xref: /llvm-project/llvm/lib/Transforms/Vectorize/VPlan.cpp (revision 596fd103f896987463d212921421b3e78b6cf051)
1 //===- VPlan.cpp - Vectorizer Plan ----------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This is the LLVM vectorization plan. It represents a candidate for
11 /// vectorization, allowing to plan and optimize how to vectorize a given loop
12 /// before generating LLVM-IR.
13 /// The vectorizer uses vectorization plans to estimate the costs of potential
14 /// candidates and if profitable to execute the desired plan, generating vector
15 /// LLVM-IR code.
16 ///
17 //===----------------------------------------------------------------------===//
18 
19 #include "VPlan.h"
20 #include "LoopVectorizationPlanner.h"
21 #include "VPlanCFG.h"
22 #include "VPlanPatternMatch.h"
23 #include "VPlanTransforms.h"
24 #include "VPlanUtils.h"
25 #include "llvm/ADT/PostOrderIterator.h"
26 #include "llvm/ADT/STLExtras.h"
27 #include "llvm/ADT/SmallVector.h"
28 #include "llvm/ADT/StringExtras.h"
29 #include "llvm/ADT/Twine.h"
30 #include "llvm/Analysis/DomTreeUpdater.h"
31 #include "llvm/Analysis/LoopInfo.h"
32 #include "llvm/IR/BasicBlock.h"
33 #include "llvm/IR/CFG.h"
34 #include "llvm/IR/IRBuilder.h"
35 #include "llvm/IR/Instruction.h"
36 #include "llvm/IR/Instructions.h"
37 #include "llvm/IR/Type.h"
38 #include "llvm/IR/Value.h"
39 #include "llvm/Support/Casting.h"
40 #include "llvm/Support/CommandLine.h"
41 #include "llvm/Support/Debug.h"
42 #include "llvm/Support/GraphWriter.h"
43 #include "llvm/Support/raw_ostream.h"
44 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
45 #include "llvm/Transforms/Utils/LoopVersioning.h"
46 #include <cassert>
47 #include <string>
48 
49 using namespace llvm;
50 using namespace llvm::VPlanPatternMatch;
51 
52 namespace llvm {
53 extern cl::opt<bool> EnableVPlanNativePath;
54 }
55 extern cl::opt<unsigned> ForceTargetInstructionCost;
56 
57 static cl::opt<bool> PrintVPlansInDotFormat(
58     "vplan-print-in-dot-format", cl::Hidden,
59     cl::desc("Use dot format instead of plain text when dumping VPlans"));
60 
61 #define DEBUG_TYPE "vplan"
62 
63 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
64 raw_ostream &llvm::operator<<(raw_ostream &OS, const VPValue &V) {
65   const VPInstruction *Instr = dyn_cast<VPInstruction>(&V);
66   VPSlotTracker SlotTracker(
67       (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr);
68   V.print(OS, SlotTracker);
69   return OS;
70 }
71 #endif
72 
73 Value *VPLane::getAsRuntimeExpr(IRBuilderBase &Builder,
74                                 const ElementCount &VF) const {
75   switch (LaneKind) {
76   case VPLane::Kind::ScalableLast:
77     // Lane = RuntimeVF - VF.getKnownMinValue() + Lane
78     return Builder.CreateSub(getRuntimeVF(Builder, Builder.getInt32Ty(), VF),
79                              Builder.getInt32(VF.getKnownMinValue() - Lane));
80   case VPLane::Kind::First:
81     return Builder.getInt32(Lane);
82   }
83   llvm_unreachable("Unknown lane kind");
84 }
85 
86 VPValue::VPValue(const unsigned char SC, Value *UV, VPDef *Def)
87     : SubclassID(SC), UnderlyingVal(UV), Def(Def) {
88   if (Def)
89     Def->addDefinedValue(this);
90 }
91 
92 VPValue::~VPValue() {
93   assert(Users.empty() && "trying to delete a VPValue with remaining users");
94   if (Def)
95     Def->removeDefinedValue(this);
96 }
97 
98 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
99 void VPValue::print(raw_ostream &OS, VPSlotTracker &SlotTracker) const {
100   if (const VPRecipeBase *R = dyn_cast_or_null<VPRecipeBase>(Def))
101     R->print(OS, "", SlotTracker);
102   else
103     printAsOperand(OS, SlotTracker);
104 }
105 
106 void VPValue::dump() const {
107   const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this->Def);
108   VPSlotTracker SlotTracker(
109       (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr);
110   print(dbgs(), SlotTracker);
111   dbgs() << "\n";
112 }
113 
114 void VPDef::dump() const {
115   const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this);
116   VPSlotTracker SlotTracker(
117       (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr);
118   print(dbgs(), "", SlotTracker);
119   dbgs() << "\n";
120 }
121 #endif
122 
123 VPRecipeBase *VPValue::getDefiningRecipe() {
124   return cast_or_null<VPRecipeBase>(Def);
125 }
126 
127 const VPRecipeBase *VPValue::getDefiningRecipe() const {
128   return cast_or_null<VPRecipeBase>(Def);
129 }
130 
131 // Get the top-most entry block of \p Start. This is the entry block of the
132 // containing VPlan. This function is templated to support both const and non-const blocks
133 template <typename T> static T *getPlanEntry(T *Start) {
134   T *Next = Start;
135   T *Current = Start;
136   while ((Next = Next->getParent()))
137     Current = Next;
138 
139   SmallSetVector<T *, 8> WorkList;
140   WorkList.insert(Current);
141 
142   for (unsigned i = 0; i < WorkList.size(); i++) {
143     T *Current = WorkList[i];
144     if (Current->getNumPredecessors() == 0)
145       return Current;
146     auto &Predecessors = Current->getPredecessors();
147     WorkList.insert(Predecessors.begin(), Predecessors.end());
148   }
149 
150   llvm_unreachable("VPlan without any entry node without predecessors");
151 }
152 
153 VPlan *VPBlockBase::getPlan() { return getPlanEntry(this)->Plan; }
154 
155 const VPlan *VPBlockBase::getPlan() const { return getPlanEntry(this)->Plan; }
156 
157 /// \return the VPBasicBlock that is the entry of Block, possibly indirectly.
158 const VPBasicBlock *VPBlockBase::getEntryBasicBlock() const {
159   const VPBlockBase *Block = this;
160   while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
161     Block = Region->getEntry();
162   return cast<VPBasicBlock>(Block);
163 }
164 
165 VPBasicBlock *VPBlockBase::getEntryBasicBlock() {
166   VPBlockBase *Block = this;
167   while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
168     Block = Region->getEntry();
169   return cast<VPBasicBlock>(Block);
170 }
171 
172 void VPBlockBase::setPlan(VPlan *ParentPlan) {
173   assert(
174       (ParentPlan->getEntry() == this || ParentPlan->getPreheader() == this) &&
175       "Can only set plan on its entry or preheader block.");
176   Plan = ParentPlan;
177 }
178 
179 /// \return the VPBasicBlock that is the exit of Block, possibly indirectly.
180 const VPBasicBlock *VPBlockBase::getExitingBasicBlock() const {
181   const VPBlockBase *Block = this;
182   while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
183     Block = Region->getExiting();
184   return cast<VPBasicBlock>(Block);
185 }
186 
187 VPBasicBlock *VPBlockBase::getExitingBasicBlock() {
188   VPBlockBase *Block = this;
189   while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
190     Block = Region->getExiting();
191   return cast<VPBasicBlock>(Block);
192 }
193 
194 VPBlockBase *VPBlockBase::getEnclosingBlockWithSuccessors() {
195   if (!Successors.empty() || !Parent)
196     return this;
197   assert(Parent->getExiting() == this &&
198          "Block w/o successors not the exiting block of its parent.");
199   return Parent->getEnclosingBlockWithSuccessors();
200 }
201 
202 VPBlockBase *VPBlockBase::getEnclosingBlockWithPredecessors() {
203   if (!Predecessors.empty() || !Parent)
204     return this;
205   assert(Parent->getEntry() == this &&
206          "Block w/o predecessors not the entry of its parent.");
207   return Parent->getEnclosingBlockWithPredecessors();
208 }
209 
210 void VPBlockBase::deleteCFG(VPBlockBase *Entry) {
211   for (VPBlockBase *Block : to_vector(vp_depth_first_shallow(Entry)))
212     delete Block;
213 }
214 
215 VPBasicBlock::iterator VPBasicBlock::getFirstNonPhi() {
216   iterator It = begin();
217   while (It != end() && It->isPhi())
218     It++;
219   return It;
220 }
221 
222 VPTransformState::VPTransformState(ElementCount VF, unsigned UF, LoopInfo *LI,
223                                    DominatorTree *DT, IRBuilderBase &Builder,
224                                    InnerLoopVectorizer *ILV, VPlan *Plan)
225     : VF(VF), CFG(DT), LI(LI), Builder(Builder), ILV(ILV), Plan(Plan),
226       LVer(nullptr), TypeAnalysis(Plan->getCanonicalIV()->getScalarType()) {}
227 
228 Value *VPTransformState::get(VPValue *Def, const VPLane &Lane) {
229   if (Def->isLiveIn())
230     return Def->getLiveInIRValue();
231 
232   if (hasScalarValue(Def, Lane))
233     return Data.VPV2Scalars[Def][Lane.mapToCacheIndex(VF)];
234 
235   if (!Lane.isFirstLane() && vputils::isUniformAfterVectorization(Def) &&
236       hasScalarValue(Def, VPLane::getFirstLane())) {
237     return Data.VPV2Scalars[Def][0];
238   }
239 
240   assert(hasVectorValue(Def));
241   auto *VecPart = Data.VPV2Vector[Def];
242   if (!VecPart->getType()->isVectorTy()) {
243     assert(Lane.isFirstLane() && "cannot get lane > 0 for scalar");
244     return VecPart;
245   }
246   // TODO: Cache created scalar values.
247   Value *LaneV = Lane.getAsRuntimeExpr(Builder, VF);
248   auto *Extract = Builder.CreateExtractElement(VecPart, LaneV);
249   // set(Def, Extract, Instance);
250   return Extract;
251 }
252 
253 Value *VPTransformState::get(VPValue *Def, bool NeedsScalar) {
254   if (NeedsScalar) {
255     assert((VF.isScalar() || Def->isLiveIn() || hasVectorValue(Def) ||
256             !vputils::onlyFirstLaneUsed(Def) ||
257             (hasScalarValue(Def, VPLane(0)) &&
258              Data.VPV2Scalars[Def].size() == 1)) &&
259            "Trying to access a single scalar per part but has multiple scalars "
260            "per part.");
261     return get(Def, VPLane(0));
262   }
263 
264   // If Values have been set for this Def return the one relevant for \p Part.
265   if (hasVectorValue(Def))
266     return Data.VPV2Vector[Def];
267 
268   auto GetBroadcastInstrs = [this, Def](Value *V) {
269     bool SafeToHoist = Def->isDefinedOutsideLoopRegions();
270     if (VF.isScalar())
271       return V;
272     // Place the code for broadcasting invariant variables in the new preheader.
273     IRBuilder<>::InsertPointGuard Guard(Builder);
274     if (SafeToHoist) {
275       BasicBlock *LoopVectorPreHeader =
276           CFG.VPBB2IRBB[Plan->getVectorPreheader()];
277       if (LoopVectorPreHeader)
278         Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
279     }
280 
281     // Place the code for broadcasting invariant variables in the new preheader.
282     // Broadcast the scalar into all locations in the vector.
283     Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast");
284 
285     return Shuf;
286   };
287 
288   if (!hasScalarValue(Def, {0})) {
289     assert(Def->isLiveIn() && "expected a live-in");
290     Value *IRV = Def->getLiveInIRValue();
291     Value *B = GetBroadcastInstrs(IRV);
292     set(Def, B);
293     return B;
294   }
295 
296   Value *ScalarValue = get(Def, VPLane(0));
297   // If we aren't vectorizing, we can just copy the scalar map values over
298   // to the vector map.
299   if (VF.isScalar()) {
300     set(Def, ScalarValue);
301     return ScalarValue;
302   }
303 
304   bool IsUniform = vputils::isUniformAfterVectorization(Def);
305 
306   VPLane LastLane(IsUniform ? 0 : VF.getKnownMinValue() - 1);
307   // Check if there is a scalar value for the selected lane.
308   if (!hasScalarValue(Def, LastLane)) {
309     // At the moment, VPWidenIntOrFpInductionRecipes, VPScalarIVStepsRecipes and
310     // VPExpandSCEVRecipes can also be uniform.
311     assert((isa<VPWidenIntOrFpInductionRecipe>(Def->getDefiningRecipe()) ||
312             isa<VPScalarIVStepsRecipe>(Def->getDefiningRecipe()) ||
313             isa<VPExpandSCEVRecipe>(Def->getDefiningRecipe())) &&
314            "unexpected recipe found to be invariant");
315     IsUniform = true;
316     LastLane = 0;
317   }
318 
319   auto *LastInst = cast<Instruction>(get(Def, LastLane));
320   // Set the insert point after the last scalarized instruction or after the
321   // last PHI, if LastInst is a PHI. This ensures the insertelement sequence
322   // will directly follow the scalar definitions.
323   auto OldIP = Builder.saveIP();
324   auto NewIP =
325       isa<PHINode>(LastInst)
326           ? BasicBlock::iterator(LastInst->getParent()->getFirstNonPHI())
327           : std::next(BasicBlock::iterator(LastInst));
328   Builder.SetInsertPoint(&*NewIP);
329 
330   // However, if we are vectorizing, we need to construct the vector values.
331   // If the value is known to be uniform after vectorization, we can just
332   // broadcast the scalar value corresponding to lane zero. Otherwise, we
333   // construct the vector values using insertelement instructions. Since the
334   // resulting vectors are stored in State, we will only generate the
335   // insertelements once.
336   Value *VectorValue = nullptr;
337   if (IsUniform) {
338     VectorValue = GetBroadcastInstrs(ScalarValue);
339     set(Def, VectorValue);
340   } else {
341     // Initialize packing with insertelements to start from undef.
342     assert(!VF.isScalable() && "VF is assumed to be non scalable.");
343     Value *Undef = PoisonValue::get(VectorType::get(LastInst->getType(), VF));
344     set(Def, Undef);
345     for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane)
346       packScalarIntoVectorValue(Def, Lane);
347     VectorValue = get(Def);
348   }
349   Builder.restoreIP(OldIP);
350   return VectorValue;
351 }
352 
353 BasicBlock *VPTransformState::CFGState::getPreheaderBBFor(VPRecipeBase *R) {
354   VPRegionBlock *LoopRegion = R->getParent()->getEnclosingLoopRegion();
355   return VPBB2IRBB[LoopRegion->getPreheaderVPBB()];
356 }
357 
358 void VPTransformState::addNewMetadata(Instruction *To,
359                                       const Instruction *Orig) {
360   // If the loop was versioned with memchecks, add the corresponding no-alias
361   // metadata.
362   if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig)))
363     LVer->annotateInstWithNoAlias(To, Orig);
364 }
365 
366 void VPTransformState::addMetadata(Value *To, Instruction *From) {
367   // No source instruction to transfer metadata from?
368   if (!From)
369     return;
370 
371   if (Instruction *ToI = dyn_cast<Instruction>(To)) {
372     propagateMetadata(ToI, From);
373     addNewMetadata(ToI, From);
374   }
375 }
376 
377 void VPTransformState::setDebugLocFrom(DebugLoc DL) {
378   const DILocation *DIL = DL;
379   // When a FSDiscriminator is enabled, we don't need to add the multiply
380   // factors to the discriminators.
381   if (DIL &&
382       Builder.GetInsertBlock()
383           ->getParent()
384           ->shouldEmitDebugInfoForProfiling() &&
385       !EnableFSDiscriminator) {
386     // FIXME: For scalable vectors, assume vscale=1.
387     unsigned UF = Plan->getUF();
388     auto NewDIL =
389         DIL->cloneByMultiplyingDuplicationFactor(UF * VF.getKnownMinValue());
390     if (NewDIL)
391       Builder.SetCurrentDebugLocation(*NewDIL);
392     else
393       LLVM_DEBUG(dbgs() << "Failed to create new discriminator: "
394                         << DIL->getFilename() << " Line: " << DIL->getLine());
395   } else
396     Builder.SetCurrentDebugLocation(DIL);
397 }
398 
399 void VPTransformState::packScalarIntoVectorValue(VPValue *Def,
400                                                  const VPLane &Lane) {
401   Value *ScalarInst = get(Def, Lane);
402   Value *VectorValue = get(Def);
403   VectorValue = Builder.CreateInsertElement(VectorValue, ScalarInst,
404                                             Lane.getAsRuntimeExpr(Builder, VF));
405   set(Def, VectorValue);
406 }
407 
408 BasicBlock *
409 VPBasicBlock::createEmptyBasicBlock(VPTransformState::CFGState &CFG) {
410   // BB stands for IR BasicBlocks. VPBB stands for VPlan VPBasicBlocks.
411   // Pred stands for Predessor. Prev stands for Previous - last visited/created.
412   BasicBlock *PrevBB = CFG.PrevBB;
413   BasicBlock *NewBB = BasicBlock::Create(PrevBB->getContext(), getName(),
414                                          PrevBB->getParent(), CFG.ExitBB);
415   LLVM_DEBUG(dbgs() << "LV: created " << NewBB->getName() << '\n');
416 
417   return NewBB;
418 }
419 
420 void VPBasicBlock::connectToPredecessors(VPTransformState::CFGState &CFG) {
421   BasicBlock *NewBB = CFG.VPBB2IRBB[this];
422   // Hook up the new basic block to its predecessors.
423   for (VPBlockBase *PredVPBlock : getHierarchicalPredecessors()) {
424     VPBasicBlock *PredVPBB = PredVPBlock->getExitingBasicBlock();
425     auto &PredVPSuccessors = PredVPBB->getHierarchicalSuccessors();
426     BasicBlock *PredBB = CFG.VPBB2IRBB[PredVPBB];
427 
428     assert(PredBB && "Predecessor basic-block not found building successor.");
429     auto *PredBBTerminator = PredBB->getTerminator();
430     LLVM_DEBUG(dbgs() << "LV: draw edge from" << PredBB->getName() << '\n');
431 
432     auto *TermBr = dyn_cast<BranchInst>(PredBBTerminator);
433     if (isa<UnreachableInst>(PredBBTerminator)) {
434       assert(PredVPSuccessors.size() == 1 &&
435              "Predecessor ending w/o branch must have single successor.");
436       DebugLoc DL = PredBBTerminator->getDebugLoc();
437       PredBBTerminator->eraseFromParent();
438       auto *Br = BranchInst::Create(NewBB, PredBB);
439       Br->setDebugLoc(DL);
440     } else if (TermBr && !TermBr->isConditional()) {
441       TermBr->setSuccessor(0, NewBB);
442     } else {
443       // Set each forward successor here when it is created, excluding
444       // backedges. A backward successor is set when the branch is created.
445       unsigned idx = PredVPSuccessors.front() == this ? 0 : 1;
446       assert(
447           (!TermBr->getSuccessor(idx) ||
448            (isa<VPIRBasicBlock>(this) && TermBr->getSuccessor(idx) == NewBB)) &&
449           "Trying to reset an existing successor block.");
450       TermBr->setSuccessor(idx, NewBB);
451     }
452     CFG.DTU.applyUpdates({{DominatorTree::Insert, PredBB, NewBB}});
453   }
454 }
455 
456 void VPIRBasicBlock::execute(VPTransformState *State) {
457   assert(getHierarchicalSuccessors().size() <= 2 &&
458          "VPIRBasicBlock can have at most two successors at the moment!");
459   State->Builder.SetInsertPoint(IRBB->getTerminator());
460   State->CFG.PrevBB = IRBB;
461   State->CFG.VPBB2IRBB[this] = IRBB;
462   executeRecipes(State, IRBB);
463   // Create a branch instruction to terminate IRBB if one was not created yet
464   // and is needed.
465   if (getSingleSuccessor() && isa<UnreachableInst>(IRBB->getTerminator())) {
466     auto *Br = State->Builder.CreateBr(IRBB);
467     Br->setOperand(0, nullptr);
468     IRBB->getTerminator()->eraseFromParent();
469   } else {
470     assert(
471         (getNumSuccessors() == 0 || isa<BranchInst>(IRBB->getTerminator())) &&
472         "other blocks must be terminated by a branch");
473   }
474 
475   connectToPredecessors(State->CFG);
476 }
477 
478 void VPBasicBlock::execute(VPTransformState *State) {
479   bool Replica = bool(State->Lane);
480   VPBasicBlock *PrevVPBB = State->CFG.PrevVPBB;
481   VPBlockBase *SingleHPred = nullptr;
482   BasicBlock *NewBB = State->CFG.PrevBB; // Reuse it if possible.
483 
484   auto IsLoopRegion = [](VPBlockBase *BB) {
485     auto *R = dyn_cast<VPRegionBlock>(BB);
486     return R && !R->isReplicator();
487   };
488 
489   // 1. Create an IR basic block.
490   if (PrevVPBB && /* A */
491       !((SingleHPred = getSingleHierarchicalPredecessor()) &&
492         SingleHPred->getExitingBasicBlock() == PrevVPBB &&
493         PrevVPBB->getSingleHierarchicalSuccessor() &&
494         (SingleHPred->getParent() == getEnclosingLoopRegion() &&
495          !IsLoopRegion(SingleHPred))) &&         /* B */
496       !(Replica && getPredecessors().empty())) { /* C */
497     // The last IR basic block is reused, as an optimization, in three cases:
498     // A. the first VPBB reuses the loop pre-header BB - when PrevVPBB is null;
499     // B. when the current VPBB has a single (hierarchical) predecessor which
500     //    is PrevVPBB and the latter has a single (hierarchical) successor which
501     //    both are in the same non-replicator region; and
502     // C. when the current VPBB is an entry of a region replica - where PrevVPBB
503     //    is the exiting VPBB of this region from a previous instance, or the
504     //    predecessor of this region.
505 
506     NewBB = createEmptyBasicBlock(State->CFG);
507 
508     State->Builder.SetInsertPoint(NewBB);
509     // Temporarily terminate with unreachable until CFG is rewired.
510     UnreachableInst *Terminator = State->Builder.CreateUnreachable();
511     // Register NewBB in its loop. In innermost loops its the same for all
512     // BB's.
513     if (State->CurrentVectorLoop)
514       State->CurrentVectorLoop->addBasicBlockToLoop(NewBB, *State->LI);
515     State->Builder.SetInsertPoint(Terminator);
516 
517     State->CFG.PrevBB = NewBB;
518     State->CFG.VPBB2IRBB[this] = NewBB;
519     connectToPredecessors(State->CFG);
520   } else {
521     State->CFG.VPBB2IRBB[this] = NewBB;
522   }
523 
524   // 2. Fill the IR basic block with IR instructions.
525   executeRecipes(State, NewBB);
526 }
527 
528 void VPBasicBlock::dropAllReferences(VPValue *NewValue) {
529   for (VPRecipeBase &R : Recipes) {
530     for (auto *Def : R.definedValues())
531       Def->replaceAllUsesWith(NewValue);
532 
533     for (unsigned I = 0, E = R.getNumOperands(); I != E; I++)
534       R.setOperand(I, NewValue);
535   }
536 }
537 
538 void VPBasicBlock::executeRecipes(VPTransformState *State, BasicBlock *BB) {
539   LLVM_DEBUG(dbgs() << "LV: vectorizing VPBB:" << getName()
540                     << " in BB:" << BB->getName() << '\n');
541 
542   State->CFG.PrevVPBB = this;
543 
544   for (VPRecipeBase &Recipe : Recipes)
545     Recipe.execute(*State);
546 
547   LLVM_DEBUG(dbgs() << "LV: filled BB:" << *BB);
548 }
549 
550 VPBasicBlock *VPBasicBlock::splitAt(iterator SplitAt) {
551   assert((SplitAt == end() || SplitAt->getParent() == this) &&
552          "can only split at a position in the same block");
553 
554   SmallVector<VPBlockBase *, 2> Succs(successors());
555   // First, disconnect the current block from its successors.
556   for (VPBlockBase *Succ : Succs)
557     VPBlockUtils::disconnectBlocks(this, Succ);
558 
559   // Create new empty block after the block to split.
560   auto *SplitBlock = new VPBasicBlock(getName() + ".split");
561   VPBlockUtils::insertBlockAfter(SplitBlock, this);
562 
563   // Add successors for block to split to new block.
564   for (VPBlockBase *Succ : Succs)
565     VPBlockUtils::connectBlocks(SplitBlock, Succ);
566 
567   // Finally, move the recipes starting at SplitAt to new block.
568   for (VPRecipeBase &ToMove :
569        make_early_inc_range(make_range(SplitAt, this->end())))
570     ToMove.moveBefore(*SplitBlock, SplitBlock->end());
571 
572   return SplitBlock;
573 }
574 
575 /// Return the enclosing loop region for region \p P. The templated version is
576 /// used to support both const and non-const block arguments.
577 template <typename T> static T *getEnclosingLoopRegionForRegion(T *P) {
578   if (P && P->isReplicator()) {
579     P = P->getParent();
580     assert(!cast<VPRegionBlock>(P)->isReplicator() &&
581            "unexpected nested replicate regions");
582   }
583   return P;
584 }
585 
586 VPRegionBlock *VPBasicBlock::getEnclosingLoopRegion() {
587   return getEnclosingLoopRegionForRegion(getParent());
588 }
589 
590 const VPRegionBlock *VPBasicBlock::getEnclosingLoopRegion() const {
591   return getEnclosingLoopRegionForRegion(getParent());
592 }
593 
594 static bool hasConditionalTerminator(const VPBasicBlock *VPBB) {
595   if (VPBB->empty()) {
596     assert(
597         VPBB->getNumSuccessors() < 2 &&
598         "block with multiple successors doesn't have a recipe as terminator");
599     return false;
600   }
601 
602   const VPRecipeBase *R = &VPBB->back();
603   bool IsCondBranch = isa<VPBranchOnMaskRecipe>(R) ||
604                       match(R, m_BranchOnCond(m_VPValue())) ||
605                       match(R, m_BranchOnCount(m_VPValue(), m_VPValue()));
606   (void)IsCondBranch;
607 
608   if (VPBB->getNumSuccessors() >= 2 ||
609       (VPBB->isExiting() && !VPBB->getParent()->isReplicator())) {
610     assert(IsCondBranch && "block with multiple successors not terminated by "
611                            "conditional branch recipe");
612 
613     return true;
614   }
615 
616   assert(
617       !IsCondBranch &&
618       "block with 0 or 1 successors terminated by conditional branch recipe");
619   return false;
620 }
621 
622 VPRecipeBase *VPBasicBlock::getTerminator() {
623   if (hasConditionalTerminator(this))
624     return &back();
625   return nullptr;
626 }
627 
628 const VPRecipeBase *VPBasicBlock::getTerminator() const {
629   if (hasConditionalTerminator(this))
630     return &back();
631   return nullptr;
632 }
633 
634 bool VPBasicBlock::isExiting() const {
635   return getParent() && getParent()->getExitingBasicBlock() == this;
636 }
637 
638 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
639 void VPBlockBase::printSuccessors(raw_ostream &O, const Twine &Indent) const {
640   if (getSuccessors().empty()) {
641     O << Indent << "No successors\n";
642   } else {
643     O << Indent << "Successor(s): ";
644     ListSeparator LS;
645     for (auto *Succ : getSuccessors())
646       O << LS << Succ->getName();
647     O << '\n';
648   }
649 }
650 
651 void VPBasicBlock::print(raw_ostream &O, const Twine &Indent,
652                          VPSlotTracker &SlotTracker) const {
653   O << Indent << getName() << ":\n";
654 
655   auto RecipeIndent = Indent + "  ";
656   for (const VPRecipeBase &Recipe : *this) {
657     Recipe.print(O, RecipeIndent, SlotTracker);
658     O << '\n';
659   }
660 
661   printSuccessors(O, Indent);
662 }
663 #endif
664 
665 static std::pair<VPBlockBase *, VPBlockBase *> cloneFrom(VPBlockBase *Entry);
666 
667 // Clone the CFG for all nodes reachable from \p Entry, this includes cloning
668 // the blocks and their recipes. Operands of cloned recipes will NOT be updated.
669 // Remapping of operands must be done separately. Returns a pair with the new
670 // entry and exiting blocks of the cloned region. If \p Entry isn't part of a
671 // region, return nullptr for the exiting block.
672 static std::pair<VPBlockBase *, VPBlockBase *> cloneFrom(VPBlockBase *Entry) {
673   DenseMap<VPBlockBase *, VPBlockBase *> Old2NewVPBlocks;
674   VPBlockBase *Exiting = nullptr;
675   bool InRegion = Entry->getParent();
676   // First, clone blocks reachable from Entry.
677   for (VPBlockBase *BB : vp_depth_first_shallow(Entry)) {
678     VPBlockBase *NewBB = BB->clone();
679     Old2NewVPBlocks[BB] = NewBB;
680     if (InRegion && BB->getNumSuccessors() == 0) {
681       assert(!Exiting && "Multiple exiting blocks?");
682       Exiting = BB;
683     }
684   }
685   assert((!InRegion || Exiting) && "regions must have a single exiting block");
686 
687   // Second, update the predecessors & successors of the cloned blocks.
688   for (VPBlockBase *BB : vp_depth_first_shallow(Entry)) {
689     VPBlockBase *NewBB = Old2NewVPBlocks[BB];
690     SmallVector<VPBlockBase *> NewPreds;
691     for (VPBlockBase *Pred : BB->getPredecessors()) {
692       NewPreds.push_back(Old2NewVPBlocks[Pred]);
693     }
694     NewBB->setPredecessors(NewPreds);
695     SmallVector<VPBlockBase *> NewSuccs;
696     for (VPBlockBase *Succ : BB->successors()) {
697       NewSuccs.push_back(Old2NewVPBlocks[Succ]);
698     }
699     NewBB->setSuccessors(NewSuccs);
700   }
701 
702 #if !defined(NDEBUG)
703   // Verify that the order of predecessors and successors matches in the cloned
704   // version.
705   for (const auto &[OldBB, NewBB] :
706        zip(vp_depth_first_shallow(Entry),
707            vp_depth_first_shallow(Old2NewVPBlocks[Entry]))) {
708     for (const auto &[OldPred, NewPred] :
709          zip(OldBB->getPredecessors(), NewBB->getPredecessors()))
710       assert(NewPred == Old2NewVPBlocks[OldPred] && "Different predecessors");
711 
712     for (const auto &[OldSucc, NewSucc] :
713          zip(OldBB->successors(), NewBB->successors()))
714       assert(NewSucc == Old2NewVPBlocks[OldSucc] && "Different successors");
715   }
716 #endif
717 
718   return std::make_pair(Old2NewVPBlocks[Entry],
719                         Exiting ? Old2NewVPBlocks[Exiting] : nullptr);
720 }
721 
722 VPRegionBlock *VPRegionBlock::clone() {
723   const auto &[NewEntry, NewExiting] = cloneFrom(getEntry());
724   auto *NewRegion =
725       new VPRegionBlock(NewEntry, NewExiting, getName(), isReplicator());
726   for (VPBlockBase *Block : vp_depth_first_shallow(NewEntry))
727     Block->setParent(NewRegion);
728   return NewRegion;
729 }
730 
731 void VPRegionBlock::dropAllReferences(VPValue *NewValue) {
732   for (VPBlockBase *Block : vp_depth_first_shallow(Entry))
733     // Drop all references in VPBasicBlocks and replace all uses with
734     // DummyValue.
735     Block->dropAllReferences(NewValue);
736 }
737 
738 void VPRegionBlock::execute(VPTransformState *State) {
739   ReversePostOrderTraversal<VPBlockShallowTraversalWrapper<VPBlockBase *>>
740       RPOT(Entry);
741 
742   if (!isReplicator()) {
743     // Create and register the new vector loop.
744     Loop *PrevLoop = State->CurrentVectorLoop;
745     State->CurrentVectorLoop = State->LI->AllocateLoop();
746     BasicBlock *VectorPH = State->CFG.VPBB2IRBB[getPreheaderVPBB()];
747     Loop *ParentLoop = State->LI->getLoopFor(VectorPH);
748 
749     // Insert the new loop into the loop nest and register the new basic blocks
750     // before calling any utilities such as SCEV that require valid LoopInfo.
751     if (ParentLoop)
752       ParentLoop->addChildLoop(State->CurrentVectorLoop);
753     else
754       State->LI->addTopLevelLoop(State->CurrentVectorLoop);
755 
756     // Visit the VPBlocks connected to "this", starting from it.
757     for (VPBlockBase *Block : RPOT) {
758       LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n');
759       Block->execute(State);
760     }
761 
762     State->CurrentVectorLoop = PrevLoop;
763     return;
764   }
765 
766   assert(!State->Lane && "Replicating a Region with non-null instance.");
767 
768   // Enter replicating mode.
769   assert(!State->VF.isScalable() && "VF is assumed to be non scalable.");
770   State->Lane = VPLane(0);
771   for (unsigned Lane = 0, VF = State->VF.getKnownMinValue(); Lane < VF;
772        ++Lane) {
773     State->Lane = VPLane(Lane, VPLane::Kind::First);
774     // Visit the VPBlocks connected to \p this, starting from it.
775     for (VPBlockBase *Block : RPOT) {
776       LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n');
777       Block->execute(State);
778     }
779   }
780 
781   // Exit replicating mode.
782   State->Lane.reset();
783 }
784 
785 InstructionCost VPBasicBlock::cost(ElementCount VF, VPCostContext &Ctx) {
786   InstructionCost Cost = 0;
787   for (VPRecipeBase &R : Recipes)
788     Cost += R.cost(VF, Ctx);
789   return Cost;
790 }
791 
792 InstructionCost VPRegionBlock::cost(ElementCount VF, VPCostContext &Ctx) {
793   if (!isReplicator()) {
794     InstructionCost Cost = 0;
795     for (VPBlockBase *Block : vp_depth_first_shallow(getEntry()))
796       Cost += Block->cost(VF, Ctx);
797     InstructionCost BackedgeCost =
798         ForceTargetInstructionCost.getNumOccurrences()
799             ? InstructionCost(ForceTargetInstructionCost.getNumOccurrences())
800             : Ctx.TTI.getCFInstrCost(Instruction::Br, TTI::TCK_RecipThroughput);
801     LLVM_DEBUG(dbgs() << "Cost of " << BackedgeCost << " for VF " << VF
802                       << ": vector loop backedge\n");
803     Cost += BackedgeCost;
804     return Cost;
805   }
806 
807   // Compute the cost of a replicate region. Replicating isn't supported for
808   // scalable vectors, return an invalid cost for them.
809   // TODO: Discard scalable VPlans with replicate recipes earlier after
810   // construction.
811   if (VF.isScalable())
812     return InstructionCost::getInvalid();
813 
814   // First compute the cost of the conditionally executed recipes, followed by
815   // account for the branching cost, except if the mask is a header mask or
816   // uniform condition.
817   using namespace llvm::VPlanPatternMatch;
818   VPBasicBlock *Then = cast<VPBasicBlock>(getEntry()->getSuccessors()[0]);
819   InstructionCost ThenCost = Then->cost(VF, Ctx);
820 
821   // For the scalar case, we may not always execute the original predicated
822   // block, Thus, scale the block's cost by the probability of executing it.
823   if (VF.isScalar())
824     return ThenCost / getReciprocalPredBlockProb();
825 
826   return ThenCost;
827 }
828 
829 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
830 void VPRegionBlock::print(raw_ostream &O, const Twine &Indent,
831                           VPSlotTracker &SlotTracker) const {
832   O << Indent << (isReplicator() ? "<xVFxUF> " : "<x1> ") << getName() << ": {";
833   auto NewIndent = Indent + "  ";
834   for (auto *BlockBase : vp_depth_first_shallow(Entry)) {
835     O << '\n';
836     BlockBase->print(O, NewIndent, SlotTracker);
837   }
838   O << Indent << "}\n";
839 
840   printSuccessors(O, Indent);
841 }
842 #endif
843 
844 VPlan::~VPlan() {
845   if (Entry) {
846     VPValue DummyValue;
847     for (VPBlockBase *Block : vp_depth_first_shallow(Entry))
848       Block->dropAllReferences(&DummyValue);
849 
850     VPBlockBase::deleteCFG(Entry);
851 
852     Preheader->dropAllReferences(&DummyValue);
853     delete Preheader;
854   }
855   for (VPValue *VPV : VPLiveInsToFree)
856     delete VPV;
857   if (BackedgeTakenCount)
858     delete BackedgeTakenCount;
859 }
860 
861 VPIRBasicBlock *VPIRBasicBlock::fromBasicBlock(BasicBlock *IRBB) {
862   auto *VPIRBB = new VPIRBasicBlock(IRBB);
863   for (Instruction &I :
864        make_range(IRBB->begin(), IRBB->getTerminator()->getIterator()))
865     VPIRBB->appendRecipe(new VPIRInstruction(I));
866   return VPIRBB;
867 }
868 
869 VPlanPtr VPlan::createInitialVPlan(Type *InductionTy,
870                                    PredicatedScalarEvolution &PSE,
871                                    bool RequiresScalarEpilogueCheck,
872                                    bool TailFolded, Loop *TheLoop) {
873   VPIRBasicBlock *Entry =
874       VPIRBasicBlock::fromBasicBlock(TheLoop->getLoopPreheader());
875   VPBasicBlock *VecPreheader = new VPBasicBlock("vector.ph");
876   VPIRBasicBlock *ScalarHeader =
877       VPIRBasicBlock::fromBasicBlock(TheLoop->getHeader());
878   auto Plan = std::make_unique<VPlan>(Entry, VecPreheader, ScalarHeader);
879 
880   // Create SCEV and VPValue for the trip count.
881 
882   // Currently only loops with countable exits are vectorized, but calling
883   // getSymbolicMaxBackedgeTakenCount allows enablement work for loops with
884   // uncountable exits whilst also ensuring the symbolic maximum and known
885   // back-edge taken count remain identical for loops with countable exits.
886   const SCEV *BackedgeTakenCountSCEV = PSE.getSymbolicMaxBackedgeTakenCount();
887   assert((!isa<SCEVCouldNotCompute>(BackedgeTakenCountSCEV) &&
888           BackedgeTakenCountSCEV == PSE.getBackedgeTakenCount()) &&
889          "Invalid loop count");
890   ScalarEvolution &SE = *PSE.getSE();
891   const SCEV *TripCount = SE.getTripCountFromExitCount(BackedgeTakenCountSCEV,
892                                                        InductionTy, TheLoop);
893   Plan->TripCount =
894       vputils::getOrCreateVPValueForSCEVExpr(*Plan, TripCount, SE);
895 
896   // Create VPRegionBlock, with empty header and latch blocks, to be filled
897   // during processing later.
898   VPBasicBlock *HeaderVPBB = new VPBasicBlock("vector.body");
899   VPBasicBlock *LatchVPBB = new VPBasicBlock("vector.latch");
900   VPBlockUtils::insertBlockAfter(LatchVPBB, HeaderVPBB);
901   auto *TopRegion = new VPRegionBlock(HeaderVPBB, LatchVPBB, "vector loop",
902                                       false /*isReplicator*/);
903 
904   VPBlockUtils::insertBlockAfter(TopRegion, VecPreheader);
905   VPBasicBlock *MiddleVPBB = new VPBasicBlock("middle.block");
906   VPBlockUtils::insertBlockAfter(MiddleVPBB, TopRegion);
907 
908   VPBasicBlock *ScalarPH = new VPBasicBlock("scalar.ph");
909   VPBlockUtils::connectBlocks(ScalarPH, ScalarHeader);
910   if (!RequiresScalarEpilogueCheck) {
911     VPBlockUtils::connectBlocks(MiddleVPBB, ScalarPH);
912     return Plan;
913   }
914 
915   // If needed, add a check in the middle block to see if we have completed
916   // all of the iterations in the first vector loop.  Three cases:
917   // 1) If (N - N%VF) == N, then we *don't* need to run the remainder.
918   //    Thus if tail is to be folded, we know we don't need to run the
919   //    remainder and we can set the condition to true.
920   // 2) If we require a scalar epilogue, there is no conditional branch as
921   //    we unconditionally branch to the scalar preheader.  Do nothing.
922   // 3) Otherwise, construct a runtime check.
923   BasicBlock *IRExitBlock = TheLoop->getUniqueExitBlock();
924   auto *VPExitBlock = VPIRBasicBlock::fromBasicBlock(IRExitBlock);
925   // The connection order corresponds to the operands of the conditional branch.
926   VPBlockUtils::insertBlockAfter(VPExitBlock, MiddleVPBB);
927   VPBlockUtils::connectBlocks(MiddleVPBB, ScalarPH);
928 
929   auto *ScalarLatchTerm = TheLoop->getLoopLatch()->getTerminator();
930   // Here we use the same DebugLoc as the scalar loop latch terminator instead
931   // of the corresponding compare because they may have ended up with
932   // different line numbers and we want to avoid awkward line stepping while
933   // debugging. Eg. if the compare has got a line number inside the loop.
934   VPBuilder Builder(MiddleVPBB);
935   VPValue *Cmp =
936       TailFolded
937           ? Plan->getOrAddLiveIn(ConstantInt::getTrue(
938                 IntegerType::getInt1Ty(TripCount->getType()->getContext())))
939           : Builder.createICmp(CmpInst::ICMP_EQ, Plan->getTripCount(),
940                                &Plan->getVectorTripCount(),
941                                ScalarLatchTerm->getDebugLoc(), "cmp.n");
942   Builder.createNaryOp(VPInstruction::BranchOnCond, {Cmp},
943                        ScalarLatchTerm->getDebugLoc());
944   return Plan;
945 }
946 
947 void VPlan::prepareToExecute(Value *TripCountV, Value *VectorTripCountV,
948                              Value *CanonicalIVStartValue,
949                              VPTransformState &State) {
950   Type *TCTy = TripCountV->getType();
951   // Check if the backedge taken count is needed, and if so build it.
952   if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) {
953     IRBuilder<> Builder(State.CFG.PrevBB->getTerminator());
954     auto *TCMO = Builder.CreateSub(TripCountV, ConstantInt::get(TCTy, 1),
955                                    "trip.count.minus.1");
956     BackedgeTakenCount->setUnderlyingValue(TCMO);
957   }
958 
959   VectorTripCount.setUnderlyingValue(VectorTripCountV);
960 
961   IRBuilder<> Builder(State.CFG.PrevBB->getTerminator());
962   // FIXME: Model VF * UF computation completely in VPlan.
963   assert(VFxUF.getNumUsers() && "VFxUF expected to always have users");
964   unsigned UF = getUF();
965   if (VF.getNumUsers()) {
966     Value *RuntimeVF = getRuntimeVF(Builder, TCTy, State.VF);
967     VF.setUnderlyingValue(RuntimeVF);
968     VFxUF.setUnderlyingValue(
969         UF > 1 ? Builder.CreateMul(RuntimeVF, ConstantInt::get(TCTy, UF))
970                : RuntimeVF);
971   } else {
972     VFxUF.setUnderlyingValue(createStepForVF(Builder, TCTy, State.VF, UF));
973   }
974 
975   // When vectorizing the epilogue loop, the canonical induction start value
976   // needs to be changed from zero to the value after the main vector loop.
977   // FIXME: Improve modeling for canonical IV start values in the epilogue loop.
978   if (CanonicalIVStartValue) {
979     VPValue *VPV = getOrAddLiveIn(CanonicalIVStartValue);
980     auto *IV = getCanonicalIV();
981     assert(all_of(IV->users(),
982                   [](const VPUser *U) {
983                     return isa<VPScalarIVStepsRecipe>(U) ||
984                            isa<VPScalarCastRecipe>(U) ||
985                            isa<VPDerivedIVRecipe>(U) ||
986                            cast<VPInstruction>(U)->getOpcode() ==
987                                Instruction::Add;
988                   }) &&
989            "the canonical IV should only be used by its increment or "
990            "ScalarIVSteps when resetting the start value");
991     IV->setOperand(0, VPV);
992   }
993 }
994 
995 /// Replace \p VPBB with a VPIRBasicBlock wrapping \p IRBB. All recipes from \p
996 /// VPBB are moved to the end of the newly created VPIRBasicBlock. VPBB must
997 /// have a single predecessor, which is rewired to the new VPIRBasicBlock. All
998 /// successors of VPBB, if any, are rewired to the new VPIRBasicBlock.
999 static void replaceVPBBWithIRVPBB(VPBasicBlock *VPBB, BasicBlock *IRBB) {
1000   VPIRBasicBlock *IRVPBB = VPIRBasicBlock::fromBasicBlock(IRBB);
1001   for (auto &R : make_early_inc_range(*VPBB)) {
1002     assert(!R.isPhi() && "Tried to move phi recipe to end of block");
1003     R.moveBefore(*IRVPBB, IRVPBB->end());
1004   }
1005 
1006   VPBlockUtils::reassociateBlocks(VPBB, IRVPBB);
1007 
1008   delete VPBB;
1009 }
1010 
1011 /// Generate the code inside the preheader and body of the vectorized loop.
1012 /// Assumes a single pre-header basic-block was created for this. Introduce
1013 /// additional basic-blocks as needed, and fill them all.
1014 void VPlan::execute(VPTransformState *State) {
1015   // Initialize CFG state.
1016   State->CFG.PrevVPBB = nullptr;
1017   State->CFG.ExitBB = State->CFG.PrevBB->getSingleSuccessor();
1018   BasicBlock *VectorPreHeader = State->CFG.PrevBB;
1019   State->Builder.SetInsertPoint(VectorPreHeader->getTerminator());
1020 
1021   // Disconnect VectorPreHeader from ExitBB in both the CFG and DT.
1022   cast<BranchInst>(VectorPreHeader->getTerminator())->setSuccessor(0, nullptr);
1023   State->CFG.DTU.applyUpdates(
1024       {{DominatorTree::Delete, VectorPreHeader, State->CFG.ExitBB}});
1025 
1026   // Replace regular VPBB's for the middle and scalar preheader blocks with
1027   // VPIRBasicBlocks wrapping their IR blocks. The IR blocks are created during
1028   // skeleton creation, so we can only create the VPIRBasicBlocks now during
1029   // VPlan execution rather than earlier during VPlan construction.
1030   BasicBlock *MiddleBB = State->CFG.ExitBB;
1031   VPBasicBlock *MiddleVPBB = getMiddleBlock();
1032   BasicBlock *ScalarPh = MiddleBB->getSingleSuccessor();
1033   replaceVPBBWithIRVPBB(getScalarPreheader(), ScalarPh);
1034   replaceVPBBWithIRVPBB(MiddleVPBB, MiddleBB);
1035 
1036   // Disconnect the middle block from its single successor (the scalar loop
1037   // header) in both the CFG and DT. The branch will be recreated during VPlan
1038   // execution.
1039   auto *BrInst = new UnreachableInst(MiddleBB->getContext());
1040   BrInst->insertBefore(MiddleBB->getTerminator());
1041   MiddleBB->getTerminator()->eraseFromParent();
1042   State->CFG.DTU.applyUpdates({{DominatorTree::Delete, MiddleBB, ScalarPh}});
1043   // Disconnect scalar preheader and scalar header, as the dominator tree edge
1044   // will be updated as part of VPlan execution. This allows keeping the DTU
1045   // logic generic during VPlan execution.
1046   State->CFG.DTU.applyUpdates(
1047       {{DominatorTree::Delete, ScalarPh, ScalarPh->getSingleSuccessor()}});
1048 
1049   // Generate code in the loop pre-header and body.
1050   for (VPBlockBase *Block : vp_depth_first_shallow(Entry))
1051     Block->execute(State);
1052 
1053   VPBasicBlock *LatchVPBB = getVectorLoopRegion()->getExitingBasicBlock();
1054   BasicBlock *VectorLatchBB = State->CFG.VPBB2IRBB[LatchVPBB];
1055 
1056   // Fix the latch value of canonical, reduction and first-order recurrences
1057   // phis in the vector loop.
1058   VPBasicBlock *Header = getVectorLoopRegion()->getEntryBasicBlock();
1059   for (VPRecipeBase &R : Header->phis()) {
1060     // Skip phi-like recipes that generate their backedege values themselves.
1061     if (isa<VPWidenPHIRecipe>(&R))
1062       continue;
1063 
1064     if (isa<VPWidenPointerInductionRecipe>(&R) ||
1065         isa<VPWidenIntOrFpInductionRecipe>(&R)) {
1066       PHINode *Phi = nullptr;
1067       if (isa<VPWidenIntOrFpInductionRecipe>(&R)) {
1068         Phi = cast<PHINode>(State->get(R.getVPSingleValue()));
1069       } else {
1070         auto *WidenPhi = cast<VPWidenPointerInductionRecipe>(&R);
1071         assert(!WidenPhi->onlyScalarsGenerated(State->VF.isScalable()) &&
1072                "recipe generating only scalars should have been replaced");
1073         auto *GEP = cast<GetElementPtrInst>(State->get(WidenPhi));
1074         Phi = cast<PHINode>(GEP->getPointerOperand());
1075       }
1076 
1077       Phi->setIncomingBlock(1, VectorLatchBB);
1078 
1079       // Move the last step to the end of the latch block. This ensures
1080       // consistent placement of all induction updates.
1081       Instruction *Inc = cast<Instruction>(Phi->getIncomingValue(1));
1082       Inc->moveBefore(VectorLatchBB->getTerminator()->getPrevNode());
1083 
1084       // Use the steps for the last part as backedge value for the induction.
1085       if (auto *IV = dyn_cast<VPWidenIntOrFpInductionRecipe>(&R))
1086         Inc->setOperand(0, State->get(IV->getLastUnrolledPartOperand()));
1087       continue;
1088     }
1089 
1090     auto *PhiR = cast<VPHeaderPHIRecipe>(&R);
1091     bool NeedsScalar =
1092         isa<VPCanonicalIVPHIRecipe, VPEVLBasedIVPHIRecipe>(PhiR) ||
1093         (isa<VPReductionPHIRecipe>(PhiR) &&
1094          cast<VPReductionPHIRecipe>(PhiR)->isInLoop());
1095     Value *Phi = State->get(PhiR, NeedsScalar);
1096     Value *Val = State->get(PhiR->getBackedgeValue(), NeedsScalar);
1097     cast<PHINode>(Phi)->addIncoming(Val, VectorLatchBB);
1098   }
1099 
1100   State->CFG.DTU.flush();
1101   assert(State->CFG.DTU.getDomTree().verify(
1102              DominatorTree::VerificationLevel::Fast) &&
1103          "DT not preserved correctly");
1104 }
1105 
1106 InstructionCost VPlan::cost(ElementCount VF, VPCostContext &Ctx) {
1107   // For now only return the cost of the vector loop region, ignoring any other
1108   // blocks, like the preheader or middle blocks.
1109   return getVectorLoopRegion()->cost(VF, Ctx);
1110 }
1111 
1112 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1113 void VPlan::printLiveIns(raw_ostream &O) const {
1114   VPSlotTracker SlotTracker(this);
1115 
1116   if (VF.getNumUsers() > 0) {
1117     O << "\nLive-in ";
1118     VF.printAsOperand(O, SlotTracker);
1119     O << " = VF";
1120   }
1121 
1122   if (VFxUF.getNumUsers() > 0) {
1123     O << "\nLive-in ";
1124     VFxUF.printAsOperand(O, SlotTracker);
1125     O << " = VF * UF";
1126   }
1127 
1128   if (VectorTripCount.getNumUsers() > 0) {
1129     O << "\nLive-in ";
1130     VectorTripCount.printAsOperand(O, SlotTracker);
1131     O << " = vector-trip-count";
1132   }
1133 
1134   if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) {
1135     O << "\nLive-in ";
1136     BackedgeTakenCount->printAsOperand(O, SlotTracker);
1137     O << " = backedge-taken count";
1138   }
1139 
1140   O << "\n";
1141   if (TripCount->isLiveIn())
1142     O << "Live-in ";
1143   TripCount->printAsOperand(O, SlotTracker);
1144   O << " = original trip-count";
1145   O << "\n";
1146 }
1147 
1148 LLVM_DUMP_METHOD
1149 void VPlan::print(raw_ostream &O) const {
1150   VPSlotTracker SlotTracker(this);
1151 
1152   O << "VPlan '" << getName() << "' {";
1153 
1154   printLiveIns(O);
1155 
1156   if (!getPreheader()->empty()) {
1157     O << "\n";
1158     getPreheader()->print(O, "", SlotTracker);
1159   }
1160 
1161   for (const VPBlockBase *Block : vp_depth_first_shallow(getEntry())) {
1162     O << '\n';
1163     Block->print(O, "", SlotTracker);
1164   }
1165 
1166   O << "}\n";
1167 }
1168 
1169 std::string VPlan::getName() const {
1170   std::string Out;
1171   raw_string_ostream RSO(Out);
1172   RSO << Name << " for ";
1173   if (!VFs.empty()) {
1174     RSO << "VF={" << VFs[0];
1175     for (ElementCount VF : drop_begin(VFs))
1176       RSO << "," << VF;
1177     RSO << "},";
1178   }
1179 
1180   if (UFs.empty()) {
1181     RSO << "UF>=1";
1182   } else {
1183     RSO << "UF={" << UFs[0];
1184     for (unsigned UF : drop_begin(UFs))
1185       RSO << "," << UF;
1186     RSO << "}";
1187   }
1188 
1189   return Out;
1190 }
1191 
1192 LLVM_DUMP_METHOD
1193 void VPlan::printDOT(raw_ostream &O) const {
1194   VPlanPrinter Printer(O, *this);
1195   Printer.dump();
1196 }
1197 
1198 LLVM_DUMP_METHOD
1199 void VPlan::dump() const { print(dbgs()); }
1200 #endif
1201 
1202 static void remapOperands(VPBlockBase *Entry, VPBlockBase *NewEntry,
1203                           DenseMap<VPValue *, VPValue *> &Old2NewVPValues) {
1204   // Update the operands of all cloned recipes starting at NewEntry. This
1205   // traverses all reachable blocks. This is done in two steps, to handle cycles
1206   // in PHI recipes.
1207   ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<VPBlockBase *>>
1208       OldDeepRPOT(Entry);
1209   ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<VPBlockBase *>>
1210       NewDeepRPOT(NewEntry);
1211   // First, collect all mappings from old to new VPValues defined by cloned
1212   // recipes.
1213   for (const auto &[OldBB, NewBB] :
1214        zip(VPBlockUtils::blocksOnly<VPBasicBlock>(OldDeepRPOT),
1215            VPBlockUtils::blocksOnly<VPBasicBlock>(NewDeepRPOT))) {
1216     assert(OldBB->getRecipeList().size() == NewBB->getRecipeList().size() &&
1217            "blocks must have the same number of recipes");
1218     for (const auto &[OldR, NewR] : zip(*OldBB, *NewBB)) {
1219       assert(OldR.getNumOperands() == NewR.getNumOperands() &&
1220              "recipes must have the same number of operands");
1221       assert(OldR.getNumDefinedValues() == NewR.getNumDefinedValues() &&
1222              "recipes must define the same number of operands");
1223       for (const auto &[OldV, NewV] :
1224            zip(OldR.definedValues(), NewR.definedValues()))
1225         Old2NewVPValues[OldV] = NewV;
1226     }
1227   }
1228 
1229   // Update all operands to use cloned VPValues.
1230   for (VPBasicBlock *NewBB :
1231        VPBlockUtils::blocksOnly<VPBasicBlock>(NewDeepRPOT)) {
1232     for (VPRecipeBase &NewR : *NewBB)
1233       for (unsigned I = 0, E = NewR.getNumOperands(); I != E; ++I) {
1234         VPValue *NewOp = Old2NewVPValues.lookup(NewR.getOperand(I));
1235         NewR.setOperand(I, NewOp);
1236       }
1237   }
1238 }
1239 
1240 VPlan *VPlan::duplicate() {
1241   // Clone blocks.
1242   VPBasicBlock *NewPreheader = Preheader->clone();
1243   const auto &[NewEntry, __] = cloneFrom(Entry);
1244 
1245   BasicBlock *ScalarHeaderIRBB = getScalarHeader()->getIRBasicBlock();
1246   VPIRBasicBlock *NewScalarHeader = cast<VPIRBasicBlock>(*find_if(
1247       vp_depth_first_shallow(NewEntry), [ScalarHeaderIRBB](VPBlockBase *VPB) {
1248         auto *VPIRBB = dyn_cast<VPIRBasicBlock>(VPB);
1249         return VPIRBB && VPIRBB->getIRBasicBlock() == ScalarHeaderIRBB;
1250       }));
1251   // Create VPlan, clone live-ins and remap operands in the cloned blocks.
1252   auto *NewPlan =
1253       new VPlan(NewPreheader, cast<VPBasicBlock>(NewEntry), NewScalarHeader);
1254   DenseMap<VPValue *, VPValue *> Old2NewVPValues;
1255   for (VPValue *OldLiveIn : VPLiveInsToFree) {
1256     Old2NewVPValues[OldLiveIn] =
1257         NewPlan->getOrAddLiveIn(OldLiveIn->getLiveInIRValue());
1258   }
1259   Old2NewVPValues[&VectorTripCount] = &NewPlan->VectorTripCount;
1260   Old2NewVPValues[&VF] = &NewPlan->VF;
1261   Old2NewVPValues[&VFxUF] = &NewPlan->VFxUF;
1262   if (BackedgeTakenCount) {
1263     NewPlan->BackedgeTakenCount = new VPValue();
1264     Old2NewVPValues[BackedgeTakenCount] = NewPlan->BackedgeTakenCount;
1265   }
1266   assert(TripCount && "trip count must be set");
1267   if (TripCount->isLiveIn())
1268     Old2NewVPValues[TripCount] =
1269         NewPlan->getOrAddLiveIn(TripCount->getLiveInIRValue());
1270   // else NewTripCount will be created and inserted into Old2NewVPValues when
1271   // TripCount is cloned. In any case NewPlan->TripCount is updated below.
1272 
1273   remapOperands(Preheader, NewPreheader, Old2NewVPValues);
1274   remapOperands(Entry, NewEntry, Old2NewVPValues);
1275 
1276   // Initialize remaining fields of cloned VPlan.
1277   NewPlan->VFs = VFs;
1278   NewPlan->UFs = UFs;
1279   // TODO: Adjust names.
1280   NewPlan->Name = Name;
1281   assert(Old2NewVPValues.contains(TripCount) &&
1282          "TripCount must have been added to Old2NewVPValues");
1283   NewPlan->TripCount = Old2NewVPValues[TripCount];
1284   return NewPlan;
1285 }
1286 
1287 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1288 
1289 Twine VPlanPrinter::getUID(const VPBlockBase *Block) {
1290   return (isa<VPRegionBlock>(Block) ? "cluster_N" : "N") +
1291          Twine(getOrCreateBID(Block));
1292 }
1293 
1294 Twine VPlanPrinter::getOrCreateName(const VPBlockBase *Block) {
1295   const std::string &Name = Block->getName();
1296   if (!Name.empty())
1297     return Name;
1298   return "VPB" + Twine(getOrCreateBID(Block));
1299 }
1300 
1301 void VPlanPrinter::dump() {
1302   Depth = 1;
1303   bumpIndent(0);
1304   OS << "digraph VPlan {\n";
1305   OS << "graph [labelloc=t, fontsize=30; label=\"Vectorization Plan";
1306   if (!Plan.getName().empty())
1307     OS << "\\n" << DOT::EscapeString(Plan.getName());
1308 
1309   {
1310     // Print live-ins.
1311   std::string Str;
1312   raw_string_ostream SS(Str);
1313   Plan.printLiveIns(SS);
1314   SmallVector<StringRef, 0> Lines;
1315   StringRef(Str).rtrim('\n').split(Lines, "\n");
1316   for (auto Line : Lines)
1317     OS << DOT::EscapeString(Line.str()) << "\\n";
1318   }
1319 
1320   OS << "\"]\n";
1321   OS << "node [shape=rect, fontname=Courier, fontsize=30]\n";
1322   OS << "edge [fontname=Courier, fontsize=30]\n";
1323   OS << "compound=true\n";
1324 
1325   dumpBlock(Plan.getPreheader());
1326 
1327   for (const VPBlockBase *Block : vp_depth_first_shallow(Plan.getEntry()))
1328     dumpBlock(Block);
1329 
1330   OS << "}\n";
1331 }
1332 
1333 void VPlanPrinter::dumpBlock(const VPBlockBase *Block) {
1334   if (const VPBasicBlock *BasicBlock = dyn_cast<VPBasicBlock>(Block))
1335     dumpBasicBlock(BasicBlock);
1336   else if (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
1337     dumpRegion(Region);
1338   else
1339     llvm_unreachable("Unsupported kind of VPBlock.");
1340 }
1341 
1342 void VPlanPrinter::drawEdge(const VPBlockBase *From, const VPBlockBase *To,
1343                             bool Hidden, const Twine &Label) {
1344   // Due to "dot" we print an edge between two regions as an edge between the
1345   // exiting basic block and the entry basic of the respective regions.
1346   const VPBlockBase *Tail = From->getExitingBasicBlock();
1347   const VPBlockBase *Head = To->getEntryBasicBlock();
1348   OS << Indent << getUID(Tail) << " -> " << getUID(Head);
1349   OS << " [ label=\"" << Label << '\"';
1350   if (Tail != From)
1351     OS << " ltail=" << getUID(From);
1352   if (Head != To)
1353     OS << " lhead=" << getUID(To);
1354   if (Hidden)
1355     OS << "; splines=none";
1356   OS << "]\n";
1357 }
1358 
1359 void VPlanPrinter::dumpEdges(const VPBlockBase *Block) {
1360   auto &Successors = Block->getSuccessors();
1361   if (Successors.size() == 1)
1362     drawEdge(Block, Successors.front(), false, "");
1363   else if (Successors.size() == 2) {
1364     drawEdge(Block, Successors.front(), false, "T");
1365     drawEdge(Block, Successors.back(), false, "F");
1366   } else {
1367     unsigned SuccessorNumber = 0;
1368     for (auto *Successor : Successors)
1369       drawEdge(Block, Successor, false, Twine(SuccessorNumber++));
1370   }
1371 }
1372 
1373 void VPlanPrinter::dumpBasicBlock(const VPBasicBlock *BasicBlock) {
1374   // Implement dot-formatted dump by performing plain-text dump into the
1375   // temporary storage followed by some post-processing.
1376   OS << Indent << getUID(BasicBlock) << " [label =\n";
1377   bumpIndent(1);
1378   std::string Str;
1379   raw_string_ostream SS(Str);
1380   // Use no indentation as we need to wrap the lines into quotes ourselves.
1381   BasicBlock->print(SS, "", SlotTracker);
1382 
1383   // We need to process each line of the output separately, so split
1384   // single-string plain-text dump.
1385   SmallVector<StringRef, 0> Lines;
1386   StringRef(Str).rtrim('\n').split(Lines, "\n");
1387 
1388   auto EmitLine = [&](StringRef Line, StringRef Suffix) {
1389     OS << Indent << '"' << DOT::EscapeString(Line.str()) << "\\l\"" << Suffix;
1390   };
1391 
1392   // Don't need the "+" after the last line.
1393   for (auto Line : make_range(Lines.begin(), Lines.end() - 1))
1394     EmitLine(Line, " +\n");
1395   EmitLine(Lines.back(), "\n");
1396 
1397   bumpIndent(-1);
1398   OS << Indent << "]\n";
1399 
1400   dumpEdges(BasicBlock);
1401 }
1402 
1403 void VPlanPrinter::dumpRegion(const VPRegionBlock *Region) {
1404   OS << Indent << "subgraph " << getUID(Region) << " {\n";
1405   bumpIndent(1);
1406   OS << Indent << "fontname=Courier\n"
1407      << Indent << "label=\""
1408      << DOT::EscapeString(Region->isReplicator() ? "<xVFxUF> " : "<x1> ")
1409      << DOT::EscapeString(Region->getName()) << "\"\n";
1410   // Dump the blocks of the region.
1411   assert(Region->getEntry() && "Region contains no inner blocks.");
1412   for (const VPBlockBase *Block : vp_depth_first_shallow(Region->getEntry()))
1413     dumpBlock(Block);
1414   bumpIndent(-1);
1415   OS << Indent << "}\n";
1416   dumpEdges(Region);
1417 }
1418 
1419 void VPlanIngredient::print(raw_ostream &O) const {
1420   if (auto *Inst = dyn_cast<Instruction>(V)) {
1421     if (!Inst->getType()->isVoidTy()) {
1422       Inst->printAsOperand(O, false);
1423       O << " = ";
1424     }
1425     O << Inst->getOpcodeName() << " ";
1426     unsigned E = Inst->getNumOperands();
1427     if (E > 0) {
1428       Inst->getOperand(0)->printAsOperand(O, false);
1429       for (unsigned I = 1; I < E; ++I)
1430         Inst->getOperand(I)->printAsOperand(O << ", ", false);
1431     }
1432   } else // !Inst
1433     V->printAsOperand(O, false);
1434 }
1435 
1436 #endif
1437 
1438 bool VPValue::isDefinedOutsideLoopRegions() const {
1439   return !hasDefiningRecipe() ||
1440          !getDefiningRecipe()->getParent()->getEnclosingLoopRegion();
1441 }
1442 
1443 void VPValue::replaceAllUsesWith(VPValue *New) {
1444   replaceUsesWithIf(New, [](VPUser &, unsigned) { return true; });
1445 }
1446 
1447 void VPValue::replaceUsesWithIf(
1448     VPValue *New,
1449     llvm::function_ref<bool(VPUser &U, unsigned Idx)> ShouldReplace) {
1450   // Note that this early exit is required for correctness; the implementation
1451   // below relies on the number of users for this VPValue to decrease, which
1452   // isn't the case if this == New.
1453   if (this == New)
1454     return;
1455 
1456   for (unsigned J = 0; J < getNumUsers();) {
1457     VPUser *User = Users[J];
1458     bool RemovedUser = false;
1459     for (unsigned I = 0, E = User->getNumOperands(); I < E; ++I) {
1460       if (User->getOperand(I) != this || !ShouldReplace(*User, I))
1461         continue;
1462 
1463       RemovedUser = true;
1464       User->setOperand(I, New);
1465     }
1466     // If a user got removed after updating the current user, the next user to
1467     // update will be moved to the current position, so we only need to
1468     // increment the index if the number of users did not change.
1469     if (!RemovedUser)
1470       J++;
1471   }
1472 }
1473 
1474 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1475 void VPValue::printAsOperand(raw_ostream &OS, VPSlotTracker &Tracker) const {
1476   OS << Tracker.getOrCreateName(this);
1477 }
1478 
1479 void VPUser::printOperands(raw_ostream &O, VPSlotTracker &SlotTracker) const {
1480   interleaveComma(operands(), O, [&O, &SlotTracker](VPValue *Op) {
1481     Op->printAsOperand(O, SlotTracker);
1482   });
1483 }
1484 #endif
1485 
1486 void VPInterleavedAccessInfo::visitRegion(VPRegionBlock *Region,
1487                                           Old2NewTy &Old2New,
1488                                           InterleavedAccessInfo &IAI) {
1489   ReversePostOrderTraversal<VPBlockShallowTraversalWrapper<VPBlockBase *>>
1490       RPOT(Region->getEntry());
1491   for (VPBlockBase *Base : RPOT) {
1492     visitBlock(Base, Old2New, IAI);
1493   }
1494 }
1495 
1496 void VPInterleavedAccessInfo::visitBlock(VPBlockBase *Block, Old2NewTy &Old2New,
1497                                          InterleavedAccessInfo &IAI) {
1498   if (VPBasicBlock *VPBB = dyn_cast<VPBasicBlock>(Block)) {
1499     for (VPRecipeBase &VPI : *VPBB) {
1500       if (isa<VPWidenPHIRecipe>(&VPI))
1501         continue;
1502       assert(isa<VPInstruction>(&VPI) && "Can only handle VPInstructions");
1503       auto *VPInst = cast<VPInstruction>(&VPI);
1504 
1505       auto *Inst = dyn_cast_or_null<Instruction>(VPInst->getUnderlyingValue());
1506       if (!Inst)
1507         continue;
1508       auto *IG = IAI.getInterleaveGroup(Inst);
1509       if (!IG)
1510         continue;
1511 
1512       auto NewIGIter = Old2New.find(IG);
1513       if (NewIGIter == Old2New.end())
1514         Old2New[IG] = new InterleaveGroup<VPInstruction>(
1515             IG->getFactor(), IG->isReverse(), IG->getAlign());
1516 
1517       if (Inst == IG->getInsertPos())
1518         Old2New[IG]->setInsertPos(VPInst);
1519 
1520       InterleaveGroupMap[VPInst] = Old2New[IG];
1521       InterleaveGroupMap[VPInst]->insertMember(
1522           VPInst, IG->getIndex(Inst),
1523           Align(IG->isReverse() ? (-1) * int(IG->getFactor())
1524                                 : IG->getFactor()));
1525     }
1526   } else if (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
1527     visitRegion(Region, Old2New, IAI);
1528   else
1529     llvm_unreachable("Unsupported kind of VPBlock.");
1530 }
1531 
1532 VPInterleavedAccessInfo::VPInterleavedAccessInfo(VPlan &Plan,
1533                                                  InterleavedAccessInfo &IAI) {
1534   Old2NewTy Old2New;
1535   visitRegion(Plan.getVectorLoopRegion(), Old2New, IAI);
1536 }
1537 
1538 void VPSlotTracker::assignName(const VPValue *V) {
1539   assert(!VPValue2Name.contains(V) && "VPValue already has a name!");
1540   auto *UV = V->getUnderlyingValue();
1541   auto *VPI = dyn_cast_or_null<VPInstruction>(V->getDefiningRecipe());
1542   if (!UV && !(VPI && !VPI->getName().empty())) {
1543     VPValue2Name[V] = (Twine("vp<%") + Twine(NextSlot) + ">").str();
1544     NextSlot++;
1545     return;
1546   }
1547 
1548   // Use the name of the underlying Value, wrapped in "ir<>", and versioned by
1549   // appending ".Number" to the name if there are multiple uses.
1550   std::string Name;
1551   if (UV) {
1552     raw_string_ostream S(Name);
1553     UV->printAsOperand(S, false);
1554   } else
1555     Name = VPI->getName();
1556 
1557   assert(!Name.empty() && "Name cannot be empty.");
1558   StringRef Prefix = UV ? "ir<" : "vp<%";
1559   std::string BaseName = (Twine(Prefix) + Name + Twine(">")).str();
1560 
1561   // First assign the base name for V.
1562   const auto &[A, _] = VPValue2Name.insert({V, BaseName});
1563   // Integer or FP constants with different types will result in he same string
1564   // due to stripping types.
1565   if (V->isLiveIn() && isa<ConstantInt, ConstantFP>(UV))
1566     return;
1567 
1568   // If it is already used by C > 0 other VPValues, increase the version counter
1569   // C and use it for V.
1570   const auto &[C, UseInserted] = BaseName2Version.insert({BaseName, 0});
1571   if (!UseInserted) {
1572     C->second++;
1573     A->second = (BaseName + Twine(".") + Twine(C->second)).str();
1574   }
1575 }
1576 
1577 void VPSlotTracker::assignNames(const VPlan &Plan) {
1578   if (Plan.VF.getNumUsers() > 0)
1579     assignName(&Plan.VF);
1580   if (Plan.VFxUF.getNumUsers() > 0)
1581     assignName(&Plan.VFxUF);
1582   assignName(&Plan.VectorTripCount);
1583   if (Plan.BackedgeTakenCount)
1584     assignName(Plan.BackedgeTakenCount);
1585   for (VPValue *LI : Plan.VPLiveInsToFree)
1586     assignName(LI);
1587   assignNames(Plan.getPreheader());
1588 
1589   ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<const VPBlockBase *>>
1590       RPOT(VPBlockDeepTraversalWrapper<const VPBlockBase *>(Plan.getEntry()));
1591   for (const VPBasicBlock *VPBB :
1592        VPBlockUtils::blocksOnly<const VPBasicBlock>(RPOT))
1593     assignNames(VPBB);
1594 }
1595 
1596 void VPSlotTracker::assignNames(const VPBasicBlock *VPBB) {
1597   for (const VPRecipeBase &Recipe : *VPBB)
1598     for (VPValue *Def : Recipe.definedValues())
1599       assignName(Def);
1600 }
1601 
1602 std::string VPSlotTracker::getOrCreateName(const VPValue *V) const {
1603   std::string Name = VPValue2Name.lookup(V);
1604   if (!Name.empty())
1605     return Name;
1606 
1607   // If no name was assigned, no VPlan was provided when creating the slot
1608   // tracker or it is not reachable from the provided VPlan. This can happen,
1609   // e.g. when trying to print a recipe that has not been inserted into a VPlan
1610   // in a debugger.
1611   // TODO: Update VPSlotTracker constructor to assign names to recipes &
1612   // VPValues not associated with a VPlan, instead of constructing names ad-hoc
1613   // here.
1614   const VPRecipeBase *DefR = V->getDefiningRecipe();
1615   (void)DefR;
1616   assert((!DefR || !DefR->getParent() || !DefR->getParent()->getPlan()) &&
1617          "VPValue defined by a recipe in a VPlan?");
1618 
1619   // Use the underlying value's name, if there is one.
1620   if (auto *UV = V->getUnderlyingValue()) {
1621     std::string Name;
1622     raw_string_ostream S(Name);
1623     UV->printAsOperand(S, false);
1624     return (Twine("ir<") + Name + ">").str();
1625   }
1626 
1627   return "<badref>";
1628 }
1629 
1630 bool LoopVectorizationPlanner::getDecisionAndClampRange(
1631     const std::function<bool(ElementCount)> &Predicate, VFRange &Range) {
1632   assert(!Range.isEmpty() && "Trying to test an empty VF range.");
1633   bool PredicateAtRangeStart = Predicate(Range.Start);
1634 
1635   for (ElementCount TmpVF : VFRange(Range.Start * 2, Range.End))
1636     if (Predicate(TmpVF) != PredicateAtRangeStart) {
1637       Range.End = TmpVF;
1638       break;
1639     }
1640 
1641   return PredicateAtRangeStart;
1642 }
1643 
1644 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF,
1645 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range
1646 /// of VF's starting at a given VF and extending it as much as possible. Each
1647 /// vectorization decision can potentially shorten this sub-range during
1648 /// buildVPlan().
1649 void LoopVectorizationPlanner::buildVPlans(ElementCount MinVF,
1650                                            ElementCount MaxVF) {
1651   auto MaxVFTimes2 = MaxVF * 2;
1652   for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFTimes2);) {
1653     VFRange SubRange = {VF, MaxVFTimes2};
1654     auto Plan = buildVPlan(SubRange);
1655     VPlanTransforms::optimize(*Plan);
1656     VPlans.push_back(std::move(Plan));
1657     VF = SubRange.End;
1658   }
1659 }
1660 
1661 VPlan &LoopVectorizationPlanner::getPlanFor(ElementCount VF) const {
1662   assert(count_if(VPlans,
1663                   [VF](const VPlanPtr &Plan) { return Plan->hasVF(VF); }) ==
1664              1 &&
1665          "Multiple VPlans for VF.");
1666 
1667   for (const VPlanPtr &Plan : VPlans) {
1668     if (Plan->hasVF(VF))
1669       return *Plan.get();
1670   }
1671   llvm_unreachable("No plan found!");
1672 }
1673 
1674 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1675 void LoopVectorizationPlanner::printPlans(raw_ostream &O) {
1676   if (VPlans.empty()) {
1677     O << "LV: No VPlans built.\n";
1678     return;
1679   }
1680   for (const auto &Plan : VPlans)
1681     if (PrintVPlansInDotFormat)
1682       Plan->printDOT(O);
1683     else
1684       Plan->print(O);
1685 }
1686 #endif
1687 
1688 TargetTransformInfo::OperandValueInfo
1689 VPCostContext::getOperandInfo(VPValue *V) const {
1690   if (!V->isLiveIn())
1691     return {};
1692 
1693   return TTI::getOperandInfo(V->getLiveInIRValue());
1694 }
1695