xref: /llvm-project/llvm/lib/Transforms/Vectorize/VPlan.cpp (revision 59f442e6bb7314d8efad1a8e7d9c84f29a873be6)
1 //===- VPlan.cpp - Vectorizer Plan ----------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This is the LLVM vectorization plan. It represents a candidate for
11 /// vectorization, allowing to plan and optimize how to vectorize a given loop
12 /// before generating LLVM-IR.
13 /// The vectorizer uses vectorization plans to estimate the costs of potential
14 /// candidates and if profitable to execute the desired plan, generating vector
15 /// LLVM-IR code.
16 ///
17 //===----------------------------------------------------------------------===//
18 
19 #include "VPlan.h"
20 #include "VPlanDominatorTree.h"
21 #include "llvm/ADT/DepthFirstIterator.h"
22 #include "llvm/ADT/PostOrderIterator.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/Twine.h"
26 #include "llvm/Analysis/IVDescriptors.h"
27 #include "llvm/Analysis/LoopInfo.h"
28 #include "llvm/IR/BasicBlock.h"
29 #include "llvm/IR/CFG.h"
30 #include "llvm/IR/InstrTypes.h"
31 #include "llvm/IR/Instruction.h"
32 #include "llvm/IR/Instructions.h"
33 #include "llvm/IR/Type.h"
34 #include "llvm/IR/Value.h"
35 #include "llvm/Support/Casting.h"
36 #include "llvm/Support/CommandLine.h"
37 #include "llvm/Support/Debug.h"
38 #include "llvm/Support/ErrorHandling.h"
39 #include "llvm/Support/GenericDomTreeConstruction.h"
40 #include "llvm/Support/GraphWriter.h"
41 #include "llvm/Support/raw_ostream.h"
42 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
43 #include <cassert>
44 #include <iterator>
45 #include <string>
46 #include <vector>
47 
48 using namespace llvm;
49 extern cl::opt<bool> EnableVPlanNativePath;
50 
51 #define DEBUG_TYPE "vplan"
52 
53 raw_ostream &llvm::operator<<(raw_ostream &OS, const VPValue &V) {
54   const VPInstruction *Instr = dyn_cast<VPInstruction>(&V);
55   VPSlotTracker SlotTracker(
56       (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr);
57   V.print(OS, SlotTracker);
58   return OS;
59 }
60 
61 VPValue::VPValue(const unsigned char SC, Value *UV, VPDef *Def)
62     : SubclassID(SC), UnderlyingVal(UV), Def(Def) {
63   if (Def)
64     Def->addDefinedValue(this);
65 }
66 
67 VPValue::~VPValue() {
68   assert(Users.empty() && "trying to delete a VPValue with remaining users");
69   if (Def)
70     Def->removeDefinedValue(this);
71 }
72 
73 void VPValue::print(raw_ostream &OS, VPSlotTracker &SlotTracker) const {
74   if (const VPRecipeBase *R = dyn_cast_or_null<VPRecipeBase>(Def))
75     R->print(OS, "", SlotTracker);
76   else
77     printAsOperand(OS, SlotTracker);
78 }
79 
80 void VPValue::dump() const {
81   const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this->Def);
82   VPSlotTracker SlotTracker(
83       (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr);
84   print(dbgs(), SlotTracker);
85   dbgs() << "\n";
86 }
87 
88 void VPDef::dump() const {
89   const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this);
90   VPSlotTracker SlotTracker(
91       (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr);
92   print(dbgs(), "", SlotTracker);
93   dbgs() << "\n";
94 }
95 
96 // Get the top-most entry block of \p Start. This is the entry block of the
97 // containing VPlan. This function is templated to support both const and non-const blocks
98 template <typename T> static T *getPlanEntry(T *Start) {
99   T *Next = Start;
100   T *Current = Start;
101   while ((Next = Next->getParent()))
102     Current = Next;
103 
104   SmallSetVector<T *, 8> WorkList;
105   WorkList.insert(Current);
106 
107   for (unsigned i = 0; i < WorkList.size(); i++) {
108     T *Current = WorkList[i];
109     if (Current->getNumPredecessors() == 0)
110       return Current;
111     auto &Predecessors = Current->getPredecessors();
112     WorkList.insert(Predecessors.begin(), Predecessors.end());
113   }
114 
115   llvm_unreachable("VPlan without any entry node without predecessors");
116 }
117 
118 VPlan *VPBlockBase::getPlan() { return getPlanEntry(this)->Plan; }
119 
120 const VPlan *VPBlockBase::getPlan() const { return getPlanEntry(this)->Plan; }
121 
122 /// \return the VPBasicBlock that is the entry of Block, possibly indirectly.
123 const VPBasicBlock *VPBlockBase::getEntryBasicBlock() const {
124   const VPBlockBase *Block = this;
125   while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
126     Block = Region->getEntry();
127   return cast<VPBasicBlock>(Block);
128 }
129 
130 VPBasicBlock *VPBlockBase::getEntryBasicBlock() {
131   VPBlockBase *Block = this;
132   while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
133     Block = Region->getEntry();
134   return cast<VPBasicBlock>(Block);
135 }
136 
137 void VPBlockBase::setPlan(VPlan *ParentPlan) {
138   assert(ParentPlan->getEntry() == this &&
139          "Can only set plan on its entry block.");
140   Plan = ParentPlan;
141 }
142 
143 /// \return the VPBasicBlock that is the exit of Block, possibly indirectly.
144 const VPBasicBlock *VPBlockBase::getExitBasicBlock() const {
145   const VPBlockBase *Block = this;
146   while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
147     Block = Region->getExit();
148   return cast<VPBasicBlock>(Block);
149 }
150 
151 VPBasicBlock *VPBlockBase::getExitBasicBlock() {
152   VPBlockBase *Block = this;
153   while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
154     Block = Region->getExit();
155   return cast<VPBasicBlock>(Block);
156 }
157 
158 VPBlockBase *VPBlockBase::getEnclosingBlockWithSuccessors() {
159   if (!Successors.empty() || !Parent)
160     return this;
161   assert(Parent->getExit() == this &&
162          "Block w/o successors not the exit of its parent.");
163   return Parent->getEnclosingBlockWithSuccessors();
164 }
165 
166 VPBlockBase *VPBlockBase::getEnclosingBlockWithPredecessors() {
167   if (!Predecessors.empty() || !Parent)
168     return this;
169   assert(Parent->getEntry() == this &&
170          "Block w/o predecessors not the entry of its parent.");
171   return Parent->getEnclosingBlockWithPredecessors();
172 }
173 
174 void VPBlockBase::deleteCFG(VPBlockBase *Entry) {
175   SmallVector<VPBlockBase *, 8> Blocks(depth_first(Entry));
176 
177   for (VPBlockBase *Block : Blocks)
178     delete Block;
179 }
180 
181 VPBasicBlock::iterator VPBasicBlock::getFirstNonPhi() {
182   iterator It = begin();
183   while (It != end() && (isa<VPWidenPHIRecipe>(&*It) ||
184                          isa<VPWidenIntOrFpInductionRecipe>(&*It) ||
185                          isa<VPPredInstPHIRecipe>(&*It) ||
186                          isa<VPWidenCanonicalIVRecipe>(&*It)))
187     It++;
188   return It;
189 }
190 
191 Value *VPTransformState::get(VPValue *Def, const VPIteration &Instance) {
192   if (!Def->getDef())
193     return Def->getLiveInIRValue();
194 
195   if (hasScalarValue(Def, Instance))
196     return Data.PerPartScalars[Def][Instance.Part][Instance.Lane];
197 
198   assert(hasVectorValue(Def, Instance.Part));
199   auto *VecPart = Data.PerPartOutput[Def][Instance.Part];
200   if (!VecPart->getType()->isVectorTy()) {
201     assert(Instance.Lane == 0 && "cannot get lane > 0 for scalar");
202     return VecPart;
203   }
204   // TODO: Cache created scalar values.
205   auto *Extract =
206       Builder.CreateExtractElement(VecPart, Builder.getInt32(Instance.Lane));
207   // set(Def, Extract, Instance);
208   return Extract;
209 }
210 
211 BasicBlock *
212 VPBasicBlock::createEmptyBasicBlock(VPTransformState::CFGState &CFG) {
213   // BB stands for IR BasicBlocks. VPBB stands for VPlan VPBasicBlocks.
214   // Pred stands for Predessor. Prev stands for Previous - last visited/created.
215   BasicBlock *PrevBB = CFG.PrevBB;
216   BasicBlock *NewBB = BasicBlock::Create(PrevBB->getContext(), getName(),
217                                          PrevBB->getParent(), CFG.LastBB);
218   LLVM_DEBUG(dbgs() << "LV: created " << NewBB->getName() << '\n');
219 
220   // Hook up the new basic block to its predecessors.
221   for (VPBlockBase *PredVPBlock : getHierarchicalPredecessors()) {
222     VPBasicBlock *PredVPBB = PredVPBlock->getExitBasicBlock();
223     auto &PredVPSuccessors = PredVPBB->getSuccessors();
224     BasicBlock *PredBB = CFG.VPBB2IRBB[PredVPBB];
225 
226     // In outer loop vectorization scenario, the predecessor BBlock may not yet
227     // be visited(backedge). Mark the VPBasicBlock for fixup at the end of
228     // vectorization. We do not encounter this case in inner loop vectorization
229     // as we start out by building a loop skeleton with the vector loop header
230     // and latch blocks. As a result, we never enter this function for the
231     // header block in the non VPlan-native path.
232     if (!PredBB) {
233       assert(EnableVPlanNativePath &&
234              "Unexpected null predecessor in non VPlan-native path");
235       CFG.VPBBsToFix.push_back(PredVPBB);
236       continue;
237     }
238 
239     assert(PredBB && "Predecessor basic-block not found building successor.");
240     auto *PredBBTerminator = PredBB->getTerminator();
241     LLVM_DEBUG(dbgs() << "LV: draw edge from" << PredBB->getName() << '\n');
242     if (isa<UnreachableInst>(PredBBTerminator)) {
243       assert(PredVPSuccessors.size() == 1 &&
244              "Predecessor ending w/o branch must have single successor.");
245       PredBBTerminator->eraseFromParent();
246       BranchInst::Create(NewBB, PredBB);
247     } else {
248       assert(PredVPSuccessors.size() == 2 &&
249              "Predecessor ending with branch must have two successors.");
250       unsigned idx = PredVPSuccessors.front() == this ? 0 : 1;
251       assert(!PredBBTerminator->getSuccessor(idx) &&
252              "Trying to reset an existing successor block.");
253       PredBBTerminator->setSuccessor(idx, NewBB);
254     }
255   }
256   return NewBB;
257 }
258 
259 void VPBasicBlock::execute(VPTransformState *State) {
260   bool Replica = State->Instance && !State->Instance->isFirstIteration();
261   VPBasicBlock *PrevVPBB = State->CFG.PrevVPBB;
262   VPBlockBase *SingleHPred = nullptr;
263   BasicBlock *NewBB = State->CFG.PrevBB; // Reuse it if possible.
264 
265   // 1. Create an IR basic block, or reuse the last one if possible.
266   // The last IR basic block is reused, as an optimization, in three cases:
267   // A. the first VPBB reuses the loop header BB - when PrevVPBB is null;
268   // B. when the current VPBB has a single (hierarchical) predecessor which
269   //    is PrevVPBB and the latter has a single (hierarchical) successor; and
270   // C. when the current VPBB is an entry of a region replica - where PrevVPBB
271   //    is the exit of this region from a previous instance, or the predecessor
272   //    of this region.
273   if (PrevVPBB && /* A */
274       !((SingleHPred = getSingleHierarchicalPredecessor()) &&
275         SingleHPred->getExitBasicBlock() == PrevVPBB &&
276         PrevVPBB->getSingleHierarchicalSuccessor()) && /* B */
277       !(Replica && getPredecessors().empty())) {       /* C */
278     NewBB = createEmptyBasicBlock(State->CFG);
279     State->Builder.SetInsertPoint(NewBB);
280     // Temporarily terminate with unreachable until CFG is rewired.
281     UnreachableInst *Terminator = State->Builder.CreateUnreachable();
282     State->Builder.SetInsertPoint(Terminator);
283     // Register NewBB in its loop. In innermost loops its the same for all BB's.
284     Loop *L = State->LI->getLoopFor(State->CFG.LastBB);
285     L->addBasicBlockToLoop(NewBB, *State->LI);
286     State->CFG.PrevBB = NewBB;
287   }
288 
289   // 2. Fill the IR basic block with IR instructions.
290   LLVM_DEBUG(dbgs() << "LV: vectorizing VPBB:" << getName()
291                     << " in BB:" << NewBB->getName() << '\n');
292 
293   State->CFG.VPBB2IRBB[this] = NewBB;
294   State->CFG.PrevVPBB = this;
295 
296   for (VPRecipeBase &Recipe : Recipes)
297     Recipe.execute(*State);
298 
299   VPValue *CBV;
300   if (EnableVPlanNativePath && (CBV = getCondBit())) {
301     assert(CBV->getUnderlyingValue() &&
302            "Unexpected null underlying value for condition bit");
303 
304     // Condition bit value in a VPBasicBlock is used as the branch selector. In
305     // the VPlan-native path case, since all branches are uniform we generate a
306     // branch instruction using the condition value from vector lane 0 and dummy
307     // successors. The successors are fixed later when the successor blocks are
308     // visited.
309     Value *NewCond = State->get(CBV, {0, 0});
310 
311     // Replace the temporary unreachable terminator with the new conditional
312     // branch.
313     auto *CurrentTerminator = NewBB->getTerminator();
314     assert(isa<UnreachableInst>(CurrentTerminator) &&
315            "Expected to replace unreachable terminator with conditional "
316            "branch.");
317     auto *CondBr = BranchInst::Create(NewBB, nullptr, NewCond);
318     CondBr->setSuccessor(0, nullptr);
319     ReplaceInstWithInst(CurrentTerminator, CondBr);
320   }
321 
322   LLVM_DEBUG(dbgs() << "LV: filled BB:" << *NewBB);
323 }
324 
325 void VPBasicBlock::dropAllReferences(VPValue *NewValue) {
326   for (VPRecipeBase &R : Recipes) {
327     for (auto *Def : R.definedValues())
328       Def->replaceAllUsesWith(NewValue);
329 
330     for (unsigned I = 0, E = R.getNumOperands(); I != E; I++)
331       R.setOperand(I, NewValue);
332   }
333 }
334 
335 void VPRegionBlock::dropAllReferences(VPValue *NewValue) {
336   for (VPBlockBase *Block : depth_first(Entry))
337     // Drop all references in VPBasicBlocks and replace all uses with
338     // DummyValue.
339     Block->dropAllReferences(NewValue);
340 }
341 
342 void VPRegionBlock::execute(VPTransformState *State) {
343   ReversePostOrderTraversal<VPBlockBase *> RPOT(Entry);
344 
345   if (!isReplicator()) {
346     // Visit the VPBlocks connected to "this", starting from it.
347     for (VPBlockBase *Block : RPOT) {
348       if (EnableVPlanNativePath) {
349         // The inner loop vectorization path does not represent loop preheader
350         // and exit blocks as part of the VPlan. In the VPlan-native path, skip
351         // vectorizing loop preheader block. In future, we may replace this
352         // check with the check for loop preheader.
353         if (Block->getNumPredecessors() == 0)
354           continue;
355 
356         // Skip vectorizing loop exit block. In future, we may replace this
357         // check with the check for loop exit.
358         if (Block->getNumSuccessors() == 0)
359           continue;
360       }
361 
362       LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n');
363       Block->execute(State);
364     }
365     return;
366   }
367 
368   assert(!State->Instance && "Replicating a Region with non-null instance.");
369 
370   // Enter replicating mode.
371   State->Instance = VPIteration(0, 0);
372 
373   for (unsigned Part = 0, UF = State->UF; Part < UF; ++Part) {
374     State->Instance->Part = Part;
375     assert(!State->VF.isScalable() && "VF is assumed to be non scalable.");
376     for (unsigned Lane = 0, VF = State->VF.getKnownMinValue(); Lane < VF;
377          ++Lane) {
378       State->Instance->Lane = Lane;
379       // Visit the VPBlocks connected to \p this, starting from it.
380       for (VPBlockBase *Block : RPOT) {
381         LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n');
382         Block->execute(State);
383       }
384     }
385   }
386 
387   // Exit replicating mode.
388   State->Instance.reset();
389 }
390 
391 void VPRecipeBase::insertBefore(VPRecipeBase *InsertPos) {
392   assert(!Parent && "Recipe already in some VPBasicBlock");
393   assert(InsertPos->getParent() &&
394          "Insertion position not in any VPBasicBlock");
395   Parent = InsertPos->getParent();
396   Parent->getRecipeList().insert(InsertPos->getIterator(), this);
397 }
398 
399 void VPRecipeBase::insertAfter(VPRecipeBase *InsertPos) {
400   assert(!Parent && "Recipe already in some VPBasicBlock");
401   assert(InsertPos->getParent() &&
402          "Insertion position not in any VPBasicBlock");
403   Parent = InsertPos->getParent();
404   Parent->getRecipeList().insertAfter(InsertPos->getIterator(), this);
405 }
406 
407 void VPRecipeBase::removeFromParent() {
408   assert(getParent() && "Recipe not in any VPBasicBlock");
409   getParent()->getRecipeList().remove(getIterator());
410   Parent = nullptr;
411 }
412 
413 iplist<VPRecipeBase>::iterator VPRecipeBase::eraseFromParent() {
414   assert(getParent() && "Recipe not in any VPBasicBlock");
415   return getParent()->getRecipeList().erase(getIterator());
416 }
417 
418 void VPRecipeBase::moveAfter(VPRecipeBase *InsertPos) {
419   removeFromParent();
420   insertAfter(InsertPos);
421 }
422 
423 void VPRecipeBase::moveBefore(VPBasicBlock &BB,
424                               iplist<VPRecipeBase>::iterator I) {
425   assert(I == BB.end() || I->getParent() == &BB);
426   removeFromParent();
427   Parent = &BB;
428   BB.getRecipeList().insert(I, this);
429 }
430 
431 void VPInstruction::generateInstruction(VPTransformState &State,
432                                         unsigned Part) {
433   IRBuilder<> &Builder = State.Builder;
434 
435   if (Instruction::isBinaryOp(getOpcode())) {
436     Value *A = State.get(getOperand(0), Part);
437     Value *B = State.get(getOperand(1), Part);
438     Value *V = Builder.CreateBinOp((Instruction::BinaryOps)getOpcode(), A, B);
439     State.set(this, V, Part);
440     return;
441   }
442 
443   switch (getOpcode()) {
444   case VPInstruction::Not: {
445     Value *A = State.get(getOperand(0), Part);
446     Value *V = Builder.CreateNot(A);
447     State.set(this, V, Part);
448     break;
449   }
450   case VPInstruction::ICmpULE: {
451     Value *IV = State.get(getOperand(0), Part);
452     Value *TC = State.get(getOperand(1), Part);
453     Value *V = Builder.CreateICmpULE(IV, TC);
454     State.set(this, V, Part);
455     break;
456   }
457   case Instruction::Select: {
458     Value *Cond = State.get(getOperand(0), Part);
459     Value *Op1 = State.get(getOperand(1), Part);
460     Value *Op2 = State.get(getOperand(2), Part);
461     Value *V = Builder.CreateSelect(Cond, Op1, Op2);
462     State.set(this, V, Part);
463     break;
464   }
465   case VPInstruction::ActiveLaneMask: {
466     // Get first lane of vector induction variable.
467     Value *VIVElem0 = State.get(getOperand(0), VPIteration(Part, 0));
468     // Get the original loop tripcount.
469     Value *ScalarTC = State.TripCount;
470 
471     auto *Int1Ty = Type::getInt1Ty(Builder.getContext());
472     auto *PredTy = FixedVectorType::get(Int1Ty, State.VF.getKnownMinValue());
473     Instruction *Call = Builder.CreateIntrinsic(
474         Intrinsic::get_active_lane_mask, {PredTy, ScalarTC->getType()},
475         {VIVElem0, ScalarTC}, nullptr, "active.lane.mask");
476     State.set(this, Call, Part);
477     break;
478   }
479   default:
480     llvm_unreachable("Unsupported opcode for instruction");
481   }
482 }
483 
484 void VPInstruction::execute(VPTransformState &State) {
485   assert(!State.Instance && "VPInstruction executing an Instance");
486   for (unsigned Part = 0; Part < State.UF; ++Part)
487     generateInstruction(State, Part);
488 }
489 
490 void VPInstruction::dump() const {
491   VPSlotTracker SlotTracker(getParent()->getPlan());
492   print(dbgs(), "", SlotTracker);
493 }
494 
495 void VPInstruction::print(raw_ostream &O, const Twine &Indent,
496                           VPSlotTracker &SlotTracker) const {
497   O << "EMIT ";
498 
499   if (hasResult()) {
500     printAsOperand(O, SlotTracker);
501     O << " = ";
502   }
503 
504   switch (getOpcode()) {
505   case VPInstruction::Not:
506     O << "not";
507     break;
508   case VPInstruction::ICmpULE:
509     O << "icmp ule";
510     break;
511   case VPInstruction::SLPLoad:
512     O << "combined load";
513     break;
514   case VPInstruction::SLPStore:
515     O << "combined store";
516     break;
517   case VPInstruction::ActiveLaneMask:
518     O << "active lane mask";
519     break;
520 
521   default:
522     O << Instruction::getOpcodeName(getOpcode());
523   }
524 
525   for (const VPValue *Operand : operands()) {
526     O << " ";
527     Operand->printAsOperand(O, SlotTracker);
528   }
529 }
530 
531 /// Generate the code inside the body of the vectorized loop. Assumes a single
532 /// LoopVectorBody basic-block was created for this. Introduce additional
533 /// basic-blocks as needed, and fill them all.
534 void VPlan::execute(VPTransformState *State) {
535   // -1. Check if the backedge taken count is needed, and if so build it.
536   if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) {
537     Value *TC = State->TripCount;
538     IRBuilder<> Builder(State->CFG.PrevBB->getTerminator());
539     auto *TCMO = Builder.CreateSub(TC, ConstantInt::get(TC->getType(), 1),
540                                    "trip.count.minus.1");
541     auto VF = State->VF;
542     Value *VTCMO =
543         VF.isScalar() ? TCMO : Builder.CreateVectorSplat(VF, TCMO, "broadcast");
544     for (unsigned Part = 0, UF = State->UF; Part < UF; ++Part)
545       State->set(BackedgeTakenCount, VTCMO, Part);
546   }
547 
548   // 0. Set the reverse mapping from VPValues to Values for code generation.
549   for (auto &Entry : Value2VPValue)
550     State->VPValue2Value[Entry.second] = Entry.first;
551 
552   BasicBlock *VectorPreHeaderBB = State->CFG.PrevBB;
553   BasicBlock *VectorHeaderBB = VectorPreHeaderBB->getSingleSuccessor();
554   assert(VectorHeaderBB && "Loop preheader does not have a single successor.");
555 
556   // 1. Make room to generate basic-blocks inside loop body if needed.
557   BasicBlock *VectorLatchBB = VectorHeaderBB->splitBasicBlock(
558       VectorHeaderBB->getFirstInsertionPt(), "vector.body.latch");
559   Loop *L = State->LI->getLoopFor(VectorHeaderBB);
560   L->addBasicBlockToLoop(VectorLatchBB, *State->LI);
561   // Remove the edge between Header and Latch to allow other connections.
562   // Temporarily terminate with unreachable until CFG is rewired.
563   // Note: this asserts the generated code's assumption that
564   // getFirstInsertionPt() can be dereferenced into an Instruction.
565   VectorHeaderBB->getTerminator()->eraseFromParent();
566   State->Builder.SetInsertPoint(VectorHeaderBB);
567   UnreachableInst *Terminator = State->Builder.CreateUnreachable();
568   State->Builder.SetInsertPoint(Terminator);
569 
570   // 2. Generate code in loop body.
571   State->CFG.PrevVPBB = nullptr;
572   State->CFG.PrevBB = VectorHeaderBB;
573   State->CFG.LastBB = VectorLatchBB;
574 
575   for (VPBlockBase *Block : depth_first(Entry))
576     Block->execute(State);
577 
578   // Setup branch terminator successors for VPBBs in VPBBsToFix based on
579   // VPBB's successors.
580   for (auto VPBB : State->CFG.VPBBsToFix) {
581     assert(EnableVPlanNativePath &&
582            "Unexpected VPBBsToFix in non VPlan-native path");
583     BasicBlock *BB = State->CFG.VPBB2IRBB[VPBB];
584     assert(BB && "Unexpected null basic block for VPBB");
585 
586     unsigned Idx = 0;
587     auto *BBTerminator = BB->getTerminator();
588 
589     for (VPBlockBase *SuccVPBlock : VPBB->getHierarchicalSuccessors()) {
590       VPBasicBlock *SuccVPBB = SuccVPBlock->getEntryBasicBlock();
591       BBTerminator->setSuccessor(Idx, State->CFG.VPBB2IRBB[SuccVPBB]);
592       ++Idx;
593     }
594   }
595 
596   // 3. Merge the temporary latch created with the last basic-block filled.
597   BasicBlock *LastBB = State->CFG.PrevBB;
598   // Connect LastBB to VectorLatchBB to facilitate their merge.
599   assert((EnableVPlanNativePath ||
600           isa<UnreachableInst>(LastBB->getTerminator())) &&
601          "Expected InnerLoop VPlan CFG to terminate with unreachable");
602   assert((!EnableVPlanNativePath || isa<BranchInst>(LastBB->getTerminator())) &&
603          "Expected VPlan CFG to terminate with branch in NativePath");
604   LastBB->getTerminator()->eraseFromParent();
605   BranchInst::Create(VectorLatchBB, LastBB);
606 
607   // Merge LastBB with Latch.
608   bool Merged = MergeBlockIntoPredecessor(VectorLatchBB, nullptr, State->LI);
609   (void)Merged;
610   assert(Merged && "Could not merge last basic block with latch.");
611   VectorLatchBB = LastBB;
612 
613   // We do not attempt to preserve DT for outer loop vectorization currently.
614   if (!EnableVPlanNativePath)
615     updateDominatorTree(State->DT, VectorPreHeaderBB, VectorLatchBB,
616                         L->getExitBlock());
617 }
618 
619 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
620 LLVM_DUMP_METHOD
621 void VPlan::dump() const { dbgs() << *this << '\n'; }
622 #endif
623 
624 void VPlan::updateDominatorTree(DominatorTree *DT, BasicBlock *LoopPreHeaderBB,
625                                 BasicBlock *LoopLatchBB,
626                                 BasicBlock *LoopExitBB) {
627   BasicBlock *LoopHeaderBB = LoopPreHeaderBB->getSingleSuccessor();
628   assert(LoopHeaderBB && "Loop preheader does not have a single successor.");
629   // The vector body may be more than a single basic-block by this point.
630   // Update the dominator tree information inside the vector body by propagating
631   // it from header to latch, expecting only triangular control-flow, if any.
632   BasicBlock *PostDomSucc = nullptr;
633   for (auto *BB = LoopHeaderBB; BB != LoopLatchBB; BB = PostDomSucc) {
634     // Get the list of successors of this block.
635     std::vector<BasicBlock *> Succs(succ_begin(BB), succ_end(BB));
636     assert(Succs.size() <= 2 &&
637            "Basic block in vector loop has more than 2 successors.");
638     PostDomSucc = Succs[0];
639     if (Succs.size() == 1) {
640       assert(PostDomSucc->getSinglePredecessor() &&
641              "PostDom successor has more than one predecessor.");
642       DT->addNewBlock(PostDomSucc, BB);
643       continue;
644     }
645     BasicBlock *InterimSucc = Succs[1];
646     if (PostDomSucc->getSingleSuccessor() == InterimSucc) {
647       PostDomSucc = Succs[1];
648       InterimSucc = Succs[0];
649     }
650     assert(InterimSucc->getSingleSuccessor() == PostDomSucc &&
651            "One successor of a basic block does not lead to the other.");
652     assert(InterimSucc->getSinglePredecessor() &&
653            "Interim successor has more than one predecessor.");
654     assert(PostDomSucc->hasNPredecessors(2) &&
655            "PostDom successor has more than two predecessors.");
656     DT->addNewBlock(InterimSucc, BB);
657     DT->addNewBlock(PostDomSucc, BB);
658   }
659   // Latch block is a new dominator for the loop exit.
660   DT->changeImmediateDominator(LoopExitBB, LoopLatchBB);
661   assert(DT->verify(DominatorTree::VerificationLevel::Fast));
662 }
663 
664 const Twine VPlanPrinter::getUID(const VPBlockBase *Block) {
665   return (isa<VPRegionBlock>(Block) ? "cluster_N" : "N") +
666          Twine(getOrCreateBID(Block));
667 }
668 
669 const Twine VPlanPrinter::getOrCreateName(const VPBlockBase *Block) {
670   const std::string &Name = Block->getName();
671   if (!Name.empty())
672     return Name;
673   return "VPB" + Twine(getOrCreateBID(Block));
674 }
675 
676 void VPlanPrinter::dump() {
677   Depth = 1;
678   bumpIndent(0);
679   OS << "digraph VPlan {\n";
680   OS << "graph [labelloc=t, fontsize=30; label=\"Vectorization Plan";
681   if (!Plan.getName().empty())
682     OS << "\\n" << DOT::EscapeString(Plan.getName());
683   if (Plan.BackedgeTakenCount) {
684     OS << ", where:\\n";
685     Plan.BackedgeTakenCount->print(OS, SlotTracker);
686     OS << " := BackedgeTakenCount";
687   }
688   OS << "\"]\n";
689   OS << "node [shape=rect, fontname=Courier, fontsize=30]\n";
690   OS << "edge [fontname=Courier, fontsize=30]\n";
691   OS << "compound=true\n";
692 
693   for (const VPBlockBase *Block : depth_first(Plan.getEntry()))
694     dumpBlock(Block);
695 
696   OS << "}\n";
697 }
698 
699 void VPlanPrinter::dumpBlock(const VPBlockBase *Block) {
700   if (const VPBasicBlock *BasicBlock = dyn_cast<VPBasicBlock>(Block))
701     dumpBasicBlock(BasicBlock);
702   else if (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
703     dumpRegion(Region);
704   else
705     llvm_unreachable("Unsupported kind of VPBlock.");
706 }
707 
708 void VPlanPrinter::drawEdge(const VPBlockBase *From, const VPBlockBase *To,
709                             bool Hidden, const Twine &Label) {
710   // Due to "dot" we print an edge between two regions as an edge between the
711   // exit basic block and the entry basic of the respective regions.
712   const VPBlockBase *Tail = From->getExitBasicBlock();
713   const VPBlockBase *Head = To->getEntryBasicBlock();
714   OS << Indent << getUID(Tail) << " -> " << getUID(Head);
715   OS << " [ label=\"" << Label << '\"';
716   if (Tail != From)
717     OS << " ltail=" << getUID(From);
718   if (Head != To)
719     OS << " lhead=" << getUID(To);
720   if (Hidden)
721     OS << "; splines=none";
722   OS << "]\n";
723 }
724 
725 void VPlanPrinter::dumpEdges(const VPBlockBase *Block) {
726   auto &Successors = Block->getSuccessors();
727   if (Successors.size() == 1)
728     drawEdge(Block, Successors.front(), false, "");
729   else if (Successors.size() == 2) {
730     drawEdge(Block, Successors.front(), false, "T");
731     drawEdge(Block, Successors.back(), false, "F");
732   } else {
733     unsigned SuccessorNumber = 0;
734     for (auto *Successor : Successors)
735       drawEdge(Block, Successor, false, Twine(SuccessorNumber++));
736   }
737 }
738 
739 void VPlanPrinter::dumpBasicBlock(const VPBasicBlock *BasicBlock) {
740   OS << Indent << getUID(BasicBlock) << " [label =\n";
741   bumpIndent(1);
742   OS << Indent << "\"" << DOT::EscapeString(BasicBlock->getName()) << ":\\n\"";
743   bumpIndent(1);
744 
745   // Dump the block predicate.
746   const VPValue *Pred = BasicBlock->getPredicate();
747   if (Pred) {
748     OS << " +\n" << Indent << " \"BlockPredicate: \"";
749     if (const VPInstruction *PredI = dyn_cast<VPInstruction>(Pred)) {
750       PredI->printAsOperand(OS, SlotTracker);
751       OS << " (" << DOT::EscapeString(PredI->getParent()->getName())
752          << ")\\l\"";
753     } else
754       Pred->printAsOperand(OS, SlotTracker);
755   }
756 
757   for (const VPRecipeBase &Recipe : *BasicBlock) {
758     OS << " +\n" << Indent << "\"";
759     Recipe.print(OS, Indent, SlotTracker);
760     OS << "\\l\"";
761   }
762 
763   // Dump the condition bit.
764   const VPValue *CBV = BasicBlock->getCondBit();
765   if (CBV) {
766     OS << " +\n" << Indent << " \"CondBit: ";
767     if (const VPInstruction *CBI = dyn_cast<VPInstruction>(CBV)) {
768       CBI->printAsOperand(OS, SlotTracker);
769       OS << " (" << DOT::EscapeString(CBI->getParent()->getName()) << ")\\l\"";
770     } else {
771       CBV->printAsOperand(OS, SlotTracker);
772       OS << "\"";
773     }
774   }
775 
776   bumpIndent(-2);
777   OS << "\n" << Indent << "]\n";
778   dumpEdges(BasicBlock);
779 }
780 
781 void VPlanPrinter::dumpRegion(const VPRegionBlock *Region) {
782   OS << Indent << "subgraph " << getUID(Region) << " {\n";
783   bumpIndent(1);
784   OS << Indent << "fontname=Courier\n"
785      << Indent << "label=\""
786      << DOT::EscapeString(Region->isReplicator() ? "<xVFxUF> " : "<x1> ")
787      << DOT::EscapeString(Region->getName()) << "\"\n";
788   // Dump the blocks of the region.
789   assert(Region->getEntry() && "Region contains no inner blocks.");
790   for (const VPBlockBase *Block : depth_first(Region->getEntry()))
791     dumpBlock(Block);
792   bumpIndent(-1);
793   OS << Indent << "}\n";
794   dumpEdges(Region);
795 }
796 
797 void VPlanPrinter::printAsIngredient(raw_ostream &O, const Value *V) {
798   std::string IngredientString;
799   raw_string_ostream RSO(IngredientString);
800   if (auto *Inst = dyn_cast<Instruction>(V)) {
801     if (!Inst->getType()->isVoidTy()) {
802       Inst->printAsOperand(RSO, false);
803       RSO << " = ";
804     }
805     RSO << Inst->getOpcodeName() << " ";
806     unsigned E = Inst->getNumOperands();
807     if (E > 0) {
808       Inst->getOperand(0)->printAsOperand(RSO, false);
809       for (unsigned I = 1; I < E; ++I)
810         Inst->getOperand(I)->printAsOperand(RSO << ", ", false);
811     }
812   } else // !Inst
813     V->printAsOperand(RSO, false);
814   RSO.flush();
815   O << DOT::EscapeString(IngredientString);
816 }
817 
818 void VPWidenCallRecipe::print(raw_ostream &O, const Twine &Indent,
819                               VPSlotTracker &SlotTracker) const {
820   O << "WIDEN-CALL ";
821 
822   auto *CI = cast<CallInst>(getUnderlyingInstr());
823   if (CI->getType()->isVoidTy())
824     O << "void ";
825   else {
826     printAsOperand(O, SlotTracker);
827     O << " = ";
828   }
829 
830   O << "call @" << CI->getCalledFunction()->getName() << "(";
831   printOperands(O, SlotTracker);
832   O << ")";
833 }
834 
835 void VPWidenSelectRecipe::print(raw_ostream &O, const Twine &Indent,
836                                 VPSlotTracker &SlotTracker) const {
837   O << "WIDEN-SELECT ";
838   printAsOperand(O, SlotTracker);
839   O << " = select ";
840   getOperand(0)->printAsOperand(O, SlotTracker);
841   O << ", ";
842   getOperand(1)->printAsOperand(O, SlotTracker);
843   O << ", ";
844   getOperand(2)->printAsOperand(O, SlotTracker);
845   O << (InvariantCond ? " (condition is loop invariant)" : "");
846 }
847 
848 void VPWidenRecipe::print(raw_ostream &O, const Twine &Indent,
849                           VPSlotTracker &SlotTracker) const {
850   O << "WIDEN ";
851   printAsOperand(O, SlotTracker);
852   O << " = " << getUnderlyingInstr()->getOpcodeName() << " ";
853   printOperands(O, SlotTracker);
854 }
855 
856 void VPWidenIntOrFpInductionRecipe::print(raw_ostream &O, const Twine &Indent,
857                                           VPSlotTracker &SlotTracker) const {
858   O << "WIDEN-INDUCTION";
859   if (getTruncInst()) {
860     O << "\\l\"";
861     O << " +\n" << Indent << "\"  " << VPlanIngredient(IV) << "\\l\"";
862     O << " +\n" << Indent << "\"  ";
863     getVPValue(0)->printAsOperand(O, SlotTracker);
864   } else
865     O << " " << VPlanIngredient(IV);
866 }
867 
868 void VPWidenGEPRecipe::print(raw_ostream &O, const Twine &Indent,
869                              VPSlotTracker &SlotTracker) const {
870   O << "WIDEN-GEP ";
871   O << (IsPtrLoopInvariant ? "Inv" : "Var");
872   size_t IndicesNumber = IsIndexLoopInvariant.size();
873   for (size_t I = 0; I < IndicesNumber; ++I)
874     O << "[" << (IsIndexLoopInvariant[I] ? "Inv" : "Var") << "]";
875 
876   O << " ";
877   printAsOperand(O, SlotTracker);
878   O << " = getelementptr ";
879   printOperands(O, SlotTracker);
880 }
881 
882 void VPWidenPHIRecipe::print(raw_ostream &O, const Twine &Indent,
883                              VPSlotTracker &SlotTracker) const {
884   O << "WIDEN-PHI " << VPlanIngredient(getUnderlyingValue());
885 }
886 
887 void VPBlendRecipe::print(raw_ostream &O, const Twine &Indent,
888                           VPSlotTracker &SlotTracker) const {
889   O << "BLEND ";
890   Phi->printAsOperand(O, false);
891   O << " =";
892   if (getNumIncomingValues() == 1) {
893     // Not a User of any mask: not really blending, this is a
894     // single-predecessor phi.
895     O << " ";
896     getIncomingValue(0)->printAsOperand(O, SlotTracker);
897   } else {
898     for (unsigned I = 0, E = getNumIncomingValues(); I < E; ++I) {
899       O << " ";
900       getIncomingValue(I)->printAsOperand(O, SlotTracker);
901       O << "/";
902       getMask(I)->printAsOperand(O, SlotTracker);
903     }
904   }
905 }
906 
907 void VPReductionRecipe::print(raw_ostream &O, const Twine &Indent,
908                               VPSlotTracker &SlotTracker) const {
909   O << "REDUCE ";
910   printAsOperand(O, SlotTracker);
911   O << " = ";
912   getChainOp()->printAsOperand(O, SlotTracker);
913   O << " + reduce." << Instruction::getOpcodeName(RdxDesc->getOpcode())
914     << " (";
915   getVecOp()->printAsOperand(O, SlotTracker);
916   if (getCondOp()) {
917     O << ", ";
918     getCondOp()->printAsOperand(O, SlotTracker);
919   }
920   O << ")";
921 }
922 
923 void VPReplicateRecipe::print(raw_ostream &O, const Twine &Indent,
924                               VPSlotTracker &SlotTracker) const {
925   O << (IsUniform ? "CLONE " : "REPLICATE ");
926 
927   if (!getUnderlyingInstr()->getType()->isVoidTy()) {
928     printAsOperand(O, SlotTracker);
929     O << " = ";
930   }
931   O << Instruction::getOpcodeName(getUnderlyingInstr()->getOpcode()) << " ";
932   printOperands(O, SlotTracker);
933 
934   if (AlsoPack)
935     O << " (S->V)";
936 }
937 
938 void VPPredInstPHIRecipe::print(raw_ostream &O, const Twine &Indent,
939                                 VPSlotTracker &SlotTracker) const {
940   O << "PHI-PREDICATED-INSTRUCTION ";
941   printAsOperand(O, SlotTracker);
942   O << " = ";
943   printOperands(O, SlotTracker);
944 }
945 
946 void VPWidenMemoryInstructionRecipe::print(raw_ostream &O, const Twine &Indent,
947                                            VPSlotTracker &SlotTracker) const {
948   O << "WIDEN ";
949 
950   if (!isStore()) {
951     getVPValue()->printAsOperand(O, SlotTracker);
952     O << " = ";
953   }
954   O << Instruction::getOpcodeName(Ingredient.getOpcode()) << " ";
955 
956   printOperands(O, SlotTracker);
957 }
958 
959 void VPWidenCanonicalIVRecipe::execute(VPTransformState &State) {
960   Value *CanonicalIV = State.CanonicalIV;
961   Type *STy = CanonicalIV->getType();
962   IRBuilder<> Builder(State.CFG.PrevBB->getTerminator());
963   ElementCount VF = State.VF;
964   assert(!VF.isScalable() && "the code following assumes non scalables ECs");
965   Value *VStart = VF.isScalar()
966                       ? CanonicalIV
967                       : Builder.CreateVectorSplat(VF.getKnownMinValue(),
968                                                   CanonicalIV, "broadcast");
969   for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part) {
970     SmallVector<Constant *, 8> Indices;
971     for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane)
972       Indices.push_back(
973           ConstantInt::get(STy, Part * VF.getKnownMinValue() + Lane));
974     // If VF == 1, there is only one iteration in the loop above, thus the
975     // element pushed back into Indices is ConstantInt::get(STy, Part)
976     Constant *VStep =
977         VF.isScalar() ? Indices.back() : ConstantVector::get(Indices);
978     // Add the consecutive indices to the vector value.
979     Value *CanonicalVectorIV = Builder.CreateAdd(VStart, VStep, "vec.iv");
980     State.set(getVPValue(), CanonicalVectorIV, Part);
981   }
982 }
983 
984 void VPWidenCanonicalIVRecipe::print(raw_ostream &O, const Twine &Indent,
985                                      VPSlotTracker &SlotTracker) const {
986   O << "EMIT ";
987   getVPValue()->printAsOperand(O, SlotTracker);
988   O << " = WIDEN-CANONICAL-INDUCTION";
989 }
990 
991 template void DomTreeBuilder::Calculate<VPDominatorTree>(VPDominatorTree &DT);
992 
993 void VPValue::replaceAllUsesWith(VPValue *New) {
994   for (unsigned J = 0; J < getNumUsers();) {
995     VPUser *User = Users[J];
996     unsigned NumUsers = getNumUsers();
997     for (unsigned I = 0, E = User->getNumOperands(); I < E; ++I)
998       if (User->getOperand(I) == this)
999         User->setOperand(I, New);
1000     // If a user got removed after updating the current user, the next user to
1001     // update will be moved to the current position, so we only need to
1002     // increment the index if the number of users did not change.
1003     if (NumUsers == getNumUsers())
1004       J++;
1005   }
1006 }
1007 
1008 void VPValue::printAsOperand(raw_ostream &OS, VPSlotTracker &Tracker) const {
1009   if (const Value *UV = getUnderlyingValue()) {
1010     OS << "ir<";
1011     UV->printAsOperand(OS, false);
1012     OS << ">";
1013     return;
1014   }
1015 
1016   unsigned Slot = Tracker.getSlot(this);
1017   if (Slot == unsigned(-1))
1018     OS << "<badref>";
1019   else
1020     OS << "vp<%" << Tracker.getSlot(this) << ">";
1021 }
1022 
1023 void VPUser::printOperands(raw_ostream &O, VPSlotTracker &SlotTracker) const {
1024   interleaveComma(operands(), O, [&O, &SlotTracker](VPValue *Op) {
1025     Op->printAsOperand(O, SlotTracker);
1026   });
1027 }
1028 
1029 void VPInterleavedAccessInfo::visitRegion(VPRegionBlock *Region,
1030                                           Old2NewTy &Old2New,
1031                                           InterleavedAccessInfo &IAI) {
1032   ReversePostOrderTraversal<VPBlockBase *> RPOT(Region->getEntry());
1033   for (VPBlockBase *Base : RPOT) {
1034     visitBlock(Base, Old2New, IAI);
1035   }
1036 }
1037 
1038 void VPInterleavedAccessInfo::visitBlock(VPBlockBase *Block, Old2NewTy &Old2New,
1039                                          InterleavedAccessInfo &IAI) {
1040   if (VPBasicBlock *VPBB = dyn_cast<VPBasicBlock>(Block)) {
1041     for (VPRecipeBase &VPI : *VPBB) {
1042       assert(isa<VPInstruction>(&VPI) && "Can only handle VPInstructions");
1043       auto *VPInst = cast<VPInstruction>(&VPI);
1044       auto *Inst = cast<Instruction>(VPInst->getUnderlyingValue());
1045       auto *IG = IAI.getInterleaveGroup(Inst);
1046       if (!IG)
1047         continue;
1048 
1049       auto NewIGIter = Old2New.find(IG);
1050       if (NewIGIter == Old2New.end())
1051         Old2New[IG] = new InterleaveGroup<VPInstruction>(
1052             IG->getFactor(), IG->isReverse(), IG->getAlign());
1053 
1054       if (Inst == IG->getInsertPos())
1055         Old2New[IG]->setInsertPos(VPInst);
1056 
1057       InterleaveGroupMap[VPInst] = Old2New[IG];
1058       InterleaveGroupMap[VPInst]->insertMember(
1059           VPInst, IG->getIndex(Inst),
1060           Align(IG->isReverse() ? (-1) * int(IG->getFactor())
1061                                 : IG->getFactor()));
1062     }
1063   } else if (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
1064     visitRegion(Region, Old2New, IAI);
1065   else
1066     llvm_unreachable("Unsupported kind of VPBlock.");
1067 }
1068 
1069 VPInterleavedAccessInfo::VPInterleavedAccessInfo(VPlan &Plan,
1070                                                  InterleavedAccessInfo &IAI) {
1071   Old2NewTy Old2New;
1072   visitRegion(cast<VPRegionBlock>(Plan.getEntry()), Old2New, IAI);
1073 }
1074 
1075 void VPSlotTracker::assignSlot(const VPValue *V) {
1076   assert(Slots.find(V) == Slots.end() && "VPValue already has a slot!");
1077   Slots[V] = NextSlot++;
1078 }
1079 
1080 void VPSlotTracker::assignSlots(const VPBlockBase *VPBB) {
1081   if (auto *Region = dyn_cast<VPRegionBlock>(VPBB))
1082     assignSlots(Region);
1083   else
1084     assignSlots(cast<VPBasicBlock>(VPBB));
1085 }
1086 
1087 void VPSlotTracker::assignSlots(const VPRegionBlock *Region) {
1088   ReversePostOrderTraversal<const VPBlockBase *> RPOT(Region->getEntry());
1089   for (const VPBlockBase *Block : RPOT)
1090     assignSlots(Block);
1091 }
1092 
1093 void VPSlotTracker::assignSlots(const VPBasicBlock *VPBB) {
1094   for (const VPRecipeBase &Recipe : *VPBB) {
1095     for (VPValue *Def : Recipe.definedValues())
1096       assignSlot(Def);
1097   }
1098 }
1099 
1100 void VPSlotTracker::assignSlots(const VPlan &Plan) {
1101 
1102   for (const VPValue *V : Plan.VPExternalDefs)
1103     assignSlot(V);
1104 
1105   if (Plan.BackedgeTakenCount)
1106     assignSlot(Plan.BackedgeTakenCount);
1107 
1108   ReversePostOrderTraversal<const VPBlockBase *> RPOT(Plan.getEntry());
1109   for (const VPBlockBase *Block : RPOT)
1110     assignSlots(Block);
1111 }
1112