1 //===- VPlan.cpp - Vectorizer Plan ----------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This is the LLVM vectorization plan. It represents a candidate for 11 /// vectorization, allowing to plan and optimize how to vectorize a given loop 12 /// before generating LLVM-IR. 13 /// The vectorizer uses vectorization plans to estimate the costs of potential 14 /// candidates and if profitable to execute the desired plan, generating vector 15 /// LLVM-IR code. 16 /// 17 //===----------------------------------------------------------------------===// 18 19 #include "VPlan.h" 20 #include "LoopVectorizationPlanner.h" 21 #include "VPlanCFG.h" 22 #include "VPlanDominatorTree.h" 23 #include "VPlanPatternMatch.h" 24 #include "VPlanTransforms.h" 25 #include "VPlanUtils.h" 26 #include "llvm/ADT/PostOrderIterator.h" 27 #include "llvm/ADT/STLExtras.h" 28 #include "llvm/ADT/SmallVector.h" 29 #include "llvm/ADT/StringExtras.h" 30 #include "llvm/ADT/Twine.h" 31 #include "llvm/Analysis/DomTreeUpdater.h" 32 #include "llvm/Analysis/LoopInfo.h" 33 #include "llvm/IR/BasicBlock.h" 34 #include "llvm/IR/CFG.h" 35 #include "llvm/IR/IRBuilder.h" 36 #include "llvm/IR/Instruction.h" 37 #include "llvm/IR/Instructions.h" 38 #include "llvm/IR/Type.h" 39 #include "llvm/IR/Value.h" 40 #include "llvm/Support/Casting.h" 41 #include "llvm/Support/CommandLine.h" 42 #include "llvm/Support/Debug.h" 43 #include "llvm/Support/GraphWriter.h" 44 #include "llvm/Support/raw_ostream.h" 45 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 46 #include "llvm/Transforms/Utils/LoopVersioning.h" 47 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 48 #include <cassert> 49 #include <string> 50 #include <vector> 51 52 using namespace llvm; 53 using namespace llvm::VPlanPatternMatch; 54 55 namespace llvm { 56 extern cl::opt<bool> EnableVPlanNativePath; 57 } 58 extern cl::opt<unsigned> ForceTargetInstructionCost; 59 60 static cl::opt<bool> PrintVPlansInDotFormat( 61 "vplan-print-in-dot-format", cl::Hidden, 62 cl::desc("Use dot format instead of plain text when dumping VPlans")); 63 64 #define DEBUG_TYPE "vplan" 65 66 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 67 raw_ostream &llvm::operator<<(raw_ostream &OS, const VPValue &V) { 68 const VPInstruction *Instr = dyn_cast<VPInstruction>(&V); 69 VPSlotTracker SlotTracker( 70 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr); 71 V.print(OS, SlotTracker); 72 return OS; 73 } 74 #endif 75 76 Value *VPLane::getAsRuntimeExpr(IRBuilderBase &Builder, 77 const ElementCount &VF) const { 78 switch (LaneKind) { 79 case VPLane::Kind::ScalableLast: 80 // Lane = RuntimeVF - VF.getKnownMinValue() + Lane 81 return Builder.CreateSub(getRuntimeVF(Builder, Builder.getInt32Ty(), VF), 82 Builder.getInt32(VF.getKnownMinValue() - Lane)); 83 case VPLane::Kind::First: 84 return Builder.getInt32(Lane); 85 } 86 llvm_unreachable("Unknown lane kind"); 87 } 88 89 VPValue::VPValue(const unsigned char SC, Value *UV, VPDef *Def) 90 : SubclassID(SC), UnderlyingVal(UV), Def(Def) { 91 if (Def) 92 Def->addDefinedValue(this); 93 } 94 95 VPValue::~VPValue() { 96 assert(Users.empty() && "trying to delete a VPValue with remaining users"); 97 if (Def) 98 Def->removeDefinedValue(this); 99 } 100 101 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 102 void VPValue::print(raw_ostream &OS, VPSlotTracker &SlotTracker) const { 103 if (const VPRecipeBase *R = dyn_cast_or_null<VPRecipeBase>(Def)) 104 R->print(OS, "", SlotTracker); 105 else 106 printAsOperand(OS, SlotTracker); 107 } 108 109 void VPValue::dump() const { 110 const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this->Def); 111 VPSlotTracker SlotTracker( 112 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr); 113 print(dbgs(), SlotTracker); 114 dbgs() << "\n"; 115 } 116 117 void VPDef::dump() const { 118 const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this); 119 VPSlotTracker SlotTracker( 120 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr); 121 print(dbgs(), "", SlotTracker); 122 dbgs() << "\n"; 123 } 124 #endif 125 126 VPRecipeBase *VPValue::getDefiningRecipe() { 127 return cast_or_null<VPRecipeBase>(Def); 128 } 129 130 const VPRecipeBase *VPValue::getDefiningRecipe() const { 131 return cast_or_null<VPRecipeBase>(Def); 132 } 133 134 // Get the top-most entry block of \p Start. This is the entry block of the 135 // containing VPlan. This function is templated to support both const and non-const blocks 136 template <typename T> static T *getPlanEntry(T *Start) { 137 T *Next = Start; 138 T *Current = Start; 139 while ((Next = Next->getParent())) 140 Current = Next; 141 142 SmallSetVector<T *, 8> WorkList; 143 WorkList.insert(Current); 144 145 for (unsigned i = 0; i < WorkList.size(); i++) { 146 T *Current = WorkList[i]; 147 if (Current->getNumPredecessors() == 0) 148 return Current; 149 auto &Predecessors = Current->getPredecessors(); 150 WorkList.insert(Predecessors.begin(), Predecessors.end()); 151 } 152 153 llvm_unreachable("VPlan without any entry node without predecessors"); 154 } 155 156 VPlan *VPBlockBase::getPlan() { return getPlanEntry(this)->Plan; } 157 158 const VPlan *VPBlockBase::getPlan() const { return getPlanEntry(this)->Plan; } 159 160 /// \return the VPBasicBlock that is the entry of Block, possibly indirectly. 161 const VPBasicBlock *VPBlockBase::getEntryBasicBlock() const { 162 const VPBlockBase *Block = this; 163 while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 164 Block = Region->getEntry(); 165 return cast<VPBasicBlock>(Block); 166 } 167 168 VPBasicBlock *VPBlockBase::getEntryBasicBlock() { 169 VPBlockBase *Block = this; 170 while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 171 Block = Region->getEntry(); 172 return cast<VPBasicBlock>(Block); 173 } 174 175 void VPBlockBase::setPlan(VPlan *ParentPlan) { 176 assert( 177 (ParentPlan->getEntry() == this || ParentPlan->getPreheader() == this) && 178 "Can only set plan on its entry or preheader block."); 179 Plan = ParentPlan; 180 } 181 182 /// \return the VPBasicBlock that is the exit of Block, possibly indirectly. 183 const VPBasicBlock *VPBlockBase::getExitingBasicBlock() const { 184 const VPBlockBase *Block = this; 185 while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 186 Block = Region->getExiting(); 187 return cast<VPBasicBlock>(Block); 188 } 189 190 VPBasicBlock *VPBlockBase::getExitingBasicBlock() { 191 VPBlockBase *Block = this; 192 while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 193 Block = Region->getExiting(); 194 return cast<VPBasicBlock>(Block); 195 } 196 197 VPBlockBase *VPBlockBase::getEnclosingBlockWithSuccessors() { 198 if (!Successors.empty() || !Parent) 199 return this; 200 assert(Parent->getExiting() == this && 201 "Block w/o successors not the exiting block of its parent."); 202 return Parent->getEnclosingBlockWithSuccessors(); 203 } 204 205 VPBlockBase *VPBlockBase::getEnclosingBlockWithPredecessors() { 206 if (!Predecessors.empty() || !Parent) 207 return this; 208 assert(Parent->getEntry() == this && 209 "Block w/o predecessors not the entry of its parent."); 210 return Parent->getEnclosingBlockWithPredecessors(); 211 } 212 213 void VPBlockBase::deleteCFG(VPBlockBase *Entry) { 214 for (VPBlockBase *Block : to_vector(vp_depth_first_shallow(Entry))) 215 delete Block; 216 } 217 218 VPBasicBlock::iterator VPBasicBlock::getFirstNonPhi() { 219 iterator It = begin(); 220 while (It != end() && It->isPhi()) 221 It++; 222 return It; 223 } 224 225 VPTransformState::VPTransformState(ElementCount VF, unsigned UF, LoopInfo *LI, 226 DominatorTree *DT, IRBuilderBase &Builder, 227 InnerLoopVectorizer *ILV, VPlan *Plan) 228 : VF(VF), CFG(DT), LI(LI), Builder(Builder), ILV(ILV), Plan(Plan), 229 LVer(nullptr), TypeAnalysis(Plan->getCanonicalIV()->getScalarType()) {} 230 231 Value *VPTransformState::get(VPValue *Def, const VPIteration &Instance) { 232 if (Def->isLiveIn()) 233 return Def->getLiveInIRValue(); 234 235 if (hasScalarValue(Def, Instance)) { 236 return Data 237 .PerPartScalars[Def][Instance.Part][Instance.Lane.mapToCacheIndex(VF)]; 238 } 239 if (!Instance.Lane.isFirstLane() && 240 vputils::isUniformAfterVectorization(Def) && 241 hasScalarValue(Def, {Instance.Part, VPLane::getFirstLane()})) { 242 return Data.PerPartScalars[Def][Instance.Part][0]; 243 } 244 245 assert(hasVectorValue(Def)); 246 auto *VecPart = Data.VPV2Vector[Def]; 247 if (!VecPart->getType()->isVectorTy()) { 248 assert(Instance.Lane.isFirstLane() && "cannot get lane > 0 for scalar"); 249 return VecPart; 250 } 251 // TODO: Cache created scalar values. 252 Value *Lane = Instance.Lane.getAsRuntimeExpr(Builder, VF); 253 auto *Extract = Builder.CreateExtractElement(VecPart, Lane); 254 // set(Def, Extract, Instance); 255 return Extract; 256 } 257 258 Value *VPTransformState::get(VPValue *Def, bool NeedsScalar) { 259 if (NeedsScalar) { 260 assert((VF.isScalar() || Def->isLiveIn() || hasVectorValue(Def) || 261 !vputils::onlyFirstLaneUsed(Def) || 262 (hasScalarValue(Def, VPIteration(0, 0)) && 263 Data.PerPartScalars[Def][0].size() == 1)) && 264 "Trying to access a single scalar per part but has multiple scalars " 265 "per part."); 266 return get(Def, VPIteration(0, 0)); 267 } 268 269 // If Values have been set for this Def return the one relevant for \p Part. 270 if (hasVectorValue(Def)) 271 return Data.VPV2Vector[Def]; 272 273 auto GetBroadcastInstrs = [this, Def](Value *V) { 274 bool SafeToHoist = Def->isDefinedOutsideLoopRegions(); 275 if (VF.isScalar()) 276 return V; 277 // Place the code for broadcasting invariant variables in the new preheader. 278 IRBuilder<>::InsertPointGuard Guard(Builder); 279 if (SafeToHoist) { 280 BasicBlock *LoopVectorPreHeader = CFG.VPBB2IRBB[cast<VPBasicBlock>( 281 Plan->getVectorLoopRegion()->getSinglePredecessor())]; 282 if (LoopVectorPreHeader) 283 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 284 } 285 286 // Place the code for broadcasting invariant variables in the new preheader. 287 // Broadcast the scalar into all locations in the vector. 288 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 289 290 return Shuf; 291 }; 292 293 if (!hasScalarValue(Def, {0, 0})) { 294 assert(Def->isLiveIn() && "expected a live-in"); 295 Value *IRV = Def->getLiveInIRValue(); 296 Value *B = GetBroadcastInstrs(IRV); 297 set(Def, B); 298 return B; 299 } 300 301 Value *ScalarValue = get(Def, {0, 0}); 302 // If we aren't vectorizing, we can just copy the scalar map values over 303 // to the vector map. 304 if (VF.isScalar()) { 305 set(Def, ScalarValue); 306 return ScalarValue; 307 } 308 309 bool IsUniform = vputils::isUniformAfterVectorization(Def); 310 311 unsigned LastLane = IsUniform ? 0 : VF.getKnownMinValue() - 1; 312 // Check if there is a scalar value for the selected lane. 313 if (!hasScalarValue(Def, {0, LastLane})) { 314 // At the moment, VPWidenIntOrFpInductionRecipes, VPScalarIVStepsRecipes and 315 // VPExpandSCEVRecipes can also be uniform. 316 assert((isa<VPWidenIntOrFpInductionRecipe>(Def->getDefiningRecipe()) || 317 isa<VPScalarIVStepsRecipe>(Def->getDefiningRecipe()) || 318 isa<VPExpandSCEVRecipe>(Def->getDefiningRecipe())) && 319 "unexpected recipe found to be invariant"); 320 IsUniform = true; 321 LastLane = 0; 322 } 323 324 auto *LastInst = cast<Instruction>(get(Def, {0, LastLane})); 325 // Set the insert point after the last scalarized instruction or after the 326 // last PHI, if LastInst is a PHI. This ensures the insertelement sequence 327 // will directly follow the scalar definitions. 328 auto OldIP = Builder.saveIP(); 329 auto NewIP = 330 isa<PHINode>(LastInst) 331 ? BasicBlock::iterator(LastInst->getParent()->getFirstNonPHI()) 332 : std::next(BasicBlock::iterator(LastInst)); 333 Builder.SetInsertPoint(&*NewIP); 334 335 // However, if we are vectorizing, we need to construct the vector values. 336 // If the value is known to be uniform after vectorization, we can just 337 // broadcast the scalar value corresponding to lane zero for each unroll 338 // iteration. Otherwise, we construct the vector values using 339 // insertelement instructions. Since the resulting vectors are stored in 340 // State, we will only generate the insertelements once. 341 Value *VectorValue = nullptr; 342 if (IsUniform) { 343 VectorValue = GetBroadcastInstrs(ScalarValue); 344 set(Def, VectorValue); 345 } else { 346 // Initialize packing with insertelements to start from undef. 347 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 348 Value *Undef = PoisonValue::get(VectorType::get(LastInst->getType(), VF)); 349 set(Def, Undef); 350 for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane) 351 packScalarIntoVectorValue(Def, {0, Lane}); 352 VectorValue = get(Def); 353 } 354 Builder.restoreIP(OldIP); 355 return VectorValue; 356 } 357 358 BasicBlock *VPTransformState::CFGState::getPreheaderBBFor(VPRecipeBase *R) { 359 VPRegionBlock *LoopRegion = R->getParent()->getEnclosingLoopRegion(); 360 return VPBB2IRBB[LoopRegion->getPreheaderVPBB()]; 361 } 362 363 void VPTransformState::addNewMetadata(Instruction *To, 364 const Instruction *Orig) { 365 // If the loop was versioned with memchecks, add the corresponding no-alias 366 // metadata. 367 if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig))) 368 LVer->annotateInstWithNoAlias(To, Orig); 369 } 370 371 void VPTransformState::addMetadata(Value *To, Instruction *From) { 372 // No source instruction to transfer metadata from? 373 if (!From) 374 return; 375 376 if (Instruction *ToI = dyn_cast<Instruction>(To)) { 377 propagateMetadata(ToI, From); 378 addNewMetadata(ToI, From); 379 } 380 } 381 382 void VPTransformState::setDebugLocFrom(DebugLoc DL) { 383 const DILocation *DIL = DL; 384 // When a FSDiscriminator is enabled, we don't need to add the multiply 385 // factors to the discriminators. 386 if (DIL && 387 Builder.GetInsertBlock() 388 ->getParent() 389 ->shouldEmitDebugInfoForProfiling() && 390 !EnableFSDiscriminator) { 391 // FIXME: For scalable vectors, assume vscale=1. 392 unsigned UF = Plan->getUF(); 393 auto NewDIL = 394 DIL->cloneByMultiplyingDuplicationFactor(UF * VF.getKnownMinValue()); 395 if (NewDIL) 396 Builder.SetCurrentDebugLocation(*NewDIL); 397 else 398 LLVM_DEBUG(dbgs() << "Failed to create new discriminator: " 399 << DIL->getFilename() << " Line: " << DIL->getLine()); 400 } else 401 Builder.SetCurrentDebugLocation(DIL); 402 } 403 404 void VPTransformState::packScalarIntoVectorValue(VPValue *Def, 405 const VPIteration &Instance) { 406 Value *ScalarInst = get(Def, Instance); 407 Value *VectorValue = get(Def); 408 VectorValue = Builder.CreateInsertElement( 409 VectorValue, ScalarInst, Instance.Lane.getAsRuntimeExpr(Builder, VF)); 410 set(Def, VectorValue); 411 } 412 413 BasicBlock * 414 VPBasicBlock::createEmptyBasicBlock(VPTransformState::CFGState &CFG) { 415 // BB stands for IR BasicBlocks. VPBB stands for VPlan VPBasicBlocks. 416 // Pred stands for Predessor. Prev stands for Previous - last visited/created. 417 BasicBlock *PrevBB = CFG.PrevBB; 418 BasicBlock *NewBB = BasicBlock::Create(PrevBB->getContext(), getName(), 419 PrevBB->getParent(), CFG.ExitBB); 420 LLVM_DEBUG(dbgs() << "LV: created " << NewBB->getName() << '\n'); 421 422 // Hook up the new basic block to its predecessors. 423 for (VPBlockBase *PredVPBlock : getHierarchicalPredecessors()) { 424 VPBasicBlock *PredVPBB = PredVPBlock->getExitingBasicBlock(); 425 auto &PredVPSuccessors = PredVPBB->getHierarchicalSuccessors(); 426 BasicBlock *PredBB = CFG.VPBB2IRBB[PredVPBB]; 427 428 assert(PredBB && "Predecessor basic-block not found building successor."); 429 auto *PredBBTerminator = PredBB->getTerminator(); 430 LLVM_DEBUG(dbgs() << "LV: draw edge from" << PredBB->getName() << '\n'); 431 432 auto *TermBr = dyn_cast<BranchInst>(PredBBTerminator); 433 if (isa<UnreachableInst>(PredBBTerminator)) { 434 assert(PredVPSuccessors.size() == 1 && 435 "Predecessor ending w/o branch must have single successor."); 436 DebugLoc DL = PredBBTerminator->getDebugLoc(); 437 PredBBTerminator->eraseFromParent(); 438 auto *Br = BranchInst::Create(NewBB, PredBB); 439 Br->setDebugLoc(DL); 440 } else if (TermBr && !TermBr->isConditional()) { 441 TermBr->setSuccessor(0, NewBB); 442 } else { 443 // Set each forward successor here when it is created, excluding 444 // backedges. A backward successor is set when the branch is created. 445 unsigned idx = PredVPSuccessors.front() == this ? 0 : 1; 446 assert(!TermBr->getSuccessor(idx) && 447 "Trying to reset an existing successor block."); 448 TermBr->setSuccessor(idx, NewBB); 449 } 450 CFG.DTU.applyUpdates({{DominatorTree::Insert, PredBB, NewBB}}); 451 } 452 return NewBB; 453 } 454 455 void VPIRBasicBlock::execute(VPTransformState *State) { 456 assert(getHierarchicalSuccessors().size() <= 2 && 457 "VPIRBasicBlock can have at most two successors at the moment!"); 458 State->Builder.SetInsertPoint(getIRBasicBlock()->getTerminator()); 459 executeRecipes(State, getIRBasicBlock()); 460 if (getSingleSuccessor()) { 461 assert(isa<UnreachableInst>(getIRBasicBlock()->getTerminator())); 462 auto *Br = State->Builder.CreateBr(getIRBasicBlock()); 463 Br->setOperand(0, nullptr); 464 getIRBasicBlock()->getTerminator()->eraseFromParent(); 465 } 466 467 for (VPBlockBase *PredVPBlock : getHierarchicalPredecessors()) { 468 VPBasicBlock *PredVPBB = PredVPBlock->getExitingBasicBlock(); 469 BasicBlock *PredBB = State->CFG.VPBB2IRBB[PredVPBB]; 470 assert(PredBB && "Predecessor basic-block not found building successor."); 471 LLVM_DEBUG(dbgs() << "LV: draw edge from" << PredBB->getName() << '\n'); 472 473 auto *PredBBTerminator = PredBB->getTerminator(); 474 auto *TermBr = cast<BranchInst>(PredBBTerminator); 475 // Set each forward successor here when it is created, excluding 476 // backedges. A backward successor is set when the branch is created. 477 const auto &PredVPSuccessors = PredVPBB->getHierarchicalSuccessors(); 478 unsigned idx = PredVPSuccessors.front() == this ? 0 : 1; 479 assert(!TermBr->getSuccessor(idx) && 480 "Trying to reset an existing successor block."); 481 TermBr->setSuccessor(idx, IRBB); 482 State->CFG.DTU.applyUpdates({{DominatorTree::Insert, PredBB, IRBB}}); 483 } 484 } 485 486 void VPBasicBlock::execute(VPTransformState *State) { 487 bool Replica = State->Instance && !State->Instance->isFirstIteration(); 488 VPBasicBlock *PrevVPBB = State->CFG.PrevVPBB; 489 VPBlockBase *SingleHPred = nullptr; 490 BasicBlock *NewBB = State->CFG.PrevBB; // Reuse it if possible. 491 492 auto IsLoopRegion = [](VPBlockBase *BB) { 493 auto *R = dyn_cast<VPRegionBlock>(BB); 494 return R && !R->isReplicator(); 495 }; 496 497 // 1. Create an IR basic block. 498 if (PrevVPBB && /* A */ 499 !((SingleHPred = getSingleHierarchicalPredecessor()) && 500 SingleHPred->getExitingBasicBlock() == PrevVPBB && 501 PrevVPBB->getSingleHierarchicalSuccessor() && 502 (SingleHPred->getParent() == getEnclosingLoopRegion() && 503 !IsLoopRegion(SingleHPred))) && /* B */ 504 !(Replica && getPredecessors().empty())) { /* C */ 505 // The last IR basic block is reused, as an optimization, in three cases: 506 // A. the first VPBB reuses the loop pre-header BB - when PrevVPBB is null; 507 // B. when the current VPBB has a single (hierarchical) predecessor which 508 // is PrevVPBB and the latter has a single (hierarchical) successor which 509 // both are in the same non-replicator region; and 510 // C. when the current VPBB is an entry of a region replica - where PrevVPBB 511 // is the exiting VPBB of this region from a previous instance, or the 512 // predecessor of this region. 513 514 NewBB = createEmptyBasicBlock(State->CFG); 515 State->Builder.SetInsertPoint(NewBB); 516 // Temporarily terminate with unreachable until CFG is rewired. 517 UnreachableInst *Terminator = State->Builder.CreateUnreachable(); 518 // Register NewBB in its loop. In innermost loops its the same for all 519 // BB's. 520 if (State->CurrentVectorLoop) 521 State->CurrentVectorLoop->addBasicBlockToLoop(NewBB, *State->LI); 522 State->Builder.SetInsertPoint(Terminator); 523 State->CFG.PrevBB = NewBB; 524 } 525 526 // 2. Fill the IR basic block with IR instructions. 527 executeRecipes(State, NewBB); 528 } 529 530 void VPBasicBlock::dropAllReferences(VPValue *NewValue) { 531 for (VPRecipeBase &R : Recipes) { 532 for (auto *Def : R.definedValues()) 533 Def->replaceAllUsesWith(NewValue); 534 535 for (unsigned I = 0, E = R.getNumOperands(); I != E; I++) 536 R.setOperand(I, NewValue); 537 } 538 } 539 540 void VPBasicBlock::executeRecipes(VPTransformState *State, BasicBlock *BB) { 541 LLVM_DEBUG(dbgs() << "LV: vectorizing VPBB:" << getName() 542 << " in BB:" << BB->getName() << '\n'); 543 544 State->CFG.VPBB2IRBB[this] = BB; 545 State->CFG.PrevVPBB = this; 546 547 for (VPRecipeBase &Recipe : Recipes) 548 Recipe.execute(*State); 549 550 LLVM_DEBUG(dbgs() << "LV: filled BB:" << *BB); 551 } 552 553 VPBasicBlock *VPBasicBlock::splitAt(iterator SplitAt) { 554 assert((SplitAt == end() || SplitAt->getParent() == this) && 555 "can only split at a position in the same block"); 556 557 SmallVector<VPBlockBase *, 2> Succs(successors()); 558 // First, disconnect the current block from its successors. 559 for (VPBlockBase *Succ : Succs) 560 VPBlockUtils::disconnectBlocks(this, Succ); 561 562 // Create new empty block after the block to split. 563 auto *SplitBlock = new VPBasicBlock(getName() + ".split"); 564 VPBlockUtils::insertBlockAfter(SplitBlock, this); 565 566 // Add successors for block to split to new block. 567 for (VPBlockBase *Succ : Succs) 568 VPBlockUtils::connectBlocks(SplitBlock, Succ); 569 570 // Finally, move the recipes starting at SplitAt to new block. 571 for (VPRecipeBase &ToMove : 572 make_early_inc_range(make_range(SplitAt, this->end()))) 573 ToMove.moveBefore(*SplitBlock, SplitBlock->end()); 574 575 return SplitBlock; 576 } 577 578 /// Return the enclosing loop region for region \p P. The templated version is 579 /// used to support both const and non-const block arguments. 580 template <typename T> static T *getEnclosingLoopRegionForRegion(T *P) { 581 if (P && P->isReplicator()) { 582 P = P->getParent(); 583 assert(!cast<VPRegionBlock>(P)->isReplicator() && 584 "unexpected nested replicate regions"); 585 } 586 return P; 587 } 588 589 VPRegionBlock *VPBasicBlock::getEnclosingLoopRegion() { 590 return getEnclosingLoopRegionForRegion(getParent()); 591 } 592 593 const VPRegionBlock *VPBasicBlock::getEnclosingLoopRegion() const { 594 return getEnclosingLoopRegionForRegion(getParent()); 595 } 596 597 static bool hasConditionalTerminator(const VPBasicBlock *VPBB) { 598 if (VPBB->empty()) { 599 assert( 600 VPBB->getNumSuccessors() < 2 && 601 "block with multiple successors doesn't have a recipe as terminator"); 602 return false; 603 } 604 605 const VPRecipeBase *R = &VPBB->back(); 606 bool IsCondBranch = isa<VPBranchOnMaskRecipe>(R) || 607 match(R, m_BranchOnCond(m_VPValue())) || 608 match(R, m_BranchOnCount(m_VPValue(), m_VPValue())); 609 (void)IsCondBranch; 610 611 if (VPBB->getNumSuccessors() >= 2 || 612 (VPBB->isExiting() && !VPBB->getParent()->isReplicator())) { 613 assert(IsCondBranch && "block with multiple successors not terminated by " 614 "conditional branch recipe"); 615 616 return true; 617 } 618 619 assert( 620 !IsCondBranch && 621 "block with 0 or 1 successors terminated by conditional branch recipe"); 622 return false; 623 } 624 625 VPRecipeBase *VPBasicBlock::getTerminator() { 626 if (hasConditionalTerminator(this)) 627 return &back(); 628 return nullptr; 629 } 630 631 const VPRecipeBase *VPBasicBlock::getTerminator() const { 632 if (hasConditionalTerminator(this)) 633 return &back(); 634 return nullptr; 635 } 636 637 bool VPBasicBlock::isExiting() const { 638 return getParent() && getParent()->getExitingBasicBlock() == this; 639 } 640 641 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 642 void VPBlockBase::printSuccessors(raw_ostream &O, const Twine &Indent) const { 643 if (getSuccessors().empty()) { 644 O << Indent << "No successors\n"; 645 } else { 646 O << Indent << "Successor(s): "; 647 ListSeparator LS; 648 for (auto *Succ : getSuccessors()) 649 O << LS << Succ->getName(); 650 O << '\n'; 651 } 652 } 653 654 void VPBasicBlock::print(raw_ostream &O, const Twine &Indent, 655 VPSlotTracker &SlotTracker) const { 656 O << Indent << getName() << ":\n"; 657 658 auto RecipeIndent = Indent + " "; 659 for (const VPRecipeBase &Recipe : *this) { 660 Recipe.print(O, RecipeIndent, SlotTracker); 661 O << '\n'; 662 } 663 664 printSuccessors(O, Indent); 665 } 666 #endif 667 668 static std::pair<VPBlockBase *, VPBlockBase *> cloneFrom(VPBlockBase *Entry); 669 670 // Clone the CFG for all nodes reachable from \p Entry, this includes cloning 671 // the blocks and their recipes. Operands of cloned recipes will NOT be updated. 672 // Remapping of operands must be done separately. Returns a pair with the new 673 // entry and exiting blocks of the cloned region. If \p Entry isn't part of a 674 // region, return nullptr for the exiting block. 675 static std::pair<VPBlockBase *, VPBlockBase *> cloneFrom(VPBlockBase *Entry) { 676 DenseMap<VPBlockBase *, VPBlockBase *> Old2NewVPBlocks; 677 VPBlockBase *Exiting = nullptr; 678 bool InRegion = Entry->getParent(); 679 // First, clone blocks reachable from Entry. 680 for (VPBlockBase *BB : vp_depth_first_shallow(Entry)) { 681 VPBlockBase *NewBB = BB->clone(); 682 Old2NewVPBlocks[BB] = NewBB; 683 if (InRegion && BB->getNumSuccessors() == 0) { 684 assert(!Exiting && "Multiple exiting blocks?"); 685 Exiting = BB; 686 } 687 } 688 assert((!InRegion || Exiting) && "regions must have a single exiting block"); 689 690 // Second, update the predecessors & successors of the cloned blocks. 691 for (VPBlockBase *BB : vp_depth_first_shallow(Entry)) { 692 VPBlockBase *NewBB = Old2NewVPBlocks[BB]; 693 SmallVector<VPBlockBase *> NewPreds; 694 for (VPBlockBase *Pred : BB->getPredecessors()) { 695 NewPreds.push_back(Old2NewVPBlocks[Pred]); 696 } 697 NewBB->setPredecessors(NewPreds); 698 SmallVector<VPBlockBase *> NewSuccs; 699 for (VPBlockBase *Succ : BB->successors()) { 700 NewSuccs.push_back(Old2NewVPBlocks[Succ]); 701 } 702 NewBB->setSuccessors(NewSuccs); 703 } 704 705 #if !defined(NDEBUG) 706 // Verify that the order of predecessors and successors matches in the cloned 707 // version. 708 for (const auto &[OldBB, NewBB] : 709 zip(vp_depth_first_shallow(Entry), 710 vp_depth_first_shallow(Old2NewVPBlocks[Entry]))) { 711 for (const auto &[OldPred, NewPred] : 712 zip(OldBB->getPredecessors(), NewBB->getPredecessors())) 713 assert(NewPred == Old2NewVPBlocks[OldPred] && "Different predecessors"); 714 715 for (const auto &[OldSucc, NewSucc] : 716 zip(OldBB->successors(), NewBB->successors())) 717 assert(NewSucc == Old2NewVPBlocks[OldSucc] && "Different successors"); 718 } 719 #endif 720 721 return std::make_pair(Old2NewVPBlocks[Entry], 722 Exiting ? Old2NewVPBlocks[Exiting] : nullptr); 723 } 724 725 VPRegionBlock *VPRegionBlock::clone() { 726 const auto &[NewEntry, NewExiting] = cloneFrom(getEntry()); 727 auto *NewRegion = 728 new VPRegionBlock(NewEntry, NewExiting, getName(), isReplicator()); 729 for (VPBlockBase *Block : vp_depth_first_shallow(NewEntry)) 730 Block->setParent(NewRegion); 731 return NewRegion; 732 } 733 734 void VPRegionBlock::dropAllReferences(VPValue *NewValue) { 735 for (VPBlockBase *Block : vp_depth_first_shallow(Entry)) 736 // Drop all references in VPBasicBlocks and replace all uses with 737 // DummyValue. 738 Block->dropAllReferences(NewValue); 739 } 740 741 void VPRegionBlock::execute(VPTransformState *State) { 742 ReversePostOrderTraversal<VPBlockShallowTraversalWrapper<VPBlockBase *>> 743 RPOT(Entry); 744 745 if (!isReplicator()) { 746 // Create and register the new vector loop. 747 Loop *PrevLoop = State->CurrentVectorLoop; 748 State->CurrentVectorLoop = State->LI->AllocateLoop(); 749 BasicBlock *VectorPH = State->CFG.VPBB2IRBB[getPreheaderVPBB()]; 750 Loop *ParentLoop = State->LI->getLoopFor(VectorPH); 751 752 // Insert the new loop into the loop nest and register the new basic blocks 753 // before calling any utilities such as SCEV that require valid LoopInfo. 754 if (ParentLoop) 755 ParentLoop->addChildLoop(State->CurrentVectorLoop); 756 else 757 State->LI->addTopLevelLoop(State->CurrentVectorLoop); 758 759 // Visit the VPBlocks connected to "this", starting from it. 760 for (VPBlockBase *Block : RPOT) { 761 LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n'); 762 Block->execute(State); 763 } 764 765 State->CurrentVectorLoop = PrevLoop; 766 return; 767 } 768 769 assert(!State->Instance && "Replicating a Region with non-null instance."); 770 771 // Enter replicating mode. 772 State->Instance = VPIteration(0, 0); 773 assert(!State->VF.isScalable() && "VF is assumed to be non scalable."); 774 for (unsigned Lane = 0, VF = State->VF.getKnownMinValue(); Lane < VF; 775 ++Lane) { 776 State->Instance->Lane = VPLane(Lane, VPLane::Kind::First); 777 // Visit the VPBlocks connected to \p this, starting from it. 778 for (VPBlockBase *Block : RPOT) { 779 LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n'); 780 Block->execute(State); 781 } 782 } 783 784 // Exit replicating mode. 785 State->Instance.reset(); 786 } 787 788 InstructionCost VPBasicBlock::cost(ElementCount VF, VPCostContext &Ctx) { 789 InstructionCost Cost = 0; 790 for (VPRecipeBase &R : Recipes) 791 Cost += R.cost(VF, Ctx); 792 return Cost; 793 } 794 795 InstructionCost VPRegionBlock::cost(ElementCount VF, VPCostContext &Ctx) { 796 if (!isReplicator()) { 797 InstructionCost Cost = 0; 798 for (VPBlockBase *Block : vp_depth_first_shallow(getEntry())) 799 Cost += Block->cost(VF, Ctx); 800 InstructionCost BackedgeCost = 801 ForceTargetInstructionCost.getNumOccurrences() 802 ? InstructionCost(ForceTargetInstructionCost.getNumOccurrences()) 803 : Ctx.TTI.getCFInstrCost(Instruction::Br, TTI::TCK_RecipThroughput); 804 LLVM_DEBUG(dbgs() << "Cost of " << BackedgeCost << " for VF " << VF 805 << ": vector loop backedge\n"); 806 Cost += BackedgeCost; 807 return Cost; 808 } 809 810 // Compute the cost of a replicate region. Replicating isn't supported for 811 // scalable vectors, return an invalid cost for them. 812 // TODO: Discard scalable VPlans with replicate recipes earlier after 813 // construction. 814 if (VF.isScalable()) 815 return InstructionCost::getInvalid(); 816 817 // First compute the cost of the conditionally executed recipes, followed by 818 // account for the branching cost, except if the mask is a header mask or 819 // uniform condition. 820 using namespace llvm::VPlanPatternMatch; 821 VPBasicBlock *Then = cast<VPBasicBlock>(getEntry()->getSuccessors()[0]); 822 InstructionCost ThenCost = Then->cost(VF, Ctx); 823 824 // For the scalar case, we may not always execute the original predicated 825 // block, Thus, scale the block's cost by the probability of executing it. 826 if (VF.isScalar()) 827 return ThenCost / getReciprocalPredBlockProb(); 828 829 return ThenCost; 830 } 831 832 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 833 void VPRegionBlock::print(raw_ostream &O, const Twine &Indent, 834 VPSlotTracker &SlotTracker) const { 835 O << Indent << (isReplicator() ? "<xVFxUF> " : "<x1> ") << getName() << ": {"; 836 auto NewIndent = Indent + " "; 837 for (auto *BlockBase : vp_depth_first_shallow(Entry)) { 838 O << '\n'; 839 BlockBase->print(O, NewIndent, SlotTracker); 840 } 841 O << Indent << "}\n"; 842 843 printSuccessors(O, Indent); 844 } 845 #endif 846 847 VPlan::~VPlan() { 848 for (auto &KV : LiveOuts) 849 delete KV.second; 850 LiveOuts.clear(); 851 852 if (Entry) { 853 VPValue DummyValue; 854 for (VPBlockBase *Block : vp_depth_first_shallow(Entry)) 855 Block->dropAllReferences(&DummyValue); 856 857 VPBlockBase::deleteCFG(Entry); 858 859 Preheader->dropAllReferences(&DummyValue); 860 delete Preheader; 861 } 862 for (VPValue *VPV : VPLiveInsToFree) 863 delete VPV; 864 if (BackedgeTakenCount) 865 delete BackedgeTakenCount; 866 } 867 868 static VPIRBasicBlock *createVPIRBasicBlockFor(BasicBlock *BB) { 869 auto *VPIRBB = new VPIRBasicBlock(BB); 870 for (Instruction &I : 871 make_range(BB->begin(), BB->getTerminator()->getIterator())) 872 VPIRBB->appendRecipe(new VPIRInstruction(I)); 873 return VPIRBB; 874 } 875 876 VPlanPtr VPlan::createInitialVPlan(Type *InductionTy, 877 PredicatedScalarEvolution &PSE, 878 bool RequiresScalarEpilogueCheck, 879 bool TailFolded, Loop *TheLoop) { 880 VPIRBasicBlock *Entry = createVPIRBasicBlockFor(TheLoop->getLoopPreheader()); 881 VPBasicBlock *VecPreheader = new VPBasicBlock("vector.ph"); 882 auto Plan = std::make_unique<VPlan>(Entry, VecPreheader); 883 884 // Create SCEV and VPValue for the trip count. 885 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 886 assert(!isa<SCEVCouldNotCompute>(BackedgeTakenCount) && "Invalid loop count"); 887 ScalarEvolution &SE = *PSE.getSE(); 888 const SCEV *TripCount = 889 SE.getTripCountFromExitCount(BackedgeTakenCount, InductionTy, TheLoop); 890 Plan->TripCount = 891 vputils::getOrCreateVPValueForSCEVExpr(*Plan, TripCount, SE); 892 893 // Create VPRegionBlock, with empty header and latch blocks, to be filled 894 // during processing later. 895 VPBasicBlock *HeaderVPBB = new VPBasicBlock("vector.body"); 896 VPBasicBlock *LatchVPBB = new VPBasicBlock("vector.latch"); 897 VPBlockUtils::insertBlockAfter(LatchVPBB, HeaderVPBB); 898 auto *TopRegion = new VPRegionBlock(HeaderVPBB, LatchVPBB, "vector loop", 899 false /*isReplicator*/); 900 901 VPBlockUtils::insertBlockAfter(TopRegion, VecPreheader); 902 VPBasicBlock *MiddleVPBB = new VPBasicBlock("middle.block"); 903 VPBlockUtils::insertBlockAfter(MiddleVPBB, TopRegion); 904 905 VPBasicBlock *ScalarPH = new VPBasicBlock("scalar.ph"); 906 if (!RequiresScalarEpilogueCheck) { 907 VPBlockUtils::connectBlocks(MiddleVPBB, ScalarPH); 908 return Plan; 909 } 910 911 // If needed, add a check in the middle block to see if we have completed 912 // all of the iterations in the first vector loop. Three cases: 913 // 1) If (N - N%VF) == N, then we *don't* need to run the remainder. 914 // Thus if tail is to be folded, we know we don't need to run the 915 // remainder and we can set the condition to true. 916 // 2) If we require a scalar epilogue, there is no conditional branch as 917 // we unconditionally branch to the scalar preheader. Do nothing. 918 // 3) Otherwise, construct a runtime check. 919 BasicBlock *IRExitBlock = TheLoop->getUniqueExitBlock(); 920 auto *VPExitBlock = createVPIRBasicBlockFor(IRExitBlock); 921 // The connection order corresponds to the operands of the conditional branch. 922 VPBlockUtils::insertBlockAfter(VPExitBlock, MiddleVPBB); 923 VPBlockUtils::connectBlocks(MiddleVPBB, ScalarPH); 924 925 auto *ScalarLatchTerm = TheLoop->getLoopLatch()->getTerminator(); 926 // Here we use the same DebugLoc as the scalar loop latch terminator instead 927 // of the corresponding compare because they may have ended up with 928 // different line numbers and we want to avoid awkward line stepping while 929 // debugging. Eg. if the compare has got a line number inside the loop. 930 VPBuilder Builder(MiddleVPBB); 931 VPValue *Cmp = 932 TailFolded 933 ? Plan->getOrAddLiveIn(ConstantInt::getTrue( 934 IntegerType::getInt1Ty(TripCount->getType()->getContext()))) 935 : Builder.createICmp(CmpInst::ICMP_EQ, Plan->getTripCount(), 936 &Plan->getVectorTripCount(), 937 ScalarLatchTerm->getDebugLoc(), "cmp.n"); 938 Builder.createNaryOp(VPInstruction::BranchOnCond, {Cmp}, 939 ScalarLatchTerm->getDebugLoc()); 940 return Plan; 941 } 942 943 void VPlan::prepareToExecute(Value *TripCountV, Value *VectorTripCountV, 944 Value *CanonicalIVStartValue, 945 VPTransformState &State) { 946 Type *TCTy = TripCountV->getType(); 947 // Check if the backedge taken count is needed, and if so build it. 948 if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) { 949 IRBuilder<> Builder(State.CFG.PrevBB->getTerminator()); 950 auto *TCMO = Builder.CreateSub(TripCountV, ConstantInt::get(TCTy, 1), 951 "trip.count.minus.1"); 952 BackedgeTakenCount->setUnderlyingValue(TCMO); 953 } 954 955 VectorTripCount.setUnderlyingValue(VectorTripCountV); 956 957 IRBuilder<> Builder(State.CFG.PrevBB->getTerminator()); 958 // FIXME: Model VF * UF computation completely in VPlan. 959 assert(VFxUF.getNumUsers() && "VFxUF expected to always have users"); 960 unsigned UF = getUF(); 961 if (VF.getNumUsers()) { 962 Value *RuntimeVF = getRuntimeVF(Builder, TCTy, State.VF); 963 VF.setUnderlyingValue(RuntimeVF); 964 VFxUF.setUnderlyingValue( 965 UF > 1 ? Builder.CreateMul(RuntimeVF, ConstantInt::get(TCTy, UF)) 966 : RuntimeVF); 967 } else { 968 VFxUF.setUnderlyingValue(createStepForVF(Builder, TCTy, State.VF, UF)); 969 } 970 971 // When vectorizing the epilogue loop, the canonical induction start value 972 // needs to be changed from zero to the value after the main vector loop. 973 // FIXME: Improve modeling for canonical IV start values in the epilogue loop. 974 if (CanonicalIVStartValue) { 975 VPValue *VPV = getOrAddLiveIn(CanonicalIVStartValue); 976 auto *IV = getCanonicalIV(); 977 assert(all_of(IV->users(), 978 [](const VPUser *U) { 979 return isa<VPScalarIVStepsRecipe>(U) || 980 isa<VPScalarCastRecipe>(U) || 981 isa<VPDerivedIVRecipe>(U) || 982 cast<VPInstruction>(U)->getOpcode() == 983 Instruction::Add; 984 }) && 985 "the canonical IV should only be used by its increment or " 986 "ScalarIVSteps when resetting the start value"); 987 IV->setOperand(0, VPV); 988 } 989 } 990 991 /// Replace \p VPBB with a VPIRBasicBlock wrapping \p IRBB. All recipes from \p 992 /// VPBB are moved to the end of the newly created VPIRBasicBlock. VPBB must 993 /// have a single predecessor, which is rewired to the new VPIRBasicBlock. All 994 /// successors of VPBB, if any, are rewired to the new VPIRBasicBlock. 995 static void replaceVPBBWithIRVPBB(VPBasicBlock *VPBB, BasicBlock *IRBB) { 996 VPIRBasicBlock *IRVPBB = createVPIRBasicBlockFor(IRBB); 997 for (auto &R : make_early_inc_range(*VPBB)) { 998 assert(!R.isPhi() && "Tried to move phi recipe to end of block"); 999 R.moveBefore(*IRVPBB, IRVPBB->end()); 1000 } 1001 VPBlockBase *PredVPBB = VPBB->getSinglePredecessor(); 1002 VPBlockUtils::disconnectBlocks(PredVPBB, VPBB); 1003 VPBlockUtils::connectBlocks(PredVPBB, IRVPBB); 1004 for (auto *Succ : to_vector(VPBB->getSuccessors())) { 1005 VPBlockUtils::connectBlocks(IRVPBB, Succ); 1006 VPBlockUtils::disconnectBlocks(VPBB, Succ); 1007 } 1008 delete VPBB; 1009 } 1010 1011 /// Generate the code inside the preheader and body of the vectorized loop. 1012 /// Assumes a single pre-header basic-block was created for this. Introduce 1013 /// additional basic-blocks as needed, and fill them all. 1014 void VPlan::execute(VPTransformState *State) { 1015 // Initialize CFG state. 1016 State->CFG.PrevVPBB = nullptr; 1017 State->CFG.ExitBB = State->CFG.PrevBB->getSingleSuccessor(); 1018 BasicBlock *VectorPreHeader = State->CFG.PrevBB; 1019 State->Builder.SetInsertPoint(VectorPreHeader->getTerminator()); 1020 1021 // Disconnect VectorPreHeader from ExitBB in both the CFG and DT. 1022 cast<BranchInst>(VectorPreHeader->getTerminator())->setSuccessor(0, nullptr); 1023 State->CFG.DTU.applyUpdates( 1024 {{DominatorTree::Delete, VectorPreHeader, State->CFG.ExitBB}}); 1025 1026 // Replace regular VPBB's for the middle and scalar preheader blocks with 1027 // VPIRBasicBlocks wrapping their IR blocks. The IR blocks are created during 1028 // skeleton creation, so we can only create the VPIRBasicBlocks now during 1029 // VPlan execution rather than earlier during VPlan construction. 1030 BasicBlock *MiddleBB = State->CFG.ExitBB; 1031 VPBasicBlock *MiddleVPBB = 1032 cast<VPBasicBlock>(getVectorLoopRegion()->getSingleSuccessor()); 1033 // Find the VPBB for the scalar preheader, relying on the current structure 1034 // when creating the middle block and its successrs: if there's a single 1035 // predecessor, it must be the scalar preheader. Otherwise, the second 1036 // successor is the scalar preheader. 1037 BasicBlock *ScalarPh = MiddleBB->getSingleSuccessor(); 1038 auto &MiddleSuccs = MiddleVPBB->getSuccessors(); 1039 assert((MiddleSuccs.size() == 1 || MiddleSuccs.size() == 2) && 1040 "middle block has unexpected successors"); 1041 VPBasicBlock *ScalarPhVPBB = cast<VPBasicBlock>( 1042 MiddleSuccs.size() == 1 ? MiddleSuccs[0] : MiddleSuccs[1]); 1043 assert(!isa<VPIRBasicBlock>(ScalarPhVPBB) && 1044 "scalar preheader cannot be wrapped already"); 1045 replaceVPBBWithIRVPBB(ScalarPhVPBB, ScalarPh); 1046 replaceVPBBWithIRVPBB(MiddleVPBB, MiddleBB); 1047 1048 // Disconnect the middle block from its single successor (the scalar loop 1049 // header) in both the CFG and DT. The branch will be recreated during VPlan 1050 // execution. 1051 auto *BrInst = new UnreachableInst(MiddleBB->getContext()); 1052 BrInst->insertBefore(MiddleBB->getTerminator()); 1053 MiddleBB->getTerminator()->eraseFromParent(); 1054 State->CFG.DTU.applyUpdates({{DominatorTree::Delete, MiddleBB, ScalarPh}}); 1055 1056 // Generate code in the loop pre-header and body. 1057 for (VPBlockBase *Block : vp_depth_first_shallow(Entry)) 1058 Block->execute(State); 1059 1060 VPBasicBlock *LatchVPBB = getVectorLoopRegion()->getExitingBasicBlock(); 1061 BasicBlock *VectorLatchBB = State->CFG.VPBB2IRBB[LatchVPBB]; 1062 1063 // Fix the latch value of canonical, reduction and first-order recurrences 1064 // phis in the vector loop. 1065 VPBasicBlock *Header = getVectorLoopRegion()->getEntryBasicBlock(); 1066 for (VPRecipeBase &R : Header->phis()) { 1067 // Skip phi-like recipes that generate their backedege values themselves. 1068 if (isa<VPWidenPHIRecipe>(&R)) 1069 continue; 1070 1071 if (isa<VPWidenPointerInductionRecipe>(&R) || 1072 isa<VPWidenIntOrFpInductionRecipe>(&R)) { 1073 PHINode *Phi = nullptr; 1074 if (isa<VPWidenIntOrFpInductionRecipe>(&R)) { 1075 Phi = cast<PHINode>(State->get(R.getVPSingleValue())); 1076 } else { 1077 auto *WidenPhi = cast<VPWidenPointerInductionRecipe>(&R); 1078 assert(!WidenPhi->onlyScalarsGenerated(State->VF.isScalable()) && 1079 "recipe generating only scalars should have been replaced"); 1080 auto *GEP = cast<GetElementPtrInst>(State->get(WidenPhi)); 1081 Phi = cast<PHINode>(GEP->getPointerOperand()); 1082 } 1083 1084 Phi->setIncomingBlock(1, VectorLatchBB); 1085 1086 // Move the last step to the end of the latch block. This ensures 1087 // consistent placement of all induction updates. 1088 Instruction *Inc = cast<Instruction>(Phi->getIncomingValue(1)); 1089 Inc->moveBefore(VectorLatchBB->getTerminator()->getPrevNode()); 1090 1091 // Use the steps for the last part as backedge value for the induction. 1092 if (auto *IV = dyn_cast<VPWidenIntOrFpInductionRecipe>(&R)) 1093 Inc->setOperand(0, State->get(IV->getLastUnrolledPartOperand())); 1094 continue; 1095 } 1096 1097 auto *PhiR = cast<VPHeaderPHIRecipe>(&R); 1098 bool NeedsScalar = 1099 isa<VPCanonicalIVPHIRecipe, VPEVLBasedIVPHIRecipe>(PhiR) || 1100 (isa<VPReductionPHIRecipe>(PhiR) && 1101 cast<VPReductionPHIRecipe>(PhiR)->isInLoop()); 1102 Value *Phi = State->get(PhiR, NeedsScalar); 1103 Value *Val = State->get(PhiR->getBackedgeValue(), NeedsScalar); 1104 cast<PHINode>(Phi)->addIncoming(Val, VectorLatchBB); 1105 } 1106 1107 State->CFG.DTU.flush(); 1108 assert(State->CFG.DTU.getDomTree().verify( 1109 DominatorTree::VerificationLevel::Fast) && 1110 "DT not preserved correctly"); 1111 } 1112 1113 InstructionCost VPlan::cost(ElementCount VF, VPCostContext &Ctx) { 1114 // For now only return the cost of the vector loop region, ignoring any other 1115 // blocks, like the preheader or middle blocks. 1116 return getVectorLoopRegion()->cost(VF, Ctx); 1117 } 1118 1119 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1120 void VPlan::printLiveIns(raw_ostream &O) const { 1121 VPSlotTracker SlotTracker(this); 1122 1123 if (VF.getNumUsers() > 0) { 1124 O << "\nLive-in "; 1125 VF.printAsOperand(O, SlotTracker); 1126 O << " = VF"; 1127 } 1128 1129 if (VFxUF.getNumUsers() > 0) { 1130 O << "\nLive-in "; 1131 VFxUF.printAsOperand(O, SlotTracker); 1132 O << " = VF * UF"; 1133 } 1134 1135 if (VectorTripCount.getNumUsers() > 0) { 1136 O << "\nLive-in "; 1137 VectorTripCount.printAsOperand(O, SlotTracker); 1138 O << " = vector-trip-count"; 1139 } 1140 1141 if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) { 1142 O << "\nLive-in "; 1143 BackedgeTakenCount->printAsOperand(O, SlotTracker); 1144 O << " = backedge-taken count"; 1145 } 1146 1147 O << "\n"; 1148 if (TripCount->isLiveIn()) 1149 O << "Live-in "; 1150 TripCount->printAsOperand(O, SlotTracker); 1151 O << " = original trip-count"; 1152 O << "\n"; 1153 } 1154 1155 LLVM_DUMP_METHOD 1156 void VPlan::print(raw_ostream &O) const { 1157 VPSlotTracker SlotTracker(this); 1158 1159 O << "VPlan '" << getName() << "' {"; 1160 1161 printLiveIns(O); 1162 1163 if (!getPreheader()->empty()) { 1164 O << "\n"; 1165 getPreheader()->print(O, "", SlotTracker); 1166 } 1167 1168 for (const VPBlockBase *Block : vp_depth_first_shallow(getEntry())) { 1169 O << '\n'; 1170 Block->print(O, "", SlotTracker); 1171 } 1172 1173 if (!LiveOuts.empty()) 1174 O << "\n"; 1175 for (const auto &KV : LiveOuts) { 1176 KV.second->print(O, SlotTracker); 1177 } 1178 1179 O << "}\n"; 1180 } 1181 1182 std::string VPlan::getName() const { 1183 std::string Out; 1184 raw_string_ostream RSO(Out); 1185 RSO << Name << " for "; 1186 if (!VFs.empty()) { 1187 RSO << "VF={" << VFs[0]; 1188 for (ElementCount VF : drop_begin(VFs)) 1189 RSO << "," << VF; 1190 RSO << "},"; 1191 } 1192 1193 if (UFs.empty()) { 1194 RSO << "UF>=1"; 1195 } else { 1196 RSO << "UF={" << UFs[0]; 1197 for (unsigned UF : drop_begin(UFs)) 1198 RSO << "," << UF; 1199 RSO << "}"; 1200 } 1201 1202 return Out; 1203 } 1204 1205 LLVM_DUMP_METHOD 1206 void VPlan::printDOT(raw_ostream &O) const { 1207 VPlanPrinter Printer(O, *this); 1208 Printer.dump(); 1209 } 1210 1211 LLVM_DUMP_METHOD 1212 void VPlan::dump() const { print(dbgs()); } 1213 #endif 1214 1215 void VPlan::addLiveOut(PHINode *PN, VPValue *V) { 1216 assert(LiveOuts.count(PN) == 0 && "an exit value for PN already exists"); 1217 LiveOuts.insert({PN, new VPLiveOut(PN, V)}); 1218 } 1219 1220 static void remapOperands(VPBlockBase *Entry, VPBlockBase *NewEntry, 1221 DenseMap<VPValue *, VPValue *> &Old2NewVPValues) { 1222 // Update the operands of all cloned recipes starting at NewEntry. This 1223 // traverses all reachable blocks. This is done in two steps, to handle cycles 1224 // in PHI recipes. 1225 ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<VPBlockBase *>> 1226 OldDeepRPOT(Entry); 1227 ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<VPBlockBase *>> 1228 NewDeepRPOT(NewEntry); 1229 // First, collect all mappings from old to new VPValues defined by cloned 1230 // recipes. 1231 for (const auto &[OldBB, NewBB] : 1232 zip(VPBlockUtils::blocksOnly<VPBasicBlock>(OldDeepRPOT), 1233 VPBlockUtils::blocksOnly<VPBasicBlock>(NewDeepRPOT))) { 1234 assert(OldBB->getRecipeList().size() == NewBB->getRecipeList().size() && 1235 "blocks must have the same number of recipes"); 1236 for (const auto &[OldR, NewR] : zip(*OldBB, *NewBB)) { 1237 assert(OldR.getNumOperands() == NewR.getNumOperands() && 1238 "recipes must have the same number of operands"); 1239 assert(OldR.getNumDefinedValues() == NewR.getNumDefinedValues() && 1240 "recipes must define the same number of operands"); 1241 for (const auto &[OldV, NewV] : 1242 zip(OldR.definedValues(), NewR.definedValues())) 1243 Old2NewVPValues[OldV] = NewV; 1244 } 1245 } 1246 1247 // Update all operands to use cloned VPValues. 1248 for (VPBasicBlock *NewBB : 1249 VPBlockUtils::blocksOnly<VPBasicBlock>(NewDeepRPOT)) { 1250 for (VPRecipeBase &NewR : *NewBB) 1251 for (unsigned I = 0, E = NewR.getNumOperands(); I != E; ++I) { 1252 VPValue *NewOp = Old2NewVPValues.lookup(NewR.getOperand(I)); 1253 NewR.setOperand(I, NewOp); 1254 } 1255 } 1256 } 1257 1258 VPlan *VPlan::duplicate() { 1259 // Clone blocks. 1260 VPBasicBlock *NewPreheader = Preheader->clone(); 1261 const auto &[NewEntry, __] = cloneFrom(Entry); 1262 1263 // Create VPlan, clone live-ins and remap operands in the cloned blocks. 1264 auto *NewPlan = new VPlan(NewPreheader, cast<VPBasicBlock>(NewEntry)); 1265 DenseMap<VPValue *, VPValue *> Old2NewVPValues; 1266 for (VPValue *OldLiveIn : VPLiveInsToFree) { 1267 Old2NewVPValues[OldLiveIn] = 1268 NewPlan->getOrAddLiveIn(OldLiveIn->getLiveInIRValue()); 1269 } 1270 Old2NewVPValues[&VectorTripCount] = &NewPlan->VectorTripCount; 1271 Old2NewVPValues[&VF] = &NewPlan->VF; 1272 Old2NewVPValues[&VFxUF] = &NewPlan->VFxUF; 1273 if (BackedgeTakenCount) { 1274 NewPlan->BackedgeTakenCount = new VPValue(); 1275 Old2NewVPValues[BackedgeTakenCount] = NewPlan->BackedgeTakenCount; 1276 } 1277 assert(TripCount && "trip count must be set"); 1278 if (TripCount->isLiveIn()) 1279 Old2NewVPValues[TripCount] = 1280 NewPlan->getOrAddLiveIn(TripCount->getLiveInIRValue()); 1281 // else NewTripCount will be created and inserted into Old2NewVPValues when 1282 // TripCount is cloned. In any case NewPlan->TripCount is updated below. 1283 1284 remapOperands(Preheader, NewPreheader, Old2NewVPValues); 1285 remapOperands(Entry, NewEntry, Old2NewVPValues); 1286 1287 // Clone live-outs. 1288 for (const auto &[_, LO] : LiveOuts) 1289 NewPlan->addLiveOut(LO->getPhi(), Old2NewVPValues[LO->getOperand(0)]); 1290 1291 // Initialize remaining fields of cloned VPlan. 1292 NewPlan->VFs = VFs; 1293 NewPlan->UFs = UFs; 1294 // TODO: Adjust names. 1295 NewPlan->Name = Name; 1296 assert(Old2NewVPValues.contains(TripCount) && 1297 "TripCount must have been added to Old2NewVPValues"); 1298 NewPlan->TripCount = Old2NewVPValues[TripCount]; 1299 return NewPlan; 1300 } 1301 1302 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1303 1304 Twine VPlanPrinter::getUID(const VPBlockBase *Block) { 1305 return (isa<VPRegionBlock>(Block) ? "cluster_N" : "N") + 1306 Twine(getOrCreateBID(Block)); 1307 } 1308 1309 Twine VPlanPrinter::getOrCreateName(const VPBlockBase *Block) { 1310 const std::string &Name = Block->getName(); 1311 if (!Name.empty()) 1312 return Name; 1313 return "VPB" + Twine(getOrCreateBID(Block)); 1314 } 1315 1316 void VPlanPrinter::dump() { 1317 Depth = 1; 1318 bumpIndent(0); 1319 OS << "digraph VPlan {\n"; 1320 OS << "graph [labelloc=t, fontsize=30; label=\"Vectorization Plan"; 1321 if (!Plan.getName().empty()) 1322 OS << "\\n" << DOT::EscapeString(Plan.getName()); 1323 1324 { 1325 // Print live-ins. 1326 std::string Str; 1327 raw_string_ostream SS(Str); 1328 Plan.printLiveIns(SS); 1329 SmallVector<StringRef, 0> Lines; 1330 StringRef(Str).rtrim('\n').split(Lines, "\n"); 1331 for (auto Line : Lines) 1332 OS << DOT::EscapeString(Line.str()) << "\\n"; 1333 } 1334 1335 OS << "\"]\n"; 1336 OS << "node [shape=rect, fontname=Courier, fontsize=30]\n"; 1337 OS << "edge [fontname=Courier, fontsize=30]\n"; 1338 OS << "compound=true\n"; 1339 1340 dumpBlock(Plan.getPreheader()); 1341 1342 for (const VPBlockBase *Block : vp_depth_first_shallow(Plan.getEntry())) 1343 dumpBlock(Block); 1344 1345 OS << "}\n"; 1346 } 1347 1348 void VPlanPrinter::dumpBlock(const VPBlockBase *Block) { 1349 if (const VPBasicBlock *BasicBlock = dyn_cast<VPBasicBlock>(Block)) 1350 dumpBasicBlock(BasicBlock); 1351 else if (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 1352 dumpRegion(Region); 1353 else 1354 llvm_unreachable("Unsupported kind of VPBlock."); 1355 } 1356 1357 void VPlanPrinter::drawEdge(const VPBlockBase *From, const VPBlockBase *To, 1358 bool Hidden, const Twine &Label) { 1359 // Due to "dot" we print an edge between two regions as an edge between the 1360 // exiting basic block and the entry basic of the respective regions. 1361 const VPBlockBase *Tail = From->getExitingBasicBlock(); 1362 const VPBlockBase *Head = To->getEntryBasicBlock(); 1363 OS << Indent << getUID(Tail) << " -> " << getUID(Head); 1364 OS << " [ label=\"" << Label << '\"'; 1365 if (Tail != From) 1366 OS << " ltail=" << getUID(From); 1367 if (Head != To) 1368 OS << " lhead=" << getUID(To); 1369 if (Hidden) 1370 OS << "; splines=none"; 1371 OS << "]\n"; 1372 } 1373 1374 void VPlanPrinter::dumpEdges(const VPBlockBase *Block) { 1375 auto &Successors = Block->getSuccessors(); 1376 if (Successors.size() == 1) 1377 drawEdge(Block, Successors.front(), false, ""); 1378 else if (Successors.size() == 2) { 1379 drawEdge(Block, Successors.front(), false, "T"); 1380 drawEdge(Block, Successors.back(), false, "F"); 1381 } else { 1382 unsigned SuccessorNumber = 0; 1383 for (auto *Successor : Successors) 1384 drawEdge(Block, Successor, false, Twine(SuccessorNumber++)); 1385 } 1386 } 1387 1388 void VPlanPrinter::dumpBasicBlock(const VPBasicBlock *BasicBlock) { 1389 // Implement dot-formatted dump by performing plain-text dump into the 1390 // temporary storage followed by some post-processing. 1391 OS << Indent << getUID(BasicBlock) << " [label =\n"; 1392 bumpIndent(1); 1393 std::string Str; 1394 raw_string_ostream SS(Str); 1395 // Use no indentation as we need to wrap the lines into quotes ourselves. 1396 BasicBlock->print(SS, "", SlotTracker); 1397 1398 // We need to process each line of the output separately, so split 1399 // single-string plain-text dump. 1400 SmallVector<StringRef, 0> Lines; 1401 StringRef(Str).rtrim('\n').split(Lines, "\n"); 1402 1403 auto EmitLine = [&](StringRef Line, StringRef Suffix) { 1404 OS << Indent << '"' << DOT::EscapeString(Line.str()) << "\\l\"" << Suffix; 1405 }; 1406 1407 // Don't need the "+" after the last line. 1408 for (auto Line : make_range(Lines.begin(), Lines.end() - 1)) 1409 EmitLine(Line, " +\n"); 1410 EmitLine(Lines.back(), "\n"); 1411 1412 bumpIndent(-1); 1413 OS << Indent << "]\n"; 1414 1415 dumpEdges(BasicBlock); 1416 } 1417 1418 void VPlanPrinter::dumpRegion(const VPRegionBlock *Region) { 1419 OS << Indent << "subgraph " << getUID(Region) << " {\n"; 1420 bumpIndent(1); 1421 OS << Indent << "fontname=Courier\n" 1422 << Indent << "label=\"" 1423 << DOT::EscapeString(Region->isReplicator() ? "<xVFxUF> " : "<x1> ") 1424 << DOT::EscapeString(Region->getName()) << "\"\n"; 1425 // Dump the blocks of the region. 1426 assert(Region->getEntry() && "Region contains no inner blocks."); 1427 for (const VPBlockBase *Block : vp_depth_first_shallow(Region->getEntry())) 1428 dumpBlock(Block); 1429 bumpIndent(-1); 1430 OS << Indent << "}\n"; 1431 dumpEdges(Region); 1432 } 1433 1434 void VPlanIngredient::print(raw_ostream &O) const { 1435 if (auto *Inst = dyn_cast<Instruction>(V)) { 1436 if (!Inst->getType()->isVoidTy()) { 1437 Inst->printAsOperand(O, false); 1438 O << " = "; 1439 } 1440 O << Inst->getOpcodeName() << " "; 1441 unsigned E = Inst->getNumOperands(); 1442 if (E > 0) { 1443 Inst->getOperand(0)->printAsOperand(O, false); 1444 for (unsigned I = 1; I < E; ++I) 1445 Inst->getOperand(I)->printAsOperand(O << ", ", false); 1446 } 1447 } else // !Inst 1448 V->printAsOperand(O, false); 1449 } 1450 1451 #endif 1452 1453 bool VPValue::isDefinedOutsideLoopRegions() const { 1454 return !hasDefiningRecipe() || 1455 !getDefiningRecipe()->getParent()->getEnclosingLoopRegion(); 1456 } 1457 1458 void VPValue::replaceAllUsesWith(VPValue *New) { 1459 replaceUsesWithIf(New, [](VPUser &, unsigned) { return true; }); 1460 } 1461 1462 void VPValue::replaceUsesWithIf( 1463 VPValue *New, 1464 llvm::function_ref<bool(VPUser &U, unsigned Idx)> ShouldReplace) { 1465 // Note that this early exit is required for correctness; the implementation 1466 // below relies on the number of users for this VPValue to decrease, which 1467 // isn't the case if this == New. 1468 if (this == New) 1469 return; 1470 1471 for (unsigned J = 0; J < getNumUsers();) { 1472 VPUser *User = Users[J]; 1473 bool RemovedUser = false; 1474 for (unsigned I = 0, E = User->getNumOperands(); I < E; ++I) { 1475 if (User->getOperand(I) != this || !ShouldReplace(*User, I)) 1476 continue; 1477 1478 RemovedUser = true; 1479 User->setOperand(I, New); 1480 } 1481 // If a user got removed after updating the current user, the next user to 1482 // update will be moved to the current position, so we only need to 1483 // increment the index if the number of users did not change. 1484 if (!RemovedUser) 1485 J++; 1486 } 1487 } 1488 1489 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1490 void VPValue::printAsOperand(raw_ostream &OS, VPSlotTracker &Tracker) const { 1491 OS << Tracker.getOrCreateName(this); 1492 } 1493 1494 void VPUser::printOperands(raw_ostream &O, VPSlotTracker &SlotTracker) const { 1495 interleaveComma(operands(), O, [&O, &SlotTracker](VPValue *Op) { 1496 Op->printAsOperand(O, SlotTracker); 1497 }); 1498 } 1499 #endif 1500 1501 void VPInterleavedAccessInfo::visitRegion(VPRegionBlock *Region, 1502 Old2NewTy &Old2New, 1503 InterleavedAccessInfo &IAI) { 1504 ReversePostOrderTraversal<VPBlockShallowTraversalWrapper<VPBlockBase *>> 1505 RPOT(Region->getEntry()); 1506 for (VPBlockBase *Base : RPOT) { 1507 visitBlock(Base, Old2New, IAI); 1508 } 1509 } 1510 1511 void VPInterleavedAccessInfo::visitBlock(VPBlockBase *Block, Old2NewTy &Old2New, 1512 InterleavedAccessInfo &IAI) { 1513 if (VPBasicBlock *VPBB = dyn_cast<VPBasicBlock>(Block)) { 1514 for (VPRecipeBase &VPI : *VPBB) { 1515 if (isa<VPWidenPHIRecipe>(&VPI)) 1516 continue; 1517 assert(isa<VPInstruction>(&VPI) && "Can only handle VPInstructions"); 1518 auto *VPInst = cast<VPInstruction>(&VPI); 1519 1520 auto *Inst = dyn_cast_or_null<Instruction>(VPInst->getUnderlyingValue()); 1521 if (!Inst) 1522 continue; 1523 auto *IG = IAI.getInterleaveGroup(Inst); 1524 if (!IG) 1525 continue; 1526 1527 auto NewIGIter = Old2New.find(IG); 1528 if (NewIGIter == Old2New.end()) 1529 Old2New[IG] = new InterleaveGroup<VPInstruction>( 1530 IG->getFactor(), IG->isReverse(), IG->getAlign()); 1531 1532 if (Inst == IG->getInsertPos()) 1533 Old2New[IG]->setInsertPos(VPInst); 1534 1535 InterleaveGroupMap[VPInst] = Old2New[IG]; 1536 InterleaveGroupMap[VPInst]->insertMember( 1537 VPInst, IG->getIndex(Inst), 1538 Align(IG->isReverse() ? (-1) * int(IG->getFactor()) 1539 : IG->getFactor())); 1540 } 1541 } else if (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 1542 visitRegion(Region, Old2New, IAI); 1543 else 1544 llvm_unreachable("Unsupported kind of VPBlock."); 1545 } 1546 1547 VPInterleavedAccessInfo::VPInterleavedAccessInfo(VPlan &Plan, 1548 InterleavedAccessInfo &IAI) { 1549 Old2NewTy Old2New; 1550 visitRegion(Plan.getVectorLoopRegion(), Old2New, IAI); 1551 } 1552 1553 void VPSlotTracker::assignName(const VPValue *V) { 1554 assert(!VPValue2Name.contains(V) && "VPValue already has a name!"); 1555 auto *UV = V->getUnderlyingValue(); 1556 if (!UV) { 1557 VPValue2Name[V] = (Twine("vp<%") + Twine(NextSlot) + ">").str(); 1558 NextSlot++; 1559 return; 1560 } 1561 1562 // Use the name of the underlying Value, wrapped in "ir<>", and versioned by 1563 // appending ".Number" to the name if there are multiple uses. 1564 std::string Name; 1565 raw_string_ostream S(Name); 1566 UV->printAsOperand(S, false); 1567 assert(!Name.empty() && "Name cannot be empty."); 1568 std::string BaseName = (Twine("ir<") + Name + Twine(">")).str(); 1569 1570 // First assign the base name for V. 1571 const auto &[A, _] = VPValue2Name.insert({V, BaseName}); 1572 // Integer or FP constants with different types will result in he same string 1573 // due to stripping types. 1574 if (V->isLiveIn() && isa<ConstantInt, ConstantFP>(UV)) 1575 return; 1576 1577 // If it is already used by C > 0 other VPValues, increase the version counter 1578 // C and use it for V. 1579 const auto &[C, UseInserted] = BaseName2Version.insert({BaseName, 0}); 1580 if (!UseInserted) { 1581 C->second++; 1582 A->second = (BaseName + Twine(".") + Twine(C->second)).str(); 1583 } 1584 } 1585 1586 void VPSlotTracker::assignNames(const VPlan &Plan) { 1587 if (Plan.VF.getNumUsers() > 0) 1588 assignName(&Plan.VF); 1589 if (Plan.VFxUF.getNumUsers() > 0) 1590 assignName(&Plan.VFxUF); 1591 assignName(&Plan.VectorTripCount); 1592 if (Plan.BackedgeTakenCount) 1593 assignName(Plan.BackedgeTakenCount); 1594 for (VPValue *LI : Plan.VPLiveInsToFree) 1595 assignName(LI); 1596 assignNames(Plan.getPreheader()); 1597 1598 ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<const VPBlockBase *>> 1599 RPOT(VPBlockDeepTraversalWrapper<const VPBlockBase *>(Plan.getEntry())); 1600 for (const VPBasicBlock *VPBB : 1601 VPBlockUtils::blocksOnly<const VPBasicBlock>(RPOT)) 1602 assignNames(VPBB); 1603 } 1604 1605 void VPSlotTracker::assignNames(const VPBasicBlock *VPBB) { 1606 for (const VPRecipeBase &Recipe : *VPBB) 1607 for (VPValue *Def : Recipe.definedValues()) 1608 assignName(Def); 1609 } 1610 1611 std::string VPSlotTracker::getOrCreateName(const VPValue *V) const { 1612 std::string Name = VPValue2Name.lookup(V); 1613 if (!Name.empty()) 1614 return Name; 1615 1616 // If no name was assigned, no VPlan was provided when creating the slot 1617 // tracker or it is not reachable from the provided VPlan. This can happen, 1618 // e.g. when trying to print a recipe that has not been inserted into a VPlan 1619 // in a debugger. 1620 // TODO: Update VPSlotTracker constructor to assign names to recipes & 1621 // VPValues not associated with a VPlan, instead of constructing names ad-hoc 1622 // here. 1623 const VPRecipeBase *DefR = V->getDefiningRecipe(); 1624 (void)DefR; 1625 assert((!DefR || !DefR->getParent() || !DefR->getParent()->getPlan()) && 1626 "VPValue defined by a recipe in a VPlan?"); 1627 1628 // Use the underlying value's name, if there is one. 1629 if (auto *UV = V->getUnderlyingValue()) { 1630 std::string Name; 1631 raw_string_ostream S(Name); 1632 UV->printAsOperand(S, false); 1633 return (Twine("ir<") + Name + ">").str(); 1634 } 1635 1636 return "<badref>"; 1637 } 1638 1639 bool LoopVectorizationPlanner::getDecisionAndClampRange( 1640 const std::function<bool(ElementCount)> &Predicate, VFRange &Range) { 1641 assert(!Range.isEmpty() && "Trying to test an empty VF range."); 1642 bool PredicateAtRangeStart = Predicate(Range.Start); 1643 1644 for (ElementCount TmpVF : VFRange(Range.Start * 2, Range.End)) 1645 if (Predicate(TmpVF) != PredicateAtRangeStart) { 1646 Range.End = TmpVF; 1647 break; 1648 } 1649 1650 return PredicateAtRangeStart; 1651 } 1652 1653 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF, 1654 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range 1655 /// of VF's starting at a given VF and extending it as much as possible. Each 1656 /// vectorization decision can potentially shorten this sub-range during 1657 /// buildVPlan(). 1658 void LoopVectorizationPlanner::buildVPlans(ElementCount MinVF, 1659 ElementCount MaxVF) { 1660 auto MaxVFTimes2 = MaxVF * 2; 1661 for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFTimes2);) { 1662 VFRange SubRange = {VF, MaxVFTimes2}; 1663 auto Plan = buildVPlan(SubRange); 1664 VPlanTransforms::optimize(*Plan); 1665 VPlans.push_back(std::move(Plan)); 1666 VF = SubRange.End; 1667 } 1668 } 1669 1670 VPlan &LoopVectorizationPlanner::getPlanFor(ElementCount VF) const { 1671 assert(count_if(VPlans, 1672 [VF](const VPlanPtr &Plan) { return Plan->hasVF(VF); }) == 1673 1 && 1674 "Multiple VPlans for VF."); 1675 1676 for (const VPlanPtr &Plan : VPlans) { 1677 if (Plan->hasVF(VF)) 1678 return *Plan.get(); 1679 } 1680 llvm_unreachable("No plan found!"); 1681 } 1682 1683 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1684 void LoopVectorizationPlanner::printPlans(raw_ostream &O) { 1685 if (VPlans.empty()) { 1686 O << "LV: No VPlans built.\n"; 1687 return; 1688 } 1689 for (const auto &Plan : VPlans) 1690 if (PrintVPlansInDotFormat) 1691 Plan->printDOT(O); 1692 else 1693 Plan->print(O); 1694 } 1695 #endif 1696