xref: /llvm-project/llvm/lib/Transforms/Vectorize/VPlan.cpp (revision 6383a12e3b4339fa4743bb97da4d51dea6d2e2ea)
1 //===- VPlan.cpp - Vectorizer Plan ----------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This is the LLVM vectorization plan. It represents a candidate for
11 /// vectorization, allowing to plan and optimize how to vectorize a given loop
12 /// before generating LLVM-IR.
13 /// The vectorizer uses vectorization plans to estimate the costs of potential
14 /// candidates and if profitable to execute the desired plan, generating vector
15 /// LLVM-IR code.
16 ///
17 //===----------------------------------------------------------------------===//
18 
19 #include "VPlan.h"
20 #include "LoopVectorizationPlanner.h"
21 #include "VPlanCFG.h"
22 #include "VPlanPatternMatch.h"
23 #include "VPlanTransforms.h"
24 #include "VPlanUtils.h"
25 #include "llvm/ADT/PostOrderIterator.h"
26 #include "llvm/ADT/STLExtras.h"
27 #include "llvm/ADT/SmallVector.h"
28 #include "llvm/ADT/StringExtras.h"
29 #include "llvm/ADT/Twine.h"
30 #include "llvm/Analysis/DomTreeUpdater.h"
31 #include "llvm/Analysis/LoopInfo.h"
32 #include "llvm/IR/BasicBlock.h"
33 #include "llvm/IR/CFG.h"
34 #include "llvm/IR/IRBuilder.h"
35 #include "llvm/IR/Instruction.h"
36 #include "llvm/IR/Instructions.h"
37 #include "llvm/IR/Type.h"
38 #include "llvm/IR/Value.h"
39 #include "llvm/Support/Casting.h"
40 #include "llvm/Support/CommandLine.h"
41 #include "llvm/Support/Debug.h"
42 #include "llvm/Support/GraphWriter.h"
43 #include "llvm/Support/raw_ostream.h"
44 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
45 #include "llvm/Transforms/Utils/LoopVersioning.h"
46 #include <cassert>
47 #include <string>
48 
49 using namespace llvm;
50 using namespace llvm::VPlanPatternMatch;
51 
52 namespace llvm {
53 extern cl::opt<bool> EnableVPlanNativePath;
54 }
55 extern cl::opt<unsigned> ForceTargetInstructionCost;
56 
57 static cl::opt<bool> PrintVPlansInDotFormat(
58     "vplan-print-in-dot-format", cl::Hidden,
59     cl::desc("Use dot format instead of plain text when dumping VPlans"));
60 
61 #define DEBUG_TYPE "loop-vectorize"
62 
63 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
64 raw_ostream &llvm::operator<<(raw_ostream &OS, const VPValue &V) {
65   const VPInstruction *Instr = dyn_cast<VPInstruction>(&V);
66   VPSlotTracker SlotTracker(
67       (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr);
68   V.print(OS, SlotTracker);
69   return OS;
70 }
71 #endif
72 
73 Value *VPLane::getAsRuntimeExpr(IRBuilderBase &Builder,
74                                 const ElementCount &VF) const {
75   switch (LaneKind) {
76   case VPLane::Kind::ScalableLast:
77     // Lane = RuntimeVF - VF.getKnownMinValue() + Lane
78     return Builder.CreateSub(getRuntimeVF(Builder, Builder.getInt32Ty(), VF),
79                              Builder.getInt32(VF.getKnownMinValue() - Lane));
80   case VPLane::Kind::First:
81     return Builder.getInt32(Lane);
82   }
83   llvm_unreachable("Unknown lane kind");
84 }
85 
86 VPValue::VPValue(const unsigned char SC, Value *UV, VPDef *Def)
87     : SubclassID(SC), UnderlyingVal(UV), Def(Def) {
88   if (Def)
89     Def->addDefinedValue(this);
90 }
91 
92 VPValue::~VPValue() {
93   assert(Users.empty() && "trying to delete a VPValue with remaining users");
94   if (Def)
95     Def->removeDefinedValue(this);
96 }
97 
98 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
99 void VPValue::print(raw_ostream &OS, VPSlotTracker &SlotTracker) const {
100   if (const VPRecipeBase *R = dyn_cast_or_null<VPRecipeBase>(Def))
101     R->print(OS, "", SlotTracker);
102   else
103     printAsOperand(OS, SlotTracker);
104 }
105 
106 void VPValue::dump() const {
107   const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this->Def);
108   VPSlotTracker SlotTracker(
109       (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr);
110   print(dbgs(), SlotTracker);
111   dbgs() << "\n";
112 }
113 
114 void VPDef::dump() const {
115   const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this);
116   VPSlotTracker SlotTracker(
117       (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr);
118   print(dbgs(), "", SlotTracker);
119   dbgs() << "\n";
120 }
121 #endif
122 
123 VPRecipeBase *VPValue::getDefiningRecipe() {
124   return cast_or_null<VPRecipeBase>(Def);
125 }
126 
127 const VPRecipeBase *VPValue::getDefiningRecipe() const {
128   return cast_or_null<VPRecipeBase>(Def);
129 }
130 
131 // Get the top-most entry block of \p Start. This is the entry block of the
132 // containing VPlan. This function is templated to support both const and non-const blocks
133 template <typename T> static T *getPlanEntry(T *Start) {
134   T *Next = Start;
135   T *Current = Start;
136   while ((Next = Next->getParent()))
137     Current = Next;
138 
139   SmallSetVector<T *, 8> WorkList;
140   WorkList.insert(Current);
141 
142   for (unsigned i = 0; i < WorkList.size(); i++) {
143     T *Current = WorkList[i];
144     if (Current->getNumPredecessors() == 0)
145       return Current;
146     auto &Predecessors = Current->getPredecessors();
147     WorkList.insert(Predecessors.begin(), Predecessors.end());
148   }
149 
150   llvm_unreachable("VPlan without any entry node without predecessors");
151 }
152 
153 VPlan *VPBlockBase::getPlan() { return getPlanEntry(this)->Plan; }
154 
155 const VPlan *VPBlockBase::getPlan() const { return getPlanEntry(this)->Plan; }
156 
157 /// \return the VPBasicBlock that is the entry of Block, possibly indirectly.
158 const VPBasicBlock *VPBlockBase::getEntryBasicBlock() const {
159   const VPBlockBase *Block = this;
160   while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
161     Block = Region->getEntry();
162   return cast<VPBasicBlock>(Block);
163 }
164 
165 VPBasicBlock *VPBlockBase::getEntryBasicBlock() {
166   VPBlockBase *Block = this;
167   while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
168     Block = Region->getEntry();
169   return cast<VPBasicBlock>(Block);
170 }
171 
172 void VPBlockBase::setPlan(VPlan *ParentPlan) {
173   assert(ParentPlan->getEntry() == this && "Can only set plan on its entry.");
174   Plan = ParentPlan;
175 }
176 
177 /// \return the VPBasicBlock that is the exit of Block, possibly indirectly.
178 const VPBasicBlock *VPBlockBase::getExitingBasicBlock() const {
179   const VPBlockBase *Block = this;
180   while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
181     Block = Region->getExiting();
182   return cast<VPBasicBlock>(Block);
183 }
184 
185 VPBasicBlock *VPBlockBase::getExitingBasicBlock() {
186   VPBlockBase *Block = this;
187   while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
188     Block = Region->getExiting();
189   return cast<VPBasicBlock>(Block);
190 }
191 
192 VPBlockBase *VPBlockBase::getEnclosingBlockWithSuccessors() {
193   if (!Successors.empty() || !Parent)
194     return this;
195   assert(Parent->getExiting() == this &&
196          "Block w/o successors not the exiting block of its parent.");
197   return Parent->getEnclosingBlockWithSuccessors();
198 }
199 
200 VPBlockBase *VPBlockBase::getEnclosingBlockWithPredecessors() {
201   if (!Predecessors.empty() || !Parent)
202     return this;
203   assert(Parent->getEntry() == this &&
204          "Block w/o predecessors not the entry of its parent.");
205   return Parent->getEnclosingBlockWithPredecessors();
206 }
207 
208 VPBasicBlock::iterator VPBasicBlock::getFirstNonPhi() {
209   iterator It = begin();
210   while (It != end() && It->isPhi())
211     It++;
212   return It;
213 }
214 
215 VPTransformState::VPTransformState(const TargetTransformInfo *TTI,
216                                    ElementCount VF, unsigned UF, LoopInfo *LI,
217                                    DominatorTree *DT, IRBuilderBase &Builder,
218                                    InnerLoopVectorizer *ILV, VPlan *Plan,
219                                    Loop *CurrentParentLoop, Type *CanonicalIVTy)
220     : TTI(TTI), VF(VF), CFG(DT), LI(LI), Builder(Builder), ILV(ILV), Plan(Plan),
221       CurrentParentLoop(CurrentParentLoop), LVer(nullptr),
222       TypeAnalysis(CanonicalIVTy) {}
223 
224 Value *VPTransformState::get(VPValue *Def, const VPLane &Lane) {
225   if (Def->isLiveIn())
226     return Def->getLiveInIRValue();
227 
228   if (hasScalarValue(Def, Lane))
229     return Data.VPV2Scalars[Def][Lane.mapToCacheIndex(VF)];
230 
231   if (!Lane.isFirstLane() && vputils::isUniformAfterVectorization(Def) &&
232       hasScalarValue(Def, VPLane::getFirstLane())) {
233     return Data.VPV2Scalars[Def][0];
234   }
235 
236   assert(hasVectorValue(Def));
237   auto *VecPart = Data.VPV2Vector[Def];
238   if (!VecPart->getType()->isVectorTy()) {
239     assert(Lane.isFirstLane() && "cannot get lane > 0 for scalar");
240     return VecPart;
241   }
242   // TODO: Cache created scalar values.
243   Value *LaneV = Lane.getAsRuntimeExpr(Builder, VF);
244   auto *Extract = Builder.CreateExtractElement(VecPart, LaneV);
245   // set(Def, Extract, Instance);
246   return Extract;
247 }
248 
249 Value *VPTransformState::get(VPValue *Def, bool NeedsScalar) {
250   if (NeedsScalar) {
251     assert((VF.isScalar() || Def->isLiveIn() || hasVectorValue(Def) ||
252             !vputils::onlyFirstLaneUsed(Def) ||
253             (hasScalarValue(Def, VPLane(0)) &&
254              Data.VPV2Scalars[Def].size() == 1)) &&
255            "Trying to access a single scalar per part but has multiple scalars "
256            "per part.");
257     return get(Def, VPLane(0));
258   }
259 
260   // If Values have been set for this Def return the one relevant for \p Part.
261   if (hasVectorValue(Def))
262     return Data.VPV2Vector[Def];
263 
264   auto GetBroadcastInstrs = [this, Def](Value *V) {
265     bool SafeToHoist = Def->isDefinedOutsideLoopRegions();
266     if (VF.isScalar())
267       return V;
268     // Place the code for broadcasting invariant variables in the new preheader.
269     IRBuilder<>::InsertPointGuard Guard(Builder);
270     if (SafeToHoist) {
271       BasicBlock *LoopVectorPreHeader =
272           CFG.VPBB2IRBB[Plan->getVectorPreheader()];
273       if (LoopVectorPreHeader)
274         Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
275     }
276 
277     // Place the code for broadcasting invariant variables in the new preheader.
278     // Broadcast the scalar into all locations in the vector.
279     Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast");
280 
281     return Shuf;
282   };
283 
284   if (!hasScalarValue(Def, {0})) {
285     assert(Def->isLiveIn() && "expected a live-in");
286     Value *IRV = Def->getLiveInIRValue();
287     Value *B = GetBroadcastInstrs(IRV);
288     set(Def, B);
289     return B;
290   }
291 
292   Value *ScalarValue = get(Def, VPLane(0));
293   // If we aren't vectorizing, we can just copy the scalar map values over
294   // to the vector map.
295   if (VF.isScalar()) {
296     set(Def, ScalarValue);
297     return ScalarValue;
298   }
299 
300   bool IsUniform = vputils::isUniformAfterVectorization(Def);
301 
302   VPLane LastLane(IsUniform ? 0 : VF.getKnownMinValue() - 1);
303   // Check if there is a scalar value for the selected lane.
304   if (!hasScalarValue(Def, LastLane)) {
305     // At the moment, VPWidenIntOrFpInductionRecipes, VPScalarIVStepsRecipes and
306     // VPExpandSCEVRecipes can also be uniform.
307     assert((isa<VPWidenIntOrFpInductionRecipe, VPScalarIVStepsRecipe,
308                 VPExpandSCEVRecipe>(Def->getDefiningRecipe())) &&
309            "unexpected recipe found to be invariant");
310     IsUniform = true;
311     LastLane = 0;
312   }
313 
314   auto *LastInst = cast<Instruction>(get(Def, LastLane));
315   // Set the insert point after the last scalarized instruction or after the
316   // last PHI, if LastInst is a PHI. This ensures the insertelement sequence
317   // will directly follow the scalar definitions.
318   auto OldIP = Builder.saveIP();
319   auto NewIP = isa<PHINode>(LastInst)
320                    ? LastInst->getParent()->getFirstNonPHIIt()
321                    : std::next(BasicBlock::iterator(LastInst));
322   Builder.SetInsertPoint(&*NewIP);
323 
324   // However, if we are vectorizing, we need to construct the vector values.
325   // If the value is known to be uniform after vectorization, we can just
326   // broadcast the scalar value corresponding to lane zero. Otherwise, we
327   // construct the vector values using insertelement instructions. Since the
328   // resulting vectors are stored in State, we will only generate the
329   // insertelements once.
330   Value *VectorValue = nullptr;
331   if (IsUniform) {
332     VectorValue = GetBroadcastInstrs(ScalarValue);
333     set(Def, VectorValue);
334   } else {
335     // Initialize packing with insertelements to start from undef.
336     assert(!VF.isScalable() && "VF is assumed to be non scalable.");
337     Value *Undef = PoisonValue::get(VectorType::get(LastInst->getType(), VF));
338     set(Def, Undef);
339     for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane)
340       packScalarIntoVectorValue(Def, Lane);
341     VectorValue = get(Def);
342   }
343   Builder.restoreIP(OldIP);
344   return VectorValue;
345 }
346 
347 BasicBlock *VPTransformState::CFGState::getPreheaderBBFor(VPRecipeBase *R) {
348   VPRegionBlock *LoopRegion = R->getParent()->getEnclosingLoopRegion();
349   return VPBB2IRBB[LoopRegion->getPreheaderVPBB()];
350 }
351 
352 void VPTransformState::addNewMetadata(Instruction *To,
353                                       const Instruction *Orig) {
354   // If the loop was versioned with memchecks, add the corresponding no-alias
355   // metadata.
356   if (LVer && isa<LoadInst, StoreInst>(Orig))
357     LVer->annotateInstWithNoAlias(To, Orig);
358 }
359 
360 void VPTransformState::addMetadata(Value *To, Instruction *From) {
361   // No source instruction to transfer metadata from?
362   if (!From)
363     return;
364 
365   if (Instruction *ToI = dyn_cast<Instruction>(To)) {
366     propagateMetadata(ToI, From);
367     addNewMetadata(ToI, From);
368   }
369 }
370 
371 void VPTransformState::setDebugLocFrom(DebugLoc DL) {
372   const DILocation *DIL = DL;
373   // When a FSDiscriminator is enabled, we don't need to add the multiply
374   // factors to the discriminators.
375   if (DIL &&
376       Builder.GetInsertBlock()
377           ->getParent()
378           ->shouldEmitDebugInfoForProfiling() &&
379       !EnableFSDiscriminator) {
380     // FIXME: For scalable vectors, assume vscale=1.
381     unsigned UF = Plan->getUF();
382     auto NewDIL =
383         DIL->cloneByMultiplyingDuplicationFactor(UF * VF.getKnownMinValue());
384     if (NewDIL)
385       Builder.SetCurrentDebugLocation(*NewDIL);
386     else
387       LLVM_DEBUG(dbgs() << "Failed to create new discriminator: "
388                         << DIL->getFilename() << " Line: " << DIL->getLine());
389   } else
390     Builder.SetCurrentDebugLocation(DIL);
391 }
392 
393 void VPTransformState::packScalarIntoVectorValue(VPValue *Def,
394                                                  const VPLane &Lane) {
395   Value *ScalarInst = get(Def, Lane);
396   Value *VectorValue = get(Def);
397   VectorValue = Builder.CreateInsertElement(VectorValue, ScalarInst,
398                                             Lane.getAsRuntimeExpr(Builder, VF));
399   set(Def, VectorValue);
400 }
401 
402 BasicBlock *
403 VPBasicBlock::createEmptyBasicBlock(VPTransformState::CFGState &CFG) {
404   // BB stands for IR BasicBlocks. VPBB stands for VPlan VPBasicBlocks.
405   // Pred stands for Predessor. Prev stands for Previous - last visited/created.
406   BasicBlock *PrevBB = CFG.PrevBB;
407   BasicBlock *NewBB = BasicBlock::Create(PrevBB->getContext(), getName(),
408                                          PrevBB->getParent(), CFG.ExitBB);
409   LLVM_DEBUG(dbgs() << "LV: created " << NewBB->getName() << '\n');
410 
411   return NewBB;
412 }
413 
414 void VPBasicBlock::connectToPredecessors(VPTransformState::CFGState &CFG) {
415   BasicBlock *NewBB = CFG.VPBB2IRBB[this];
416   // Hook up the new basic block to its predecessors.
417   for (VPBlockBase *PredVPBlock : getHierarchicalPredecessors()) {
418     VPBasicBlock *PredVPBB = PredVPBlock->getExitingBasicBlock();
419     auto &PredVPSuccessors = PredVPBB->getHierarchicalSuccessors();
420     BasicBlock *PredBB = CFG.VPBB2IRBB[PredVPBB];
421 
422     assert(PredBB && "Predecessor basic-block not found building successor.");
423     auto *PredBBTerminator = PredBB->getTerminator();
424     LLVM_DEBUG(dbgs() << "LV: draw edge from" << PredBB->getName() << '\n');
425 
426     auto *TermBr = dyn_cast<BranchInst>(PredBBTerminator);
427     if (isa<UnreachableInst>(PredBBTerminator)) {
428       assert(PredVPSuccessors.size() == 1 &&
429              "Predecessor ending w/o branch must have single successor.");
430       DebugLoc DL = PredBBTerminator->getDebugLoc();
431       PredBBTerminator->eraseFromParent();
432       auto *Br = BranchInst::Create(NewBB, PredBB);
433       Br->setDebugLoc(DL);
434     } else if (TermBr && !TermBr->isConditional()) {
435       TermBr->setSuccessor(0, NewBB);
436     } else {
437       // Set each forward successor here when it is created, excluding
438       // backedges. A backward successor is set when the branch is created.
439       unsigned idx = PredVPSuccessors.front() == this ? 0 : 1;
440       assert((TermBr && (!TermBr->getSuccessor(idx) ||
441                          (isa<VPIRBasicBlock>(this) &&
442                           TermBr->getSuccessor(idx) == NewBB))) &&
443              "Trying to reset an existing successor block.");
444       TermBr->setSuccessor(idx, NewBB);
445     }
446     CFG.DTU.applyUpdates({{DominatorTree::Insert, PredBB, NewBB}});
447   }
448 }
449 
450 void VPIRBasicBlock::execute(VPTransformState *State) {
451   assert(getHierarchicalSuccessors().size() <= 2 &&
452          "VPIRBasicBlock can have at most two successors at the moment!");
453   State->Builder.SetInsertPoint(IRBB->getTerminator());
454   State->CFG.PrevBB = IRBB;
455   State->CFG.VPBB2IRBB[this] = IRBB;
456   executeRecipes(State, IRBB);
457   // Create a branch instruction to terminate IRBB if one was not created yet
458   // and is needed.
459   if (getSingleSuccessor() && isa<UnreachableInst>(IRBB->getTerminator())) {
460     auto *Br = State->Builder.CreateBr(IRBB);
461     Br->setOperand(0, nullptr);
462     IRBB->getTerminator()->eraseFromParent();
463   } else {
464     assert(
465         (getNumSuccessors() == 0 || isa<BranchInst>(IRBB->getTerminator())) &&
466         "other blocks must be terminated by a branch");
467   }
468 
469   connectToPredecessors(State->CFG);
470 }
471 
472 VPIRBasicBlock *VPIRBasicBlock::clone() {
473   auto *NewBlock = getPlan()->createEmptyVPIRBasicBlock(IRBB);
474   for (VPRecipeBase &R : Recipes)
475     NewBlock->appendRecipe(R.clone());
476   return NewBlock;
477 }
478 
479 void VPBasicBlock::execute(VPTransformState *State) {
480   bool Replica = bool(State->Lane);
481   BasicBlock *NewBB = State->CFG.PrevBB; // Reuse it if possible.
482 
483   auto IsReplicateRegion = [](VPBlockBase *BB) {
484     auto *R = dyn_cast_or_null<VPRegionBlock>(BB);
485     return R && R->isReplicator();
486   };
487 
488   // 1. Create an IR basic block.
489   if ((Replica && this == getParent()->getEntry()) ||
490       IsReplicateRegion(getSingleHierarchicalPredecessor())) {
491     // Reuse the previous basic block if the current VPBB is either
492     //  * the entry to a replicate region, or
493     //  * the exit of a replicate region.
494     State->CFG.VPBB2IRBB[this] = NewBB;
495   } else {
496     NewBB = createEmptyBasicBlock(State->CFG);
497 
498     State->Builder.SetInsertPoint(NewBB);
499     // Temporarily terminate with unreachable until CFG is rewired.
500     UnreachableInst *Terminator = State->Builder.CreateUnreachable();
501     // Register NewBB in its loop. In innermost loops its the same for all
502     // BB's.
503     if (State->CurrentParentLoop)
504       State->CurrentParentLoop->addBasicBlockToLoop(NewBB, *State->LI);
505     State->Builder.SetInsertPoint(Terminator);
506 
507     State->CFG.PrevBB = NewBB;
508     State->CFG.VPBB2IRBB[this] = NewBB;
509     connectToPredecessors(State->CFG);
510   }
511 
512   // 2. Fill the IR basic block with IR instructions.
513   executeRecipes(State, NewBB);
514 }
515 
516 VPBasicBlock *VPBasicBlock::clone() {
517   auto *NewBlock = getPlan()->createVPBasicBlock(getName());
518   for (VPRecipeBase &R : *this)
519     NewBlock->appendRecipe(R.clone());
520   return NewBlock;
521 }
522 
523 void VPBasicBlock::executeRecipes(VPTransformState *State, BasicBlock *BB) {
524   LLVM_DEBUG(dbgs() << "LV: vectorizing VPBB:" << getName()
525                     << " in BB:" << BB->getName() << '\n');
526 
527   State->CFG.PrevVPBB = this;
528 
529   for (VPRecipeBase &Recipe : Recipes)
530     Recipe.execute(*State);
531 
532   LLVM_DEBUG(dbgs() << "LV: filled BB:" << *BB);
533 }
534 
535 VPBasicBlock *VPBasicBlock::splitAt(iterator SplitAt) {
536   assert((SplitAt == end() || SplitAt->getParent() == this) &&
537          "can only split at a position in the same block");
538 
539   SmallVector<VPBlockBase *, 2> Succs(successors());
540   // Create new empty block after the block to split.
541   auto *SplitBlock = getPlan()->createVPBasicBlock(getName() + ".split");
542   VPBlockUtils::insertBlockAfter(SplitBlock, this);
543 
544   // Finally, move the recipes starting at SplitAt to new block.
545   for (VPRecipeBase &ToMove :
546        make_early_inc_range(make_range(SplitAt, this->end())))
547     ToMove.moveBefore(*SplitBlock, SplitBlock->end());
548 
549   return SplitBlock;
550 }
551 
552 /// Return the enclosing loop region for region \p P. The templated version is
553 /// used to support both const and non-const block arguments.
554 template <typename T> static T *getEnclosingLoopRegionForRegion(T *P) {
555   if (P && P->isReplicator()) {
556     P = P->getParent();
557     // Multiple loop regions can be nested, but replicate regions can only be
558     // nested inside a loop region or must be outside any other region.
559     assert((!P || !cast<VPRegionBlock>(P)->isReplicator()) &&
560            "unexpected nested replicate regions");
561   }
562   return P;
563 }
564 
565 VPRegionBlock *VPBasicBlock::getEnclosingLoopRegion() {
566   return getEnclosingLoopRegionForRegion(getParent());
567 }
568 
569 const VPRegionBlock *VPBasicBlock::getEnclosingLoopRegion() const {
570   return getEnclosingLoopRegionForRegion(getParent());
571 }
572 
573 static bool hasConditionalTerminator(const VPBasicBlock *VPBB) {
574   if (VPBB->empty()) {
575     assert(
576         VPBB->getNumSuccessors() < 2 &&
577         "block with multiple successors doesn't have a recipe as terminator");
578     return false;
579   }
580 
581   const VPRecipeBase *R = &VPBB->back();
582   bool IsCondBranch = isa<VPBranchOnMaskRecipe>(R) ||
583                       match(R, m_BranchOnCond(m_VPValue())) ||
584                       match(R, m_BranchOnCount(m_VPValue(), m_VPValue()));
585   (void)IsCondBranch;
586 
587   if (VPBB->getNumSuccessors() >= 2 ||
588       (VPBB->isExiting() && !VPBB->getParent()->isReplicator())) {
589     assert(IsCondBranch && "block with multiple successors not terminated by "
590                            "conditional branch recipe");
591 
592     return true;
593   }
594 
595   assert(
596       !IsCondBranch &&
597       "block with 0 or 1 successors terminated by conditional branch recipe");
598   return false;
599 }
600 
601 VPRecipeBase *VPBasicBlock::getTerminator() {
602   if (hasConditionalTerminator(this))
603     return &back();
604   return nullptr;
605 }
606 
607 const VPRecipeBase *VPBasicBlock::getTerminator() const {
608   if (hasConditionalTerminator(this))
609     return &back();
610   return nullptr;
611 }
612 
613 bool VPBasicBlock::isExiting() const {
614   return getParent() && getParent()->getExitingBasicBlock() == this;
615 }
616 
617 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
618 void VPBlockBase::printSuccessors(raw_ostream &O, const Twine &Indent) const {
619   if (getSuccessors().empty()) {
620     O << Indent << "No successors\n";
621   } else {
622     O << Indent << "Successor(s): ";
623     ListSeparator LS;
624     for (auto *Succ : getSuccessors())
625       O << LS << Succ->getName();
626     O << '\n';
627   }
628 }
629 
630 void VPBasicBlock::print(raw_ostream &O, const Twine &Indent,
631                          VPSlotTracker &SlotTracker) const {
632   O << Indent << getName() << ":\n";
633 
634   auto RecipeIndent = Indent + "  ";
635   for (const VPRecipeBase &Recipe : *this) {
636     Recipe.print(O, RecipeIndent, SlotTracker);
637     O << '\n';
638   }
639 
640   printSuccessors(O, Indent);
641 }
642 #endif
643 
644 static std::pair<VPBlockBase *, VPBlockBase *> cloneFrom(VPBlockBase *Entry);
645 
646 // Clone the CFG for all nodes reachable from \p Entry, this includes cloning
647 // the blocks and their recipes. Operands of cloned recipes will NOT be updated.
648 // Remapping of operands must be done separately. Returns a pair with the new
649 // entry and exiting blocks of the cloned region. If \p Entry isn't part of a
650 // region, return nullptr for the exiting block.
651 static std::pair<VPBlockBase *, VPBlockBase *> cloneFrom(VPBlockBase *Entry) {
652   DenseMap<VPBlockBase *, VPBlockBase *> Old2NewVPBlocks;
653   VPBlockBase *Exiting = nullptr;
654   bool InRegion = Entry->getParent();
655   // First, clone blocks reachable from Entry.
656   for (VPBlockBase *BB : vp_depth_first_shallow(Entry)) {
657     VPBlockBase *NewBB = BB->clone();
658     Old2NewVPBlocks[BB] = NewBB;
659     if (InRegion && BB->getNumSuccessors() == 0) {
660       assert(!Exiting && "Multiple exiting blocks?");
661       Exiting = BB;
662     }
663   }
664   assert((!InRegion || Exiting) && "regions must have a single exiting block");
665 
666   // Second, update the predecessors & successors of the cloned blocks.
667   for (VPBlockBase *BB : vp_depth_first_shallow(Entry)) {
668     VPBlockBase *NewBB = Old2NewVPBlocks[BB];
669     SmallVector<VPBlockBase *> NewPreds;
670     for (VPBlockBase *Pred : BB->getPredecessors()) {
671       NewPreds.push_back(Old2NewVPBlocks[Pred]);
672     }
673     NewBB->setPredecessors(NewPreds);
674     SmallVector<VPBlockBase *> NewSuccs;
675     for (VPBlockBase *Succ : BB->successors()) {
676       NewSuccs.push_back(Old2NewVPBlocks[Succ]);
677     }
678     NewBB->setSuccessors(NewSuccs);
679   }
680 
681 #if !defined(NDEBUG)
682   // Verify that the order of predecessors and successors matches in the cloned
683   // version.
684   for (const auto &[OldBB, NewBB] :
685        zip(vp_depth_first_shallow(Entry),
686            vp_depth_first_shallow(Old2NewVPBlocks[Entry]))) {
687     for (const auto &[OldPred, NewPred] :
688          zip(OldBB->getPredecessors(), NewBB->getPredecessors()))
689       assert(NewPred == Old2NewVPBlocks[OldPred] && "Different predecessors");
690 
691     for (const auto &[OldSucc, NewSucc] :
692          zip(OldBB->successors(), NewBB->successors()))
693       assert(NewSucc == Old2NewVPBlocks[OldSucc] && "Different successors");
694   }
695 #endif
696 
697   return std::make_pair(Old2NewVPBlocks[Entry],
698                         Exiting ? Old2NewVPBlocks[Exiting] : nullptr);
699 }
700 
701 VPRegionBlock *VPRegionBlock::clone() {
702   const auto &[NewEntry, NewExiting] = cloneFrom(getEntry());
703   auto *NewRegion = getPlan()->createVPRegionBlock(NewEntry, NewExiting,
704                                                    getName(), isReplicator());
705   for (VPBlockBase *Block : vp_depth_first_shallow(NewEntry))
706     Block->setParent(NewRegion);
707   return NewRegion;
708 }
709 
710 void VPRegionBlock::execute(VPTransformState *State) {
711   ReversePostOrderTraversal<VPBlockShallowTraversalWrapper<VPBlockBase *>>
712       RPOT(Entry);
713 
714   if (!isReplicator()) {
715     // Create and register the new vector loop.
716     Loop *PrevLoop = State->CurrentParentLoop;
717     State->CurrentParentLoop = State->LI->AllocateLoop();
718     BasicBlock *VectorPH = State->CFG.VPBB2IRBB[getPreheaderVPBB()];
719     Loop *ParentLoop = State->LI->getLoopFor(VectorPH);
720 
721     // Insert the new loop into the loop nest and register the new basic blocks
722     // before calling any utilities such as SCEV that require valid LoopInfo.
723     if (ParentLoop)
724       ParentLoop->addChildLoop(State->CurrentParentLoop);
725     else
726       State->LI->addTopLevelLoop(State->CurrentParentLoop);
727 
728     // Visit the VPBlocks connected to "this", starting from it.
729     for (VPBlockBase *Block : RPOT) {
730       LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n');
731       Block->execute(State);
732     }
733 
734     State->CurrentParentLoop = PrevLoop;
735     return;
736   }
737 
738   assert(!State->Lane && "Replicating a Region with non-null instance.");
739 
740   // Enter replicating mode.
741   assert(!State->VF.isScalable() && "VF is assumed to be non scalable.");
742   State->Lane = VPLane(0);
743   for (unsigned Lane = 0, VF = State->VF.getKnownMinValue(); Lane < VF;
744        ++Lane) {
745     State->Lane = VPLane(Lane, VPLane::Kind::First);
746     // Visit the VPBlocks connected to \p this, starting from it.
747     for (VPBlockBase *Block : RPOT) {
748       LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n');
749       Block->execute(State);
750     }
751   }
752 
753   // Exit replicating mode.
754   State->Lane.reset();
755 }
756 
757 InstructionCost VPBasicBlock::cost(ElementCount VF, VPCostContext &Ctx) {
758   InstructionCost Cost = 0;
759   for (VPRecipeBase &R : Recipes)
760     Cost += R.cost(VF, Ctx);
761   return Cost;
762 }
763 
764 InstructionCost VPRegionBlock::cost(ElementCount VF, VPCostContext &Ctx) {
765   if (!isReplicator()) {
766     InstructionCost Cost = 0;
767     for (VPBlockBase *Block : vp_depth_first_shallow(getEntry()))
768       Cost += Block->cost(VF, Ctx);
769     InstructionCost BackedgeCost =
770         ForceTargetInstructionCost.getNumOccurrences()
771             ? InstructionCost(ForceTargetInstructionCost.getNumOccurrences())
772             : Ctx.TTI.getCFInstrCost(Instruction::Br, Ctx.CostKind);
773     LLVM_DEBUG(dbgs() << "Cost of " << BackedgeCost << " for VF " << VF
774                       << ": vector loop backedge\n");
775     Cost += BackedgeCost;
776     return Cost;
777   }
778 
779   // Compute the cost of a replicate region. Replicating isn't supported for
780   // scalable vectors, return an invalid cost for them.
781   // TODO: Discard scalable VPlans with replicate recipes earlier after
782   // construction.
783   if (VF.isScalable())
784     return InstructionCost::getInvalid();
785 
786   // First compute the cost of the conditionally executed recipes, followed by
787   // account for the branching cost, except if the mask is a header mask or
788   // uniform condition.
789   using namespace llvm::VPlanPatternMatch;
790   VPBasicBlock *Then = cast<VPBasicBlock>(getEntry()->getSuccessors()[0]);
791   InstructionCost ThenCost = Then->cost(VF, Ctx);
792 
793   // For the scalar case, we may not always execute the original predicated
794   // block, Thus, scale the block's cost by the probability of executing it.
795   if (VF.isScalar())
796     return ThenCost / getReciprocalPredBlockProb();
797 
798   return ThenCost;
799 }
800 
801 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
802 void VPRegionBlock::print(raw_ostream &O, const Twine &Indent,
803                           VPSlotTracker &SlotTracker) const {
804   O << Indent << (isReplicator() ? "<xVFxUF> " : "<x1> ") << getName() << ": {";
805   auto NewIndent = Indent + "  ";
806   for (auto *BlockBase : vp_depth_first_shallow(Entry)) {
807     O << '\n';
808     BlockBase->print(O, NewIndent, SlotTracker);
809   }
810   O << Indent << "}\n";
811 
812   printSuccessors(O, Indent);
813 }
814 #endif
815 
816 VPlan::VPlan(Loop *L) {
817   setEntry(createVPIRBasicBlock(L->getLoopPreheader()));
818   ScalarHeader = createVPIRBasicBlock(L->getHeader());
819 }
820 
821 VPlan::~VPlan() {
822   VPValue DummyValue;
823 
824   for (auto *VPB : CreatedBlocks) {
825     if (auto *VPBB = dyn_cast<VPBasicBlock>(VPB)) {
826       // Replace all operands of recipes and all VPValues defined in VPBB with
827       // DummyValue so the block can be deleted.
828       for (VPRecipeBase &R : *VPBB) {
829         for (auto *Def : R.definedValues())
830           Def->replaceAllUsesWith(&DummyValue);
831 
832         for (unsigned I = 0, E = R.getNumOperands(); I != E; I++)
833           R.setOperand(I, &DummyValue);
834       }
835     }
836     delete VPB;
837   }
838   for (VPValue *VPV : VPLiveInsToFree)
839     delete VPV;
840   if (BackedgeTakenCount)
841     delete BackedgeTakenCount;
842 }
843 
844 VPlanPtr VPlan::createInitialVPlan(Type *InductionTy,
845                                    PredicatedScalarEvolution &PSE,
846                                    bool RequiresScalarEpilogueCheck,
847                                    bool TailFolded, Loop *TheLoop) {
848   auto Plan = std::make_unique<VPlan>(TheLoop);
849   VPBlockBase *ScalarHeader = Plan->getScalarHeader();
850 
851   // Connect entry only to vector preheader initially. Entry will also be
852   // connected to the scalar preheader later, during skeleton creation when
853   // runtime guards are added as needed. Note that when executing the VPlan for
854   // an epilogue vector loop, the original entry block here will be replaced by
855   // a new VPIRBasicBlock wrapping the entry to the epilogue vector loop after
856   // generating code for the main vector loop.
857   VPBasicBlock *VecPreheader = Plan->createVPBasicBlock("vector.ph");
858   VPBlockUtils::connectBlocks(Plan->getEntry(), VecPreheader);
859 
860   // Create SCEV and VPValue for the trip count.
861   // We use the symbolic max backedge-taken-count, which works also when
862   // vectorizing loops with uncountable early exits.
863   const SCEV *BackedgeTakenCountSCEV = PSE.getSymbolicMaxBackedgeTakenCount();
864   assert(!isa<SCEVCouldNotCompute>(BackedgeTakenCountSCEV) &&
865          "Invalid loop count");
866   ScalarEvolution &SE = *PSE.getSE();
867   const SCEV *TripCount = SE.getTripCountFromExitCount(BackedgeTakenCountSCEV,
868                                                        InductionTy, TheLoop);
869   Plan->TripCount =
870       vputils::getOrCreateVPValueForSCEVExpr(*Plan, TripCount, SE);
871 
872   // Create VPRegionBlock, with empty header and latch blocks, to be filled
873   // during processing later.
874   VPBasicBlock *HeaderVPBB = Plan->createVPBasicBlock("vector.body");
875   VPBasicBlock *LatchVPBB = Plan->createVPBasicBlock("vector.latch");
876   VPBlockUtils::insertBlockAfter(LatchVPBB, HeaderVPBB);
877   auto *TopRegion = Plan->createVPRegionBlock(
878       HeaderVPBB, LatchVPBB, "vector loop", false /*isReplicator*/);
879 
880   VPBlockUtils::insertBlockAfter(TopRegion, VecPreheader);
881   VPBasicBlock *MiddleVPBB = Plan->createVPBasicBlock("middle.block");
882   VPBlockUtils::insertBlockAfter(MiddleVPBB, TopRegion);
883 
884   VPBasicBlock *ScalarPH = Plan->createVPBasicBlock("scalar.ph");
885   VPBlockUtils::connectBlocks(ScalarPH, ScalarHeader);
886   if (!RequiresScalarEpilogueCheck) {
887     VPBlockUtils::connectBlocks(MiddleVPBB, ScalarPH);
888     return Plan;
889   }
890 
891   // If needed, add a check in the middle block to see if we have completed
892   // all of the iterations in the first vector loop.  Three cases:
893   // 1) If (N - N%VF) == N, then we *don't* need to run the remainder.
894   //    Thus if tail is to be folded, we know we don't need to run the
895   //    remainder and we can set the condition to true.
896   // 2) If we require a scalar epilogue, there is no conditional branch as
897   //    we unconditionally branch to the scalar preheader.  Do nothing.
898   // 3) Otherwise, construct a runtime check.
899   BasicBlock *IRExitBlock = TheLoop->getUniqueLatchExitBlock();
900   auto *VPExitBlock = Plan->createVPIRBasicBlock(IRExitBlock);
901   // The connection order corresponds to the operands of the conditional branch.
902   VPBlockUtils::insertBlockAfter(VPExitBlock, MiddleVPBB);
903   VPBlockUtils::connectBlocks(MiddleVPBB, ScalarPH);
904 
905   auto *ScalarLatchTerm = TheLoop->getLoopLatch()->getTerminator();
906   // Here we use the same DebugLoc as the scalar loop latch terminator instead
907   // of the corresponding compare because they may have ended up with
908   // different line numbers and we want to avoid awkward line stepping while
909   // debugging. Eg. if the compare has got a line number inside the loop.
910   VPBuilder Builder(MiddleVPBB);
911   VPValue *Cmp =
912       TailFolded
913           ? Plan->getOrAddLiveIn(ConstantInt::getTrue(
914                 IntegerType::getInt1Ty(TripCount->getType()->getContext())))
915           : Builder.createICmp(CmpInst::ICMP_EQ, Plan->getTripCount(),
916                                &Plan->getVectorTripCount(),
917                                ScalarLatchTerm->getDebugLoc(), "cmp.n");
918   Builder.createNaryOp(VPInstruction::BranchOnCond, {Cmp},
919                        ScalarLatchTerm->getDebugLoc());
920   return Plan;
921 }
922 
923 void VPlan::prepareToExecute(Value *TripCountV, Value *VectorTripCountV,
924                              VPTransformState &State) {
925   Type *TCTy = TripCountV->getType();
926   // Check if the backedge taken count is needed, and if so build it.
927   if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) {
928     IRBuilder<> Builder(State.CFG.PrevBB->getTerminator());
929     auto *TCMO = Builder.CreateSub(TripCountV, ConstantInt::get(TCTy, 1),
930                                    "trip.count.minus.1");
931     BackedgeTakenCount->setUnderlyingValue(TCMO);
932   }
933 
934   VectorTripCount.setUnderlyingValue(VectorTripCountV);
935 
936   IRBuilder<> Builder(State.CFG.PrevBB->getTerminator());
937   // FIXME: Model VF * UF computation completely in VPlan.
938   assert((!getVectorLoopRegion() || VFxUF.getNumUsers()) &&
939          "VFxUF expected to always have users");
940   unsigned UF = getUF();
941   if (VF.getNumUsers()) {
942     Value *RuntimeVF = getRuntimeVF(Builder, TCTy, State.VF);
943     VF.setUnderlyingValue(RuntimeVF);
944     VFxUF.setUnderlyingValue(
945         UF > 1 ? Builder.CreateMul(RuntimeVF, ConstantInt::get(TCTy, UF))
946                : RuntimeVF);
947   } else {
948     VFxUF.setUnderlyingValue(createStepForVF(Builder, TCTy, State.VF, UF));
949   }
950 }
951 
952 /// Generate the code inside the preheader and body of the vectorized loop.
953 /// Assumes a single pre-header basic-block was created for this. Introduce
954 /// additional basic-blocks as needed, and fill them all.
955 void VPlan::execute(VPTransformState *State) {
956   // Initialize CFG state.
957   State->CFG.PrevVPBB = nullptr;
958   State->CFG.ExitBB = State->CFG.PrevBB->getSingleSuccessor();
959 
960   // Disconnect VectorPreHeader from ExitBB in both the CFG and DT.
961   BasicBlock *VectorPreHeader = State->CFG.PrevBB;
962   cast<BranchInst>(VectorPreHeader->getTerminator())->setSuccessor(0, nullptr);
963   State->CFG.DTU.applyUpdates(
964       {{DominatorTree::Delete, VectorPreHeader, State->CFG.ExitBB}});
965 
966   LLVM_DEBUG(dbgs() << "Executing best plan with VF=" << State->VF
967                     << ", UF=" << getUF() << '\n');
968   setName("Final VPlan");
969   LLVM_DEBUG(dump());
970 
971   // Disconnect the middle block from its single successor (the scalar loop
972   // header) in both the CFG and DT. The branch will be recreated during VPlan
973   // execution.
974   BasicBlock *MiddleBB = State->CFG.ExitBB;
975   BasicBlock *ScalarPh = MiddleBB->getSingleSuccessor();
976   auto *BrInst = new UnreachableInst(MiddleBB->getContext());
977   BrInst->insertBefore(MiddleBB->getTerminator()->getIterator());
978   MiddleBB->getTerminator()->eraseFromParent();
979   State->CFG.DTU.applyUpdates({{DominatorTree::Delete, MiddleBB, ScalarPh}});
980   // Disconnect scalar preheader and scalar header, as the dominator tree edge
981   // will be updated as part of VPlan execution. This allows keeping the DTU
982   // logic generic during VPlan execution.
983   State->CFG.DTU.applyUpdates(
984       {{DominatorTree::Delete, ScalarPh, ScalarPh->getSingleSuccessor()}});
985 
986   ReversePostOrderTraversal<VPBlockShallowTraversalWrapper<VPBlockBase *>> RPOT(
987       Entry);
988   // Generate code for the VPlan, in parts of the vector skeleton, loop body and
989   // successor blocks including the middle, exit and scalar preheader blocks.
990   for (VPBlockBase *Block : RPOT)
991     Block->execute(State);
992 
993   State->CFG.DTU.flush();
994 
995   auto *LoopRegion = getVectorLoopRegion();
996   if (!LoopRegion)
997     return;
998 
999   VPBasicBlock *LatchVPBB = LoopRegion->getExitingBasicBlock();
1000   BasicBlock *VectorLatchBB = State->CFG.VPBB2IRBB[LatchVPBB];
1001 
1002   // Fix the latch value of canonical, reduction and first-order recurrences
1003   // phis in the vector loop.
1004   VPBasicBlock *Header = LoopRegion->getEntryBasicBlock();
1005   for (VPRecipeBase &R : Header->phis()) {
1006     // Skip phi-like recipes that generate their backedege values themselves.
1007     if (isa<VPWidenPHIRecipe>(&R))
1008       continue;
1009 
1010     if (isa<VPWidenInductionRecipe>(&R)) {
1011       PHINode *Phi = nullptr;
1012       if (isa<VPWidenIntOrFpInductionRecipe>(&R)) {
1013         Phi = cast<PHINode>(State->get(R.getVPSingleValue()));
1014       } else {
1015         auto *WidenPhi = cast<VPWidenPointerInductionRecipe>(&R);
1016         assert(!WidenPhi->onlyScalarsGenerated(State->VF.isScalable()) &&
1017                "recipe generating only scalars should have been replaced");
1018         auto *GEP = cast<GetElementPtrInst>(State->get(WidenPhi));
1019         Phi = cast<PHINode>(GEP->getPointerOperand());
1020       }
1021 
1022       Phi->setIncomingBlock(1, VectorLatchBB);
1023 
1024       // Move the last step to the end of the latch block. This ensures
1025       // consistent placement of all induction updates.
1026       Instruction *Inc = cast<Instruction>(Phi->getIncomingValue(1));
1027       Inc->moveBefore(VectorLatchBB->getTerminator()->getPrevNode());
1028 
1029       // Use the steps for the last part as backedge value for the induction.
1030       if (auto *IV = dyn_cast<VPWidenIntOrFpInductionRecipe>(&R))
1031         Inc->setOperand(0, State->get(IV->getLastUnrolledPartOperand()));
1032       continue;
1033     }
1034 
1035     auto *PhiR = cast<VPHeaderPHIRecipe>(&R);
1036     bool NeedsScalar = isa<VPScalarPHIRecipe>(PhiR) ||
1037                        (isa<VPReductionPHIRecipe>(PhiR) &&
1038                         cast<VPReductionPHIRecipe>(PhiR)->isInLoop());
1039     Value *Phi = State->get(PhiR, NeedsScalar);
1040     Value *Val = State->get(PhiR->getBackedgeValue(), NeedsScalar);
1041     cast<PHINode>(Phi)->addIncoming(Val, VectorLatchBB);
1042   }
1043 }
1044 
1045 InstructionCost VPlan::cost(ElementCount VF, VPCostContext &Ctx) {
1046   // For now only return the cost of the vector loop region, ignoring any other
1047   // blocks, like the preheader or middle blocks.
1048   return getVectorLoopRegion()->cost(VF, Ctx);
1049 }
1050 
1051 VPRegionBlock *VPlan::getVectorLoopRegion() {
1052   // TODO: Cache if possible.
1053   for (VPBlockBase *B : vp_depth_first_shallow(getEntry()))
1054     if (auto *R = dyn_cast<VPRegionBlock>(B))
1055       return R->isReplicator() ? nullptr : R;
1056   return nullptr;
1057 }
1058 
1059 const VPRegionBlock *VPlan::getVectorLoopRegion() const {
1060   for (const VPBlockBase *B : vp_depth_first_shallow(getEntry()))
1061     if (auto *R = dyn_cast<VPRegionBlock>(B))
1062       return R->isReplicator() ? nullptr : R;
1063   return nullptr;
1064 }
1065 
1066 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1067 void VPlan::printLiveIns(raw_ostream &O) const {
1068   VPSlotTracker SlotTracker(this);
1069 
1070   if (VF.getNumUsers() > 0) {
1071     O << "\nLive-in ";
1072     VF.printAsOperand(O, SlotTracker);
1073     O << " = VF";
1074   }
1075 
1076   if (VFxUF.getNumUsers() > 0) {
1077     O << "\nLive-in ";
1078     VFxUF.printAsOperand(O, SlotTracker);
1079     O << " = VF * UF";
1080   }
1081 
1082   if (VectorTripCount.getNumUsers() > 0) {
1083     O << "\nLive-in ";
1084     VectorTripCount.printAsOperand(O, SlotTracker);
1085     O << " = vector-trip-count";
1086   }
1087 
1088   if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) {
1089     O << "\nLive-in ";
1090     BackedgeTakenCount->printAsOperand(O, SlotTracker);
1091     O << " = backedge-taken count";
1092   }
1093 
1094   O << "\n";
1095   if (TripCount->isLiveIn())
1096     O << "Live-in ";
1097   TripCount->printAsOperand(O, SlotTracker);
1098   O << " = original trip-count";
1099   O << "\n";
1100 }
1101 
1102 LLVM_DUMP_METHOD
1103 void VPlan::print(raw_ostream &O) const {
1104   VPSlotTracker SlotTracker(this);
1105 
1106   O << "VPlan '" << getName() << "' {";
1107 
1108   printLiveIns(O);
1109 
1110   ReversePostOrderTraversal<VPBlockShallowTraversalWrapper<const VPBlockBase *>>
1111       RPOT(getEntry());
1112   for (const VPBlockBase *Block : RPOT) {
1113     O << '\n';
1114     Block->print(O, "", SlotTracker);
1115   }
1116 
1117   O << "}\n";
1118 }
1119 
1120 std::string VPlan::getName() const {
1121   std::string Out;
1122   raw_string_ostream RSO(Out);
1123   RSO << Name << " for ";
1124   if (!VFs.empty()) {
1125     RSO << "VF={" << VFs[0];
1126     for (ElementCount VF : drop_begin(VFs))
1127       RSO << "," << VF;
1128     RSO << "},";
1129   }
1130 
1131   if (UFs.empty()) {
1132     RSO << "UF>=1";
1133   } else {
1134     RSO << "UF={" << UFs[0];
1135     for (unsigned UF : drop_begin(UFs))
1136       RSO << "," << UF;
1137     RSO << "}";
1138   }
1139 
1140   return Out;
1141 }
1142 
1143 LLVM_DUMP_METHOD
1144 void VPlan::printDOT(raw_ostream &O) const {
1145   VPlanPrinter Printer(O, *this);
1146   Printer.dump();
1147 }
1148 
1149 LLVM_DUMP_METHOD
1150 void VPlan::dump() const { print(dbgs()); }
1151 #endif
1152 
1153 static void remapOperands(VPBlockBase *Entry, VPBlockBase *NewEntry,
1154                           DenseMap<VPValue *, VPValue *> &Old2NewVPValues) {
1155   // Update the operands of all cloned recipes starting at NewEntry. This
1156   // traverses all reachable blocks. This is done in two steps, to handle cycles
1157   // in PHI recipes.
1158   ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<VPBlockBase *>>
1159       OldDeepRPOT(Entry);
1160   ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<VPBlockBase *>>
1161       NewDeepRPOT(NewEntry);
1162   // First, collect all mappings from old to new VPValues defined by cloned
1163   // recipes.
1164   for (const auto &[OldBB, NewBB] :
1165        zip(VPBlockUtils::blocksOnly<VPBasicBlock>(OldDeepRPOT),
1166            VPBlockUtils::blocksOnly<VPBasicBlock>(NewDeepRPOT))) {
1167     assert(OldBB->getRecipeList().size() == NewBB->getRecipeList().size() &&
1168            "blocks must have the same number of recipes");
1169     for (const auto &[OldR, NewR] : zip(*OldBB, *NewBB)) {
1170       assert(OldR.getNumOperands() == NewR.getNumOperands() &&
1171              "recipes must have the same number of operands");
1172       assert(OldR.getNumDefinedValues() == NewR.getNumDefinedValues() &&
1173              "recipes must define the same number of operands");
1174       for (const auto &[OldV, NewV] :
1175            zip(OldR.definedValues(), NewR.definedValues()))
1176         Old2NewVPValues[OldV] = NewV;
1177     }
1178   }
1179 
1180   // Update all operands to use cloned VPValues.
1181   for (VPBasicBlock *NewBB :
1182        VPBlockUtils::blocksOnly<VPBasicBlock>(NewDeepRPOT)) {
1183     for (VPRecipeBase &NewR : *NewBB)
1184       for (unsigned I = 0, E = NewR.getNumOperands(); I != E; ++I) {
1185         VPValue *NewOp = Old2NewVPValues.lookup(NewR.getOperand(I));
1186         NewR.setOperand(I, NewOp);
1187       }
1188   }
1189 }
1190 
1191 VPlan *VPlan::duplicate() {
1192   unsigned NumBlocksBeforeCloning = CreatedBlocks.size();
1193   // Clone blocks.
1194   const auto &[NewEntry, __] = cloneFrom(Entry);
1195 
1196   BasicBlock *ScalarHeaderIRBB = getScalarHeader()->getIRBasicBlock();
1197   VPIRBasicBlock *NewScalarHeader = cast<VPIRBasicBlock>(*find_if(
1198       vp_depth_first_shallow(NewEntry), [ScalarHeaderIRBB](VPBlockBase *VPB) {
1199         auto *VPIRBB = dyn_cast<VPIRBasicBlock>(VPB);
1200         return VPIRBB && VPIRBB->getIRBasicBlock() == ScalarHeaderIRBB;
1201       }));
1202   // Create VPlan, clone live-ins and remap operands in the cloned blocks.
1203   auto *NewPlan = new VPlan(cast<VPBasicBlock>(NewEntry), NewScalarHeader);
1204   DenseMap<VPValue *, VPValue *> Old2NewVPValues;
1205   for (VPValue *OldLiveIn : VPLiveInsToFree) {
1206     Old2NewVPValues[OldLiveIn] =
1207         NewPlan->getOrAddLiveIn(OldLiveIn->getLiveInIRValue());
1208   }
1209   Old2NewVPValues[&VectorTripCount] = &NewPlan->VectorTripCount;
1210   Old2NewVPValues[&VF] = &NewPlan->VF;
1211   Old2NewVPValues[&VFxUF] = &NewPlan->VFxUF;
1212   if (BackedgeTakenCount) {
1213     NewPlan->BackedgeTakenCount = new VPValue();
1214     Old2NewVPValues[BackedgeTakenCount] = NewPlan->BackedgeTakenCount;
1215   }
1216   assert(TripCount && "trip count must be set");
1217   if (TripCount->isLiveIn())
1218     Old2NewVPValues[TripCount] =
1219         NewPlan->getOrAddLiveIn(TripCount->getLiveInIRValue());
1220   // else NewTripCount will be created and inserted into Old2NewVPValues when
1221   // TripCount is cloned. In any case NewPlan->TripCount is updated below.
1222 
1223   remapOperands(Entry, NewEntry, Old2NewVPValues);
1224 
1225   // Initialize remaining fields of cloned VPlan.
1226   NewPlan->VFs = VFs;
1227   NewPlan->UFs = UFs;
1228   // TODO: Adjust names.
1229   NewPlan->Name = Name;
1230   assert(Old2NewVPValues.contains(TripCount) &&
1231          "TripCount must have been added to Old2NewVPValues");
1232   NewPlan->TripCount = Old2NewVPValues[TripCount];
1233 
1234   // Transfer all cloned blocks (the second half of all current blocks) from
1235   // current to new VPlan.
1236   unsigned NumBlocksAfterCloning = CreatedBlocks.size();
1237   for (unsigned I :
1238        seq<unsigned>(NumBlocksBeforeCloning, NumBlocksAfterCloning))
1239     NewPlan->CreatedBlocks.push_back(this->CreatedBlocks[I]);
1240   CreatedBlocks.truncate(NumBlocksBeforeCloning);
1241 
1242   return NewPlan;
1243 }
1244 
1245 VPIRBasicBlock *VPlan::createEmptyVPIRBasicBlock(BasicBlock *IRBB) {
1246   auto *VPIRBB = new VPIRBasicBlock(IRBB);
1247   CreatedBlocks.push_back(VPIRBB);
1248   return VPIRBB;
1249 }
1250 
1251 VPIRBasicBlock *VPlan::createVPIRBasicBlock(BasicBlock *IRBB) {
1252   auto *VPIRBB = createEmptyVPIRBasicBlock(IRBB);
1253   for (Instruction &I :
1254        make_range(IRBB->begin(), IRBB->getTerminator()->getIterator()))
1255     VPIRBB->appendRecipe(new VPIRInstruction(I));
1256   return VPIRBB;
1257 }
1258 
1259 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1260 
1261 Twine VPlanPrinter::getUID(const VPBlockBase *Block) {
1262   return (isa<VPRegionBlock>(Block) ? "cluster_N" : "N") +
1263          Twine(getOrCreateBID(Block));
1264 }
1265 
1266 Twine VPlanPrinter::getOrCreateName(const VPBlockBase *Block) {
1267   const std::string &Name = Block->getName();
1268   if (!Name.empty())
1269     return Name;
1270   return "VPB" + Twine(getOrCreateBID(Block));
1271 }
1272 
1273 void VPlanPrinter::dump() {
1274   Depth = 1;
1275   bumpIndent(0);
1276   OS << "digraph VPlan {\n";
1277   OS << "graph [labelloc=t, fontsize=30; label=\"Vectorization Plan";
1278   if (!Plan.getName().empty())
1279     OS << "\\n" << DOT::EscapeString(Plan.getName());
1280 
1281   {
1282     // Print live-ins.
1283   std::string Str;
1284   raw_string_ostream SS(Str);
1285   Plan.printLiveIns(SS);
1286   SmallVector<StringRef, 0> Lines;
1287   StringRef(Str).rtrim('\n').split(Lines, "\n");
1288   for (auto Line : Lines)
1289     OS << DOT::EscapeString(Line.str()) << "\\n";
1290   }
1291 
1292   OS << "\"]\n";
1293   OS << "node [shape=rect, fontname=Courier, fontsize=30]\n";
1294   OS << "edge [fontname=Courier, fontsize=30]\n";
1295   OS << "compound=true\n";
1296 
1297   for (const VPBlockBase *Block : vp_depth_first_shallow(Plan.getEntry()))
1298     dumpBlock(Block);
1299 
1300   OS << "}\n";
1301 }
1302 
1303 void VPlanPrinter::dumpBlock(const VPBlockBase *Block) {
1304   if (const VPBasicBlock *BasicBlock = dyn_cast<VPBasicBlock>(Block))
1305     dumpBasicBlock(BasicBlock);
1306   else if (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
1307     dumpRegion(Region);
1308   else
1309     llvm_unreachable("Unsupported kind of VPBlock.");
1310 }
1311 
1312 void VPlanPrinter::drawEdge(const VPBlockBase *From, const VPBlockBase *To,
1313                             bool Hidden, const Twine &Label) {
1314   // Due to "dot" we print an edge between two regions as an edge between the
1315   // exiting basic block and the entry basic of the respective regions.
1316   const VPBlockBase *Tail = From->getExitingBasicBlock();
1317   const VPBlockBase *Head = To->getEntryBasicBlock();
1318   OS << Indent << getUID(Tail) << " -> " << getUID(Head);
1319   OS << " [ label=\"" << Label << '\"';
1320   if (Tail != From)
1321     OS << " ltail=" << getUID(From);
1322   if (Head != To)
1323     OS << " lhead=" << getUID(To);
1324   if (Hidden)
1325     OS << "; splines=none";
1326   OS << "]\n";
1327 }
1328 
1329 void VPlanPrinter::dumpEdges(const VPBlockBase *Block) {
1330   auto &Successors = Block->getSuccessors();
1331   if (Successors.size() == 1)
1332     drawEdge(Block, Successors.front(), false, "");
1333   else if (Successors.size() == 2) {
1334     drawEdge(Block, Successors.front(), false, "T");
1335     drawEdge(Block, Successors.back(), false, "F");
1336   } else {
1337     unsigned SuccessorNumber = 0;
1338     for (auto *Successor : Successors)
1339       drawEdge(Block, Successor, false, Twine(SuccessorNumber++));
1340   }
1341 }
1342 
1343 void VPlanPrinter::dumpBasicBlock(const VPBasicBlock *BasicBlock) {
1344   // Implement dot-formatted dump by performing plain-text dump into the
1345   // temporary storage followed by some post-processing.
1346   OS << Indent << getUID(BasicBlock) << " [label =\n";
1347   bumpIndent(1);
1348   std::string Str;
1349   raw_string_ostream SS(Str);
1350   // Use no indentation as we need to wrap the lines into quotes ourselves.
1351   BasicBlock->print(SS, "", SlotTracker);
1352 
1353   // We need to process each line of the output separately, so split
1354   // single-string plain-text dump.
1355   SmallVector<StringRef, 0> Lines;
1356   StringRef(Str).rtrim('\n').split(Lines, "\n");
1357 
1358   auto EmitLine = [&](StringRef Line, StringRef Suffix) {
1359     OS << Indent << '"' << DOT::EscapeString(Line.str()) << "\\l\"" << Suffix;
1360   };
1361 
1362   // Don't need the "+" after the last line.
1363   for (auto Line : make_range(Lines.begin(), Lines.end() - 1))
1364     EmitLine(Line, " +\n");
1365   EmitLine(Lines.back(), "\n");
1366 
1367   bumpIndent(-1);
1368   OS << Indent << "]\n";
1369 
1370   dumpEdges(BasicBlock);
1371 }
1372 
1373 void VPlanPrinter::dumpRegion(const VPRegionBlock *Region) {
1374   OS << Indent << "subgraph " << getUID(Region) << " {\n";
1375   bumpIndent(1);
1376   OS << Indent << "fontname=Courier\n"
1377      << Indent << "label=\""
1378      << DOT::EscapeString(Region->isReplicator() ? "<xVFxUF> " : "<x1> ")
1379      << DOT::EscapeString(Region->getName()) << "\"\n";
1380   // Dump the blocks of the region.
1381   assert(Region->getEntry() && "Region contains no inner blocks.");
1382   for (const VPBlockBase *Block : vp_depth_first_shallow(Region->getEntry()))
1383     dumpBlock(Block);
1384   bumpIndent(-1);
1385   OS << Indent << "}\n";
1386   dumpEdges(Region);
1387 }
1388 
1389 void VPlanIngredient::print(raw_ostream &O) const {
1390   if (auto *Inst = dyn_cast<Instruction>(V)) {
1391     if (!Inst->getType()->isVoidTy()) {
1392       Inst->printAsOperand(O, false);
1393       O << " = ";
1394     }
1395     O << Inst->getOpcodeName() << " ";
1396     unsigned E = Inst->getNumOperands();
1397     if (E > 0) {
1398       Inst->getOperand(0)->printAsOperand(O, false);
1399       for (unsigned I = 1; I < E; ++I)
1400         Inst->getOperand(I)->printAsOperand(O << ", ", false);
1401     }
1402   } else // !Inst
1403     V->printAsOperand(O, false);
1404 }
1405 
1406 #endif
1407 
1408 /// Returns true if there is a vector loop region and \p VPV is defined in a
1409 /// loop region.
1410 static bool isDefinedInsideLoopRegions(const VPValue *VPV) {
1411   const VPRecipeBase *DefR = VPV->getDefiningRecipe();
1412   return DefR && (!DefR->getParent()->getPlan()->getVectorLoopRegion() ||
1413                   DefR->getParent()->getEnclosingLoopRegion());
1414 }
1415 
1416 bool VPValue::isDefinedOutsideLoopRegions() const {
1417   return !isDefinedInsideLoopRegions(this);
1418 }
1419 void VPValue::replaceAllUsesWith(VPValue *New) {
1420   replaceUsesWithIf(New, [](VPUser &, unsigned) { return true; });
1421 }
1422 
1423 void VPValue::replaceUsesWithIf(
1424     VPValue *New,
1425     llvm::function_ref<bool(VPUser &U, unsigned Idx)> ShouldReplace) {
1426   // Note that this early exit is required for correctness; the implementation
1427   // below relies on the number of users for this VPValue to decrease, which
1428   // isn't the case if this == New.
1429   if (this == New)
1430     return;
1431 
1432   for (unsigned J = 0; J < getNumUsers();) {
1433     VPUser *User = Users[J];
1434     bool RemovedUser = false;
1435     for (unsigned I = 0, E = User->getNumOperands(); I < E; ++I) {
1436       if (User->getOperand(I) != this || !ShouldReplace(*User, I))
1437         continue;
1438 
1439       RemovedUser = true;
1440       User->setOperand(I, New);
1441     }
1442     // If a user got removed after updating the current user, the next user to
1443     // update will be moved to the current position, so we only need to
1444     // increment the index if the number of users did not change.
1445     if (!RemovedUser)
1446       J++;
1447   }
1448 }
1449 
1450 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1451 void VPValue::printAsOperand(raw_ostream &OS, VPSlotTracker &Tracker) const {
1452   OS << Tracker.getOrCreateName(this);
1453 }
1454 
1455 void VPUser::printOperands(raw_ostream &O, VPSlotTracker &SlotTracker) const {
1456   interleaveComma(operands(), O, [&O, &SlotTracker](VPValue *Op) {
1457     Op->printAsOperand(O, SlotTracker);
1458   });
1459 }
1460 #endif
1461 
1462 void VPInterleavedAccessInfo::visitRegion(VPRegionBlock *Region,
1463                                           Old2NewTy &Old2New,
1464                                           InterleavedAccessInfo &IAI) {
1465   ReversePostOrderTraversal<VPBlockShallowTraversalWrapper<VPBlockBase *>>
1466       RPOT(Region->getEntry());
1467   for (VPBlockBase *Base : RPOT) {
1468     visitBlock(Base, Old2New, IAI);
1469   }
1470 }
1471 
1472 void VPInterleavedAccessInfo::visitBlock(VPBlockBase *Block, Old2NewTy &Old2New,
1473                                          InterleavedAccessInfo &IAI) {
1474   if (VPBasicBlock *VPBB = dyn_cast<VPBasicBlock>(Block)) {
1475     for (VPRecipeBase &VPI : *VPBB) {
1476       if (isa<VPWidenPHIRecipe>(&VPI))
1477         continue;
1478       assert(isa<VPInstruction>(&VPI) && "Can only handle VPInstructions");
1479       auto *VPInst = cast<VPInstruction>(&VPI);
1480 
1481       auto *Inst = dyn_cast_or_null<Instruction>(VPInst->getUnderlyingValue());
1482       if (!Inst)
1483         continue;
1484       auto *IG = IAI.getInterleaveGroup(Inst);
1485       if (!IG)
1486         continue;
1487 
1488       auto NewIGIter = Old2New.find(IG);
1489       if (NewIGIter == Old2New.end())
1490         Old2New[IG] = new InterleaveGroup<VPInstruction>(
1491             IG->getFactor(), IG->isReverse(), IG->getAlign());
1492 
1493       if (Inst == IG->getInsertPos())
1494         Old2New[IG]->setInsertPos(VPInst);
1495 
1496       InterleaveGroupMap[VPInst] = Old2New[IG];
1497       InterleaveGroupMap[VPInst]->insertMember(
1498           VPInst, IG->getIndex(Inst),
1499           Align(IG->isReverse() ? (-1) * int(IG->getFactor())
1500                                 : IG->getFactor()));
1501     }
1502   } else if (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
1503     visitRegion(Region, Old2New, IAI);
1504   else
1505     llvm_unreachable("Unsupported kind of VPBlock.");
1506 }
1507 
1508 VPInterleavedAccessInfo::VPInterleavedAccessInfo(VPlan &Plan,
1509                                                  InterleavedAccessInfo &IAI) {
1510   Old2NewTy Old2New;
1511   visitRegion(Plan.getVectorLoopRegion(), Old2New, IAI);
1512 }
1513 
1514 void VPSlotTracker::assignName(const VPValue *V) {
1515   assert(!VPValue2Name.contains(V) && "VPValue already has a name!");
1516   auto *UV = V->getUnderlyingValue();
1517   auto *VPI = dyn_cast_or_null<VPInstruction>(V->getDefiningRecipe());
1518   if (!UV && !(VPI && !VPI->getName().empty())) {
1519     VPValue2Name[V] = (Twine("vp<%") + Twine(NextSlot) + ">").str();
1520     NextSlot++;
1521     return;
1522   }
1523 
1524   // Use the name of the underlying Value, wrapped in "ir<>", and versioned by
1525   // appending ".Number" to the name if there are multiple uses.
1526   std::string Name;
1527   if (UV) {
1528     raw_string_ostream S(Name);
1529     UV->printAsOperand(S, false);
1530   } else
1531     Name = VPI->getName();
1532 
1533   assert(!Name.empty() && "Name cannot be empty.");
1534   StringRef Prefix = UV ? "ir<" : "vp<%";
1535   std::string BaseName = (Twine(Prefix) + Name + Twine(">")).str();
1536 
1537   // First assign the base name for V.
1538   const auto &[A, _] = VPValue2Name.insert({V, BaseName});
1539   // Integer or FP constants with different types will result in he same string
1540   // due to stripping types.
1541   if (V->isLiveIn() && isa<ConstantInt, ConstantFP>(UV))
1542     return;
1543 
1544   // If it is already used by C > 0 other VPValues, increase the version counter
1545   // C and use it for V.
1546   const auto &[C, UseInserted] = BaseName2Version.insert({BaseName, 0});
1547   if (!UseInserted) {
1548     C->second++;
1549     A->second = (BaseName + Twine(".") + Twine(C->second)).str();
1550   }
1551 }
1552 
1553 void VPSlotTracker::assignNames(const VPlan &Plan) {
1554   if (Plan.VF.getNumUsers() > 0)
1555     assignName(&Plan.VF);
1556   if (Plan.VFxUF.getNumUsers() > 0)
1557     assignName(&Plan.VFxUF);
1558   assignName(&Plan.VectorTripCount);
1559   if (Plan.BackedgeTakenCount)
1560     assignName(Plan.BackedgeTakenCount);
1561   for (VPValue *LI : Plan.VPLiveInsToFree)
1562     assignName(LI);
1563 
1564   ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<const VPBlockBase *>>
1565       RPOT(VPBlockDeepTraversalWrapper<const VPBlockBase *>(Plan.getEntry()));
1566   for (const VPBasicBlock *VPBB :
1567        VPBlockUtils::blocksOnly<const VPBasicBlock>(RPOT))
1568     assignNames(VPBB);
1569 }
1570 
1571 void VPSlotTracker::assignNames(const VPBasicBlock *VPBB) {
1572   for (const VPRecipeBase &Recipe : *VPBB)
1573     for (VPValue *Def : Recipe.definedValues())
1574       assignName(Def);
1575 }
1576 
1577 std::string VPSlotTracker::getOrCreateName(const VPValue *V) const {
1578   std::string Name = VPValue2Name.lookup(V);
1579   if (!Name.empty())
1580     return Name;
1581 
1582   // If no name was assigned, no VPlan was provided when creating the slot
1583   // tracker or it is not reachable from the provided VPlan. This can happen,
1584   // e.g. when trying to print a recipe that has not been inserted into a VPlan
1585   // in a debugger.
1586   // TODO: Update VPSlotTracker constructor to assign names to recipes &
1587   // VPValues not associated with a VPlan, instead of constructing names ad-hoc
1588   // here.
1589   const VPRecipeBase *DefR = V->getDefiningRecipe();
1590   (void)DefR;
1591   assert((!DefR || !DefR->getParent() || !DefR->getParent()->getPlan()) &&
1592          "VPValue defined by a recipe in a VPlan?");
1593 
1594   // Use the underlying value's name, if there is one.
1595   if (auto *UV = V->getUnderlyingValue()) {
1596     std::string Name;
1597     raw_string_ostream S(Name);
1598     UV->printAsOperand(S, false);
1599     return (Twine("ir<") + Name + ">").str();
1600   }
1601 
1602   return "<badref>";
1603 }
1604 
1605 bool LoopVectorizationPlanner::getDecisionAndClampRange(
1606     const std::function<bool(ElementCount)> &Predicate, VFRange &Range) {
1607   assert(!Range.isEmpty() && "Trying to test an empty VF range.");
1608   bool PredicateAtRangeStart = Predicate(Range.Start);
1609 
1610   for (ElementCount TmpVF : VFRange(Range.Start * 2, Range.End))
1611     if (Predicate(TmpVF) != PredicateAtRangeStart) {
1612       Range.End = TmpVF;
1613       break;
1614     }
1615 
1616   return PredicateAtRangeStart;
1617 }
1618 
1619 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF,
1620 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range
1621 /// of VF's starting at a given VF and extending it as much as possible. Each
1622 /// vectorization decision can potentially shorten this sub-range during
1623 /// buildVPlan().
1624 void LoopVectorizationPlanner::buildVPlans(ElementCount MinVF,
1625                                            ElementCount MaxVF) {
1626   auto MaxVFTimes2 = MaxVF * 2;
1627   for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFTimes2);) {
1628     VFRange SubRange = {VF, MaxVFTimes2};
1629     auto Plan = buildVPlan(SubRange);
1630     VPlanTransforms::optimize(*Plan);
1631     // Update the name of the latch of the top-level vector loop region region
1632     // after optimizations which includes block folding.
1633     Plan->getVectorLoopRegion()->getExiting()->setName("vector.latch");
1634     VPlans.push_back(std::move(Plan));
1635     VF = SubRange.End;
1636   }
1637 }
1638 
1639 VPlan &LoopVectorizationPlanner::getPlanFor(ElementCount VF) const {
1640   assert(count_if(VPlans,
1641                   [VF](const VPlanPtr &Plan) { return Plan->hasVF(VF); }) ==
1642              1 &&
1643          "Multiple VPlans for VF.");
1644 
1645   for (const VPlanPtr &Plan : VPlans) {
1646     if (Plan->hasVF(VF))
1647       return *Plan.get();
1648   }
1649   llvm_unreachable("No plan found!");
1650 }
1651 
1652 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1653 void LoopVectorizationPlanner::printPlans(raw_ostream &O) {
1654   if (VPlans.empty()) {
1655     O << "LV: No VPlans built.\n";
1656     return;
1657   }
1658   for (const auto &Plan : VPlans)
1659     if (PrintVPlansInDotFormat)
1660       Plan->printDOT(O);
1661     else
1662       Plan->print(O);
1663 }
1664 #endif
1665 
1666 TargetTransformInfo::OperandValueInfo
1667 VPCostContext::getOperandInfo(VPValue *V) const {
1668   if (!V->isLiveIn())
1669     return {};
1670 
1671   return TTI::getOperandInfo(V->getLiveInIRValue());
1672 }
1673