040 // in PHI recipes. 1041 ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<VPBlockBase *>> 1042 OldDeepRPOT(Entry); 1043 ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<VPBlockBase *>> 1044 NewDeepRPOT(NewEntry); 1045 // First, collect all mappings from old to new VPValues defined by cloned 1046 // recipes. 1047 for (const auto &[OldBB, NewBB] : 1048 zip(VPBlockUtils::blocksOnly<VPBasicBlock>(OldDeepRPOT), 1049 VPBlockUtils::blocksOnly<VPBasicBlock>(NewDeepRPOT))) { 1050 assert(OldBB->getRecipeList().size() == NewBB->getRecipeList().size() && 1051 "blocks must have the same number of recipes"); 1052 for (const auto &[OldR, NewR] : zip(*OldBB, *NewBB)) { 1053 assert(OldR.getNumOperands() == NewR.getNumOperands() && 1054 "recipes must have the same number of operands"); 1055 assert(OldR.getNumDefinedValues() == NewR.getNumDefinedValues() && 1056 "recipes must define the same number of operands"); 1057 for (const auto &[OldV, NewV] : 1058 zip(OldR.definedValues(), NewR.definedValues())) 1059 Old2NewVPValues[OldV] = NewV; 1060 } 1061 } 1062 1063 // Update all operands to use cloned VPValues. 1064 for (VPBasicBlock *NewBB : 1065 VPBlockUtils::blocksOnly<VPBasicBlock>(NewDeepRPOT)) { 1066 for (VPRecipeBase &NewR : *NewBB) 1067 for (unsigned I = 0, E = NewR.getNumOperands(); I != E; ++I) { 1068 VPValue *NewOp = Old2NewVPValues.lookup(NewR.getOperand(I)); 1069 NewR.setOperand(I, NewOp); 1070 } 1071 } 1072 } 1073 1074 VPlan *VPlan::duplicate() { 1075 // Clone blocks. 1076 VPBasicBlock *NewPreheader = Preheader->clone(); 1077 const auto &[NewEntry, __] = cloneSESE(Entry); 1078 1079 // Create VPlan, clone live-ins and remap operands in the cloned blocks. 1080 auto *NewPlan = new VPlan(NewPreheader, cast<VPBasicBlock>(NewEntry)); 1081 DenseMap<VPValue *, VPValue *> Old2NewVPValues; 1082 for (VPValue *OldLiveIn : VPLiveInsToFree) { 1083 Old2NewVPValues[OldLiveIn] = 1084 NewPlan->getOrAddLiveIn(OldLiveIn->getLiveInIRValue()); 1085 } 1086 Old2NewVPValues[&VectorTripCount] = &NewPlan->VectorTripCount; 1087 Old2NewVPValues[&VFxUF] = &NewPlan->VFxUF; 1088 if (BackedgeTakenCount) { 1089 NewPlan->BackedgeTakenCount = new VPValue(); 1090 Old2NewVPValues[BackedgeTakenCount] = NewPlan->BackedgeTakenCount; 1091 } 1092 assert(TripCount && "trip count must be set"); 1093 if (TripCount->isLiveIn()) 1094 Old2NewVPValues[TripCount] = 1095 NewPlan->getOrAddLiveIn(TripCount->getLiveInIRValue()); 1096 // else NewTripCount will be created and inserted into Old2NewVPValues when 1097 // TripCount is cloned. In any case NewPlan->TripCount is updated below. 1098 1099 remapOperands(Preheader, NewPreheader, Old2NewVPValues); 1100 remapOperands(Entry, NewEntry, Old2NewVPValues); 1101 1102 // Clone live-outs. 1103 for (const auto &[_, LO] : LiveOuts) 1104 NewPlan->addLiveOut(LO->getPhi(), Old2NewVPValues[LO->getOperand(0)]); 1105 1106 // Initialize remaining fields of cloned VPlan. 1107 NewPlan->VFs = VFs; 1108 NewPlan->UFs = UFs; 1109 // TODO: Adjust names. 1110 NewPlan->Name = Name; 1111 assert(Old2NewVPValues.contains(TripCount) && 1112 "TripCount must have been added to Old2NewVPValues"); 1113 NewPlan->TripCount = Old2NewVPValues[TripCount]; 1114 return NewPlan; 1115 } 1116 1117 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1118 1119 Twine VPlanPrinter::getUID(const VPBlockBase *Block) { 1120 return (isa<VPRegionBlock>(Block) ? "cluster_N" : "N") + 1121 Twine(getOrCreateBID(Block)); 1122 } 1123 1124 Twine VPlanPrinter::getOrCreateName(const VPBlockBase *Block) { 1125 const std::string &Name = Block->getName(); 1126 if (!Name.empty()) 1127 return Name; 1128 return "VPB" + Twine(getOrCreateBID(Block)); 1129 } 1130 1131 void VPlanPrinter::dump() { 1132 Depth = 1; 1133 bumpIndent(0); 1134 OS << "digraph VPlan {\n"; 1135 OS << "graph [labelloc=t, fontsize=30; label=\"Vectorization Plan"; 1136 if (!Plan.getName().empty()) 1137 OS << "\\n" << DOT::EscapeString(Plan.getName()); 1138 1139 { 1140 // Print live-ins. 1141 std::string Str; 1142 raw_string_ostream SS(Str); 1143 Plan.printLiveIns(SS); 1144 SmallVector<StringRef, 0> Lines; 1145 StringRef(Str).rtrim('\n').split(Lines, "\n"); 1146 for (auto Line : Lines) 1147 OS << DOT::EscapeString(Line.str()) << "\\n"; 1148 } 1149 1150 OS << "\"]\n"; 1151 OS << "node [shape=rect, fontname=Courier, fontsize=30]\n"; 1152 OS << "edge [fontname=Courier, fontsize=30]\n"; 1153 OS << "compound=true\n"; 1154 1155 dumpBlock(Plan.getPreheader()); 1156 1157 for (const VPBlockBase *Block : vp_depth_first_shallow(Plan.getEntry())) 1158 dumpBlock(Block); 1159 1160 OS << "}\n"; 1161 } 1162 1163 void VPlanPrinter::dumpBlock(const VPBlockBase *Block) { 1164 if (const VPBasicBlock *BasicBlock = dyn_cast<VPBasicBlock>(Block)) 1165 dumpBasicBlock(BasicBlock); 1166 else if (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 1167 dumpRegion(Region); 1168 else 1169 llvm_unreachable("Unsupported kind of VPBlock."); 1170 } 1171 1172 void VPlanPrinter::drawEdge(const VPBlockBase *From, const VPBlockBase *To, 1173 bool Hidden, const Twine &Label) { 1174 // Due to "dot" we print an edge between two regions as an edge between the 1175 // exiting basic block and the entry basic of the respective regions. 1176 const VPBlockBase *Tail = From->getExitingBasicBlock(); 1177 const VPBlockBase *Head = To->getEntryBasicBlock(); 1178 OS << Indent << getUID(Tail) << " -> " << getUID(Head); 1179 OS << " [ label=\"" << Label << '\"'; 1180 if (Tail != From) 1181 OS << " ltail=" << getUID(From); 1182 if (Head != To) 1183 OS << " lhead=" << getUID(To); 1184 if (Hidden) 1185 OS << "; splines=none"; 1186 OS << "]\n"; 1187 } 1188 1189 void VPlanPrinter::dumpEdges(const VPBlockBase *Block) { 1190 auto &Successors = Block->getSuccessors(); 1191 if (Successors.size() == 1) 1192 drawEdge(Block, Successors.front(), false, ""); 1193 else if (Successors.size() == 2) { 1194 drawEdge(Block, Successors.front(), false, "T"); 1195 drawEdge(Block, Successors.back(), false, "F"); 1196 } else { 1197 unsigned SuccessorNumber = 0; 1198 for (auto *Successor : Successors) 1199 drawEdge(Block, Successor, false, Twine(SuccessorNumber++)); 1200 } 1201 } 1202 1203 void VPlanPrinter::dumpBasicBlock(const VPBasicBlock *BasicBlock) { 1204 // Implement dot-formatted dump by performing plain-text dump into the 1205 // temporary storage followed by some post-processing. 1206 OS << Indent << getUID(BasicBlock) << " [label =\n"; 1207 bumpIndent(1); 1208 std::string Str; 1209 raw_string_ostream SS(Str); 1210 // Use no indentation as we need to wrap the lines into quotes ourselves. 1211 BasicBlock->print(SS, "", SlotTracker); 1212 1213 // We need to process each line of the output separately, so split 1214 // single-string plain-text dump. 1215 SmallVector<StringRef, 0> Lines; 1216 StringRef(Str).rtrim('\n').split(Lines, "\n"); 1217 1218 auto EmitLine = [&](StringRef Line, StringRef Suffix) { 1219 OS << Indent << '"' << DOT::EscapeString(Line.str()) << "\\l\"" << Suffix; 1220 }; 1221 1222 // Don't need the "+" after the last line. 1223 for (auto Line : make_range(Lines.begin(), Lines.end() - 1)) 1224 EmitLine(Line, " +\n"); 1225 EmitLine(Lines.back(), "\n"); 1226 1227 bumpIndent(-1); 1228 OS << Indent << "]\n"; 1229 1230 dumpEdges(BasicBlock); 1231 } 1232 1233 void VPlanPrinter::dumpRegion(const VPRegionBlock *Region) { 1234 OS << Indent << "subgraph " << getUID(Region) << " {\n"; 1235 bumpIndent(1); 1236 OS << Indent << "fontname=Courier\n" 1237 << Indent << "label=\"" 1238 << DOT::EscapeString(Region->isReplicator() ? "<xVFxUF> " : "<x1> ") 1239 << DOT::EscapeString(Region->getName()) << "\"\n"; 1240 // Dump the blocks of the region. 1241 assert(Region->getEntry() && "Region contains no inner blocks."); 1242 for (const VPBlockBase *Block : vp_depth_first_shallow(Region->getEntry())) 1243 dumpBlock(Block); 1244 bumpIndent(-1); 1245 OS << Indent << "}\n"; 1246 dumpEdges(Region); 1247 } 1248 1249 void VPlanIngredient::print(raw_ostream &O) const { 1250 if (auto *Inst = dyn_cast<Instruction>(V)) { 1251 if (!Inst->getType()->isVoidTy()) { 1252 Inst->printAsOperand(O, false); 1253 O << " = "; 1254 } 1255 O << Inst->getOpcodeName() << " "; 1256 unsigned E = Inst->getNumOperands(); 1257 if (E > 0) { 1258 Inst->getOperand(0)->printAsOperand(O, false); 1259 for (unsigned I = 1; I < E; ++I) 1260 Inst->getOperand(I)->printAsOperand(O << ", ", false); 1261 } 1262 } else // !Inst 1263 V->printAsOperand(O, false); 1264 } 1265 1266 #endif 1267 1268 template void DomTreeBuilder::Calculate<VPDominatorTree>(VPDominatorTree &DT); 1269 1270 void VPValue::replaceAllUsesWith(VPValue *New) { 1271 replaceUsesWithIf(New, [](VPUser &, unsigned) { return true; }); 1272 } 1273 1274 void VPValue::replaceUsesWithIf( 1275 VPValue *New, 1276 llvm::function_ref<bool(VPUser &U, unsigned Idx)> ShouldReplace) { 1277 // Note that this early exit is required for correctness; the implementation 1278 // below relies on the number of users for this VPValue to decrease, which 1279 // isn't the case if this == New. 1280 if (this == New) 1281 return; 1282 1283 for (unsigned J = 0; J < getNumUsers();) { 1284 VPUser *User = Users[J]; 1285 bool RemovedUser = false; 1286 for (unsigned I = 0, E = User->getNumOperands(); I < E; ++I) { 1287 if (User->getOperand(I) != this || !ShouldReplace(*User, I)) 1288 continue; 1289 1290 RemovedUser = true; 1291 User->setOperand(I, New); 1292 } 1293 // If a user got removed after updating the current user, the next user to 1294 // update will be moved to the current position, so we only need to 1295 // increment the index if the number of users did not change. 1296 if (!RemovedUser) 1297 J++; 1298 } 1299 } 1300 1301 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1302 void VPValue::printAsOperand(raw_ostream &OS, VPSlotTracker &Tracker) const { 1303 OS << Tracker.getOrCreateName(this); 1304 } 1305 1306 void VPUser::printOperands(raw_ostream &O, VPSlotTracker &SlotTracker) const { 1307 interleaveComma(operands(), O, [&O, &SlotTracker](VPValue *Op) { 1308 Op->printAsOperand(O, SlotTracker); 1309 }); 1310 } 1311 #endif 1312 1313 void VPInterleavedAccessInfo::visitRegion(VPRegionBlock *Region, 1314 Old2NewTy &Old2New, 1315 InterleavedAccessInfo &IAI) { 1316 ReversePostOrderTraversal<VPBlockShallowTraversalWrapper<VPBlockBase *>> 1317 RPOT(Region->getEntry()); 1318 for (VPBlockBase *Base : RPOT) { 1319 visitBlock(Base, Old2New, IAI); 1320 } 1321 } 1322 1323 void VPInterleavedAccessInfo::visitBlock(VPBlockBase *Block, Old2NewTy &Old2New, 1324 InterleavedAccessInfo &IAI) { 1325 if (VPBasicBlock *VPBB = dyn_cast<VPBasicBlock>(Block)) { 1326 for (VPRecipeBase &VPI : *VPBB) { 1327 if (isa<VPWidenPHIRecipe>(&VPI)) 1328 continue; 1329 assert(isa<VPInstruction>(&VPI) && "Can only handle VPInstructions"); 1330 auto *VPInst = cast<VPInstruction>(&VPI); 1331 1332 auto *Inst = dyn_cast_or_null<Instruction>(VPInst->getUnderlyingValue()); 1333 if (!Inst) 1334 continue; 1335 auto *IG = IAI.getInterleaveGroup(Inst); 1336 if (!IG) 1337 continue; 1338 1339 auto NewIGIter = Old2New.find(IG); 1340 if (NewIGIter == Old2New.end()) 1341 Old2New[IG] = new InterleaveGroup<VPInstruction>( 1342 IG->getFactor(), IG->isReverse(), IG->getAlign()); 1343 1344 if (Inst == IG->getInsertPos()) 1345 Old2New[IG]->setInsertPos(VPInst); 1346 1347 InterleaveGroupMap[VPInst] = Old2New[IG]; 1348 InterleaveGroupMap[VPInst]->insertMember( 1349 VPInst, IG->getIndex(Inst), 1350 Align(IG->isReverse() ? (-1) * int(IG->getFactor()) 1351 : IG->getFactor())); 1352 } 1353 } else if (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 1354 visitRegion(Region, Old2New, IAI); 1355 else 1356 llvm_unreachable("Unsupported kind of VPBlock."); 1357 } 1358 1359 VPInterleavedAccessInfo::VPInterleavedAccessInfo(VPlan &Plan, 1360 InterleavedAccessInfo &IAI) { 1361 Old2NewTy Old2New; 1362 visitRegion(Plan.getVectorLoopRegion(), Old2New, IAI); 1363 } 1364 1365 void VPSlotTracker::assignName(const VPValue *V) { 1366 assert(!VPValue2Name.contains(V) && "VPValue already has a name!"); 1367 auto *UV = V->getUnderlyingValue(); 1368 if (!UV) { 1369 VPValue2Name[V] = (Twine("vp<%") + Twine(NextSlot) + ">").str(); 1370 NextSlot++; 1371 return; 1372 } 1373 1374 // Use the name of the underlying Value, wrapped in "ir<>", and versioned by 1375 // appending ".Number" to the name if there are multiple uses. 1376 std::string Name; 1377 raw_string_ostream S(Name); 1378 UV->printAsOperand(S, false); 1379 assert(!Name.empty() && "Name cannot be empty."); 1380 std::string BaseName = (Twine("ir<") + Name + Twine(">")).str(); 1381 1382 // First assign the base name for V. 1383 const auto &[A, _] = VPValue2Name.insert({V, BaseName}); 1384 // Integer or FP constants with different types will result in he same string 1385 // due to stripping types. 1386 if (V->isLiveIn() && isa<ConstantInt, ConstantFP>(UV)) 1387 return; 1388 1389 // If it is already used by C > 0 other VPValues, increase the version counter 1390 // C and use it for V. 1391 const auto &[C, UseInserted] = BaseName2Version.insert({BaseName, 0}); 1392 if (!UseInserted) { 1393 C->second++; 1394 A->second = (BaseName + Twine(".") + Twine(C->second)).str(); 1395 } 1396 } 1397 1398 void VPSlotTracker::assignNames(const VPlan &Plan) { 1399 if (Plan.VFxUF.getNumUsers() > 0) 1400 assignName(&Plan.VFxUF); 1401 assignName(&Plan.VectorTripCount); 1402 if (Plan.BackedgeTakenCount) 1403 assignName(Plan.BackedgeTakenCount); 1404 for (VPValue *LI : Plan.VPLiveInsToFree) 1405 assignName(LI); 1406 assignNames(Plan.getPreheader()); 1407 1408 ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<const VPBlockBase *>> 1409 RPOT(VPBlockDeepTraversalWrapper<const VPBlockBase *>(Plan.getEntry())); 1410 for (const VPBasicBlock *VPBB : 1411 VPBlockUtils::blocksOnly<const VPBasicBlock>(RPOT)) 1412 assignNames(VPBB); 1413 } 1414 1415 void VPSlotTracker::assignNames(const VPBasicBlock *VPBB) { 1416 for (const VPRecipeBase &Recipe : *VPBB) 1417 for (VPValue *Def : Recipe.definedValues()) 1418 assignName(Def); 1419 } 1420 1421 std::string VPSlotTracker::getOrCreateName(const VPValue *V) const { 1422 std::string Name = VPValue2Name.lookup(V); 1423 if (!Name.empty()) 1424 return Name; 1425 1426 // If no name was assigned, no VPlan was provided when creating the slot 1427 // tracker or it is not reachable from the provided VPlan. This can happen, 1428 // e.g. when trying to print a recipe that has not been inserted into a VPlan 1429 // in a debugger. 1430 // TODO: Update VPSlotTracker constructor to assign names to recipes & 1431 // VPValues not associated with a VPlan, instead of constructing names ad-hoc 1432 // here. 1433 const VPRecipeBase *DefR = V->getDefiningRecipe(); 1434 (void)DefR; 1435 assert((!DefR || !DefR->getParent() || !DefR->getParent()->getPlan()) && 1436 "VPValue defined by a recipe in a VPlan?"); 1437 1438 // Use the underlying value's name, if there is one. 1439 if (auto *UV = V->getUnderlyingValue()) { 1440 std::string Name; 1441 raw_string_ostream S(Name); 1442 UV->printAsOperand(S, false); 1443 return (Twine("ir<") + Name + ">").str(); 1444 } 1445 1446 return "<badref>"; 1447 } 1448 1449 bool vputils::onlyFirstLaneUsed(const VPValue *Def) { 1450 return all_of(Def->users(), 1451 [Def](const VPUser *U) { return U->onlyFirstLaneUsed(Def); }); 1452 } 1453 1454 bool vputils::onlyFirstPartUsed(const VPValue *Def) { 1455 return all_of(Def->users(), 1456 [Def](const VPUser *U) { return U->onlyFirstPartUsed(Def); }); 1457 } 1458 1459 VPValue *vputils::getOrCreateVPValueForSCEVExpr(VPlan &Plan, const SCEV *Expr, 1460 ScalarEvolution &SE) { 1461 if (auto *Expanded = Plan.getSCEVExpansion(Expr)) 1462 return Expanded; 1463 VPValue *Expanded = nullptr; 1464 if (auto *E = dyn_cast<SCEVConstant>(Expr)) 1465 Expanded = Plan.getOrAddLiveIn(E->getValue()); 1466 else if (auto *E = dyn_cast<SCEVUnknown>(Expr)) 1467 Expanded = Plan.getOrAddLiveIn(E->getValue()); 1468 else { 1469 Expanded = new VPExpandSCEVRecipe(Expr, SE); 1470 Plan.getPreheader()->appendRecipe(Expanded->getDefiningRecipe()); 1471 } 1472 Plan.addSCEVExpansion(Expr, Expanded); 1473 return Expanded; 1474 } 1475