xref: /llvm-project/llvm/lib/Transforms/Vectorize/VPlan.cpp (revision 5ca3794e82bd4d96e5aa32821bed033e40f51814)
1 //===- VPlan.cpp - Vectorizer Plan ----------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This is the LLVM vectorization plan. It represents a candidate for
11 /// vectorization, allowing to plan and optimize how to vectorize a given loop
12 /// before generating LLVM-IR.
13 /// The vectorizer uses vectorization plans to estimate the costs of potential
14 /// candidates and if profitable to execute the desired plan, generating vector
15 /// LLVM-IR code.
16 ///
17 //===----------------------------------------------------------------------===//
18 
19 #include "VPlan.h"
20 #include "LoopVectorizationPlanner.h"
21 #include "VPlanCFG.h"
22 #include "VPlanPatternMatch.h"
23 #include "VPlanTransforms.h"
24 #include "VPlanUtils.h"
25 #include "llvm/ADT/PostOrderIterator.h"
26 #include "llvm/ADT/STLExtras.h"
27 #include "llvm/ADT/SmallVector.h"
28 #include "llvm/ADT/StringExtras.h"
29 #include "llvm/ADT/Twine.h"
30 #include "llvm/Analysis/DomTreeUpdater.h"
31 #include "llvm/Analysis/LoopInfo.h"
32 #include "llvm/IR/BasicBlock.h"
33 #include "llvm/IR/CFG.h"
34 #include "llvm/IR/IRBuilder.h"
35 #include "llvm/IR/Instruction.h"
36 #include "llvm/IR/Instructions.h"
37 #include "llvm/IR/Type.h"
38 #include "llvm/IR/Value.h"
39 #include "llvm/Support/Casting.h"
40 #include "llvm/Support/CommandLine.h"
41 #include "llvm/Support/Debug.h"
42 #include "llvm/Support/GraphWriter.h"
43 #include "llvm/Support/raw_ostream.h"
44 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
45 #include "llvm/Transforms/Utils/LoopVersioning.h"
46 #include <cassert>
47 #include <string>
48 
49 using namespace llvm;
50 using namespace llvm::VPlanPatternMatch;
51 
52 namespace llvm {
53 extern cl::opt<bool> EnableVPlanNativePath;
54 }
55 extern cl::opt<unsigned> ForceTargetInstructionCost;
56 
57 static cl::opt<bool> PrintVPlansInDotFormat(
58     "vplan-print-in-dot-format", cl::Hidden,
59     cl::desc("Use dot format instead of plain text when dumping VPlans"));
60 
61 #define DEBUG_TYPE "loop-vectorize"
62 
63 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
64 raw_ostream &llvm::operator<<(raw_ostream &OS, const VPValue &V) {
65   const VPInstruction *Instr = dyn_cast<VPInstruction>(&V);
66   VPSlotTracker SlotTracker(
67       (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr);
68   V.print(OS, SlotTracker);
69   return OS;
70 }
71 #endif
72 
73 Value *VPLane::getAsRuntimeExpr(IRBuilderBase &Builder,
74                                 const ElementCount &VF) const {
75   switch (LaneKind) {
76   case VPLane::Kind::ScalableLast:
77     // Lane = RuntimeVF - VF.getKnownMinValue() + Lane
78     return Builder.CreateSub(getRuntimeVF(Builder, Builder.getInt32Ty(), VF),
79                              Builder.getInt32(VF.getKnownMinValue() - Lane));
80   case VPLane::Kind::First:
81     return Builder.getInt32(Lane);
82   }
83   llvm_unreachable("Unknown lane kind");
84 }
85 
86 VPValue::VPValue(const unsigned char SC, Value *UV, VPDef *Def)
87     : SubclassID(SC), UnderlyingVal(UV), Def(Def) {
88   if (Def)
89     Def->addDefinedValue(this);
90 }
91 
92 VPValue::~VPValue() {
93   assert(Users.empty() && "trying to delete a VPValue with remaining users");
94   if (Def)
95     Def->removeDefinedValue(this);
96 }
97 
98 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
99 void VPValue::print(raw_ostream &OS, VPSlotTracker &SlotTracker) const {
100   if (const VPRecipeBase *R = dyn_cast_or_null<VPRecipeBase>(Def))
101     R->print(OS, "", SlotTracker);
102   else
103     printAsOperand(OS, SlotTracker);
104 }
105 
106 void VPValue::dump() const {
107   const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this->Def);
108   VPSlotTracker SlotTracker(
109       (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr);
110   print(dbgs(), SlotTracker);
111   dbgs() << "\n";
112 }
113 
114 void VPDef::dump() const {
115   const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this);
116   VPSlotTracker SlotTracker(
117       (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr);
118   print(dbgs(), "", SlotTracker);
119   dbgs() << "\n";
120 }
121 #endif
122 
123 VPRecipeBase *VPValue::getDefiningRecipe() {
124   return cast_or_null<VPRecipeBase>(Def);
125 }
126 
127 const VPRecipeBase *VPValue::getDefiningRecipe() const {
128   return cast_or_null<VPRecipeBase>(Def);
129 }
130 
131 // Get the top-most entry block of \p Start. This is the entry block of the
132 // containing VPlan. This function is templated to support both const and non-const blocks
133 template <typename T> static T *getPlanEntry(T *Start) {
134   T *Next = Start;
135   T *Current = Start;
136   while ((Next = Next->getParent()))
137     Current = Next;
138 
139   SmallSetVector<T *, 8> WorkList;
140   WorkList.insert(Current);
141 
142   for (unsigned i = 0; i < WorkList.size(); i++) {
143     T *Current = WorkList[i];
144     if (Current->getNumPredecessors() == 0)
145       return Current;
146     auto &Predecessors = Current->getPredecessors();
147     WorkList.insert(Predecessors.begin(), Predecessors.end());
148   }
149 
150   llvm_unreachable("VPlan without any entry node without predecessors");
151 }
152 
153 VPlan *VPBlockBase::getPlan() { return getPlanEntry(this)->Plan; }
154 
155 const VPlan *VPBlockBase::getPlan() const { return getPlanEntry(this)->Plan; }
156 
157 /// \return the VPBasicBlock that is the entry of Block, possibly indirectly.
158 const VPBasicBlock *VPBlockBase::getEntryBasicBlock() const {
159   const VPBlockBase *Block = this;
160   while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
161     Block = Region->getEntry();
162   return cast<VPBasicBlock>(Block);
163 }
164 
165 VPBasicBlock *VPBlockBase::getEntryBasicBlock() {
166   VPBlockBase *Block = this;
167   while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
168     Block = Region->getEntry();
169   return cast<VPBasicBlock>(Block);
170 }
171 
172 void VPBlockBase::setPlan(VPlan *ParentPlan) {
173   assert(ParentPlan->getEntry() == this && "Can only set plan on its entry.");
174   Plan = ParentPlan;
175 }
176 
177 /// \return the VPBasicBlock that is the exit of Block, possibly indirectly.
178 const VPBasicBlock *VPBlockBase::getExitingBasicBlock() const {
179   const VPBlockBase *Block = this;
180   while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
181     Block = Region->getExiting();
182   return cast<VPBasicBlock>(Block);
183 }
184 
185 VPBasicBlock *VPBlockBase::getExitingBasicBlock() {
186   VPBlockBase *Block = this;
187   while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
188     Block = Region->getExiting();
189   return cast<VPBasicBlock>(Block);
190 }
191 
192 VPBlockBase *VPBlockBase::getEnclosingBlockWithSuccessors() {
193   if (!Successors.empty() || !Parent)
194     return this;
195   assert(Parent->getExiting() == this &&
196          "Block w/o successors not the exiting block of its parent.");
197   return Parent->getEnclosingBlockWithSuccessors();
198 }
199 
200 VPBlockBase *VPBlockBase::getEnclosingBlockWithPredecessors() {
201   if (!Predecessors.empty() || !Parent)
202     return this;
203   assert(Parent->getEntry() == this &&
204          "Block w/o predecessors not the entry of its parent.");
205   return Parent->getEnclosingBlockWithPredecessors();
206 }
207 
208 void VPBlockBase::deleteCFG(VPBlockBase *Entry) {
209   for (VPBlockBase *Block : to_vector(vp_depth_first_shallow(Entry)))
210     delete Block;
211 }
212 
213 VPBasicBlock::iterator VPBasicBlock::getFirstNonPhi() {
214   iterator It = begin();
215   while (It != end() && It->isPhi())
216     It++;
217   return It;
218 }
219 
220 VPTransformState::VPTransformState(const TargetTransformInfo *TTI,
221                                    ElementCount VF, unsigned UF, LoopInfo *LI,
222                                    DominatorTree *DT, IRBuilderBase &Builder,
223                                    InnerLoopVectorizer *ILV, VPlan *Plan,
224                                    Type *CanonicalIVTy)
225     : TTI(TTI), VF(VF), CFG(DT), LI(LI), Builder(Builder), ILV(ILV), Plan(Plan),
226       LVer(nullptr), TypeAnalysis(CanonicalIVTy) {}
227 
228 Value *VPTransformState::get(VPValue *Def, const VPLane &Lane) {
229   if (Def->isLiveIn())
230     return Def->getLiveInIRValue();
231 
232   if (hasScalarValue(Def, Lane))
233     return Data.VPV2Scalars[Def][Lane.mapToCacheIndex(VF)];
234 
235   if (!Lane.isFirstLane() && vputils::isUniformAfterVectorization(Def) &&
236       hasScalarValue(Def, VPLane::getFirstLane())) {
237     return Data.VPV2Scalars[Def][0];
238   }
239 
240   assert(hasVectorValue(Def));
241   auto *VecPart = Data.VPV2Vector[Def];
242   if (!VecPart->getType()->isVectorTy()) {
243     assert(Lane.isFirstLane() && "cannot get lane > 0 for scalar");
244     return VecPart;
245   }
246   // TODO: Cache created scalar values.
247   Value *LaneV = Lane.getAsRuntimeExpr(Builder, VF);
248   auto *Extract = Builder.CreateExtractElement(VecPart, LaneV);
249   // set(Def, Extract, Instance);
250   return Extract;
251 }
252 
253 Value *VPTransformState::get(VPValue *Def, bool NeedsScalar) {
254   if (NeedsScalar) {
255     assert((VF.isScalar() || Def->isLiveIn() || hasVectorValue(Def) ||
256             !vputils::onlyFirstLaneUsed(Def) ||
257             (hasScalarValue(Def, VPLane(0)) &&
258              Data.VPV2Scalars[Def].size() == 1)) &&
259            "Trying to access a single scalar per part but has multiple scalars "
260            "per part.");
261     return get(Def, VPLane(0));
262   }
263 
264   // If Values have been set for this Def return the one relevant for \p Part.
265   if (hasVectorValue(Def))
266     return Data.VPV2Vector[Def];
267 
268   auto GetBroadcastInstrs = [this, Def](Value *V) {
269     bool SafeToHoist = Def->isDefinedOutsideLoopRegions();
270     if (VF.isScalar())
271       return V;
272     // Place the code for broadcasting invariant variables in the new preheader.
273     IRBuilder<>::InsertPointGuard Guard(Builder);
274     if (SafeToHoist) {
275       BasicBlock *LoopVectorPreHeader =
276           CFG.VPBB2IRBB[Plan->getVectorPreheader()];
277       if (LoopVectorPreHeader)
278         Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
279     }
280 
281     // Place the code for broadcasting invariant variables in the new preheader.
282     // Broadcast the scalar into all locations in the vector.
283     Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast");
284 
285     return Shuf;
286   };
287 
288   if (!hasScalarValue(Def, {0})) {
289     assert(Def->isLiveIn() && "expected a live-in");
290     Value *IRV = Def->getLiveInIRValue();
291     Value *B = GetBroadcastInstrs(IRV);
292     set(Def, B);
293     return B;
294   }
295 
296   Value *ScalarValue = get(Def, VPLane(0));
297   // If we aren't vectorizing, we can just copy the scalar map values over
298   // to the vector map.
299   if (VF.isScalar()) {
300     set(Def, ScalarValue);
301     return ScalarValue;
302   }
303 
304   bool IsUniform = vputils::isUniformAfterVectorization(Def);
305 
306   VPLane LastLane(IsUniform ? 0 : VF.getKnownMinValue() - 1);
307   // Check if there is a scalar value for the selected lane.
308   if (!hasScalarValue(Def, LastLane)) {
309     // At the moment, VPWidenIntOrFpInductionRecipes, VPScalarIVStepsRecipes and
310     // VPExpandSCEVRecipes can also be uniform.
311     assert((isa<VPWidenIntOrFpInductionRecipe, VPScalarIVStepsRecipe,
312                 VPExpandSCEVRecipe>(Def->getDefiningRecipe())) &&
313            "unexpected recipe found to be invariant");
314     IsUniform = true;
315     LastLane = 0;
316   }
317 
318   auto *LastInst = cast<Instruction>(get(Def, LastLane));
319   // Set the insert point after the last scalarized instruction or after the
320   // last PHI, if LastInst is a PHI. This ensures the insertelement sequence
321   // will directly follow the scalar definitions.
322   auto OldIP = Builder.saveIP();
323   auto NewIP =
324       isa<PHINode>(LastInst)
325           ? BasicBlock::iterator(LastInst->getParent()->getFirstNonPHI())
326           : std::next(BasicBlock::iterator(LastInst));
327   Builder.SetInsertPoint(&*NewIP);
328 
329   // However, if we are vectorizing, we need to construct the vector values.
330   // If the value is known to be uniform after vectorization, we can just
331   // broadcast the scalar value corresponding to lane zero. Otherwise, we
332   // construct the vector values using insertelement instructions. Since the
333   // resulting vectors are stored in State, we will only generate the
334   // insertelements once.
335   Value *VectorValue = nullptr;
336   if (IsUniform) {
337     VectorValue = GetBroadcastInstrs(ScalarValue);
338     set(Def, VectorValue);
339   } else {
340     // Initialize packing with insertelements to start from undef.
341     assert(!VF.isScalable() && "VF is assumed to be non scalable.");
342     Value *Undef = PoisonValue::get(VectorType::get(LastInst->getType(), VF));
343     set(Def, Undef);
344     for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane)
345       packScalarIntoVectorValue(Def, Lane);
346     VectorValue = get(Def);
347   }
348   Builder.restoreIP(OldIP);
349   return VectorValue;
350 }
351 
352 BasicBlock *VPTransformState::CFGState::getPreheaderBBFor(VPRecipeBase *R) {
353   VPRegionBlock *LoopRegion = R->getParent()->getEnclosingLoopRegion();
354   return VPBB2IRBB[LoopRegion->getPreheaderVPBB()];
355 }
356 
357 void VPTransformState::addNewMetadata(Instruction *To,
358                                       const Instruction *Orig) {
359   // If the loop was versioned with memchecks, add the corresponding no-alias
360   // metadata.
361   if (LVer && isa<LoadInst, StoreInst>(Orig))
362     LVer->annotateInstWithNoAlias(To, Orig);
363 }
364 
365 void VPTransformState::addMetadata(Value *To, Instruction *From) {
366   // No source instruction to transfer metadata from?
367   if (!From)
368     return;
369 
370   if (Instruction *ToI = dyn_cast<Instruction>(To)) {
371     propagateMetadata(ToI, From);
372     addNewMetadata(ToI, From);
373   }
374 }
375 
376 void VPTransformState::setDebugLocFrom(DebugLoc DL) {
377   const DILocation *DIL = DL;
378   // When a FSDiscriminator is enabled, we don't need to add the multiply
379   // factors to the discriminators.
380   if (DIL &&
381       Builder.GetInsertBlock()
382           ->getParent()
383           ->shouldEmitDebugInfoForProfiling() &&
384       !EnableFSDiscriminator) {
385     // FIXME: For scalable vectors, assume vscale=1.
386     unsigned UF = Plan->getUF();
387     auto NewDIL =
388         DIL->cloneByMultiplyingDuplicationFactor(UF * VF.getKnownMinValue());
389     if (NewDIL)
390       Builder.SetCurrentDebugLocation(*NewDIL);
391     else
392       LLVM_DEBUG(dbgs() << "Failed to create new discriminator: "
393                         << DIL->getFilename() << " Line: " << DIL->getLine());
394   } else
395     Builder.SetCurrentDebugLocation(DIL);
396 }
397 
398 void VPTransformState::packScalarIntoVectorValue(VPValue *Def,
399                                                  const VPLane &Lane) {
400   Value *ScalarInst = get(Def, Lane);
401   Value *VectorValue = get(Def);
402   VectorValue = Builder.CreateInsertElement(VectorValue, ScalarInst,
403                                             Lane.getAsRuntimeExpr(Builder, VF));
404   set(Def, VectorValue);
405 }
406 
407 BasicBlock *
408 VPBasicBlock::createEmptyBasicBlock(VPTransformState::CFGState &CFG) {
409   // BB stands for IR BasicBlocks. VPBB stands for VPlan VPBasicBlocks.
410   // Pred stands for Predessor. Prev stands for Previous - last visited/created.
411   BasicBlock *PrevBB = CFG.PrevBB;
412   BasicBlock *NewBB = BasicBlock::Create(PrevBB->getContext(), getName(),
413                                          PrevBB->getParent(), CFG.ExitBB);
414   LLVM_DEBUG(dbgs() << "LV: created " << NewBB->getName() << '\n');
415 
416   return NewBB;
417 }
418 
419 void VPBasicBlock::connectToPredecessors(VPTransformState::CFGState &CFG) {
420   BasicBlock *NewBB = CFG.VPBB2IRBB[this];
421   // Hook up the new basic block to its predecessors.
422   for (VPBlockBase *PredVPBlock : getHierarchicalPredecessors()) {
423     VPBasicBlock *PredVPBB = PredVPBlock->getExitingBasicBlock();
424     auto &PredVPSuccessors = PredVPBB->getHierarchicalSuccessors();
425     BasicBlock *PredBB = CFG.VPBB2IRBB[PredVPBB];
426 
427     assert(PredBB && "Predecessor basic-block not found building successor.");
428     auto *PredBBTerminator = PredBB->getTerminator();
429     LLVM_DEBUG(dbgs() << "LV: draw edge from" << PredBB->getName() << '\n');
430 
431     auto *TermBr = dyn_cast<BranchInst>(PredBBTerminator);
432     if (isa<UnreachableInst>(PredBBTerminator)) {
433       assert(PredVPSuccessors.size() == 1 &&
434              "Predecessor ending w/o branch must have single successor.");
435       DebugLoc DL = PredBBTerminator->getDebugLoc();
436       PredBBTerminator->eraseFromParent();
437       auto *Br = BranchInst::Create(NewBB, PredBB);
438       Br->setDebugLoc(DL);
439     } else if (TermBr && !TermBr->isConditional()) {
440       TermBr->setSuccessor(0, NewBB);
441     } else {
442       // Set each forward successor here when it is created, excluding
443       // backedges. A backward successor is set when the branch is created.
444       unsigned idx = PredVPSuccessors.front() == this ? 0 : 1;
445       assert(
446           (!TermBr->getSuccessor(idx) ||
447            (isa<VPIRBasicBlock>(this) && TermBr->getSuccessor(idx) == NewBB)) &&
448           "Trying to reset an existing successor block.");
449       TermBr->setSuccessor(idx, NewBB);
450     }
451     CFG.DTU.applyUpdates({{DominatorTree::Insert, PredBB, NewBB}});
452   }
453 }
454 
455 void VPIRBasicBlock::execute(VPTransformState *State) {
456   assert(getHierarchicalSuccessors().size() <= 2 &&
457          "VPIRBasicBlock can have at most two successors at the moment!");
458   State->Builder.SetInsertPoint(IRBB->getTerminator());
459   State->CFG.PrevBB = IRBB;
460   State->CFG.VPBB2IRBB[this] = IRBB;
461   executeRecipes(State, IRBB);
462   // Create a branch instruction to terminate IRBB if one was not created yet
463   // and is needed.
464   if (getSingleSuccessor() && isa<UnreachableInst>(IRBB->getTerminator())) {
465     auto *Br = State->Builder.CreateBr(IRBB);
466     Br->setOperand(0, nullptr);
467     IRBB->getTerminator()->eraseFromParent();
468   } else {
469     assert(
470         (getNumSuccessors() == 0 || isa<BranchInst>(IRBB->getTerminator())) &&
471         "other blocks must be terminated by a branch");
472   }
473 
474   connectToPredecessors(State->CFG);
475 }
476 
477 void VPBasicBlock::execute(VPTransformState *State) {
478   bool Replica = bool(State->Lane);
479   BasicBlock *NewBB = State->CFG.PrevBB; // Reuse it if possible.
480 
481   auto IsReplicateRegion = [](VPBlockBase *BB) {
482     auto *R = dyn_cast_or_null<VPRegionBlock>(BB);
483     return R && R->isReplicator();
484   };
485 
486   // 1. Create an IR basic block.
487   if (this == getPlan()->getVectorPreheader() ||
488       (Replica && this == getParent()->getEntry()) ||
489       IsReplicateRegion(getSingleHierarchicalPredecessor())) {
490     // Reuse the previous basic block if the current VPBB is either
491     //  * the vector preheader,
492     //  * the entry to a replicate region, or
493     //  * the exit of a replicate region.
494     State->CFG.VPBB2IRBB[this] = NewBB;
495   } else {
496     NewBB = createEmptyBasicBlock(State->CFG);
497 
498     State->Builder.SetInsertPoint(NewBB);
499     // Temporarily terminate with unreachable until CFG is rewired.
500     UnreachableInst *Terminator = State->Builder.CreateUnreachable();
501     // Register NewBB in its loop. In innermost loops its the same for all
502     // BB's.
503     if (State->CurrentVectorLoop)
504       State->CurrentVectorLoop->addBasicBlockToLoop(NewBB, *State->LI);
505     State->Builder.SetInsertPoint(Terminator);
506 
507     State->CFG.PrevBB = NewBB;
508     State->CFG.VPBB2IRBB[this] = NewBB;
509     connectToPredecessors(State->CFG);
510   }
511 
512   // 2. Fill the IR basic block with IR instructions.
513   executeRecipes(State, NewBB);
514 }
515 
516 void VPBasicBlock::dropAllReferences(VPValue *NewValue) {
517   for (VPRecipeBase &R : Recipes) {
518     for (auto *Def : R.definedValues())
519       Def->replaceAllUsesWith(NewValue);
520 
521     for (unsigned I = 0, E = R.getNumOperands(); I != E; I++)
522       R.setOperand(I, NewValue);
523   }
524 }
525 
526 void VPBasicBlock::executeRecipes(VPTransformState *State, BasicBlock *BB) {
527   LLVM_DEBUG(dbgs() << "LV: vectorizing VPBB:" << getName()
528                     << " in BB:" << BB->getName() << '\n');
529 
530   State->CFG.PrevVPBB = this;
531 
532   for (VPRecipeBase &Recipe : Recipes)
533     Recipe.execute(*State);
534 
535   LLVM_DEBUG(dbgs() << "LV: filled BB:" << *BB);
536 }
537 
538 VPBasicBlock *VPBasicBlock::splitAt(iterator SplitAt) {
539   assert((SplitAt == end() || SplitAt->getParent() == this) &&
540          "can only split at a position in the same block");
541 
542   SmallVector<VPBlockBase *, 2> Succs(successors());
543   // Create new empty block after the block to split.
544   auto *SplitBlock = new VPBasicBlock(getName() + ".split");
545   VPBlockUtils::insertBlockAfter(SplitBlock, this);
546 
547   // Finally, move the recipes starting at SplitAt to new block.
548   for (VPRecipeBase &ToMove :
549        make_early_inc_range(make_range(SplitAt, this->end())))
550     ToMove.moveBefore(*SplitBlock, SplitBlock->end());
551 
552   return SplitBlock;
553 }
554 
555 /// Return the enclosing loop region for region \p P. The templated version is
556 /// used to support both const and non-const block arguments.
557 template <typename T> static T *getEnclosingLoopRegionForRegion(T *P) {
558   if (P && P->isReplicator()) {
559     P = P->getParent();
560     assert(!cast<VPRegionBlock>(P)->isReplicator() &&
561            "unexpected nested replicate regions");
562   }
563   return P;
564 }
565 
566 VPRegionBlock *VPBasicBlock::getEnclosingLoopRegion() {
567   return getEnclosingLoopRegionForRegion(getParent());
568 }
569 
570 const VPRegionBlock *VPBasicBlock::getEnclosingLoopRegion() const {
571   return getEnclosingLoopRegionForRegion(getParent());
572 }
573 
574 static bool hasConditionalTerminator(const VPBasicBlock *VPBB) {
575   if (VPBB->empty()) {
576     assert(
577         VPBB->getNumSuccessors() < 2 &&
578         "block with multiple successors doesn't have a recipe as terminator");
579     return false;
580   }
581 
582   const VPRecipeBase *R = &VPBB->back();
583   bool IsCondBranch = isa<VPBranchOnMaskRecipe>(R) ||
584                       match(R, m_BranchOnCond(m_VPValue())) ||
585                       match(R, m_BranchOnCount(m_VPValue(), m_VPValue()));
586   (void)IsCondBranch;
587 
588   if (VPBB->getNumSuccessors() >= 2 ||
589       (VPBB->isExiting() && !VPBB->getParent()->isReplicator())) {
590     assert(IsCondBranch && "block with multiple successors not terminated by "
591                            "conditional branch recipe");
592 
593     return true;
594   }
595 
596   assert(
597       !IsCondBranch &&
598       "block with 0 or 1 successors terminated by conditional branch recipe");
599   return false;
600 }
601 
602 VPRecipeBase *VPBasicBlock::getTerminator() {
603   if (hasConditionalTerminator(this))
604     return &back();
605   return nullptr;
606 }
607 
608 const VPRecipeBase *VPBasicBlock::getTerminator() const {
609   if (hasConditionalTerminator(this))
610     return &back();
611   return nullptr;
612 }
613 
614 bool VPBasicBlock::isExiting() const {
615   return getParent() && getParent()->getExitingBasicBlock() == this;
616 }
617 
618 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
619 void VPBlockBase::printSuccessors(raw_ostream &O, const Twine &Indent) const {
620   if (getSuccessors().empty()) {
621     O << Indent << "No successors\n";
622   } else {
623     O << Indent << "Successor(s): ";
624     ListSeparator LS;
625     for (auto *Succ : getSuccessors())
626       O << LS << Succ->getName();
627     O << '\n';
628   }
629 }
630 
631 void VPBasicBlock::print(raw_ostream &O, const Twine &Indent,
632                          VPSlotTracker &SlotTracker) const {
633   O << Indent << getName() << ":\n";
634 
635   auto RecipeIndent = Indent + "  ";
636   for (const VPRecipeBase &Recipe : *this) {
637     Recipe.print(O, RecipeIndent, SlotTracker);
638     O << '\n';
639   }
640 
641   printSuccessors(O, Indent);
642 }
643 #endif
644 
645 static std::pair<VPBlockBase *, VPBlockBase *> cloneFrom(VPBlockBase *Entry);
646 
647 // Clone the CFG for all nodes reachable from \p Entry, this includes cloning
648 // the blocks and their recipes. Operands of cloned recipes will NOT be updated.
649 // Remapping of operands must be done separately. Returns a pair with the new
650 // entry and exiting blocks of the cloned region. If \p Entry isn't part of a
651 // region, return nullptr for the exiting block.
652 static std::pair<VPBlockBase *, VPBlockBase *> cloneFrom(VPBlockBase *Entry) {
653   DenseMap<VPBlockBase *, VPBlockBase *> Old2NewVPBlocks;
654   VPBlockBase *Exiting = nullptr;
655   bool InRegion = Entry->getParent();
656   // First, clone blocks reachable from Entry.
657   for (VPBlockBase *BB : vp_depth_first_shallow(Entry)) {
658     VPBlockBase *NewBB = BB->clone();
659     Old2NewVPBlocks[BB] = NewBB;
660     if (InRegion && BB->getNumSuccessors() == 0) {
661       assert(!Exiting && "Multiple exiting blocks?");
662       Exiting = BB;
663     }
664   }
665   assert((!InRegion || Exiting) && "regions must have a single exiting block");
666 
667   // Second, update the predecessors & successors of the cloned blocks.
668   for (VPBlockBase *BB : vp_depth_first_shallow(Entry)) {
669     VPBlockBase *NewBB = Old2NewVPBlocks[BB];
670     SmallVector<VPBlockBase *> NewPreds;
671     for (VPBlockBase *Pred : BB->getPredecessors()) {
672       NewPreds.push_back(Old2NewVPBlocks[Pred]);
673     }
674     NewBB->setPredecessors(NewPreds);
675     SmallVector<VPBlockBase *> NewSuccs;
676     for (VPBlockBase *Succ : BB->successors()) {
677       NewSuccs.push_back(Old2NewVPBlocks[Succ]);
678     }
679     NewBB->setSuccessors(NewSuccs);
680   }
681 
682 #if !defined(NDEBUG)
683   // Verify that the order of predecessors and successors matches in the cloned
684   // version.
685   for (const auto &[OldBB, NewBB] :
686        zip(vp_depth_first_shallow(Entry),
687            vp_depth_first_shallow(Old2NewVPBlocks[Entry]))) {
688     for (const auto &[OldPred, NewPred] :
689          zip(OldBB->getPredecessors(), NewBB->getPredecessors()))
690       assert(NewPred == Old2NewVPBlocks[OldPred] && "Different predecessors");
691 
692     for (const auto &[OldSucc, NewSucc] :
693          zip(OldBB->successors(), NewBB->successors()))
694       assert(NewSucc == Old2NewVPBlocks[OldSucc] && "Different successors");
695   }
696 #endif
697 
698   return std::make_pair(Old2NewVPBlocks[Entry],
699                         Exiting ? Old2NewVPBlocks[Exiting] : nullptr);
700 }
701 
702 VPRegionBlock *VPRegionBlock::clone() {
703   const auto &[NewEntry, NewExiting] = cloneFrom(getEntry());
704   auto *NewRegion =
705       new VPRegionBlock(NewEntry, NewExiting, getName(), isReplicator());
706   for (VPBlockBase *Block : vp_depth_first_shallow(NewEntry))
707     Block->setParent(NewRegion);
708   return NewRegion;
709 }
710 
711 void VPRegionBlock::dropAllReferences(VPValue *NewValue) {
712   for (VPBlockBase *Block : vp_depth_first_shallow(Entry))
713     // Drop all references in VPBasicBlocks and replace all uses with
714     // DummyValue.
715     Block->dropAllReferences(NewValue);
716 }
717 
718 void VPRegionBlock::execute(VPTransformState *State) {
719   ReversePostOrderTraversal<VPBlockShallowTraversalWrapper<VPBlockBase *>>
720       RPOT(Entry);
721 
722   if (!isReplicator()) {
723     // Create and register the new vector loop.
724     Loop *PrevLoop = State->CurrentVectorLoop;
725     State->CurrentVectorLoop = State->LI->AllocateLoop();
726     BasicBlock *VectorPH = State->CFG.VPBB2IRBB[getPreheaderVPBB()];
727     Loop *ParentLoop = State->LI->getLoopFor(VectorPH);
728 
729     // Insert the new loop into the loop nest and register the new basic blocks
730     // before calling any utilities such as SCEV that require valid LoopInfo.
731     if (ParentLoop)
732       ParentLoop->addChildLoop(State->CurrentVectorLoop);
733     else
734       State->LI->addTopLevelLoop(State->CurrentVectorLoop);
735 
736     // Visit the VPBlocks connected to "this", starting from it.
737     for (VPBlockBase *Block : RPOT) {
738       LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n');
739       Block->execute(State);
740     }
741 
742     State->CurrentVectorLoop = PrevLoop;
743     return;
744   }
745 
746   assert(!State->Lane && "Replicating a Region with non-null instance.");
747 
748   // Enter replicating mode.
749   assert(!State->VF.isScalable() && "VF is assumed to be non scalable.");
750   State->Lane = VPLane(0);
751   for (unsigned Lane = 0, VF = State->VF.getKnownMinValue(); Lane < VF;
752        ++Lane) {
753     State->Lane = VPLane(Lane, VPLane::Kind::First);
754     // Visit the VPBlocks connected to \p this, starting from it.
755     for (VPBlockBase *Block : RPOT) {
756       LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n');
757       Block->execute(State);
758     }
759   }
760 
761   // Exit replicating mode.
762   State->Lane.reset();
763 }
764 
765 InstructionCost VPBasicBlock::cost(ElementCount VF, VPCostContext &Ctx) {
766   InstructionCost Cost = 0;
767   for (VPRecipeBase &R : Recipes)
768     Cost += R.cost(VF, Ctx);
769   return Cost;
770 }
771 
772 InstructionCost VPRegionBlock::cost(ElementCount VF, VPCostContext &Ctx) {
773   if (!isReplicator()) {
774     InstructionCost Cost = 0;
775     for (VPBlockBase *Block : vp_depth_first_shallow(getEntry()))
776       Cost += Block->cost(VF, Ctx);
777     InstructionCost BackedgeCost =
778         ForceTargetInstructionCost.getNumOccurrences()
779             ? InstructionCost(ForceTargetInstructionCost.getNumOccurrences())
780             : Ctx.TTI.getCFInstrCost(Instruction::Br, TTI::TCK_RecipThroughput);
781     LLVM_DEBUG(dbgs() << "Cost of " << BackedgeCost << " for VF " << VF
782                       << ": vector loop backedge\n");
783     Cost += BackedgeCost;
784     return Cost;
785   }
786 
787   // Compute the cost of a replicate region. Replicating isn't supported for
788   // scalable vectors, return an invalid cost for them.
789   // TODO: Discard scalable VPlans with replicate recipes earlier after
790   // construction.
791   if (VF.isScalable())
792     return InstructionCost::getInvalid();
793 
794   // First compute the cost of the conditionally executed recipes, followed by
795   // account for the branching cost, except if the mask is a header mask or
796   // uniform condition.
797   using namespace llvm::VPlanPatternMatch;
798   VPBasicBlock *Then = cast<VPBasicBlock>(getEntry()->getSuccessors()[0]);
799   InstructionCost ThenCost = Then->cost(VF, Ctx);
800 
801   // For the scalar case, we may not always execute the original predicated
802   // block, Thus, scale the block's cost by the probability of executing it.
803   if (VF.isScalar())
804     return ThenCost / getReciprocalPredBlockProb();
805 
806   return ThenCost;
807 }
808 
809 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
810 void VPRegionBlock::print(raw_ostream &O, const Twine &Indent,
811                           VPSlotTracker &SlotTracker) const {
812   O << Indent << (isReplicator() ? "<xVFxUF> " : "<x1> ") << getName() << ": {";
813   auto NewIndent = Indent + "  ";
814   for (auto *BlockBase : vp_depth_first_shallow(Entry)) {
815     O << '\n';
816     BlockBase->print(O, NewIndent, SlotTracker);
817   }
818   O << Indent << "}\n";
819 
820   printSuccessors(O, Indent);
821 }
822 #endif
823 
824 VPlan::VPlan(Loop *L) {
825   setEntry(VPIRBasicBlock::fromBasicBlock(L->getLoopPreheader()));
826   ScalarHeader = VPIRBasicBlock::fromBasicBlock(L->getHeader());
827 }
828 
829 VPlan::~VPlan() {
830   if (Entry) {
831     VPValue DummyValue;
832     for (VPBlockBase *Block : vp_depth_first_shallow(Entry))
833       Block->dropAllReferences(&DummyValue);
834 
835     VPBlockBase::deleteCFG(Entry);
836   }
837   for (VPValue *VPV : VPLiveInsToFree)
838     delete VPV;
839   if (BackedgeTakenCount)
840     delete BackedgeTakenCount;
841 }
842 
843 VPIRBasicBlock *VPIRBasicBlock::fromBasicBlock(BasicBlock *IRBB) {
844   auto *VPIRBB = new VPIRBasicBlock(IRBB);
845   for (Instruction &I :
846        make_range(IRBB->begin(), IRBB->getTerminator()->getIterator()))
847     VPIRBB->appendRecipe(new VPIRInstruction(I));
848   return VPIRBB;
849 }
850 
851 VPlanPtr VPlan::createInitialVPlan(Type *InductionTy,
852                                    PredicatedScalarEvolution &PSE,
853                                    bool RequiresScalarEpilogueCheck,
854                                    bool TailFolded, Loop *TheLoop) {
855   auto Plan = std::make_unique<VPlan>(TheLoop);
856   VPBlockBase *ScalarHeader = Plan->getScalarHeader();
857 
858   // Connect entry only to vector preheader initially. Entry will also be
859   // connected to the scalar preheader later, during skeleton creation when
860   // runtime guards are added as needed. Note that when executing the VPlan for
861   // an epilogue vector loop, the original entry block here will be replaced by
862   // a new VPIRBasicBlock wrapping the entry to the epilogue vector loop after
863   // generating code for the main vector loop.
864   VPBasicBlock *VecPreheader = new VPBasicBlock("vector.ph");
865   VPBlockUtils::connectBlocks(Plan->getEntry(), VecPreheader);
866 
867   // Create SCEV and VPValue for the trip count.
868   // We use the symbolic max backedge-taken-count, which works also when
869   // vectorizing loops with uncountable early exits.
870   const SCEV *BackedgeTakenCountSCEV = PSE.getSymbolicMaxBackedgeTakenCount();
871   assert(!isa<SCEVCouldNotCompute>(BackedgeTakenCountSCEV) &&
872          "Invalid loop count");
873   ScalarEvolution &SE = *PSE.getSE();
874   const SCEV *TripCount = SE.getTripCountFromExitCount(BackedgeTakenCountSCEV,
875                                                        InductionTy, TheLoop);
876   Plan->TripCount =
877       vputils::getOrCreateVPValueForSCEVExpr(*Plan, TripCount, SE);
878 
879   // Create VPRegionBlock, with empty header and latch blocks, to be filled
880   // during processing later.
881   VPBasicBlock *HeaderVPBB = new VPBasicBlock("vector.body");
882   VPBasicBlock *LatchVPBB = new VPBasicBlock("vector.latch");
883   VPBlockUtils::insertBlockAfter(LatchVPBB, HeaderVPBB);
884   auto *TopRegion = new VPRegionBlock(HeaderVPBB, LatchVPBB, "vector loop",
885                                       false /*isReplicator*/);
886 
887   VPBlockUtils::insertBlockAfter(TopRegion, VecPreheader);
888   VPBasicBlock *MiddleVPBB = new VPBasicBlock("middle.block");
889   VPBlockUtils::insertBlockAfter(MiddleVPBB, TopRegion);
890 
891   VPBasicBlock *ScalarPH = new VPBasicBlock("scalar.ph");
892   VPBlockUtils::connectBlocks(ScalarPH, ScalarHeader);
893   if (!RequiresScalarEpilogueCheck) {
894     VPBlockUtils::connectBlocks(MiddleVPBB, ScalarPH);
895     return Plan;
896   }
897 
898   // If needed, add a check in the middle block to see if we have completed
899   // all of the iterations in the first vector loop.  Three cases:
900   // 1) If (N - N%VF) == N, then we *don't* need to run the remainder.
901   //    Thus if tail is to be folded, we know we don't need to run the
902   //    remainder and we can set the condition to true.
903   // 2) If we require a scalar epilogue, there is no conditional branch as
904   //    we unconditionally branch to the scalar preheader.  Do nothing.
905   // 3) Otherwise, construct a runtime check.
906   BasicBlock *IRExitBlock = TheLoop->getUniqueLatchExitBlock();
907   auto *VPExitBlock = VPIRBasicBlock::fromBasicBlock(IRExitBlock);
908   // The connection order corresponds to the operands of the conditional branch.
909   VPBlockUtils::insertBlockAfter(VPExitBlock, MiddleVPBB);
910   VPBlockUtils::connectBlocks(MiddleVPBB, ScalarPH);
911 
912   auto *ScalarLatchTerm = TheLoop->getLoopLatch()->getTerminator();
913   // Here we use the same DebugLoc as the scalar loop latch terminator instead
914   // of the corresponding compare because they may have ended up with
915   // different line numbers and we want to avoid awkward line stepping while
916   // debugging. Eg. if the compare has got a line number inside the loop.
917   VPBuilder Builder(MiddleVPBB);
918   VPValue *Cmp =
919       TailFolded
920           ? Plan->getOrAddLiveIn(ConstantInt::getTrue(
921                 IntegerType::getInt1Ty(TripCount->getType()->getContext())))
922           : Builder.createICmp(CmpInst::ICMP_EQ, Plan->getTripCount(),
923                                &Plan->getVectorTripCount(),
924                                ScalarLatchTerm->getDebugLoc(), "cmp.n");
925   Builder.createNaryOp(VPInstruction::BranchOnCond, {Cmp},
926                        ScalarLatchTerm->getDebugLoc());
927   return Plan;
928 }
929 
930 void VPlan::prepareToExecute(Value *TripCountV, Value *VectorTripCountV,
931                              VPTransformState &State) {
932   Type *TCTy = TripCountV->getType();
933   // Check if the backedge taken count is needed, and if so build it.
934   if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) {
935     IRBuilder<> Builder(State.CFG.PrevBB->getTerminator());
936     auto *TCMO = Builder.CreateSub(TripCountV, ConstantInt::get(TCTy, 1),
937                                    "trip.count.minus.1");
938     BackedgeTakenCount->setUnderlyingValue(TCMO);
939   }
940 
941   VectorTripCount.setUnderlyingValue(VectorTripCountV);
942 
943   IRBuilder<> Builder(State.CFG.PrevBB->getTerminator());
944   // FIXME: Model VF * UF computation completely in VPlan.
945   assert(VFxUF.getNumUsers() && "VFxUF expected to always have users");
946   unsigned UF = getUF();
947   if (VF.getNumUsers()) {
948     Value *RuntimeVF = getRuntimeVF(Builder, TCTy, State.VF);
949     VF.setUnderlyingValue(RuntimeVF);
950     VFxUF.setUnderlyingValue(
951         UF > 1 ? Builder.CreateMul(RuntimeVF, ConstantInt::get(TCTy, UF))
952                : RuntimeVF);
953   } else {
954     VFxUF.setUnderlyingValue(createStepForVF(Builder, TCTy, State.VF, UF));
955   }
956 }
957 
958 /// Replace \p VPBB with a VPIRBasicBlock wrapping \p IRBB. All recipes from \p
959 /// VPBB are moved to the end of the newly created VPIRBasicBlock. VPBB must
960 /// have a single predecessor, which is rewired to the new VPIRBasicBlock. All
961 /// successors of VPBB, if any, are rewired to the new VPIRBasicBlock.
962 static void replaceVPBBWithIRVPBB(VPBasicBlock *VPBB, BasicBlock *IRBB) {
963   VPIRBasicBlock *IRVPBB = VPIRBasicBlock::fromBasicBlock(IRBB);
964   for (auto &R : make_early_inc_range(*VPBB)) {
965     assert(!R.isPhi() && "Tried to move phi recipe to end of block");
966     R.moveBefore(*IRVPBB, IRVPBB->end());
967   }
968 
969   VPBlockUtils::reassociateBlocks(VPBB, IRVPBB);
970 
971   delete VPBB;
972 }
973 
974 /// Generate the code inside the preheader and body of the vectorized loop.
975 /// Assumes a single pre-header basic-block was created for this. Introduce
976 /// additional basic-blocks as needed, and fill them all.
977 void VPlan::execute(VPTransformState *State) {
978   // Initialize CFG state.
979   State->CFG.PrevVPBB = nullptr;
980   State->CFG.ExitBB = State->CFG.PrevBB->getSingleSuccessor();
981   BasicBlock *VectorPreHeader = State->CFG.PrevBB;
982   State->Builder.SetInsertPoint(VectorPreHeader->getTerminator());
983 
984   // Disconnect VectorPreHeader from ExitBB in both the CFG and DT.
985   cast<BranchInst>(VectorPreHeader->getTerminator())->setSuccessor(0, nullptr);
986   State->CFG.DTU.applyUpdates(
987       {{DominatorTree::Delete, VectorPreHeader, State->CFG.ExitBB}});
988 
989   // Replace regular VPBB's for the vector preheader, middle and scalar
990   // preheader blocks with VPIRBasicBlocks wrapping their IR blocks. The IR
991   // blocks are created during skeleton creation, so we can only create the
992   // VPIRBasicBlocks now during VPlan execution rather than earlier during VPlan
993   // construction.
994   BasicBlock *MiddleBB = State->CFG.ExitBB;
995   BasicBlock *ScalarPh = MiddleBB->getSingleSuccessor();
996   replaceVPBBWithIRVPBB(getVectorPreheader(), VectorPreHeader);
997   replaceVPBBWithIRVPBB(getMiddleBlock(), MiddleBB);
998   replaceVPBBWithIRVPBB(getScalarPreheader(), ScalarPh);
999 
1000   LLVM_DEBUG(dbgs() << "Executing best plan with VF=" << State->VF
1001                     << ", UF=" << getUF() << '\n');
1002   setName("Final VPlan");
1003   LLVM_DEBUG(dump());
1004 
1005   LLVM_DEBUG(dbgs() << "Executing best plan with VF=" << State->VF
1006                     << ", UF=" << getUF() << '\n');
1007   setName("Final VPlan");
1008   LLVM_DEBUG(dump());
1009 
1010   // Disconnect the middle block from its single successor (the scalar loop
1011   // header) in both the CFG and DT. The branch will be recreated during VPlan
1012   // execution.
1013   auto *BrInst = new UnreachableInst(MiddleBB->getContext());
1014   BrInst->insertBefore(MiddleBB->getTerminator());
1015   MiddleBB->getTerminator()->eraseFromParent();
1016   State->CFG.DTU.applyUpdates({{DominatorTree::Delete, MiddleBB, ScalarPh}});
1017   // Disconnect scalar preheader and scalar header, as the dominator tree edge
1018   // will be updated as part of VPlan execution. This allows keeping the DTU
1019   // logic generic during VPlan execution.
1020   State->CFG.DTU.applyUpdates(
1021       {{DominatorTree::Delete, ScalarPh, ScalarPh->getSingleSuccessor()}});
1022 
1023   ReversePostOrderTraversal<VPBlockShallowTraversalWrapper<VPBlockBase *>> RPOT(
1024       Entry);
1025   // Generate code for the VPlan, in parts of the vector skeleton, loop body and
1026   // successor blocks including the middle, exit and scalar preheader blocks.
1027   for (VPBlockBase *Block : RPOT)
1028     Block->execute(State);
1029 
1030   VPBasicBlock *LatchVPBB = getVectorLoopRegion()->getExitingBasicBlock();
1031   BasicBlock *VectorLatchBB = State->CFG.VPBB2IRBB[LatchVPBB];
1032 
1033   // Fix the latch value of canonical, reduction and first-order recurrences
1034   // phis in the vector loop.
1035   VPBasicBlock *Header = getVectorLoopRegion()->getEntryBasicBlock();
1036   for (VPRecipeBase &R : Header->phis()) {
1037     // Skip phi-like recipes that generate their backedege values themselves.
1038     if (isa<VPWidenPHIRecipe>(&R))
1039       continue;
1040 
1041     if (isa<VPWidenInductionRecipe>(&R)) {
1042       PHINode *Phi = nullptr;
1043       if (isa<VPWidenIntOrFpInductionRecipe>(&R)) {
1044         Phi = cast<PHINode>(State->get(R.getVPSingleValue()));
1045       } else {
1046         auto *WidenPhi = cast<VPWidenPointerInductionRecipe>(&R);
1047         assert(!WidenPhi->onlyScalarsGenerated(State->VF.isScalable()) &&
1048                "recipe generating only scalars should have been replaced");
1049         auto *GEP = cast<GetElementPtrInst>(State->get(WidenPhi));
1050         Phi = cast<PHINode>(GEP->getPointerOperand());
1051       }
1052 
1053       Phi->setIncomingBlock(1, VectorLatchBB);
1054 
1055       // Move the last step to the end of the latch block. This ensures
1056       // consistent placement of all induction updates.
1057       Instruction *Inc = cast<Instruction>(Phi->getIncomingValue(1));
1058       Inc->moveBefore(VectorLatchBB->getTerminator()->getPrevNode());
1059 
1060       // Use the steps for the last part as backedge value for the induction.
1061       if (auto *IV = dyn_cast<VPWidenIntOrFpInductionRecipe>(&R))
1062         Inc->setOperand(0, State->get(IV->getLastUnrolledPartOperand()));
1063       continue;
1064     }
1065 
1066     auto *PhiR = cast<VPHeaderPHIRecipe>(&R);
1067     bool NeedsScalar = isa<VPScalarPHIRecipe>(PhiR) ||
1068                        (isa<VPReductionPHIRecipe>(PhiR) &&
1069                         cast<VPReductionPHIRecipe>(PhiR)->isInLoop());
1070     Value *Phi = State->get(PhiR, NeedsScalar);
1071     Value *Val = State->get(PhiR->getBackedgeValue(), NeedsScalar);
1072     cast<PHINode>(Phi)->addIncoming(Val, VectorLatchBB);
1073   }
1074 
1075   State->CFG.DTU.flush();
1076 }
1077 
1078 InstructionCost VPlan::cost(ElementCount VF, VPCostContext &Ctx) {
1079   // For now only return the cost of the vector loop region, ignoring any other
1080   // blocks, like the preheader or middle blocks.
1081   return getVectorLoopRegion()->cost(VF, Ctx);
1082 }
1083 
1084 VPRegionBlock *VPlan::getVectorLoopRegion() {
1085   // TODO: Cache if possible.
1086   for (VPBlockBase *B : vp_depth_first_shallow(getEntry()))
1087     if (auto *R = dyn_cast<VPRegionBlock>(B))
1088       return R;
1089   return nullptr;
1090 }
1091 
1092 const VPRegionBlock *VPlan::getVectorLoopRegion() const {
1093   for (const VPBlockBase *B : vp_depth_first_shallow(getEntry()))
1094     if (auto *R = dyn_cast<VPRegionBlock>(B))
1095       return R;
1096   return nullptr;
1097 }
1098 
1099 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1100 void VPlan::printLiveIns(raw_ostream &O) const {
1101   VPSlotTracker SlotTracker(this);
1102 
1103   if (VF.getNumUsers() > 0) {
1104     O << "\nLive-in ";
1105     VF.printAsOperand(O, SlotTracker);
1106     O << " = VF";
1107   }
1108 
1109   if (VFxUF.getNumUsers() > 0) {
1110     O << "\nLive-in ";
1111     VFxUF.printAsOperand(O, SlotTracker);
1112     O << " = VF * UF";
1113   }
1114 
1115   if (VectorTripCount.getNumUsers() > 0) {
1116     O << "\nLive-in ";
1117     VectorTripCount.printAsOperand(O, SlotTracker);
1118     O << " = vector-trip-count";
1119   }
1120 
1121   if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) {
1122     O << "\nLive-in ";
1123     BackedgeTakenCount->printAsOperand(O, SlotTracker);
1124     O << " = backedge-taken count";
1125   }
1126 
1127   O << "\n";
1128   if (TripCount->isLiveIn())
1129     O << "Live-in ";
1130   TripCount->printAsOperand(O, SlotTracker);
1131   O << " = original trip-count";
1132   O << "\n";
1133 }
1134 
1135 LLVM_DUMP_METHOD
1136 void VPlan::print(raw_ostream &O) const {
1137   VPSlotTracker SlotTracker(this);
1138 
1139   O << "VPlan '" << getName() << "' {";
1140 
1141   printLiveIns(O);
1142 
1143   ReversePostOrderTraversal<VPBlockShallowTraversalWrapper<const VPBlockBase *>>
1144       RPOT(getEntry());
1145   for (const VPBlockBase *Block : RPOT) {
1146     O << '\n';
1147     Block->print(O, "", SlotTracker);
1148   }
1149 
1150   O << "}\n";
1151 }
1152 
1153 std::string VPlan::getName() const {
1154   std::string Out;
1155   raw_string_ostream RSO(Out);
1156   RSO << Name << " for ";
1157   if (!VFs.empty()) {
1158     RSO << "VF={" << VFs[0];
1159     for (ElementCount VF : drop_begin(VFs))
1160       RSO << "," << VF;
1161     RSO << "},";
1162   }
1163 
1164   if (UFs.empty()) {
1165     RSO << "UF>=1";
1166   } else {
1167     RSO << "UF={" << UFs[0];
1168     for (unsigned UF : drop_begin(UFs))
1169       RSO << "," << UF;
1170     RSO << "}";
1171   }
1172 
1173   return Out;
1174 }
1175 
1176 LLVM_DUMP_METHOD
1177 void VPlan::printDOT(raw_ostream &O) const {
1178   VPlanPrinter Printer(O, *this);
1179   Printer.dump();
1180 }
1181 
1182 LLVM_DUMP_METHOD
1183 void VPlan::dump() const { print(dbgs()); }
1184 #endif
1185 
1186 static void remapOperands(VPBlockBase *Entry, VPBlockBase *NewEntry,
1187                           DenseMap<VPValue *, VPValue *> &Old2NewVPValues) {
1188   // Update the operands of all cloned recipes starting at NewEntry. This
1189   // traverses all reachable blocks. This is done in two steps, to handle cycles
1190   // in PHI recipes.
1191   ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<VPBlockBase *>>
1192       OldDeepRPOT(Entry);
1193   ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<VPBlockBase *>>
1194       NewDeepRPOT(NewEntry);
1195   // First, collect all mappings from old to new VPValues defined by cloned
1196   // recipes.
1197   for (const auto &[OldBB, NewBB] :
1198        zip(VPBlockUtils::blocksOnly<VPBasicBlock>(OldDeepRPOT),
1199            VPBlockUtils::blocksOnly<VPBasicBlock>(NewDeepRPOT))) {
1200     assert(OldBB->getRecipeList().size() == NewBB->getRecipeList().size() &&
1201            "blocks must have the same number of recipes");
1202     for (const auto &[OldR, NewR] : zip(*OldBB, *NewBB)) {
1203       assert(OldR.getNumOperands() == NewR.getNumOperands() &&
1204              "recipes must have the same number of operands");
1205       assert(OldR.getNumDefinedValues() == NewR.getNumDefinedValues() &&
1206              "recipes must define the same number of operands");
1207       for (const auto &[OldV, NewV] :
1208            zip(OldR.definedValues(), NewR.definedValues()))
1209         Old2NewVPValues[OldV] = NewV;
1210     }
1211   }
1212 
1213   // Update all operands to use cloned VPValues.
1214   for (VPBasicBlock *NewBB :
1215        VPBlockUtils::blocksOnly<VPBasicBlock>(NewDeepRPOT)) {
1216     for (VPRecipeBase &NewR : *NewBB)
1217       for (unsigned I = 0, E = NewR.getNumOperands(); I != E; ++I) {
1218         VPValue *NewOp = Old2NewVPValues.lookup(NewR.getOperand(I));
1219         NewR.setOperand(I, NewOp);
1220       }
1221   }
1222 }
1223 
1224 VPlan *VPlan::duplicate() {
1225   // Clone blocks.
1226   const auto &[NewEntry, __] = cloneFrom(Entry);
1227 
1228   BasicBlock *ScalarHeaderIRBB = getScalarHeader()->getIRBasicBlock();
1229   VPIRBasicBlock *NewScalarHeader = cast<VPIRBasicBlock>(*find_if(
1230       vp_depth_first_shallow(NewEntry), [ScalarHeaderIRBB](VPBlockBase *VPB) {
1231         auto *VPIRBB = dyn_cast<VPIRBasicBlock>(VPB);
1232         return VPIRBB && VPIRBB->getIRBasicBlock() == ScalarHeaderIRBB;
1233       }));
1234   // Create VPlan, clone live-ins and remap operands in the cloned blocks.
1235   auto *NewPlan = new VPlan(cast<VPBasicBlock>(NewEntry), NewScalarHeader);
1236   DenseMap<VPValue *, VPValue *> Old2NewVPValues;
1237   for (VPValue *OldLiveIn : VPLiveInsToFree) {
1238     Old2NewVPValues[OldLiveIn] =
1239         NewPlan->getOrAddLiveIn(OldLiveIn->getLiveInIRValue());
1240   }
1241   Old2NewVPValues[&VectorTripCount] = &NewPlan->VectorTripCount;
1242   Old2NewVPValues[&VF] = &NewPlan->VF;
1243   Old2NewVPValues[&VFxUF] = &NewPlan->VFxUF;
1244   if (BackedgeTakenCount) {
1245     NewPlan->BackedgeTakenCount = new VPValue();
1246     Old2NewVPValues[BackedgeTakenCount] = NewPlan->BackedgeTakenCount;
1247   }
1248   assert(TripCount && "trip count must be set");
1249   if (TripCount->isLiveIn())
1250     Old2NewVPValues[TripCount] =
1251         NewPlan->getOrAddLiveIn(TripCount->getLiveInIRValue());
1252   // else NewTripCount will be created and inserted into Old2NewVPValues when
1253   // TripCount is cloned. In any case NewPlan->TripCount is updated below.
1254 
1255   remapOperands(Entry, NewEntry, Old2NewVPValues);
1256 
1257   // Initialize remaining fields of cloned VPlan.
1258   NewPlan->VFs = VFs;
1259   NewPlan->UFs = UFs;
1260   // TODO: Adjust names.
1261   NewPlan->Name = Name;
1262   assert(Old2NewVPValues.contains(TripCount) &&
1263          "TripCount must have been added to Old2NewVPValues");
1264   NewPlan->TripCount = Old2NewVPValues[TripCount];
1265   return NewPlan;
1266 }
1267 
1268 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1269 
1270 Twine VPlanPrinter::getUID(const VPBlockBase *Block) {
1271   return (isa<VPRegionBlock>(Block) ? "cluster_N" : "N") +
1272          Twine(getOrCreateBID(Block));
1273 }
1274 
1275 Twine VPlanPrinter::getOrCreateName(const VPBlockBase *Block) {
1276   const std::string &Name = Block->getName();
1277   if (!Name.empty())
1278     return Name;
1279   return "VPB" + Twine(getOrCreateBID(Block));
1280 }
1281 
1282 void VPlanPrinter::dump() {
1283   Depth = 1;
1284   bumpIndent(0);
1285   OS << "digraph VPlan {\n";
1286   OS << "graph [labelloc=t, fontsize=30; label=\"Vectorization Plan";
1287   if (!Plan.getName().empty())
1288     OS << "\\n" << DOT::EscapeString(Plan.getName());
1289 
1290   {
1291     // Print live-ins.
1292   std::string Str;
1293   raw_string_ostream SS(Str);
1294   Plan.printLiveIns(SS);
1295   SmallVector<StringRef, 0> Lines;
1296   StringRef(Str).rtrim('\n').split(Lines, "\n");
1297   for (auto Line : Lines)
1298     OS << DOT::EscapeString(Line.str()) << "\\n";
1299   }
1300 
1301   OS << "\"]\n";
1302   OS << "node [shape=rect, fontname=Courier, fontsize=30]\n";
1303   OS << "edge [fontname=Courier, fontsize=30]\n";
1304   OS << "compound=true\n";
1305 
1306   for (const VPBlockBase *Block : vp_depth_first_shallow(Plan.getEntry()))
1307     dumpBlock(Block);
1308 
1309   OS << "}\n";
1310 }
1311 
1312 void VPlanPrinter::dumpBlock(const VPBlockBase *Block) {
1313   if (const VPBasicBlock *BasicBlock = dyn_cast<VPBasicBlock>(Block))
1314     dumpBasicBlock(BasicBlock);
1315   else if (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
1316     dumpRegion(Region);
1317   else
1318     llvm_unreachable("Unsupported kind of VPBlock.");
1319 }
1320 
1321 void VPlanPrinter::drawEdge(const VPBlockBase *From, const VPBlockBase *To,
1322                             bool Hidden, const Twine &Label) {
1323   // Due to "dot" we print an edge between two regions as an edge between the
1324   // exiting basic block and the entry basic of the respective regions.
1325   const VPBlockBase *Tail = From->getExitingBasicBlock();
1326   const VPBlockBase *Head = To->getEntryBasicBlock();
1327   OS << Indent << getUID(Tail) << " -> " << getUID(Head);
1328   OS << " [ label=\"" << Label << '\"';
1329   if (Tail != From)
1330     OS << " ltail=" << getUID(From);
1331   if (Head != To)
1332     OS << " lhead=" << getUID(To);
1333   if (Hidden)
1334     OS << "; splines=none";
1335   OS << "]\n";
1336 }
1337 
1338 void VPlanPrinter::dumpEdges(const VPBlockBase *Block) {
1339   auto &Successors = Block->getSuccessors();
1340   if (Successors.size() == 1)
1341     drawEdge(Block, Successors.front(), false, "");
1342   else if (Successors.size() == 2) {
1343     drawEdge(Block, Successors.front(), false, "T");
1344     drawEdge(Block, Successors.back(), false, "F");
1345   } else {
1346     unsigned SuccessorNumber = 0;
1347     for (auto *Successor : Successors)
1348       drawEdge(Block, Successor, false, Twine(SuccessorNumber++));
1349   }
1350 }
1351 
1352 void VPlanPrinter::dumpBasicBlock(const VPBasicBlock *BasicBlock) {
1353   // Implement dot-formatted dump by performing plain-text dump into the
1354   // temporary storage followed by some post-processing.
1355   OS << Indent << getUID(BasicBlock) << " [label =\n";
1356   bumpIndent(1);
1357   std::string Str;
1358   raw_string_ostream SS(Str);
1359   // Use no indentation as we need to wrap the lines into quotes ourselves.
1360   BasicBlock->print(SS, "", SlotTracker);
1361 
1362   // We need to process each line of the output separately, so split
1363   // single-string plain-text dump.
1364   SmallVector<StringRef, 0> Lines;
1365   StringRef(Str).rtrim('\n').split(Lines, "\n");
1366 
1367   auto EmitLine = [&](StringRef Line, StringRef Suffix) {
1368     OS << Indent << '"' << DOT::EscapeString(Line.str()) << "\\l\"" << Suffix;
1369   };
1370 
1371   // Don't need the "+" after the last line.
1372   for (auto Line : make_range(Lines.begin(), Lines.end() - 1))
1373     EmitLine(Line, " +\n");
1374   EmitLine(Lines.back(), "\n");
1375 
1376   bumpIndent(-1);
1377   OS << Indent << "]\n";
1378 
1379   dumpEdges(BasicBlock);
1380 }
1381 
1382 void VPlanPrinter::dumpRegion(const VPRegionBlock *Region) {
1383   OS << Indent << "subgraph " << getUID(Region) << " {\n";
1384   bumpIndent(1);
1385   OS << Indent << "fontname=Courier\n"
1386      << Indent << "label=\""
1387      << DOT::EscapeString(Region->isReplicator() ? "<xVFxUF> " : "<x1> ")
1388      << DOT::EscapeString(Region->getName()) << "\"\n";
1389   // Dump the blocks of the region.
1390   assert(Region->getEntry() && "Region contains no inner blocks.");
1391   for (const VPBlockBase *Block : vp_depth_first_shallow(Region->getEntry()))
1392     dumpBlock(Block);
1393   bumpIndent(-1);
1394   OS << Indent << "}\n";
1395   dumpEdges(Region);
1396 }
1397 
1398 void VPlanIngredient::print(raw_ostream &O) const {
1399   if (auto *Inst = dyn_cast<Instruction>(V)) {
1400     if (!Inst->getType()->isVoidTy()) {
1401       Inst->printAsOperand(O, false);
1402       O << " = ";
1403     }
1404     O << Inst->getOpcodeName() << " ";
1405     unsigned E = Inst->getNumOperands();
1406     if (E > 0) {
1407       Inst->getOperand(0)->printAsOperand(O, false);
1408       for (unsigned I = 1; I < E; ++I)
1409         Inst->getOperand(I)->printAsOperand(O << ", ", false);
1410     }
1411   } else // !Inst
1412     V->printAsOperand(O, false);
1413 }
1414 
1415 #endif
1416 
1417 bool VPValue::isDefinedOutsideLoopRegions() const {
1418   return !hasDefiningRecipe() ||
1419          !getDefiningRecipe()->getParent()->getEnclosingLoopRegion();
1420 }
1421 
1422 void VPValue::replaceAllUsesWith(VPValue *New) {
1423   replaceUsesWithIf(New, [](VPUser &, unsigned) { return true; });
1424 }
1425 
1426 void VPValue::replaceUsesWithIf(
1427     VPValue *New,
1428     llvm::function_ref<bool(VPUser &U, unsigned Idx)> ShouldReplace) {
1429   // Note that this early exit is required for correctness; the implementation
1430   // below relies on the number of users for this VPValue to decrease, which
1431   // isn't the case if this == New.
1432   if (this == New)
1433     return;
1434 
1435   for (unsigned J = 0; J < getNumUsers();) {
1436     VPUser *User = Users[J];
1437     bool RemovedUser = false;
1438     for (unsigned I = 0, E = User->getNumOperands(); I < E; ++I) {
1439       if (User->getOperand(I) != this || !ShouldReplace(*User, I))
1440         continue;
1441 
1442       RemovedUser = true;
1443       User->setOperand(I, New);
1444     }
1445     // If a user got removed after updating the current user, the next user to
1446     // update will be moved to the current position, so we only need to
1447     // increment the index if the number of users did not change.
1448     if (!RemovedUser)
1449       J++;
1450   }
1451 }
1452 
1453 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1454 void VPValue::printAsOperand(raw_ostream &OS, VPSlotTracker &Tracker) const {
1455   OS << Tracker.getOrCreateName(this);
1456 }
1457 
1458 void VPUser::printOperands(raw_ostream &O, VPSlotTracker &SlotTracker) const {
1459   interleaveComma(operands(), O, [&O, &SlotTracker](VPValue *Op) {
1460     Op->printAsOperand(O, SlotTracker);
1461   });
1462 }
1463 #endif
1464 
1465 void VPInterleavedAccessInfo::visitRegion(VPRegionBlock *Region,
1466                                           Old2NewTy &Old2New,
1467                                           InterleavedAccessInfo &IAI) {
1468   ReversePostOrderTraversal<VPBlockShallowTraversalWrapper<VPBlockBase *>>
1469       RPOT(Region->getEntry());
1470   for (VPBlockBase *Base : RPOT) {
1471     visitBlock(Base, Old2New, IAI);
1472   }
1473 }
1474 
1475 void VPInterleavedAccessInfo::visitBlock(VPBlockBase *Block, Old2NewTy &Old2New,
1476                                          InterleavedAccessInfo &IAI) {
1477   if (VPBasicBlock *VPBB = dyn_cast<VPBasicBlock>(Block)) {
1478     for (VPRecipeBase &VPI : *VPBB) {
1479       if (isa<VPWidenPHIRecipe>(&VPI))
1480         continue;
1481       assert(isa<VPInstruction>(&VPI) && "Can only handle VPInstructions");
1482       auto *VPInst = cast<VPInstruction>(&VPI);
1483 
1484       auto *Inst = dyn_cast_or_null<Instruction>(VPInst->getUnderlyingValue());
1485       if (!Inst)
1486         continue;
1487       auto *IG = IAI.getInterleaveGroup(Inst);
1488       if (!IG)
1489         continue;
1490 
1491       auto NewIGIter = Old2New.find(IG);
1492       if (NewIGIter == Old2New.end())
1493         Old2New[IG] = new InterleaveGroup<VPInstruction>(
1494             IG->getFactor(), IG->isReverse(), IG->getAlign());
1495 
1496       if (Inst == IG->getInsertPos())
1497         Old2New[IG]->setInsertPos(VPInst);
1498 
1499       InterleaveGroupMap[VPInst] = Old2New[IG];
1500       InterleaveGroupMap[VPInst]->insertMember(
1501           VPInst, IG->getIndex(Inst),
1502           Align(IG->isReverse() ? (-1) * int(IG->getFactor())
1503                                 : IG->getFactor()));
1504     }
1505   } else if (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
1506     visitRegion(Region, Old2New, IAI);
1507   else
1508     llvm_unreachable("Unsupported kind of VPBlock.");
1509 }
1510 
1511 VPInterleavedAccessInfo::VPInterleavedAccessInfo(VPlan &Plan,
1512                                                  InterleavedAccessInfo &IAI) {
1513   Old2NewTy Old2New;
1514   visitRegion(Plan.getVectorLoopRegion(), Old2New, IAI);
1515 }
1516 
1517 void VPSlotTracker::assignName(const VPValue *V) {
1518   assert(!VPValue2Name.contains(V) && "VPValue already has a name!");
1519   auto *UV = V->getUnderlyingValue();
1520   auto *VPI = dyn_cast_or_null<VPInstruction>(V->getDefiningRecipe());
1521   if (!UV && !(VPI && !VPI->getName().empty())) {
1522     VPValue2Name[V] = (Twine("vp<%") + Twine(NextSlot) + ">").str();
1523     NextSlot++;
1524     return;
1525   }
1526 
1527   // Use the name of the underlying Value, wrapped in "ir<>", and versioned by
1528   // appending ".Number" to the name if there are multiple uses.
1529   std::string Name;
1530   if (UV) {
1531     raw_string_ostream S(Name);
1532     UV->printAsOperand(S, false);
1533   } else
1534     Name = VPI->getName();
1535 
1536   assert(!Name.empty() && "Name cannot be empty.");
1537   StringRef Prefix = UV ? "ir<" : "vp<%";
1538   std::string BaseName = (Twine(Prefix) + Name + Twine(">")).str();
1539 
1540   // First assign the base name for V.
1541   const auto &[A, _] = VPValue2Name.insert({V, BaseName});
1542   // Integer or FP constants with different types will result in he same string
1543   // due to stripping types.
1544   if (V->isLiveIn() && isa<ConstantInt, ConstantFP>(UV))
1545     return;
1546 
1547   // If it is already used by C > 0 other VPValues, increase the version counter
1548   // C and use it for V.
1549   const auto &[C, UseInserted] = BaseName2Version.insert({BaseName, 0});
1550   if (!UseInserted) {
1551     C->second++;
1552     A->second = (BaseName + Twine(".") + Twine(C->second)).str();
1553   }
1554 }
1555 
1556 void VPSlotTracker::assignNames(const VPlan &Plan) {
1557   if (Plan.VF.getNumUsers() > 0)
1558     assignName(&Plan.VF);
1559   if (Plan.VFxUF.getNumUsers() > 0)
1560     assignName(&Plan.VFxUF);
1561   assignName(&Plan.VectorTripCount);
1562   if (Plan.BackedgeTakenCount)
1563     assignName(Plan.BackedgeTakenCount);
1564   for (VPValue *LI : Plan.VPLiveInsToFree)
1565     assignName(LI);
1566 
1567   ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<const VPBlockBase *>>
1568       RPOT(VPBlockDeepTraversalWrapper<const VPBlockBase *>(Plan.getEntry()));
1569   for (const VPBasicBlock *VPBB :
1570        VPBlockUtils::blocksOnly<const VPBasicBlock>(RPOT))
1571     assignNames(VPBB);
1572 }
1573 
1574 void VPSlotTracker::assignNames(const VPBasicBlock *VPBB) {
1575   for (const VPRecipeBase &Recipe : *VPBB)
1576     for (VPValue *Def : Recipe.definedValues())
1577       assignName(Def);
1578 }
1579 
1580 std::string VPSlotTracker::getOrCreateName(const VPValue *V) const {
1581   std::string Name = VPValue2Name.lookup(V);
1582   if (!Name.empty())
1583     return Name;
1584 
1585   // If no name was assigned, no VPlan was provided when creating the slot
1586   // tracker or it is not reachable from the provided VPlan. This can happen,
1587   // e.g. when trying to print a recipe that has not been inserted into a VPlan
1588   // in a debugger.
1589   // TODO: Update VPSlotTracker constructor to assign names to recipes &
1590   // VPValues not associated with a VPlan, instead of constructing names ad-hoc
1591   // here.
1592   const VPRecipeBase *DefR = V->getDefiningRecipe();
1593   (void)DefR;
1594   assert((!DefR || !DefR->getParent() || !DefR->getParent()->getPlan()) &&
1595          "VPValue defined by a recipe in a VPlan?");
1596 
1597   // Use the underlying value's name, if there is one.
1598   if (auto *UV = V->getUnderlyingValue()) {
1599     std::string Name;
1600     raw_string_ostream S(Name);
1601     UV->printAsOperand(S, false);
1602     return (Twine("ir<") + Name + ">").str();
1603   }
1604 
1605   return "<badref>";
1606 }
1607 
1608 bool LoopVectorizationPlanner::getDecisionAndClampRange(
1609     const std::function<bool(ElementCount)> &Predicate, VFRange &Range) {
1610   assert(!Range.isEmpty() && "Trying to test an empty VF range.");
1611   bool PredicateAtRangeStart = Predicate(Range.Start);
1612 
1613   for (ElementCount TmpVF : VFRange(Range.Start * 2, Range.End))
1614     if (Predicate(TmpVF) != PredicateAtRangeStart) {
1615       Range.End = TmpVF;
1616       break;
1617     }
1618 
1619   return PredicateAtRangeStart;
1620 }
1621 
1622 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF,
1623 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range
1624 /// of VF's starting at a given VF and extending it as much as possible. Each
1625 /// vectorization decision can potentially shorten this sub-range during
1626 /// buildVPlan().
1627 void LoopVectorizationPlanner::buildVPlans(ElementCount MinVF,
1628                                            ElementCount MaxVF) {
1629   auto MaxVFTimes2 = MaxVF * 2;
1630   for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFTimes2);) {
1631     VFRange SubRange = {VF, MaxVFTimes2};
1632     auto Plan = buildVPlan(SubRange);
1633     VPlanTransforms::optimize(*Plan);
1634     VPlans.push_back(std::move(Plan));
1635     VF = SubRange.End;
1636   }
1637 }
1638 
1639 VPlan &LoopVectorizationPlanner::getPlanFor(ElementCount VF) const {
1640   assert(count_if(VPlans,
1641                   [VF](const VPlanPtr &Plan) { return Plan->hasVF(VF); }) ==
1642              1 &&
1643          "Multiple VPlans for VF.");
1644 
1645   for (const VPlanPtr &Plan : VPlans) {
1646     if (Plan->hasVF(VF))
1647       return *Plan.get();
1648   }
1649   llvm_unreachable("No plan found!");
1650 }
1651 
1652 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1653 void LoopVectorizationPlanner::printPlans(raw_ostream &O) {
1654   if (VPlans.empty()) {
1655     O << "LV: No VPlans built.\n";
1656     return;
1657   }
1658   for (const auto &Plan : VPlans)
1659     if (PrintVPlansInDotFormat)
1660       Plan->printDOT(O);
1661     else
1662       Plan->print(O);
1663 }
1664 #endif
1665 
1666 TargetTransformInfo::OperandValueInfo
1667 VPCostContext::getOperandInfo(VPValue *V) const {
1668   if (!V->isLiveIn())
1669     return {};
1670 
1671   return TTI::getOperandInfo(V->getLiveInIRValue());
1672 }
1673