1 //===- VPlan.cpp - Vectorizer Plan ----------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This is the LLVM vectorization plan. It represents a candidate for 11 /// vectorization, allowing to plan and optimize how to vectorize a given loop 12 /// before generating LLVM-IR. 13 /// The vectorizer uses vectorization plans to estimate the costs of potential 14 /// candidates and if profitable to execute the desired plan, generating vector 15 /// LLVM-IR code. 16 /// 17 //===----------------------------------------------------------------------===// 18 19 #include "VPlan.h" 20 #include "LoopVectorizationPlanner.h" 21 #include "VPlanCFG.h" 22 #include "VPlanPatternMatch.h" 23 #include "VPlanTransforms.h" 24 #include "VPlanUtils.h" 25 #include "llvm/ADT/PostOrderIterator.h" 26 #include "llvm/ADT/STLExtras.h" 27 #include "llvm/ADT/SmallVector.h" 28 #include "llvm/ADT/StringExtras.h" 29 #include "llvm/ADT/Twine.h" 30 #include "llvm/Analysis/DomTreeUpdater.h" 31 #include "llvm/Analysis/LoopInfo.h" 32 #include "llvm/IR/BasicBlock.h" 33 #include "llvm/IR/CFG.h" 34 #include "llvm/IR/IRBuilder.h" 35 #include "llvm/IR/Instruction.h" 36 #include "llvm/IR/Instructions.h" 37 #include "llvm/IR/Type.h" 38 #include "llvm/IR/Value.h" 39 #include "llvm/Support/Casting.h" 40 #include "llvm/Support/CommandLine.h" 41 #include "llvm/Support/Debug.h" 42 #include "llvm/Support/GraphWriter.h" 43 #include "llvm/Support/raw_ostream.h" 44 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 45 #include "llvm/Transforms/Utils/LoopVersioning.h" 46 #include <cassert> 47 #include <string> 48 49 using namespace llvm; 50 using namespace llvm::VPlanPatternMatch; 51 52 namespace llvm { 53 extern cl::opt<bool> EnableVPlanNativePath; 54 } 55 extern cl::opt<unsigned> ForceTargetInstructionCost; 56 57 static cl::opt<bool> PrintVPlansInDotFormat( 58 "vplan-print-in-dot-format", cl::Hidden, 59 cl::desc("Use dot format instead of plain text when dumping VPlans")); 60 61 #define DEBUG_TYPE "loop-vectorize" 62 63 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 64 raw_ostream &llvm::operator<<(raw_ostream &OS, const VPValue &V) { 65 const VPInstruction *Instr = dyn_cast<VPInstruction>(&V); 66 VPSlotTracker SlotTracker( 67 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr); 68 V.print(OS, SlotTracker); 69 return OS; 70 } 71 #endif 72 73 Value *VPLane::getAsRuntimeExpr(IRBuilderBase &Builder, 74 const ElementCount &VF) const { 75 switch (LaneKind) { 76 case VPLane::Kind::ScalableLast: 77 // Lane = RuntimeVF - VF.getKnownMinValue() + Lane 78 return Builder.CreateSub(getRuntimeVF(Builder, Builder.getInt32Ty(), VF), 79 Builder.getInt32(VF.getKnownMinValue() - Lane)); 80 case VPLane::Kind::First: 81 return Builder.getInt32(Lane); 82 } 83 llvm_unreachable("Unknown lane kind"); 84 } 85 86 VPValue::VPValue(const unsigned char SC, Value *UV, VPDef *Def) 87 : SubclassID(SC), UnderlyingVal(UV), Def(Def) { 88 if (Def) 89 Def->addDefinedValue(this); 90 } 91 92 VPValue::~VPValue() { 93 assert(Users.empty() && "trying to delete a VPValue with remaining users"); 94 if (Def) 95 Def->removeDefinedValue(this); 96 } 97 98 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 99 void VPValue::print(raw_ostream &OS, VPSlotTracker &SlotTracker) const { 100 if (const VPRecipeBase *R = dyn_cast_or_null<VPRecipeBase>(Def)) 101 R->print(OS, "", SlotTracker); 102 else 103 printAsOperand(OS, SlotTracker); 104 } 105 106 void VPValue::dump() const { 107 const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this->Def); 108 VPSlotTracker SlotTracker( 109 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr); 110 print(dbgs(), SlotTracker); 111 dbgs() << "\n"; 112 } 113 114 void VPDef::dump() const { 115 const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this); 116 VPSlotTracker SlotTracker( 117 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr); 118 print(dbgs(), "", SlotTracker); 119 dbgs() << "\n"; 120 } 121 #endif 122 123 VPRecipeBase *VPValue::getDefiningRecipe() { 124 return cast_or_null<VPRecipeBase>(Def); 125 } 126 127 const VPRecipeBase *VPValue::getDefiningRecipe() const { 128 return cast_or_null<VPRecipeBase>(Def); 129 } 130 131 // Get the top-most entry block of \p Start. This is the entry block of the 132 // containing VPlan. This function is templated to support both const and non-const blocks 133 template <typename T> static T *getPlanEntry(T *Start) { 134 T *Next = Start; 135 T *Current = Start; 136 while ((Next = Next->getParent())) 137 Current = Next; 138 139 SmallSetVector<T *, 8> WorkList; 140 WorkList.insert(Current); 141 142 for (unsigned i = 0; i < WorkList.size(); i++) { 143 T *Current = WorkList[i]; 144 if (Current->getNumPredecessors() == 0) 145 return Current; 146 auto &Predecessors = Current->getPredecessors(); 147 WorkList.insert(Predecessors.begin(), Predecessors.end()); 148 } 149 150 llvm_unreachable("VPlan without any entry node without predecessors"); 151 } 152 153 VPlan *VPBlockBase::getPlan() { return getPlanEntry(this)->Plan; } 154 155 const VPlan *VPBlockBase::getPlan() const { return getPlanEntry(this)->Plan; } 156 157 /// \return the VPBasicBlock that is the entry of Block, possibly indirectly. 158 const VPBasicBlock *VPBlockBase::getEntryBasicBlock() const { 159 const VPBlockBase *Block = this; 160 while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 161 Block = Region->getEntry(); 162 return cast<VPBasicBlock>(Block); 163 } 164 165 VPBasicBlock *VPBlockBase::getEntryBasicBlock() { 166 VPBlockBase *Block = this; 167 while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 168 Block = Region->getEntry(); 169 return cast<VPBasicBlock>(Block); 170 } 171 172 void VPBlockBase::setPlan(VPlan *ParentPlan) { 173 assert(ParentPlan->getEntry() == this && "Can only set plan on its entry."); 174 Plan = ParentPlan; 175 } 176 177 /// \return the VPBasicBlock that is the exit of Block, possibly indirectly. 178 const VPBasicBlock *VPBlockBase::getExitingBasicBlock() const { 179 const VPBlockBase *Block = this; 180 while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 181 Block = Region->getExiting(); 182 return cast<VPBasicBlock>(Block); 183 } 184 185 VPBasicBlock *VPBlockBase::getExitingBasicBlock() { 186 VPBlockBase *Block = this; 187 while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 188 Block = Region->getExiting(); 189 return cast<VPBasicBlock>(Block); 190 } 191 192 VPBlockBase *VPBlockBase::getEnclosingBlockWithSuccessors() { 193 if (!Successors.empty() || !Parent) 194 return this; 195 assert(Parent->getExiting() == this && 196 "Block w/o successors not the exiting block of its parent."); 197 return Parent->getEnclosingBlockWithSuccessors(); 198 } 199 200 VPBlockBase *VPBlockBase::getEnclosingBlockWithPredecessors() { 201 if (!Predecessors.empty() || !Parent) 202 return this; 203 assert(Parent->getEntry() == this && 204 "Block w/o predecessors not the entry of its parent."); 205 return Parent->getEnclosingBlockWithPredecessors(); 206 } 207 208 VPBasicBlock::iterator VPBasicBlock::getFirstNonPhi() { 209 iterator It = begin(); 210 while (It != end() && It->isPhi()) 211 It++; 212 return It; 213 } 214 215 VPTransformState::VPTransformState(const TargetTransformInfo *TTI, 216 ElementCount VF, unsigned UF, LoopInfo *LI, 217 DominatorTree *DT, IRBuilderBase &Builder, 218 InnerLoopVectorizer *ILV, VPlan *Plan, 219 Loop *CurrentParentLoop, Type *CanonicalIVTy) 220 : TTI(TTI), VF(VF), CFG(DT), LI(LI), Builder(Builder), ILV(ILV), Plan(Plan), 221 CurrentParentLoop(CurrentParentLoop), LVer(nullptr), 222 TypeAnalysis(CanonicalIVTy) {} 223 224 Value *VPTransformState::get(VPValue *Def, const VPLane &Lane) { 225 if (Def->isLiveIn()) 226 return Def->getLiveInIRValue(); 227 228 if (hasScalarValue(Def, Lane)) 229 return Data.VPV2Scalars[Def][Lane.mapToCacheIndex(VF)]; 230 231 if (!Lane.isFirstLane() && vputils::isUniformAfterVectorization(Def) && 232 hasScalarValue(Def, VPLane::getFirstLane())) { 233 return Data.VPV2Scalars[Def][0]; 234 } 235 236 assert(hasVectorValue(Def)); 237 auto *VecPart = Data.VPV2Vector[Def]; 238 if (!VecPart->getType()->isVectorTy()) { 239 assert(Lane.isFirstLane() && "cannot get lane > 0 for scalar"); 240 return VecPart; 241 } 242 // TODO: Cache created scalar values. 243 Value *LaneV = Lane.getAsRuntimeExpr(Builder, VF); 244 auto *Extract = Builder.CreateExtractElement(VecPart, LaneV); 245 // set(Def, Extract, Instance); 246 return Extract; 247 } 248 249 Value *VPTransformState::get(VPValue *Def, bool NeedsScalar) { 250 if (NeedsScalar) { 251 assert((VF.isScalar() || Def->isLiveIn() || hasVectorValue(Def) || 252 !vputils::onlyFirstLaneUsed(Def) || 253 (hasScalarValue(Def, VPLane(0)) && 254 Data.VPV2Scalars[Def].size() == 1)) && 255 "Trying to access a single scalar per part but has multiple scalars " 256 "per part."); 257 return get(Def, VPLane(0)); 258 } 259 260 // If Values have been set for this Def return the one relevant for \p Part. 261 if (hasVectorValue(Def)) 262 return Data.VPV2Vector[Def]; 263 264 auto GetBroadcastInstrs = [this, Def](Value *V) { 265 bool SafeToHoist = Def->isDefinedOutsideLoopRegions(); 266 if (VF.isScalar()) 267 return V; 268 // Place the code for broadcasting invariant variables in the new preheader. 269 IRBuilder<>::InsertPointGuard Guard(Builder); 270 if (SafeToHoist) { 271 BasicBlock *LoopVectorPreHeader = 272 CFG.VPBB2IRBB[Plan->getVectorPreheader()]; 273 if (LoopVectorPreHeader) 274 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 275 } 276 277 // Place the code for broadcasting invariant variables in the new preheader. 278 // Broadcast the scalar into all locations in the vector. 279 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 280 281 return Shuf; 282 }; 283 284 if (!hasScalarValue(Def, {0})) { 285 assert(Def->isLiveIn() && "expected a live-in"); 286 Value *IRV = Def->getLiveInIRValue(); 287 Value *B = GetBroadcastInstrs(IRV); 288 set(Def, B); 289 return B; 290 } 291 292 Value *ScalarValue = get(Def, VPLane(0)); 293 // If we aren't vectorizing, we can just copy the scalar map values over 294 // to the vector map. 295 if (VF.isScalar()) { 296 set(Def, ScalarValue); 297 return ScalarValue; 298 } 299 300 bool IsUniform = vputils::isUniformAfterVectorization(Def); 301 302 VPLane LastLane(IsUniform ? 0 : VF.getKnownMinValue() - 1); 303 // Check if there is a scalar value for the selected lane. 304 if (!hasScalarValue(Def, LastLane)) { 305 // At the moment, VPWidenIntOrFpInductionRecipes, VPScalarIVStepsRecipes and 306 // VPExpandSCEVRecipes can also be uniform. 307 assert((isa<VPWidenIntOrFpInductionRecipe, VPScalarIVStepsRecipe, 308 VPExpandSCEVRecipe>(Def->getDefiningRecipe())) && 309 "unexpected recipe found to be invariant"); 310 IsUniform = true; 311 LastLane = 0; 312 } 313 314 auto *LastInst = cast<Instruction>(get(Def, LastLane)); 315 // Set the insert point after the last scalarized instruction or after the 316 // last PHI, if LastInst is a PHI. This ensures the insertelement sequence 317 // will directly follow the scalar definitions. 318 auto OldIP = Builder.saveIP(); 319 auto NewIP = isa<PHINode>(LastInst) 320 ? LastInst->getParent()->getFirstNonPHIIt() 321 : std::next(BasicBlock::iterator(LastInst)); 322 Builder.SetInsertPoint(&*NewIP); 323 324 // However, if we are vectorizing, we need to construct the vector values. 325 // If the value is known to be uniform after vectorization, we can just 326 // broadcast the scalar value corresponding to lane zero. Otherwise, we 327 // construct the vector values using insertelement instructions. Since the 328 // resulting vectors are stored in State, we will only generate the 329 // insertelements once. 330 Value *VectorValue = nullptr; 331 if (IsUniform) { 332 VectorValue = GetBroadcastInstrs(ScalarValue); 333 set(Def, VectorValue); 334 } else { 335 // Initialize packing with insertelements to start from undef. 336 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 337 Value *Undef = PoisonValue::get(VectorType::get(LastInst->getType(), VF)); 338 set(Def, Undef); 339 for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane) 340 packScalarIntoVectorValue(Def, Lane); 341 VectorValue = get(Def); 342 } 343 Builder.restoreIP(OldIP); 344 return VectorValue; 345 } 346 347 BasicBlock *VPTransformState::CFGState::getPreheaderBBFor(VPRecipeBase *R) { 348 VPRegionBlock *LoopRegion = R->getParent()->getEnclosingLoopRegion(); 349 return VPBB2IRBB[LoopRegion->getPreheaderVPBB()]; 350 } 351 352 void VPTransformState::addNewMetadata(Instruction *To, 353 const Instruction *Orig) { 354 // If the loop was versioned with memchecks, add the corresponding no-alias 355 // metadata. 356 if (LVer && isa<LoadInst, StoreInst>(Orig)) 357 LVer->annotateInstWithNoAlias(To, Orig); 358 } 359 360 void VPTransformState::addMetadata(Value *To, Instruction *From) { 361 // No source instruction to transfer metadata from? 362 if (!From) 363 return; 364 365 if (Instruction *ToI = dyn_cast<Instruction>(To)) { 366 propagateMetadata(ToI, From); 367 addNewMetadata(ToI, From); 368 } 369 } 370 371 void VPTransformState::setDebugLocFrom(DebugLoc DL) { 372 const DILocation *DIL = DL; 373 // When a FSDiscriminator is enabled, we don't need to add the multiply 374 // factors to the discriminators. 375 if (DIL && 376 Builder.GetInsertBlock() 377 ->getParent() 378 ->shouldEmitDebugInfoForProfiling() && 379 !EnableFSDiscriminator) { 380 // FIXME: For scalable vectors, assume vscale=1. 381 unsigned UF = Plan->getUF(); 382 auto NewDIL = 383 DIL->cloneByMultiplyingDuplicationFactor(UF * VF.getKnownMinValue()); 384 if (NewDIL) 385 Builder.SetCurrentDebugLocation(*NewDIL); 386 else 387 LLVM_DEBUG(dbgs() << "Failed to create new discriminator: " 388 << DIL->getFilename() << " Line: " << DIL->getLine()); 389 } else 390 Builder.SetCurrentDebugLocation(DIL); 391 } 392 393 void VPTransformState::packScalarIntoVectorValue(VPValue *Def, 394 const VPLane &Lane) { 395 Value *ScalarInst = get(Def, Lane); 396 Value *VectorValue = get(Def); 397 VectorValue = Builder.CreateInsertElement(VectorValue, ScalarInst, 398 Lane.getAsRuntimeExpr(Builder, VF)); 399 set(Def, VectorValue); 400 } 401 402 BasicBlock * 403 VPBasicBlock::createEmptyBasicBlock(VPTransformState::CFGState &CFG) { 404 // BB stands for IR BasicBlocks. VPBB stands for VPlan VPBasicBlocks. 405 // Pred stands for Predessor. Prev stands for Previous - last visited/created. 406 BasicBlock *PrevBB = CFG.PrevBB; 407 BasicBlock *NewBB = BasicBlock::Create(PrevBB->getContext(), getName(), 408 PrevBB->getParent(), CFG.ExitBB); 409 LLVM_DEBUG(dbgs() << "LV: created " << NewBB->getName() << '\n'); 410 411 return NewBB; 412 } 413 414 void VPBasicBlock::connectToPredecessors(VPTransformState::CFGState &CFG) { 415 BasicBlock *NewBB = CFG.VPBB2IRBB[this]; 416 // Hook up the new basic block to its predecessors. 417 for (VPBlockBase *PredVPBlock : getHierarchicalPredecessors()) { 418 VPBasicBlock *PredVPBB = PredVPBlock->getExitingBasicBlock(); 419 auto &PredVPSuccessors = PredVPBB->getHierarchicalSuccessors(); 420 BasicBlock *PredBB = CFG.VPBB2IRBB[PredVPBB]; 421 422 assert(PredBB && "Predecessor basic-block not found building successor."); 423 auto *PredBBTerminator = PredBB->getTerminator(); 424 LLVM_DEBUG(dbgs() << "LV: draw edge from" << PredBB->getName() << '\n'); 425 426 auto *TermBr = dyn_cast<BranchInst>(PredBBTerminator); 427 if (isa<UnreachableInst>(PredBBTerminator)) { 428 assert(PredVPSuccessors.size() == 1 && 429 "Predecessor ending w/o branch must have single successor."); 430 DebugLoc DL = PredBBTerminator->getDebugLoc(); 431 PredBBTerminator->eraseFromParent(); 432 auto *Br = BranchInst::Create(NewBB, PredBB); 433 Br->setDebugLoc(DL); 434 } else if (TermBr && !TermBr->isConditional()) { 435 TermBr->setSuccessor(0, NewBB); 436 } else { 437 // Set each forward successor here when it is created, excluding 438 // backedges. A backward successor is set when the branch is created. 439 unsigned idx = PredVPSuccessors.front() == this ? 0 : 1; 440 assert((TermBr && (!TermBr->getSuccessor(idx) || 441 (isa<VPIRBasicBlock>(this) && 442 TermBr->getSuccessor(idx) == NewBB))) && 443 "Trying to reset an existing successor block."); 444 TermBr->setSuccessor(idx, NewBB); 445 } 446 CFG.DTU.applyUpdates({{DominatorTree::Insert, PredBB, NewBB}}); 447 } 448 } 449 450 void VPIRBasicBlock::execute(VPTransformState *State) { 451 assert(getHierarchicalSuccessors().size() <= 2 && 452 "VPIRBasicBlock can have at most two successors at the moment!"); 453 State->Builder.SetInsertPoint(IRBB->getTerminator()); 454 State->CFG.PrevBB = IRBB; 455 State->CFG.VPBB2IRBB[this] = IRBB; 456 executeRecipes(State, IRBB); 457 // Create a branch instruction to terminate IRBB if one was not created yet 458 // and is needed. 459 if (getSingleSuccessor() && isa<UnreachableInst>(IRBB->getTerminator())) { 460 auto *Br = State->Builder.CreateBr(IRBB); 461 Br->setOperand(0, nullptr); 462 IRBB->getTerminator()->eraseFromParent(); 463 } else { 464 assert( 465 (getNumSuccessors() == 0 || isa<BranchInst>(IRBB->getTerminator())) && 466 "other blocks must be terminated by a branch"); 467 } 468 469 connectToPredecessors(State->CFG); 470 } 471 472 VPIRBasicBlock *VPIRBasicBlock::clone() { 473 auto *NewBlock = getPlan()->createEmptyVPIRBasicBlock(IRBB); 474 for (VPRecipeBase &R : Recipes) 475 NewBlock->appendRecipe(R.clone()); 476 return NewBlock; 477 } 478 479 void VPBasicBlock::execute(VPTransformState *State) { 480 bool Replica = bool(State->Lane); 481 BasicBlock *NewBB = State->CFG.PrevBB; // Reuse it if possible. 482 483 auto IsReplicateRegion = [](VPBlockBase *BB) { 484 auto *R = dyn_cast_or_null<VPRegionBlock>(BB); 485 return R && R->isReplicator(); 486 }; 487 488 // 1. Create an IR basic block. 489 if ((Replica && this == getParent()->getEntry()) || 490 IsReplicateRegion(getSingleHierarchicalPredecessor())) { 491 // Reuse the previous basic block if the current VPBB is either 492 // * the entry to a replicate region, or 493 // * the exit of a replicate region. 494 State->CFG.VPBB2IRBB[this] = NewBB; 495 } else { 496 NewBB = createEmptyBasicBlock(State->CFG); 497 498 State->Builder.SetInsertPoint(NewBB); 499 // Temporarily terminate with unreachable until CFG is rewired. 500 UnreachableInst *Terminator = State->Builder.CreateUnreachable(); 501 // Register NewBB in its loop. In innermost loops its the same for all 502 // BB's. 503 if (State->CurrentParentLoop) 504 State->CurrentParentLoop->addBasicBlockToLoop(NewBB, *State->LI); 505 State->Builder.SetInsertPoint(Terminator); 506 507 State->CFG.PrevBB = NewBB; 508 State->CFG.VPBB2IRBB[this] = NewBB; 509 connectToPredecessors(State->CFG); 510 } 511 512 // 2. Fill the IR basic block with IR instructions. 513 executeRecipes(State, NewBB); 514 } 515 516 VPBasicBlock *VPBasicBlock::clone() { 517 auto *NewBlock = getPlan()->createVPBasicBlock(getName()); 518 for (VPRecipeBase &R : *this) 519 NewBlock->appendRecipe(R.clone()); 520 return NewBlock; 521 } 522 523 void VPBasicBlock::executeRecipes(VPTransformState *State, BasicBlock *BB) { 524 LLVM_DEBUG(dbgs() << "LV: vectorizing VPBB:" << getName() 525 << " in BB:" << BB->getName() << '\n'); 526 527 State->CFG.PrevVPBB = this; 528 529 for (VPRecipeBase &Recipe : Recipes) 530 Recipe.execute(*State); 531 532 LLVM_DEBUG(dbgs() << "LV: filled BB:" << *BB); 533 } 534 535 VPBasicBlock *VPBasicBlock::splitAt(iterator SplitAt) { 536 assert((SplitAt == end() || SplitAt->getParent() == this) && 537 "can only split at a position in the same block"); 538 539 SmallVector<VPBlockBase *, 2> Succs(successors()); 540 // Create new empty block after the block to split. 541 auto *SplitBlock = getPlan()->createVPBasicBlock(getName() + ".split"); 542 VPBlockUtils::insertBlockAfter(SplitBlock, this); 543 544 // Finally, move the recipes starting at SplitAt to new block. 545 for (VPRecipeBase &ToMove : 546 make_early_inc_range(make_range(SplitAt, this->end()))) 547 ToMove.moveBefore(*SplitBlock, SplitBlock->end()); 548 549 return SplitBlock; 550 } 551 552 /// Return the enclosing loop region for region \p P. The templated version is 553 /// used to support both const and non-const block arguments. 554 template <typename T> static T *getEnclosingLoopRegionForRegion(T *P) { 555 if (P && P->isReplicator()) { 556 P = P->getParent(); 557 // Multiple loop regions can be nested, but replicate regions can only be 558 // nested inside a loop region or must be outside any other region. 559 assert((!P || !cast<VPRegionBlock>(P)->isReplicator()) && 560 "unexpected nested replicate regions"); 561 } 562 return P; 563 } 564 565 VPRegionBlock *VPBasicBlock::getEnclosingLoopRegion() { 566 return getEnclosingLoopRegionForRegion(getParent()); 567 } 568 569 const VPRegionBlock *VPBasicBlock::getEnclosingLoopRegion() const { 570 return getEnclosingLoopRegionForRegion(getParent()); 571 } 572 573 static bool hasConditionalTerminator(const VPBasicBlock *VPBB) { 574 if (VPBB->empty()) { 575 assert( 576 VPBB->getNumSuccessors() < 2 && 577 "block with multiple successors doesn't have a recipe as terminator"); 578 return false; 579 } 580 581 const VPRecipeBase *R = &VPBB->back(); 582 bool IsCondBranch = isa<VPBranchOnMaskRecipe>(R) || 583 match(R, m_BranchOnCond(m_VPValue())) || 584 match(R, m_BranchOnCount(m_VPValue(), m_VPValue())); 585 (void)IsCondBranch; 586 587 if (VPBB->getNumSuccessors() >= 2 || 588 (VPBB->isExiting() && !VPBB->getParent()->isReplicator())) { 589 assert(IsCondBranch && "block with multiple successors not terminated by " 590 "conditional branch recipe"); 591 592 return true; 593 } 594 595 assert( 596 !IsCondBranch && 597 "block with 0 or 1 successors terminated by conditional branch recipe"); 598 return false; 599 } 600 601 VPRecipeBase *VPBasicBlock::getTerminator() { 602 if (hasConditionalTerminator(this)) 603 return &back(); 604 return nullptr; 605 } 606 607 const VPRecipeBase *VPBasicBlock::getTerminator() const { 608 if (hasConditionalTerminator(this)) 609 return &back(); 610 return nullptr; 611 } 612 613 bool VPBasicBlock::isExiting() const { 614 return getParent() && getParent()->getExitingBasicBlock() == this; 615 } 616 617 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 618 void VPBlockBase::printSuccessors(raw_ostream &O, const Twine &Indent) const { 619 if (getSuccessors().empty()) { 620 O << Indent << "No successors\n"; 621 } else { 622 O << Indent << "Successor(s): "; 623 ListSeparator LS; 624 for (auto *Succ : getSuccessors()) 625 O << LS << Succ->getName(); 626 O << '\n'; 627 } 628 } 629 630 void VPBasicBlock::print(raw_ostream &O, const Twine &Indent, 631 VPSlotTracker &SlotTracker) const { 632 O << Indent << getName() << ":\n"; 633 634 auto RecipeIndent = Indent + " "; 635 for (const VPRecipeBase &Recipe : *this) { 636 Recipe.print(O, RecipeIndent, SlotTracker); 637 O << '\n'; 638 } 639 640 printSuccessors(O, Indent); 641 } 642 #endif 643 644 static std::pair<VPBlockBase *, VPBlockBase *> cloneFrom(VPBlockBase *Entry); 645 646 // Clone the CFG for all nodes reachable from \p Entry, this includes cloning 647 // the blocks and their recipes. Operands of cloned recipes will NOT be updated. 648 // Remapping of operands must be done separately. Returns a pair with the new 649 // entry and exiting blocks of the cloned region. If \p Entry isn't part of a 650 // region, return nullptr for the exiting block. 651 static std::pair<VPBlockBase *, VPBlockBase *> cloneFrom(VPBlockBase *Entry) { 652 DenseMap<VPBlockBase *, VPBlockBase *> Old2NewVPBlocks; 653 VPBlockBase *Exiting = nullptr; 654 bool InRegion = Entry->getParent(); 655 // First, clone blocks reachable from Entry. 656 for (VPBlockBase *BB : vp_depth_first_shallow(Entry)) { 657 VPBlockBase *NewBB = BB->clone(); 658 Old2NewVPBlocks[BB] = NewBB; 659 if (InRegion && BB->getNumSuccessors() == 0) { 660 assert(!Exiting && "Multiple exiting blocks?"); 661 Exiting = BB; 662 } 663 } 664 assert((!InRegion || Exiting) && "regions must have a single exiting block"); 665 666 // Second, update the predecessors & successors of the cloned blocks. 667 for (VPBlockBase *BB : vp_depth_first_shallow(Entry)) { 668 VPBlockBase *NewBB = Old2NewVPBlocks[BB]; 669 SmallVector<VPBlockBase *> NewPreds; 670 for (VPBlockBase *Pred : BB->getPredecessors()) { 671 NewPreds.push_back(Old2NewVPBlocks[Pred]); 672 } 673 NewBB->setPredecessors(NewPreds); 674 SmallVector<VPBlockBase *> NewSuccs; 675 for (VPBlockBase *Succ : BB->successors()) { 676 NewSuccs.push_back(Old2NewVPBlocks[Succ]); 677 } 678 NewBB->setSuccessors(NewSuccs); 679 } 680 681 #if !defined(NDEBUG) 682 // Verify that the order of predecessors and successors matches in the cloned 683 // version. 684 for (const auto &[OldBB, NewBB] : 685 zip(vp_depth_first_shallow(Entry), 686 vp_depth_first_shallow(Old2NewVPBlocks[Entry]))) { 687 for (const auto &[OldPred, NewPred] : 688 zip(OldBB->getPredecessors(), NewBB->getPredecessors())) 689 assert(NewPred == Old2NewVPBlocks[OldPred] && "Different predecessors"); 690 691 for (const auto &[OldSucc, NewSucc] : 692 zip(OldBB->successors(), NewBB->successors())) 693 assert(NewSucc == Old2NewVPBlocks[OldSucc] && "Different successors"); 694 } 695 #endif 696 697 return std::make_pair(Old2NewVPBlocks[Entry], 698 Exiting ? Old2NewVPBlocks[Exiting] : nullptr); 699 } 700 701 VPRegionBlock *VPRegionBlock::clone() { 702 const auto &[NewEntry, NewExiting] = cloneFrom(getEntry()); 703 auto *NewRegion = getPlan()->createVPRegionBlock(NewEntry, NewExiting, 704 getName(), isReplicator()); 705 for (VPBlockBase *Block : vp_depth_first_shallow(NewEntry)) 706 Block->setParent(NewRegion); 707 return NewRegion; 708 } 709 710 void VPRegionBlock::execute(VPTransformState *State) { 711 ReversePostOrderTraversal<VPBlockShallowTraversalWrapper<VPBlockBase *>> 712 RPOT(Entry); 713 714 if (!isReplicator()) { 715 // Create and register the new vector loop. 716 Loop *PrevLoop = State->CurrentParentLoop; 717 State->CurrentParentLoop = State->LI->AllocateLoop(); 718 BasicBlock *VectorPH = State->CFG.VPBB2IRBB[getPreheaderVPBB()]; 719 Loop *ParentLoop = State->LI->getLoopFor(VectorPH); 720 721 // Insert the new loop into the loop nest and register the new basic blocks 722 // before calling any utilities such as SCEV that require valid LoopInfo. 723 if (ParentLoop) 724 ParentLoop->addChildLoop(State->CurrentParentLoop); 725 else 726 State->LI->addTopLevelLoop(State->CurrentParentLoop); 727 728 // Visit the VPBlocks connected to "this", starting from it. 729 for (VPBlockBase *Block : RPOT) { 730 LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n'); 731 Block->execute(State); 732 } 733 734 State->CurrentParentLoop = PrevLoop; 735 return; 736 } 737 738 assert(!State->Lane && "Replicating a Region with non-null instance."); 739 740 // Enter replicating mode. 741 assert(!State->VF.isScalable() && "VF is assumed to be non scalable."); 742 State->Lane = VPLane(0); 743 for (unsigned Lane = 0, VF = State->VF.getKnownMinValue(); Lane < VF; 744 ++Lane) { 745 State->Lane = VPLane(Lane, VPLane::Kind::First); 746 // Visit the VPBlocks connected to \p this, starting from it. 747 for (VPBlockBase *Block : RPOT) { 748 LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n'); 749 Block->execute(State); 750 } 751 } 752 753 // Exit replicating mode. 754 State->Lane.reset(); 755 } 756 757 InstructionCost VPBasicBlock::cost(ElementCount VF, VPCostContext &Ctx) { 758 InstructionCost Cost = 0; 759 for (VPRecipeBase &R : Recipes) 760 Cost += R.cost(VF, Ctx); 761 return Cost; 762 } 763 764 InstructionCost VPRegionBlock::cost(ElementCount VF, VPCostContext &Ctx) { 765 if (!isReplicator()) { 766 InstructionCost Cost = 0; 767 for (VPBlockBase *Block : vp_depth_first_shallow(getEntry())) 768 Cost += Block->cost(VF, Ctx); 769 InstructionCost BackedgeCost = 770 ForceTargetInstructionCost.getNumOccurrences() 771 ? InstructionCost(ForceTargetInstructionCost.getNumOccurrences()) 772 : Ctx.TTI.getCFInstrCost(Instruction::Br, Ctx.CostKind); 773 LLVM_DEBUG(dbgs() << "Cost of " << BackedgeCost << " for VF " << VF 774 << ": vector loop backedge\n"); 775 Cost += BackedgeCost; 776 return Cost; 777 } 778 779 // Compute the cost of a replicate region. Replicating isn't supported for 780 // scalable vectors, return an invalid cost for them. 781 // TODO: Discard scalable VPlans with replicate recipes earlier after 782 // construction. 783 if (VF.isScalable()) 784 return InstructionCost::getInvalid(); 785 786 // First compute the cost of the conditionally executed recipes, followed by 787 // account for the branching cost, except if the mask is a header mask or 788 // uniform condition. 789 using namespace llvm::VPlanPatternMatch; 790 VPBasicBlock *Then = cast<VPBasicBlock>(getEntry()->getSuccessors()[0]); 791 InstructionCost ThenCost = Then->cost(VF, Ctx); 792 793 // For the scalar case, we may not always execute the original predicated 794 // block, Thus, scale the block's cost by the probability of executing it. 795 if (VF.isScalar()) 796 return ThenCost / getReciprocalPredBlockProb(); 797 798 return ThenCost; 799 } 800 801 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 802 void VPRegionBlock::print(raw_ostream &O, const Twine &Indent, 803 VPSlotTracker &SlotTracker) const { 804 O << Indent << (isReplicator() ? "<xVFxUF> " : "<x1> ") << getName() << ": {"; 805 auto NewIndent = Indent + " "; 806 for (auto *BlockBase : vp_depth_first_shallow(Entry)) { 807 O << '\n'; 808 BlockBase->print(O, NewIndent, SlotTracker); 809 } 810 O << Indent << "}\n"; 811 812 printSuccessors(O, Indent); 813 } 814 #endif 815 816 VPlan::VPlan(Loop *L) { 817 setEntry(createVPIRBasicBlock(L->getLoopPreheader())); 818 ScalarHeader = createVPIRBasicBlock(L->getHeader()); 819 } 820 821 VPlan::~VPlan() { 822 VPValue DummyValue; 823 824 for (auto *VPB : CreatedBlocks) { 825 if (auto *VPBB = dyn_cast<VPBasicBlock>(VPB)) { 826 // Replace all operands of recipes and all VPValues defined in VPBB with 827 // DummyValue so the block can be deleted. 828 for (VPRecipeBase &R : *VPBB) { 829 for (auto *Def : R.definedValues()) 830 Def->replaceAllUsesWith(&DummyValue); 831 832 for (unsigned I = 0, E = R.getNumOperands(); I != E; I++) 833 R.setOperand(I, &DummyValue); 834 } 835 } 836 delete VPB; 837 } 838 for (VPValue *VPV : VPLiveInsToFree) 839 delete VPV; 840 if (BackedgeTakenCount) 841 delete BackedgeTakenCount; 842 } 843 844 VPlanPtr VPlan::createInitialVPlan(Type *InductionTy, 845 PredicatedScalarEvolution &PSE, 846 bool RequiresScalarEpilogueCheck, 847 bool TailFolded, Loop *TheLoop) { 848 auto Plan = std::make_unique<VPlan>(TheLoop); 849 VPBlockBase *ScalarHeader = Plan->getScalarHeader(); 850 851 // Connect entry only to vector preheader initially. Entry will also be 852 // connected to the scalar preheader later, during skeleton creation when 853 // runtime guards are added as needed. Note that when executing the VPlan for 854 // an epilogue vector loop, the original entry block here will be replaced by 855 // a new VPIRBasicBlock wrapping the entry to the epilogue vector loop after 856 // generating code for the main vector loop. 857 VPBasicBlock *VecPreheader = Plan->createVPBasicBlock("vector.ph"); 858 VPBlockUtils::connectBlocks(Plan->getEntry(), VecPreheader); 859 860 // Create SCEV and VPValue for the trip count. 861 // We use the symbolic max backedge-taken-count, which works also when 862 // vectorizing loops with uncountable early exits. 863 const SCEV *BackedgeTakenCountSCEV = PSE.getSymbolicMaxBackedgeTakenCount(); 864 assert(!isa<SCEVCouldNotCompute>(BackedgeTakenCountSCEV) && 865 "Invalid loop count"); 866 ScalarEvolution &SE = *PSE.getSE(); 867 const SCEV *TripCount = SE.getTripCountFromExitCount(BackedgeTakenCountSCEV, 868 InductionTy, TheLoop); 869 Plan->TripCount = 870 vputils::getOrCreateVPValueForSCEVExpr(*Plan, TripCount, SE); 871 872 // Create VPRegionBlock, with empty header and latch blocks, to be filled 873 // during processing later. 874 VPBasicBlock *HeaderVPBB = Plan->createVPBasicBlock("vector.body"); 875 VPBasicBlock *LatchVPBB = Plan->createVPBasicBlock("vector.latch"); 876 VPBlockUtils::insertBlockAfter(LatchVPBB, HeaderVPBB); 877 auto *TopRegion = Plan->createVPRegionBlock( 878 HeaderVPBB, LatchVPBB, "vector loop", false /*isReplicator*/); 879 880 VPBlockUtils::insertBlockAfter(TopRegion, VecPreheader); 881 VPBasicBlock *MiddleVPBB = Plan->createVPBasicBlock("middle.block"); 882 VPBlockUtils::insertBlockAfter(MiddleVPBB, TopRegion); 883 884 VPBasicBlock *ScalarPH = Plan->createVPBasicBlock("scalar.ph"); 885 VPBlockUtils::connectBlocks(ScalarPH, ScalarHeader); 886 if (!RequiresScalarEpilogueCheck) { 887 VPBlockUtils::connectBlocks(MiddleVPBB, ScalarPH); 888 return Plan; 889 } 890 891 // If needed, add a check in the middle block to see if we have completed 892 // all of the iterations in the first vector loop. Three cases: 893 // 1) If (N - N%VF) == N, then we *don't* need to run the remainder. 894 // Thus if tail is to be folded, we know we don't need to run the 895 // remainder and we can set the condition to true. 896 // 2) If we require a scalar epilogue, there is no conditional branch as 897 // we unconditionally branch to the scalar preheader. Do nothing. 898 // 3) Otherwise, construct a runtime check. 899 BasicBlock *IRExitBlock = TheLoop->getUniqueLatchExitBlock(); 900 auto *VPExitBlock = Plan->createVPIRBasicBlock(IRExitBlock); 901 // The connection order corresponds to the operands of the conditional branch. 902 VPBlockUtils::insertBlockAfter(VPExitBlock, MiddleVPBB); 903 VPBlockUtils::connectBlocks(MiddleVPBB, ScalarPH); 904 905 auto *ScalarLatchTerm = TheLoop->getLoopLatch()->getTerminator(); 906 // Here we use the same DebugLoc as the scalar loop latch terminator instead 907 // of the corresponding compare because they may have ended up with 908 // different line numbers and we want to avoid awkward line stepping while 909 // debugging. Eg. if the compare has got a line number inside the loop. 910 VPBuilder Builder(MiddleVPBB); 911 VPValue *Cmp = 912 TailFolded 913 ? Plan->getOrAddLiveIn(ConstantInt::getTrue( 914 IntegerType::getInt1Ty(TripCount->getType()->getContext()))) 915 : Builder.createICmp(CmpInst::ICMP_EQ, Plan->getTripCount(), 916 &Plan->getVectorTripCount(), 917 ScalarLatchTerm->getDebugLoc(), "cmp.n"); 918 Builder.createNaryOp(VPInstruction::BranchOnCond, {Cmp}, 919 ScalarLatchTerm->getDebugLoc()); 920 return Plan; 921 } 922 923 void VPlan::prepareToExecute(Value *TripCountV, Value *VectorTripCountV, 924 VPTransformState &State) { 925 Type *TCTy = TripCountV->getType(); 926 // Check if the backedge taken count is needed, and if so build it. 927 if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) { 928 IRBuilder<> Builder(State.CFG.PrevBB->getTerminator()); 929 auto *TCMO = Builder.CreateSub(TripCountV, ConstantInt::get(TCTy, 1), 930 "trip.count.minus.1"); 931 BackedgeTakenCount->setUnderlyingValue(TCMO); 932 } 933 934 VectorTripCount.setUnderlyingValue(VectorTripCountV); 935 936 IRBuilder<> Builder(State.CFG.PrevBB->getTerminator()); 937 // FIXME: Model VF * UF computation completely in VPlan. 938 assert((!getVectorLoopRegion() || VFxUF.getNumUsers()) && 939 "VFxUF expected to always have users"); 940 unsigned UF = getUF(); 941 if (VF.getNumUsers()) { 942 Value *RuntimeVF = getRuntimeVF(Builder, TCTy, State.VF); 943 VF.setUnderlyingValue(RuntimeVF); 944 VFxUF.setUnderlyingValue( 945 UF > 1 ? Builder.CreateMul(RuntimeVF, ConstantInt::get(TCTy, UF)) 946 : RuntimeVF); 947 } else { 948 VFxUF.setUnderlyingValue(createStepForVF(Builder, TCTy, State.VF, UF)); 949 } 950 } 951 952 /// Generate the code inside the preheader and body of the vectorized loop. 953 /// Assumes a single pre-header basic-block was created for this. Introduce 954 /// additional basic-blocks as needed, and fill them all. 955 void VPlan::execute(VPTransformState *State) { 956 // Initialize CFG state. 957 State->CFG.PrevVPBB = nullptr; 958 State->CFG.ExitBB = State->CFG.PrevBB->getSingleSuccessor(); 959 960 // Disconnect VectorPreHeader from ExitBB in both the CFG and DT. 961 BasicBlock *VectorPreHeader = State->CFG.PrevBB; 962 cast<BranchInst>(VectorPreHeader->getTerminator())->setSuccessor(0, nullptr); 963 State->CFG.DTU.applyUpdates( 964 {{DominatorTree::Delete, VectorPreHeader, State->CFG.ExitBB}}); 965 966 LLVM_DEBUG(dbgs() << "Executing best plan with VF=" << State->VF 967 << ", UF=" << getUF() << '\n'); 968 setName("Final VPlan"); 969 LLVM_DEBUG(dump()); 970 971 // Disconnect the middle block from its single successor (the scalar loop 972 // header) in both the CFG and DT. The branch will be recreated during VPlan 973 // execution. 974 BasicBlock *MiddleBB = State->CFG.ExitBB; 975 BasicBlock *ScalarPh = MiddleBB->getSingleSuccessor(); 976 auto *BrInst = new UnreachableInst(MiddleBB->getContext()); 977 BrInst->insertBefore(MiddleBB->getTerminator()->getIterator()); 978 MiddleBB->getTerminator()->eraseFromParent(); 979 State->CFG.DTU.applyUpdates({{DominatorTree::Delete, MiddleBB, ScalarPh}}); 980 // Disconnect scalar preheader and scalar header, as the dominator tree edge 981 // will be updated as part of VPlan execution. This allows keeping the DTU 982 // logic generic during VPlan execution. 983 State->CFG.DTU.applyUpdates( 984 {{DominatorTree::Delete, ScalarPh, ScalarPh->getSingleSuccessor()}}); 985 986 ReversePostOrderTraversal<VPBlockShallowTraversalWrapper<VPBlockBase *>> RPOT( 987 Entry); 988 // Generate code for the VPlan, in parts of the vector skeleton, loop body and 989 // successor blocks including the middle, exit and scalar preheader blocks. 990 for (VPBlockBase *Block : RPOT) 991 Block->execute(State); 992 993 State->CFG.DTU.flush(); 994 995 auto *LoopRegion = getVectorLoopRegion(); 996 if (!LoopRegion) 997 return; 998 999 VPBasicBlock *LatchVPBB = LoopRegion->getExitingBasicBlock(); 1000 BasicBlock *VectorLatchBB = State->CFG.VPBB2IRBB[LatchVPBB]; 1001 1002 // Fix the latch value of canonical, reduction and first-order recurrences 1003 // phis in the vector loop. 1004 VPBasicBlock *Header = LoopRegion->getEntryBasicBlock(); 1005 for (VPRecipeBase &R : Header->phis()) { 1006 // Skip phi-like recipes that generate their backedege values themselves. 1007 if (isa<VPWidenPHIRecipe>(&R)) 1008 continue; 1009 1010 if (isa<VPWidenInductionRecipe>(&R)) { 1011 PHINode *Phi = nullptr; 1012 if (isa<VPWidenIntOrFpInductionRecipe>(&R)) { 1013 Phi = cast<PHINode>(State->get(R.getVPSingleValue())); 1014 } else { 1015 auto *WidenPhi = cast<VPWidenPointerInductionRecipe>(&R); 1016 assert(!WidenPhi->onlyScalarsGenerated(State->VF.isScalable()) && 1017 "recipe generating only scalars should have been replaced"); 1018 auto *GEP = cast<GetElementPtrInst>(State->get(WidenPhi)); 1019 Phi = cast<PHINode>(GEP->getPointerOperand()); 1020 } 1021 1022 Phi->setIncomingBlock(1, VectorLatchBB); 1023 1024 // Move the last step to the end of the latch block. This ensures 1025 // consistent placement of all induction updates. 1026 Instruction *Inc = cast<Instruction>(Phi->getIncomingValue(1)); 1027 Inc->moveBefore(VectorLatchBB->getTerminator()->getPrevNode()); 1028 1029 // Use the steps for the last part as backedge value for the induction. 1030 if (auto *IV = dyn_cast<VPWidenIntOrFpInductionRecipe>(&R)) 1031 Inc->setOperand(0, State->get(IV->getLastUnrolledPartOperand())); 1032 continue; 1033 } 1034 1035 auto *PhiR = cast<VPHeaderPHIRecipe>(&R); 1036 bool NeedsScalar = isa<VPScalarPHIRecipe>(PhiR) || 1037 (isa<VPReductionPHIRecipe>(PhiR) && 1038 cast<VPReductionPHIRecipe>(PhiR)->isInLoop()); 1039 Value *Phi = State->get(PhiR, NeedsScalar); 1040 Value *Val = State->get(PhiR->getBackedgeValue(), NeedsScalar); 1041 cast<PHINode>(Phi)->addIncoming(Val, VectorLatchBB); 1042 } 1043 } 1044 1045 InstructionCost VPlan::cost(ElementCount VF, VPCostContext &Ctx) { 1046 // For now only return the cost of the vector loop region, ignoring any other 1047 // blocks, like the preheader or middle blocks. 1048 return getVectorLoopRegion()->cost(VF, Ctx); 1049 } 1050 1051 VPRegionBlock *VPlan::getVectorLoopRegion() { 1052 // TODO: Cache if possible. 1053 for (VPBlockBase *B : vp_depth_first_shallow(getEntry())) 1054 if (auto *R = dyn_cast<VPRegionBlock>(B)) 1055 return R->isReplicator() ? nullptr : R; 1056 return nullptr; 1057 } 1058 1059 const VPRegionBlock *VPlan::getVectorLoopRegion() const { 1060 for (const VPBlockBase *B : vp_depth_first_shallow(getEntry())) 1061 if (auto *R = dyn_cast<VPRegionBlock>(B)) 1062 return R->isReplicator() ? nullptr : R; 1063 return nullptr; 1064 } 1065 1066 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1067 void VPlan::printLiveIns(raw_ostream &O) const { 1068 VPSlotTracker SlotTracker(this); 1069 1070 if (VF.getNumUsers() > 0) { 1071 O << "\nLive-in "; 1072 VF.printAsOperand(O, SlotTracker); 1073 O << " = VF"; 1074 } 1075 1076 if (VFxUF.getNumUsers() > 0) { 1077 O << "\nLive-in "; 1078 VFxUF.printAsOperand(O, SlotTracker); 1079 O << " = VF * UF"; 1080 } 1081 1082 if (VectorTripCount.getNumUsers() > 0) { 1083 O << "\nLive-in "; 1084 VectorTripCount.printAsOperand(O, SlotTracker); 1085 O << " = vector-trip-count"; 1086 } 1087 1088 if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) { 1089 O << "\nLive-in "; 1090 BackedgeTakenCount->printAsOperand(O, SlotTracker); 1091 O << " = backedge-taken count"; 1092 } 1093 1094 O << "\n"; 1095 if (TripCount->isLiveIn()) 1096 O << "Live-in "; 1097 TripCount->printAsOperand(O, SlotTracker); 1098 O << " = original trip-count"; 1099 O << "\n"; 1100 } 1101 1102 LLVM_DUMP_METHOD 1103 void VPlan::print(raw_ostream &O) const { 1104 VPSlotTracker SlotTracker(this); 1105 1106 O << "VPlan '" << getName() << "' {"; 1107 1108 printLiveIns(O); 1109 1110 ReversePostOrderTraversal<VPBlockShallowTraversalWrapper<const VPBlockBase *>> 1111 RPOT(getEntry()); 1112 for (const VPBlockBase *Block : RPOT) { 1113 O << '\n'; 1114 Block->print(O, "", SlotTracker); 1115 } 1116 1117 O << "}\n"; 1118 } 1119 1120 std::string VPlan::getName() const { 1121 std::string Out; 1122 raw_string_ostream RSO(Out); 1123 RSO << Name << " for "; 1124 if (!VFs.empty()) { 1125 RSO << "VF={" << VFs[0]; 1126 for (ElementCount VF : drop_begin(VFs)) 1127 RSO << "," << VF; 1128 RSO << "},"; 1129 } 1130 1131 if (UFs.empty()) { 1132 RSO << "UF>=1"; 1133 } else { 1134 RSO << "UF={" << UFs[0]; 1135 for (unsigned UF : drop_begin(UFs)) 1136 RSO << "," << UF; 1137 RSO << "}"; 1138 } 1139 1140 return Out; 1141 } 1142 1143 LLVM_DUMP_METHOD 1144 void VPlan::printDOT(raw_ostream &O) const { 1145 VPlanPrinter Printer(O, *this); 1146 Printer.dump(); 1147 } 1148 1149 LLVM_DUMP_METHOD 1150 void VPlan::dump() const { print(dbgs()); } 1151 #endif 1152 1153 static void remapOperands(VPBlockBase *Entry, VPBlockBase *NewEntry, 1154 DenseMap<VPValue *, VPValue *> &Old2NewVPValues) { 1155 // Update the operands of all cloned recipes starting at NewEntry. This 1156 // traverses all reachable blocks. This is done in two steps, to handle cycles 1157 // in PHI recipes. 1158 ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<VPBlockBase *>> 1159 OldDeepRPOT(Entry); 1160 ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<VPBlockBase *>> 1161 NewDeepRPOT(NewEntry); 1162 // First, collect all mappings from old to new VPValues defined by cloned 1163 // recipes. 1164 for (const auto &[OldBB, NewBB] : 1165 zip(VPBlockUtils::blocksOnly<VPBasicBlock>(OldDeepRPOT), 1166 VPBlockUtils::blocksOnly<VPBasicBlock>(NewDeepRPOT))) { 1167 assert(OldBB->getRecipeList().size() == NewBB->getRecipeList().size() && 1168 "blocks must have the same number of recipes"); 1169 for (const auto &[OldR, NewR] : zip(*OldBB, *NewBB)) { 1170 assert(OldR.getNumOperands() == NewR.getNumOperands() && 1171 "recipes must have the same number of operands"); 1172 assert(OldR.getNumDefinedValues() == NewR.getNumDefinedValues() && 1173 "recipes must define the same number of operands"); 1174 for (const auto &[OldV, NewV] : 1175 zip(OldR.definedValues(), NewR.definedValues())) 1176 Old2NewVPValues[OldV] = NewV; 1177 } 1178 } 1179 1180 // Update all operands to use cloned VPValues. 1181 for (VPBasicBlock *NewBB : 1182 VPBlockUtils::blocksOnly<VPBasicBlock>(NewDeepRPOT)) { 1183 for (VPRecipeBase &NewR : *NewBB) 1184 for (unsigned I = 0, E = NewR.getNumOperands(); I != E; ++I) { 1185 VPValue *NewOp = Old2NewVPValues.lookup(NewR.getOperand(I)); 1186 NewR.setOperand(I, NewOp); 1187 } 1188 } 1189 } 1190 1191 VPlan *VPlan::duplicate() { 1192 unsigned NumBlocksBeforeCloning = CreatedBlocks.size(); 1193 // Clone blocks. 1194 const auto &[NewEntry, __] = cloneFrom(Entry); 1195 1196 BasicBlock *ScalarHeaderIRBB = getScalarHeader()->getIRBasicBlock(); 1197 VPIRBasicBlock *NewScalarHeader = cast<VPIRBasicBlock>(*find_if( 1198 vp_depth_first_shallow(NewEntry), [ScalarHeaderIRBB](VPBlockBase *VPB) { 1199 auto *VPIRBB = dyn_cast<VPIRBasicBlock>(VPB); 1200 return VPIRBB && VPIRBB->getIRBasicBlock() == ScalarHeaderIRBB; 1201 })); 1202 // Create VPlan, clone live-ins and remap operands in the cloned blocks. 1203 auto *NewPlan = new VPlan(cast<VPBasicBlock>(NewEntry), NewScalarHeader); 1204 DenseMap<VPValue *, VPValue *> Old2NewVPValues; 1205 for (VPValue *OldLiveIn : VPLiveInsToFree) { 1206 Old2NewVPValues[OldLiveIn] = 1207 NewPlan->getOrAddLiveIn(OldLiveIn->getLiveInIRValue()); 1208 } 1209 Old2NewVPValues[&VectorTripCount] = &NewPlan->VectorTripCount; 1210 Old2NewVPValues[&VF] = &NewPlan->VF; 1211 Old2NewVPValues[&VFxUF] = &NewPlan->VFxUF; 1212 if (BackedgeTakenCount) { 1213 NewPlan->BackedgeTakenCount = new VPValue(); 1214 Old2NewVPValues[BackedgeTakenCount] = NewPlan->BackedgeTakenCount; 1215 } 1216 assert(TripCount && "trip count must be set"); 1217 if (TripCount->isLiveIn()) 1218 Old2NewVPValues[TripCount] = 1219 NewPlan->getOrAddLiveIn(TripCount->getLiveInIRValue()); 1220 // else NewTripCount will be created and inserted into Old2NewVPValues when 1221 // TripCount is cloned. In any case NewPlan->TripCount is updated below. 1222 1223 remapOperands(Entry, NewEntry, Old2NewVPValues); 1224 1225 // Initialize remaining fields of cloned VPlan. 1226 NewPlan->VFs = VFs; 1227 NewPlan->UFs = UFs; 1228 // TODO: Adjust names. 1229 NewPlan->Name = Name; 1230 assert(Old2NewVPValues.contains(TripCount) && 1231 "TripCount must have been added to Old2NewVPValues"); 1232 NewPlan->TripCount = Old2NewVPValues[TripCount]; 1233 1234 // Transfer all cloned blocks (the second half of all current blocks) from 1235 // current to new VPlan. 1236 unsigned NumBlocksAfterCloning = CreatedBlocks.size(); 1237 for (unsigned I : 1238 seq<unsigned>(NumBlocksBeforeCloning, NumBlocksAfterCloning)) 1239 NewPlan->CreatedBlocks.push_back(this->CreatedBlocks[I]); 1240 CreatedBlocks.truncate(NumBlocksBeforeCloning); 1241 1242 return NewPlan; 1243 } 1244 1245 VPIRBasicBlock *VPlan::createEmptyVPIRBasicBlock(BasicBlock *IRBB) { 1246 auto *VPIRBB = new VPIRBasicBlock(IRBB); 1247 CreatedBlocks.push_back(VPIRBB); 1248 return VPIRBB; 1249 } 1250 1251 VPIRBasicBlock *VPlan::createVPIRBasicBlock(BasicBlock *IRBB) { 1252 auto *VPIRBB = createEmptyVPIRBasicBlock(IRBB); 1253 for (Instruction &I : 1254 make_range(IRBB->begin(), IRBB->getTerminator()->getIterator())) 1255 VPIRBB->appendRecipe(new VPIRInstruction(I)); 1256 return VPIRBB; 1257 } 1258 1259 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1260 1261 Twine VPlanPrinter::getUID(const VPBlockBase *Block) { 1262 return (isa<VPRegionBlock>(Block) ? "cluster_N" : "N") + 1263 Twine(getOrCreateBID(Block)); 1264 } 1265 1266 Twine VPlanPrinter::getOrCreateName(const VPBlockBase *Block) { 1267 const std::string &Name = Block->getName(); 1268 if (!Name.empty()) 1269 return Name; 1270 return "VPB" + Twine(getOrCreateBID(Block)); 1271 } 1272 1273 void VPlanPrinter::dump() { 1274 Depth = 1; 1275 bumpIndent(0); 1276 OS << "digraph VPlan {\n"; 1277 OS << "graph [labelloc=t, fontsize=30; label=\"Vectorization Plan"; 1278 if (!Plan.getName().empty()) 1279 OS << "\\n" << DOT::EscapeString(Plan.getName()); 1280 1281 { 1282 // Print live-ins. 1283 std::string Str; 1284 raw_string_ostream SS(Str); 1285 Plan.printLiveIns(SS); 1286 SmallVector<StringRef, 0> Lines; 1287 StringRef(Str).rtrim('\n').split(Lines, "\n"); 1288 for (auto Line : Lines) 1289 OS << DOT::EscapeString(Line.str()) << "\\n"; 1290 } 1291 1292 OS << "\"]\n"; 1293 OS << "node [shape=rect, fontname=Courier, fontsize=30]\n"; 1294 OS << "edge [fontname=Courier, fontsize=30]\n"; 1295 OS << "compound=true\n"; 1296 1297 for (const VPBlockBase *Block : vp_depth_first_shallow(Plan.getEntry())) 1298 dumpBlock(Block); 1299 1300 OS << "}\n"; 1301 } 1302 1303 void VPlanPrinter::dumpBlock(const VPBlockBase *Block) { 1304 if (const VPBasicBlock *BasicBlock = dyn_cast<VPBasicBlock>(Block)) 1305 dumpBasicBlock(BasicBlock); 1306 else if (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 1307 dumpRegion(Region); 1308 else 1309 llvm_unreachable("Unsupported kind of VPBlock."); 1310 } 1311 1312 void VPlanPrinter::drawEdge(const VPBlockBase *From, const VPBlockBase *To, 1313 bool Hidden, const Twine &Label) { 1314 // Due to "dot" we print an edge between two regions as an edge between the 1315 // exiting basic block and the entry basic of the respective regions. 1316 const VPBlockBase *Tail = From->getExitingBasicBlock(); 1317 const VPBlockBase *Head = To->getEntryBasicBlock(); 1318 OS << Indent << getUID(Tail) << " -> " << getUID(Head); 1319 OS << " [ label=\"" << Label << '\"'; 1320 if (Tail != From) 1321 OS << " ltail=" << getUID(From); 1322 if (Head != To) 1323 OS << " lhead=" << getUID(To); 1324 if (Hidden) 1325 OS << "; splines=none"; 1326 OS << "]\n"; 1327 } 1328 1329 void VPlanPrinter::dumpEdges(const VPBlockBase *Block) { 1330 auto &Successors = Block->getSuccessors(); 1331 if (Successors.size() == 1) 1332 drawEdge(Block, Successors.front(), false, ""); 1333 else if (Successors.size() == 2) { 1334 drawEdge(Block, Successors.front(), false, "T"); 1335 drawEdge(Block, Successors.back(), false, "F"); 1336 } else { 1337 unsigned SuccessorNumber = 0; 1338 for (auto *Successor : Successors) 1339 drawEdge(Block, Successor, false, Twine(SuccessorNumber++)); 1340 } 1341 } 1342 1343 void VPlanPrinter::dumpBasicBlock(const VPBasicBlock *BasicBlock) { 1344 // Implement dot-formatted dump by performing plain-text dump into the 1345 // temporary storage followed by some post-processing. 1346 OS << Indent << getUID(BasicBlock) << " [label =\n"; 1347 bumpIndent(1); 1348 std::string Str; 1349 raw_string_ostream SS(Str); 1350 // Use no indentation as we need to wrap the lines into quotes ourselves. 1351 BasicBlock->print(SS, "", SlotTracker); 1352 1353 // We need to process each line of the output separately, so split 1354 // single-string plain-text dump. 1355 SmallVector<StringRef, 0> Lines; 1356 StringRef(Str).rtrim('\n').split(Lines, "\n"); 1357 1358 auto EmitLine = [&](StringRef Line, StringRef Suffix) { 1359 OS << Indent << '"' << DOT::EscapeString(Line.str()) << "\\l\"" << Suffix; 1360 }; 1361 1362 // Don't need the "+" after the last line. 1363 for (auto Line : make_range(Lines.begin(), Lines.end() - 1)) 1364 EmitLine(Line, " +\n"); 1365 EmitLine(Lines.back(), "\n"); 1366 1367 bumpIndent(-1); 1368 OS << Indent << "]\n"; 1369 1370 dumpEdges(BasicBlock); 1371 } 1372 1373 void VPlanPrinter::dumpRegion(const VPRegionBlock *Region) { 1374 OS << Indent << "subgraph " << getUID(Region) << " {\n"; 1375 bumpIndent(1); 1376 OS << Indent << "fontname=Courier\n" 1377 << Indent << "label=\"" 1378 << DOT::EscapeString(Region->isReplicator() ? "<xVFxUF> " : "<x1> ") 1379 << DOT::EscapeString(Region->getName()) << "\"\n"; 1380 // Dump the blocks of the region. 1381 assert(Region->getEntry() && "Region contains no inner blocks."); 1382 for (const VPBlockBase *Block : vp_depth_first_shallow(Region->getEntry())) 1383 dumpBlock(Block); 1384 bumpIndent(-1); 1385 OS << Indent << "}\n"; 1386 dumpEdges(Region); 1387 } 1388 1389 void VPlanIngredient::print(raw_ostream &O) const { 1390 if (auto *Inst = dyn_cast<Instruction>(V)) { 1391 if (!Inst->getType()->isVoidTy()) { 1392 Inst->printAsOperand(O, false); 1393 O << " = "; 1394 } 1395 O << Inst->getOpcodeName() << " "; 1396 unsigned E = Inst->getNumOperands(); 1397 if (E > 0) { 1398 Inst->getOperand(0)->printAsOperand(O, false); 1399 for (unsigned I = 1; I < E; ++I) 1400 Inst->getOperand(I)->printAsOperand(O << ", ", false); 1401 } 1402 } else // !Inst 1403 V->printAsOperand(O, false); 1404 } 1405 1406 #endif 1407 1408 /// Returns true if there is a vector loop region and \p VPV is defined in a 1409 /// loop region. 1410 static bool isDefinedInsideLoopRegions(const VPValue *VPV) { 1411 const VPRecipeBase *DefR = VPV->getDefiningRecipe(); 1412 return DefR && (!DefR->getParent()->getPlan()->getVectorLoopRegion() || 1413 DefR->getParent()->getEnclosingLoopRegion()); 1414 } 1415 1416 bool VPValue::isDefinedOutsideLoopRegions() const { 1417 return !isDefinedInsideLoopRegions(this); 1418 } 1419 void VPValue::replaceAllUsesWith(VPValue *New) { 1420 replaceUsesWithIf(New, [](VPUser &, unsigned) { return true; }); 1421 } 1422 1423 void VPValue::replaceUsesWithIf( 1424 VPValue *New, 1425 llvm::function_ref<bool(VPUser &U, unsigned Idx)> ShouldReplace) { 1426 // Note that this early exit is required for correctness; the implementation 1427 // below relies on the number of users for this VPValue to decrease, which 1428 // isn't the case if this == New. 1429 if (this == New) 1430 return; 1431 1432 for (unsigned J = 0; J < getNumUsers();) { 1433 VPUser *User = Users[J]; 1434 bool RemovedUser = false; 1435 for (unsigned I = 0, E = User->getNumOperands(); I < E; ++I) { 1436 if (User->getOperand(I) != this || !ShouldReplace(*User, I)) 1437 continue; 1438 1439 RemovedUser = true; 1440 User->setOperand(I, New); 1441 } 1442 // If a user got removed after updating the current user, the next user to 1443 // update will be moved to the current position, so we only need to 1444 // increment the index if the number of users did not change. 1445 if (!RemovedUser) 1446 J++; 1447 } 1448 } 1449 1450 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1451 void VPValue::printAsOperand(raw_ostream &OS, VPSlotTracker &Tracker) const { 1452 OS << Tracker.getOrCreateName(this); 1453 } 1454 1455 void VPUser::printOperands(raw_ostream &O, VPSlotTracker &SlotTracker) const { 1456 interleaveComma(operands(), O, [&O, &SlotTracker](VPValue *Op) { 1457 Op->printAsOperand(O, SlotTracker); 1458 }); 1459 } 1460 #endif 1461 1462 void VPInterleavedAccessInfo::visitRegion(VPRegionBlock *Region, 1463 Old2NewTy &Old2New, 1464 InterleavedAccessInfo &IAI) { 1465 ReversePostOrderTraversal<VPBlockShallowTraversalWrapper<VPBlockBase *>> 1466 RPOT(Region->getEntry()); 1467 for (VPBlockBase *Base : RPOT) { 1468 visitBlock(Base, Old2New, IAI); 1469 } 1470 } 1471 1472 void VPInterleavedAccessInfo::visitBlock(VPBlockBase *Block, Old2NewTy &Old2New, 1473 InterleavedAccessInfo &IAI) { 1474 if (VPBasicBlock *VPBB = dyn_cast<VPBasicBlock>(Block)) { 1475 for (VPRecipeBase &VPI : *VPBB) { 1476 if (isa<VPWidenPHIRecipe>(&VPI)) 1477 continue; 1478 assert(isa<VPInstruction>(&VPI) && "Can only handle VPInstructions"); 1479 auto *VPInst = cast<VPInstruction>(&VPI); 1480 1481 auto *Inst = dyn_cast_or_null<Instruction>(VPInst->getUnderlyingValue()); 1482 if (!Inst) 1483 continue; 1484 auto *IG = IAI.getInterleaveGroup(Inst); 1485 if (!IG) 1486 continue; 1487 1488 auto NewIGIter = Old2New.find(IG); 1489 if (NewIGIter == Old2New.end()) 1490 Old2New[IG] = new InterleaveGroup<VPInstruction>( 1491 IG->getFactor(), IG->isReverse(), IG->getAlign()); 1492 1493 if (Inst == IG->getInsertPos()) 1494 Old2New[IG]->setInsertPos(VPInst); 1495 1496 InterleaveGroupMap[VPInst] = Old2New[IG]; 1497 InterleaveGroupMap[VPInst]->insertMember( 1498 VPInst, IG->getIndex(Inst), 1499 Align(IG->isReverse() ? (-1) * int(IG->getFactor()) 1500 : IG->getFactor())); 1501 } 1502 } else if (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 1503 visitRegion(Region, Old2New, IAI); 1504 else 1505 llvm_unreachable("Unsupported kind of VPBlock."); 1506 } 1507 1508 VPInterleavedAccessInfo::VPInterleavedAccessInfo(VPlan &Plan, 1509 InterleavedAccessInfo &IAI) { 1510 Old2NewTy Old2New; 1511 visitRegion(Plan.getVectorLoopRegion(), Old2New, IAI); 1512 } 1513 1514 void VPSlotTracker::assignName(const VPValue *V) { 1515 assert(!VPValue2Name.contains(V) && "VPValue already has a name!"); 1516 auto *UV = V->getUnderlyingValue(); 1517 auto *VPI = dyn_cast_or_null<VPInstruction>(V->getDefiningRecipe()); 1518 if (!UV && !(VPI && !VPI->getName().empty())) { 1519 VPValue2Name[V] = (Twine("vp<%") + Twine(NextSlot) + ">").str(); 1520 NextSlot++; 1521 return; 1522 } 1523 1524 // Use the name of the underlying Value, wrapped in "ir<>", and versioned by 1525 // appending ".Number" to the name if there are multiple uses. 1526 std::string Name; 1527 if (UV) { 1528 raw_string_ostream S(Name); 1529 UV->printAsOperand(S, false); 1530 } else 1531 Name = VPI->getName(); 1532 1533 assert(!Name.empty() && "Name cannot be empty."); 1534 StringRef Prefix = UV ? "ir<" : "vp<%"; 1535 std::string BaseName = (Twine(Prefix) + Name + Twine(">")).str(); 1536 1537 // First assign the base name for V. 1538 const auto &[A, _] = VPValue2Name.insert({V, BaseName}); 1539 // Integer or FP constants with different types will result in he same string 1540 // due to stripping types. 1541 if (V->isLiveIn() && isa<ConstantInt, ConstantFP>(UV)) 1542 return; 1543 1544 // If it is already used by C > 0 other VPValues, increase the version counter 1545 // C and use it for V. 1546 const auto &[C, UseInserted] = BaseName2Version.insert({BaseName, 0}); 1547 if (!UseInserted) { 1548 C->second++; 1549 A->second = (BaseName + Twine(".") + Twine(C->second)).str(); 1550 } 1551 } 1552 1553 void VPSlotTracker::assignNames(const VPlan &Plan) { 1554 if (Plan.VF.getNumUsers() > 0) 1555 assignName(&Plan.VF); 1556 if (Plan.VFxUF.getNumUsers() > 0) 1557 assignName(&Plan.VFxUF); 1558 assignName(&Plan.VectorTripCount); 1559 if (Plan.BackedgeTakenCount) 1560 assignName(Plan.BackedgeTakenCount); 1561 for (VPValue *LI : Plan.VPLiveInsToFree) 1562 assignName(LI); 1563 1564 ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<const VPBlockBase *>> 1565 RPOT(VPBlockDeepTraversalWrapper<const VPBlockBase *>(Plan.getEntry())); 1566 for (const VPBasicBlock *VPBB : 1567 VPBlockUtils::blocksOnly<const VPBasicBlock>(RPOT)) 1568 assignNames(VPBB); 1569 } 1570 1571 void VPSlotTracker::assignNames(const VPBasicBlock *VPBB) { 1572 for (const VPRecipeBase &Recipe : *VPBB) 1573 for (VPValue *Def : Recipe.definedValues()) 1574 assignName(Def); 1575 } 1576 1577 std::string VPSlotTracker::getOrCreateName(const VPValue *V) const { 1578 std::string Name = VPValue2Name.lookup(V); 1579 if (!Name.empty()) 1580 return Name; 1581 1582 // If no name was assigned, no VPlan was provided when creating the slot 1583 // tracker or it is not reachable from the provided VPlan. This can happen, 1584 // e.g. when trying to print a recipe that has not been inserted into a VPlan 1585 // in a debugger. 1586 // TODO: Update VPSlotTracker constructor to assign names to recipes & 1587 // VPValues not associated with a VPlan, instead of constructing names ad-hoc 1588 // here. 1589 const VPRecipeBase *DefR = V->getDefiningRecipe(); 1590 (void)DefR; 1591 assert((!DefR || !DefR->getParent() || !DefR->getParent()->getPlan()) && 1592 "VPValue defined by a recipe in a VPlan?"); 1593 1594 // Use the underlying value's name, if there is one. 1595 if (auto *UV = V->getUnderlyingValue()) { 1596 std::string Name; 1597 raw_string_ostream S(Name); 1598 UV->printAsOperand(S, false); 1599 return (Twine("ir<") + Name + ">").str(); 1600 } 1601 1602 return "<badref>"; 1603 } 1604 1605 bool LoopVectorizationPlanner::getDecisionAndClampRange( 1606 const std::function<bool(ElementCount)> &Predicate, VFRange &Range) { 1607 assert(!Range.isEmpty() && "Trying to test an empty VF range."); 1608 bool PredicateAtRangeStart = Predicate(Range.Start); 1609 1610 for (ElementCount TmpVF : VFRange(Range.Start * 2, Range.End)) 1611 if (Predicate(TmpVF) != PredicateAtRangeStart) { 1612 Range.End = TmpVF; 1613 break; 1614 } 1615 1616 return PredicateAtRangeStart; 1617 } 1618 1619 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF, 1620 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range 1621 /// of VF's starting at a given VF and extending it as much as possible. Each 1622 /// vectorization decision can potentially shorten this sub-range during 1623 /// buildVPlan(). 1624 void LoopVectorizationPlanner::buildVPlans(ElementCount MinVF, 1625 ElementCount MaxVF) { 1626 auto MaxVFTimes2 = MaxVF * 2; 1627 for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFTimes2);) { 1628 VFRange SubRange = {VF, MaxVFTimes2}; 1629 auto Plan = buildVPlan(SubRange); 1630 VPlanTransforms::optimize(*Plan); 1631 // Update the name of the latch of the top-level vector loop region region 1632 // after optimizations which includes block folding. 1633 Plan->getVectorLoopRegion()->getExiting()->setName("vector.latch"); 1634 VPlans.push_back(std::move(Plan)); 1635 VF = SubRange.End; 1636 } 1637 } 1638 1639 VPlan &LoopVectorizationPlanner::getPlanFor(ElementCount VF) const { 1640 assert(count_if(VPlans, 1641 [VF](const VPlanPtr &Plan) { return Plan->hasVF(VF); }) == 1642 1 && 1643 "Multiple VPlans for VF."); 1644 1645 for (const VPlanPtr &Plan : VPlans) { 1646 if (Plan->hasVF(VF)) 1647 return *Plan.get(); 1648 } 1649 llvm_unreachable("No plan found!"); 1650 } 1651 1652 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1653 void LoopVectorizationPlanner::printPlans(raw_ostream &O) { 1654 if (VPlans.empty()) { 1655 O << "LV: No VPlans built.\n"; 1656 return; 1657 } 1658 for (const auto &Plan : VPlans) 1659 if (PrintVPlansInDotFormat) 1660 Plan->printDOT(O); 1661 else 1662 Plan->print(O); 1663 } 1664 #endif 1665 1666 TargetTransformInfo::OperandValueInfo 1667 VPCostContext::getOperandInfo(VPValue *V) const { 1668 if (!V->isLiveIn()) 1669 return {}; 1670 1671 return TTI::getOperandInfo(V->getLiveInIRValue()); 1672 } 1673