1 //===- VPlan.cpp - Vectorizer Plan ----------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This is the LLVM vectorization plan. It represents a candidate for 11 /// vectorization, allowing to plan and optimize how to vectorize a given loop 12 /// before generating LLVM-IR. 13 /// The vectorizer uses vectorization plans to estimate the costs of potential 14 /// candidates and if profitable to execute the desired plan, generating vector 15 /// LLVM-IR code. 16 /// 17 //===----------------------------------------------------------------------===// 18 19 #include "VPlan.h" 20 #include "VPlanDominatorTree.h" 21 #include "llvm/ADT/DepthFirstIterator.h" 22 #include "llvm/ADT/PostOrderIterator.h" 23 #include "llvm/ADT/STLExtras.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/Twine.h" 26 #include "llvm/Analysis/IVDescriptors.h" 27 #include "llvm/Analysis/LoopInfo.h" 28 #include "llvm/IR/BasicBlock.h" 29 #include "llvm/IR/CFG.h" 30 #include "llvm/IR/IRBuilder.h" 31 #include "llvm/IR/Instruction.h" 32 #include "llvm/IR/Instructions.h" 33 #include "llvm/IR/Type.h" 34 #include "llvm/IR/Value.h" 35 #include "llvm/Support/Casting.h" 36 #include "llvm/Support/CommandLine.h" 37 #include "llvm/Support/Debug.h" 38 #include "llvm/Support/ErrorHandling.h" 39 #include "llvm/Support/GenericDomTreeConstruction.h" 40 #include "llvm/Support/GraphWriter.h" 41 #include "llvm/Support/raw_ostream.h" 42 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 43 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 44 #include <cassert> 45 #include <string> 46 #include <vector> 47 48 using namespace llvm; 49 extern cl::opt<bool> EnableVPlanNativePath; 50 51 #define DEBUG_TYPE "vplan" 52 53 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 54 raw_ostream &llvm::operator<<(raw_ostream &OS, const VPValue &V) { 55 const VPInstruction *Instr = dyn_cast<VPInstruction>(&V); 56 VPSlotTracker SlotTracker( 57 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr); 58 V.print(OS, SlotTracker); 59 return OS; 60 } 61 #endif 62 63 Value *VPLane::getAsRuntimeExpr(IRBuilderBase &Builder, 64 const ElementCount &VF) const { 65 switch (LaneKind) { 66 case VPLane::Kind::ScalableLast: 67 // Lane = RuntimeVF - VF.getKnownMinValue() + Lane 68 return Builder.CreateSub(getRuntimeVF(Builder, Builder.getInt32Ty(), VF), 69 Builder.getInt32(VF.getKnownMinValue() - Lane)); 70 case VPLane::Kind::First: 71 return Builder.getInt32(Lane); 72 } 73 llvm_unreachable("Unknown lane kind"); 74 } 75 76 VPValue::VPValue(const unsigned char SC, Value *UV, VPDef *Def) 77 : SubclassID(SC), UnderlyingVal(UV), Def(Def) { 78 if (Def) 79 Def->addDefinedValue(this); 80 } 81 82 VPValue::~VPValue() { 83 assert(Users.empty() && "trying to delete a VPValue with remaining users"); 84 if (Def) 85 Def->removeDefinedValue(this); 86 } 87 88 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 89 void VPValue::print(raw_ostream &OS, VPSlotTracker &SlotTracker) const { 90 if (const VPRecipeBase *R = dyn_cast_or_null<VPRecipeBase>(Def)) 91 R->print(OS, "", SlotTracker); 92 else 93 printAsOperand(OS, SlotTracker); 94 } 95 96 void VPValue::dump() const { 97 const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this->Def); 98 VPSlotTracker SlotTracker( 99 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr); 100 print(dbgs(), SlotTracker); 101 dbgs() << "\n"; 102 } 103 104 void VPDef::dump() const { 105 const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this); 106 VPSlotTracker SlotTracker( 107 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr); 108 print(dbgs(), "", SlotTracker); 109 dbgs() << "\n"; 110 } 111 #endif 112 113 // Get the top-most entry block of \p Start. This is the entry block of the 114 // containing VPlan. This function is templated to support both const and non-const blocks 115 template <typename T> static T *getPlanEntry(T *Start) { 116 T *Next = Start; 117 T *Current = Start; 118 while ((Next = Next->getParent())) 119 Current = Next; 120 121 SmallSetVector<T *, 8> WorkList; 122 WorkList.insert(Current); 123 124 for (unsigned i = 0; i < WorkList.size(); i++) { 125 T *Current = WorkList[i]; 126 if (Current->getNumPredecessors() == 0) 127 return Current; 128 auto &Predecessors = Current->getPredecessors(); 129 WorkList.insert(Predecessors.begin(), Predecessors.end()); 130 } 131 132 llvm_unreachable("VPlan without any entry node without predecessors"); 133 } 134 135 VPlan *VPBlockBase::getPlan() { return getPlanEntry(this)->Plan; } 136 137 const VPlan *VPBlockBase::getPlan() const { return getPlanEntry(this)->Plan; } 138 139 /// \return the VPBasicBlock that is the entry of Block, possibly indirectly. 140 const VPBasicBlock *VPBlockBase::getEntryBasicBlock() const { 141 const VPBlockBase *Block = this; 142 while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 143 Block = Region->getEntry(); 144 return cast<VPBasicBlock>(Block); 145 } 146 147 VPBasicBlock *VPBlockBase::getEntryBasicBlock() { 148 VPBlockBase *Block = this; 149 while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 150 Block = Region->getEntry(); 151 return cast<VPBasicBlock>(Block); 152 } 153 154 void VPBlockBase::setPlan(VPlan *ParentPlan) { 155 assert(ParentPlan->getEntry() == this && 156 "Can only set plan on its entry block."); 157 Plan = ParentPlan; 158 } 159 160 /// \return the VPBasicBlock that is the exit of Block, possibly indirectly. 161 const VPBasicBlock *VPBlockBase::getExitingBasicBlock() const { 162 const VPBlockBase *Block = this; 163 while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 164 Block = Region->getExiting(); 165 return cast<VPBasicBlock>(Block); 166 } 167 168 VPBasicBlock *VPBlockBase::getExitingBasicBlock() { 169 VPBlockBase *Block = this; 170 while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 171 Block = Region->getExiting(); 172 return cast<VPBasicBlock>(Block); 173 } 174 175 VPBlockBase *VPBlockBase::getEnclosingBlockWithSuccessors() { 176 if (!Successors.empty() || !Parent) 177 return this; 178 assert(Parent->getExiting() == this && 179 "Block w/o successors not the exiting block of its parent."); 180 return Parent->getEnclosingBlockWithSuccessors(); 181 } 182 183 VPBlockBase *VPBlockBase::getEnclosingBlockWithPredecessors() { 184 if (!Predecessors.empty() || !Parent) 185 return this; 186 assert(Parent->getEntry() == this && 187 "Block w/o predecessors not the entry of its parent."); 188 return Parent->getEnclosingBlockWithPredecessors(); 189 } 190 191 void VPBlockBase::deleteCFG(VPBlockBase *Entry) { 192 SmallVector<VPBlockBase *, 8> Blocks(depth_first(Entry)); 193 194 for (VPBlockBase *Block : Blocks) 195 delete Block; 196 } 197 198 VPBasicBlock::iterator VPBasicBlock::getFirstNonPhi() { 199 iterator It = begin(); 200 while (It != end() && It->isPhi()) 201 It++; 202 return It; 203 } 204 205 Value *VPTransformState::get(VPValue *Def, const VPIteration &Instance) { 206 if (!Def->getDef()) 207 return Def->getLiveInIRValue(); 208 209 if (hasScalarValue(Def, Instance)) { 210 return Data 211 .PerPartScalars[Def][Instance.Part][Instance.Lane.mapToCacheIndex(VF)]; 212 } 213 214 assert(hasVectorValue(Def, Instance.Part)); 215 auto *VecPart = Data.PerPartOutput[Def][Instance.Part]; 216 if (!VecPart->getType()->isVectorTy()) { 217 assert(Instance.Lane.isFirstLane() && "cannot get lane > 0 for scalar"); 218 return VecPart; 219 } 220 // TODO: Cache created scalar values. 221 Value *Lane = Instance.Lane.getAsRuntimeExpr(Builder, VF); 222 auto *Extract = Builder.CreateExtractElement(VecPart, Lane); 223 // set(Def, Extract, Instance); 224 return Extract; 225 } 226 BasicBlock *VPTransformState::CFGState::getPreheaderBBFor(VPRecipeBase *R) { 227 VPRegionBlock *LoopRegion = R->getParent()->getEnclosingLoopRegion(); 228 return VPBB2IRBB[LoopRegion->getPreheaderVPBB()]; 229 } 230 231 BasicBlock * 232 VPBasicBlock::createEmptyBasicBlock(VPTransformState::CFGState &CFG) { 233 // BB stands for IR BasicBlocks. VPBB stands for VPlan VPBasicBlocks. 234 // Pred stands for Predessor. Prev stands for Previous - last visited/created. 235 BasicBlock *PrevBB = CFG.PrevBB; 236 BasicBlock *NewBB = BasicBlock::Create(PrevBB->getContext(), getName(), 237 PrevBB->getParent(), CFG.ExitBB); 238 LLVM_DEBUG(dbgs() << "LV: created " << NewBB->getName() << '\n'); 239 240 // Hook up the new basic block to its predecessors. 241 for (VPBlockBase *PredVPBlock : getHierarchicalPredecessors()) { 242 VPBasicBlock *PredVPBB = PredVPBlock->getExitingBasicBlock(); 243 auto &PredVPSuccessors = PredVPBB->getHierarchicalSuccessors(); 244 BasicBlock *PredBB = CFG.VPBB2IRBB[PredVPBB]; 245 246 assert(PredBB && "Predecessor basic-block not found building successor."); 247 auto *PredBBTerminator = PredBB->getTerminator(); 248 LLVM_DEBUG(dbgs() << "LV: draw edge from" << PredBB->getName() << '\n'); 249 250 auto *TermBr = dyn_cast<BranchInst>(PredBBTerminator); 251 if (isa<UnreachableInst>(PredBBTerminator)) { 252 assert(PredVPSuccessors.size() == 1 && 253 "Predecessor ending w/o branch must have single successor."); 254 DebugLoc DL = PredBBTerminator->getDebugLoc(); 255 PredBBTerminator->eraseFromParent(); 256 auto *Br = BranchInst::Create(NewBB, PredBB); 257 Br->setDebugLoc(DL); 258 } else if (TermBr && !TermBr->isConditional()) { 259 TermBr->setSuccessor(0, NewBB); 260 } else { 261 // Set each forward successor here when it is created, excluding 262 // backedges. A backward successor is set when the branch is created. 263 unsigned idx = PredVPSuccessors.front() == this ? 0 : 1; 264 assert(!TermBr->getSuccessor(idx) && 265 "Trying to reset an existing successor block."); 266 TermBr->setSuccessor(idx, NewBB); 267 } 268 } 269 return NewBB; 270 } 271 272 void VPBasicBlock::execute(VPTransformState *State) { 273 bool Replica = State->Instance && !State->Instance->isFirstIteration(); 274 VPBasicBlock *PrevVPBB = State->CFG.PrevVPBB; 275 VPBlockBase *SingleHPred = nullptr; 276 BasicBlock *NewBB = State->CFG.PrevBB; // Reuse it if possible. 277 278 auto IsLoopRegion = [](VPBlockBase *BB) { 279 auto *R = dyn_cast<VPRegionBlock>(BB); 280 return R && !R->isReplicator(); 281 }; 282 283 // 1. Create an IR basic block, or reuse the last one or ExitBB if possible. 284 if (getPlan()->getVectorLoopRegion()->getSingleSuccessor() == this) { 285 // ExitBB can be re-used for the exit block of the Plan. 286 NewBB = State->CFG.ExitBB; 287 State->CFG.PrevBB = NewBB; 288 289 // Update the branch instruction in the predecessor to branch to ExitBB. 290 VPBlockBase *PredVPB = getSingleHierarchicalPredecessor(); 291 VPBasicBlock *ExitingVPBB = PredVPB->getExitingBasicBlock(); 292 assert(PredVPB->getSingleSuccessor() == this && 293 "predecessor must have the current block as only successor"); 294 BasicBlock *ExitingBB = State->CFG.VPBB2IRBB[ExitingVPBB]; 295 // The Exit block of a loop is always set to be successor 0 of the Exiting 296 // block. 297 cast<BranchInst>(ExitingBB->getTerminator())->setSuccessor(0, NewBB); 298 } else if (PrevVPBB && /* A */ 299 !((SingleHPred = getSingleHierarchicalPredecessor()) && 300 SingleHPred->getExitingBasicBlock() == PrevVPBB && 301 PrevVPBB->getSingleHierarchicalSuccessor() && 302 (SingleHPred->getParent() == getEnclosingLoopRegion() && 303 !IsLoopRegion(SingleHPred))) && /* B */ 304 !(Replica && getPredecessors().empty())) { /* C */ 305 // The last IR basic block is reused, as an optimization, in three cases: 306 // A. the first VPBB reuses the loop pre-header BB - when PrevVPBB is null; 307 // B. when the current VPBB has a single (hierarchical) predecessor which 308 // is PrevVPBB and the latter has a single (hierarchical) successor which 309 // both are in the same non-replicator region; and 310 // C. when the current VPBB is an entry of a region replica - where PrevVPBB 311 // is the exiting VPBB of this region from a previous instance, or the 312 // predecessor of this region. 313 314 NewBB = createEmptyBasicBlock(State->CFG); 315 State->Builder.SetInsertPoint(NewBB); 316 // Temporarily terminate with unreachable until CFG is rewired. 317 UnreachableInst *Terminator = State->Builder.CreateUnreachable(); 318 // Register NewBB in its loop. In innermost loops its the same for all 319 // BB's. 320 if (State->CurrentVectorLoop) 321 State->CurrentVectorLoop->addBasicBlockToLoop(NewBB, *State->LI); 322 State->Builder.SetInsertPoint(Terminator); 323 State->CFG.PrevBB = NewBB; 324 } 325 326 // 2. Fill the IR basic block with IR instructions. 327 LLVM_DEBUG(dbgs() << "LV: vectorizing VPBB:" << getName() 328 << " in BB:" << NewBB->getName() << '\n'); 329 330 State->CFG.VPBB2IRBB[this] = NewBB; 331 State->CFG.PrevVPBB = this; 332 333 for (VPRecipeBase &Recipe : Recipes) 334 Recipe.execute(*State); 335 336 LLVM_DEBUG(dbgs() << "LV: filled BB:" << *NewBB); 337 } 338 339 void VPBasicBlock::dropAllReferences(VPValue *NewValue) { 340 for (VPRecipeBase &R : Recipes) { 341 for (auto *Def : R.definedValues()) 342 Def->replaceAllUsesWith(NewValue); 343 344 for (unsigned I = 0, E = R.getNumOperands(); I != E; I++) 345 R.setOperand(I, NewValue); 346 } 347 } 348 349 VPBasicBlock *VPBasicBlock::splitAt(iterator SplitAt) { 350 assert((SplitAt == end() || SplitAt->getParent() == this) && 351 "can only split at a position in the same block"); 352 353 SmallVector<VPBlockBase *, 2> Succs(successors()); 354 // First, disconnect the current block from its successors. 355 for (VPBlockBase *Succ : Succs) 356 VPBlockUtils::disconnectBlocks(this, Succ); 357 358 // Create new empty block after the block to split. 359 auto *SplitBlock = new VPBasicBlock(getName() + ".split"); 360 VPBlockUtils::insertBlockAfter(SplitBlock, this); 361 362 // Add successors for block to split to new block. 363 for (VPBlockBase *Succ : Succs) 364 VPBlockUtils::connectBlocks(SplitBlock, Succ); 365 366 // Finally, move the recipes starting at SplitAt to new block. 367 for (VPRecipeBase &ToMove : 368 make_early_inc_range(make_range(SplitAt, this->end()))) 369 ToMove.moveBefore(*SplitBlock, SplitBlock->end()); 370 371 return SplitBlock; 372 } 373 374 VPRegionBlock *VPBasicBlock::getEnclosingLoopRegion() { 375 VPRegionBlock *P = getParent(); 376 if (P && P->isReplicator()) { 377 P = P->getParent(); 378 assert(!cast<VPRegionBlock>(P)->isReplicator() && 379 "unexpected nested replicate regions"); 380 } 381 return P; 382 } 383 384 static bool hasConditionalTerminator(const VPBasicBlock *VPBB) { 385 if (VPBB->empty()) { 386 assert( 387 VPBB->getNumSuccessors() < 2 && 388 "block with multiple successors doesn't have a recipe as terminator"); 389 return false; 390 } 391 392 const VPRecipeBase *R = &VPBB->back(); 393 auto *VPI = dyn_cast<VPInstruction>(R); 394 bool IsCondBranch = 395 isa<VPBranchOnMaskRecipe>(R) || 396 (VPI && (VPI->getOpcode() == VPInstruction::BranchOnCond || 397 VPI->getOpcode() == VPInstruction::BranchOnCount)); 398 (void)IsCondBranch; 399 400 if (VPBB->getNumSuccessors() >= 2 || VPBB->isExiting()) { 401 assert(IsCondBranch && "block with multiple successors not terminated by " 402 "conditional branch recipe"); 403 404 return true; 405 } 406 407 assert( 408 !IsCondBranch && 409 "block with 0 or 1 successors terminated by conditional branch recipe"); 410 return false; 411 } 412 413 VPRecipeBase *VPBasicBlock::getTerminator() { 414 if (hasConditionalTerminator(this)) 415 return &back(); 416 return nullptr; 417 } 418 419 const VPRecipeBase *VPBasicBlock::getTerminator() const { 420 if (hasConditionalTerminator(this)) 421 return &back(); 422 return nullptr; 423 } 424 425 bool VPBasicBlock::isExiting() const { 426 return getParent()->getExitingBasicBlock() == this; 427 } 428 429 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 430 void VPBlockBase::printSuccessors(raw_ostream &O, const Twine &Indent) const { 431 if (getSuccessors().empty()) { 432 O << Indent << "No successors\n"; 433 } else { 434 O << Indent << "Successor(s): "; 435 ListSeparator LS; 436 for (auto *Succ : getSuccessors()) 437 O << LS << Succ->getName(); 438 O << '\n'; 439 } 440 } 441 442 void VPBasicBlock::print(raw_ostream &O, const Twine &Indent, 443 VPSlotTracker &SlotTracker) const { 444 O << Indent << getName() << ":\n"; 445 446 auto RecipeIndent = Indent + " "; 447 for (const VPRecipeBase &Recipe : *this) { 448 Recipe.print(O, RecipeIndent, SlotTracker); 449 O << '\n'; 450 } 451 452 printSuccessors(O, Indent); 453 } 454 #endif 455 456 void VPRegionBlock::dropAllReferences(VPValue *NewValue) { 457 for (VPBlockBase *Block : depth_first(Entry)) 458 // Drop all references in VPBasicBlocks and replace all uses with 459 // DummyValue. 460 Block->dropAllReferences(NewValue); 461 } 462 463 void VPRegionBlock::execute(VPTransformState *State) { 464 ReversePostOrderTraversal<VPBlockBase *> RPOT(Entry); 465 466 if (!isReplicator()) { 467 // Create and register the new vector loop. 468 Loop *PrevLoop = State->CurrentVectorLoop; 469 State->CurrentVectorLoop = State->LI->AllocateLoop(); 470 BasicBlock *VectorPH = State->CFG.VPBB2IRBB[getPreheaderVPBB()]; 471 Loop *ParentLoop = State->LI->getLoopFor(VectorPH); 472 473 // Insert the new loop into the loop nest and register the new basic blocks 474 // before calling any utilities such as SCEV that require valid LoopInfo. 475 if (ParentLoop) 476 ParentLoop->addChildLoop(State->CurrentVectorLoop); 477 else 478 State->LI->addTopLevelLoop(State->CurrentVectorLoop); 479 480 // Visit the VPBlocks connected to "this", starting from it. 481 for (VPBlockBase *Block : RPOT) { 482 LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n'); 483 Block->execute(State); 484 } 485 486 State->CurrentVectorLoop = PrevLoop; 487 return; 488 } 489 490 assert(!State->Instance && "Replicating a Region with non-null instance."); 491 492 // Enter replicating mode. 493 State->Instance = VPIteration(0, 0); 494 495 for (unsigned Part = 0, UF = State->UF; Part < UF; ++Part) { 496 State->Instance->Part = Part; 497 assert(!State->VF.isScalable() && "VF is assumed to be non scalable."); 498 for (unsigned Lane = 0, VF = State->VF.getKnownMinValue(); Lane < VF; 499 ++Lane) { 500 State->Instance->Lane = VPLane(Lane, VPLane::Kind::First); 501 // Visit the VPBlocks connected to \p this, starting from it. 502 for (VPBlockBase *Block : RPOT) { 503 LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n'); 504 Block->execute(State); 505 } 506 } 507 } 508 509 // Exit replicating mode. 510 State->Instance.reset(); 511 } 512 513 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 514 void VPRegionBlock::print(raw_ostream &O, const Twine &Indent, 515 VPSlotTracker &SlotTracker) const { 516 O << Indent << (isReplicator() ? "<xVFxUF> " : "<x1> ") << getName() << ": {"; 517 auto NewIndent = Indent + " "; 518 for (auto *BlockBase : depth_first(Entry)) { 519 O << '\n'; 520 BlockBase->print(O, NewIndent, SlotTracker); 521 } 522 O << Indent << "}\n"; 523 524 printSuccessors(O, Indent); 525 } 526 #endif 527 528 bool VPRecipeBase::mayWriteToMemory() const { 529 switch (getVPDefID()) { 530 case VPWidenMemoryInstructionSC: { 531 return cast<VPWidenMemoryInstructionRecipe>(this)->isStore(); 532 } 533 case VPReplicateSC: 534 case VPWidenCallSC: 535 return cast<Instruction>(getVPSingleValue()->getUnderlyingValue()) 536 ->mayWriteToMemory(); 537 case VPBranchOnMaskSC: 538 return false; 539 case VPWidenIntOrFpInductionSC: 540 case VPWidenCanonicalIVSC: 541 case VPWidenPHISC: 542 case VPBlendSC: 543 case VPWidenSC: 544 case VPWidenGEPSC: 545 case VPReductionSC: 546 case VPWidenSelectSC: { 547 const Instruction *I = 548 dyn_cast_or_null<Instruction>(getVPSingleValue()->getUnderlyingValue()); 549 (void)I; 550 assert((!I || !I->mayWriteToMemory()) && 551 "underlying instruction may write to memory"); 552 return false; 553 } 554 default: 555 return true; 556 } 557 } 558 559 bool VPRecipeBase::mayReadFromMemory() const { 560 switch (getVPDefID()) { 561 case VPWidenMemoryInstructionSC: { 562 return !cast<VPWidenMemoryInstructionRecipe>(this)->isStore(); 563 } 564 case VPReplicateSC: 565 case VPWidenCallSC: 566 return cast<Instruction>(getVPSingleValue()->getUnderlyingValue()) 567 ->mayReadFromMemory(); 568 case VPBranchOnMaskSC: 569 return false; 570 case VPWidenIntOrFpInductionSC: 571 case VPWidenCanonicalIVSC: 572 case VPWidenPHISC: 573 case VPBlendSC: 574 case VPWidenSC: 575 case VPWidenGEPSC: 576 case VPReductionSC: 577 case VPWidenSelectSC: { 578 const Instruction *I = 579 dyn_cast_or_null<Instruction>(getVPSingleValue()->getUnderlyingValue()); 580 (void)I; 581 assert((!I || !I->mayReadFromMemory()) && 582 "underlying instruction may read from memory"); 583 return false; 584 } 585 default: 586 return true; 587 } 588 } 589 590 bool VPRecipeBase::mayHaveSideEffects() const { 591 switch (getVPDefID()) { 592 case VPWidenIntOrFpInductionSC: 593 case VPWidenPointerInductionSC: 594 case VPWidenCanonicalIVSC: 595 case VPWidenPHISC: 596 case VPBlendSC: 597 case VPWidenSC: 598 case VPWidenGEPSC: 599 case VPReductionSC: 600 case VPWidenSelectSC: 601 case VPScalarIVStepsSC: { 602 const Instruction *I = 603 dyn_cast_or_null<Instruction>(getVPSingleValue()->getUnderlyingValue()); 604 (void)I; 605 assert((!I || !I->mayHaveSideEffects()) && 606 "underlying instruction has side-effects"); 607 return false; 608 } 609 case VPReplicateSC: { 610 auto *R = cast<VPReplicateRecipe>(this); 611 return R->getUnderlyingInstr()->mayHaveSideEffects(); 612 } 613 default: 614 return true; 615 } 616 } 617 618 void VPLiveOut::fixPhi(VPlan &Plan, VPTransformState &State) { 619 auto Lane = VPLane::getLastLaneForVF(State.VF); 620 VPValue *ExitValue = getOperand(0); 621 if (Plan.isUniformAfterVectorization(ExitValue)) 622 Lane = VPLane::getFirstLane(); 623 Phi->addIncoming(State.get(ExitValue, VPIteration(State.UF - 1, Lane)), 624 State.Builder.GetInsertBlock()); 625 } 626 627 void VPRecipeBase::insertBefore(VPRecipeBase *InsertPos) { 628 assert(!Parent && "Recipe already in some VPBasicBlock"); 629 assert(InsertPos->getParent() && 630 "Insertion position not in any VPBasicBlock"); 631 Parent = InsertPos->getParent(); 632 Parent->getRecipeList().insert(InsertPos->getIterator(), this); 633 } 634 635 void VPRecipeBase::insertBefore(VPBasicBlock &BB, 636 iplist<VPRecipeBase>::iterator I) { 637 assert(!Parent && "Recipe already in some VPBasicBlock"); 638 assert(I == BB.end() || I->getParent() == &BB); 639 Parent = &BB; 640 BB.getRecipeList().insert(I, this); 641 } 642 643 void VPRecipeBase::insertAfter(VPRecipeBase *InsertPos) { 644 assert(!Parent && "Recipe already in some VPBasicBlock"); 645 assert(InsertPos->getParent() && 646 "Insertion position not in any VPBasicBlock"); 647 Parent = InsertPos->getParent(); 648 Parent->getRecipeList().insertAfter(InsertPos->getIterator(), this); 649 } 650 651 void VPRecipeBase::removeFromParent() { 652 assert(getParent() && "Recipe not in any VPBasicBlock"); 653 getParent()->getRecipeList().remove(getIterator()); 654 Parent = nullptr; 655 } 656 657 iplist<VPRecipeBase>::iterator VPRecipeBase::eraseFromParent() { 658 assert(getParent() && "Recipe not in any VPBasicBlock"); 659 return getParent()->getRecipeList().erase(getIterator()); 660 } 661 662 void VPRecipeBase::moveAfter(VPRecipeBase *InsertPos) { 663 removeFromParent(); 664 insertAfter(InsertPos); 665 } 666 667 void VPRecipeBase::moveBefore(VPBasicBlock &BB, 668 iplist<VPRecipeBase>::iterator I) { 669 removeFromParent(); 670 insertBefore(BB, I); 671 } 672 673 void VPInstruction::generateInstruction(VPTransformState &State, 674 unsigned Part) { 675 IRBuilderBase &Builder = State.Builder; 676 Builder.SetCurrentDebugLocation(DL); 677 678 if (Instruction::isBinaryOp(getOpcode())) { 679 Value *A = State.get(getOperand(0), Part); 680 Value *B = State.get(getOperand(1), Part); 681 Value *V = Builder.CreateBinOp((Instruction::BinaryOps)getOpcode(), A, B); 682 State.set(this, V, Part); 683 return; 684 } 685 686 switch (getOpcode()) { 687 case VPInstruction::Not: { 688 Value *A = State.get(getOperand(0), Part); 689 Value *V = Builder.CreateNot(A); 690 State.set(this, V, Part); 691 break; 692 } 693 case VPInstruction::ICmpULE: { 694 Value *IV = State.get(getOperand(0), Part); 695 Value *TC = State.get(getOperand(1), Part); 696 Value *V = Builder.CreateICmpULE(IV, TC); 697 State.set(this, V, Part); 698 break; 699 } 700 case Instruction::Select: { 701 Value *Cond = State.get(getOperand(0), Part); 702 Value *Op1 = State.get(getOperand(1), Part); 703 Value *Op2 = State.get(getOperand(2), Part); 704 Value *V = Builder.CreateSelect(Cond, Op1, Op2); 705 State.set(this, V, Part); 706 break; 707 } 708 case VPInstruction::ActiveLaneMask: { 709 // Get first lane of vector induction variable. 710 Value *VIVElem0 = State.get(getOperand(0), VPIteration(Part, 0)); 711 // Get the original loop tripcount. 712 Value *ScalarTC = State.get(getOperand(1), Part); 713 714 auto *Int1Ty = Type::getInt1Ty(Builder.getContext()); 715 auto *PredTy = VectorType::get(Int1Ty, State.VF); 716 Instruction *Call = Builder.CreateIntrinsic( 717 Intrinsic::get_active_lane_mask, {PredTy, ScalarTC->getType()}, 718 {VIVElem0, ScalarTC}, nullptr, "active.lane.mask"); 719 State.set(this, Call, Part); 720 break; 721 } 722 case VPInstruction::FirstOrderRecurrenceSplice: { 723 // Generate code to combine the previous and current values in vector v3. 724 // 725 // vector.ph: 726 // v_init = vector(..., ..., ..., a[-1]) 727 // br vector.body 728 // 729 // vector.body 730 // i = phi [0, vector.ph], [i+4, vector.body] 731 // v1 = phi [v_init, vector.ph], [v2, vector.body] 732 // v2 = a[i, i+1, i+2, i+3]; 733 // v3 = vector(v1(3), v2(0, 1, 2)) 734 735 // For the first part, use the recurrence phi (v1), otherwise v2. 736 auto *V1 = State.get(getOperand(0), 0); 737 Value *PartMinus1 = Part == 0 ? V1 : State.get(getOperand(1), Part - 1); 738 if (!PartMinus1->getType()->isVectorTy()) { 739 State.set(this, PartMinus1, Part); 740 } else { 741 Value *V2 = State.get(getOperand(1), Part); 742 State.set(this, Builder.CreateVectorSplice(PartMinus1, V2, -1), Part); 743 } 744 break; 745 } 746 747 case VPInstruction::CanonicalIVIncrement: 748 case VPInstruction::CanonicalIVIncrementNUW: { 749 Value *Next = nullptr; 750 if (Part == 0) { 751 bool IsNUW = getOpcode() == VPInstruction::CanonicalIVIncrementNUW; 752 auto *Phi = State.get(getOperand(0), 0); 753 // The loop step is equal to the vectorization factor (num of SIMD 754 // elements) times the unroll factor (num of SIMD instructions). 755 Value *Step = 756 createStepForVF(Builder, Phi->getType(), State.VF, State.UF); 757 Next = Builder.CreateAdd(Phi, Step, "index.next", IsNUW, false); 758 } else { 759 Next = State.get(this, 0); 760 } 761 762 State.set(this, Next, Part); 763 break; 764 } 765 case VPInstruction::BranchOnCond: { 766 if (Part != 0) 767 break; 768 769 Value *Cond = State.get(getOperand(0), VPIteration(Part, 0)); 770 VPRegionBlock *ParentRegion = getParent()->getParent(); 771 VPBasicBlock *Header = ParentRegion->getEntryBasicBlock(); 772 773 // Replace the temporary unreachable terminator with a new conditional 774 // branch, hooking it up to backward destination for exiting blocks now and 775 // to forward destination(s) later when they are created. 776 BranchInst *CondBr = 777 Builder.CreateCondBr(Cond, Builder.GetInsertBlock(), nullptr); 778 779 if (getParent()->isExiting()) 780 CondBr->setSuccessor(1, State.CFG.VPBB2IRBB[Header]); 781 782 CondBr->setSuccessor(0, nullptr); 783 Builder.GetInsertBlock()->getTerminator()->eraseFromParent(); 784 break; 785 } 786 case VPInstruction::BranchOnCount: { 787 if (Part != 0) 788 break; 789 // First create the compare. 790 Value *IV = State.get(getOperand(0), Part); 791 Value *TC = State.get(getOperand(1), Part); 792 Value *Cond = Builder.CreateICmpEQ(IV, TC); 793 794 // Now create the branch. 795 auto *Plan = getParent()->getPlan(); 796 VPRegionBlock *TopRegion = Plan->getVectorLoopRegion(); 797 VPBasicBlock *Header = TopRegion->getEntry()->getEntryBasicBlock(); 798 799 // Replace the temporary unreachable terminator with a new conditional 800 // branch, hooking it up to backward destination (the header) now and to the 801 // forward destination (the exit/middle block) later when it is created. 802 // Note that CreateCondBr expects a valid BB as first argument, so we need 803 // to set it to nullptr later. 804 BranchInst *CondBr = Builder.CreateCondBr(Cond, Builder.GetInsertBlock(), 805 State.CFG.VPBB2IRBB[Header]); 806 CondBr->setSuccessor(0, nullptr); 807 Builder.GetInsertBlock()->getTerminator()->eraseFromParent(); 808 break; 809 } 810 default: 811 llvm_unreachable("Unsupported opcode for instruction"); 812 } 813 } 814 815 void VPInstruction::execute(VPTransformState &State) { 816 assert(!State.Instance && "VPInstruction executing an Instance"); 817 IRBuilderBase::FastMathFlagGuard FMFGuard(State.Builder); 818 State.Builder.setFastMathFlags(FMF); 819 for (unsigned Part = 0; Part < State.UF; ++Part) 820 generateInstruction(State, Part); 821 } 822 823 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 824 void VPInstruction::dump() const { 825 VPSlotTracker SlotTracker(getParent()->getPlan()); 826 print(dbgs(), "", SlotTracker); 827 } 828 829 void VPInstruction::print(raw_ostream &O, const Twine &Indent, 830 VPSlotTracker &SlotTracker) const { 831 O << Indent << "EMIT "; 832 833 if (hasResult()) { 834 printAsOperand(O, SlotTracker); 835 O << " = "; 836 } 837 838 switch (getOpcode()) { 839 case VPInstruction::Not: 840 O << "not"; 841 break; 842 case VPInstruction::ICmpULE: 843 O << "icmp ule"; 844 break; 845 case VPInstruction::SLPLoad: 846 O << "combined load"; 847 break; 848 case VPInstruction::SLPStore: 849 O << "combined store"; 850 break; 851 case VPInstruction::ActiveLaneMask: 852 O << "active lane mask"; 853 break; 854 case VPInstruction::FirstOrderRecurrenceSplice: 855 O << "first-order splice"; 856 break; 857 case VPInstruction::CanonicalIVIncrement: 858 O << "VF * UF + "; 859 break; 860 case VPInstruction::CanonicalIVIncrementNUW: 861 O << "VF * UF +(nuw) "; 862 break; 863 case VPInstruction::BranchOnCond: 864 O << "branch-on-cond"; 865 break; 866 case VPInstruction::BranchOnCount: 867 O << "branch-on-count "; 868 break; 869 default: 870 O << Instruction::getOpcodeName(getOpcode()); 871 } 872 873 O << FMF; 874 875 for (const VPValue *Operand : operands()) { 876 O << " "; 877 Operand->printAsOperand(O, SlotTracker); 878 } 879 880 if (DL) { 881 O << ", !dbg "; 882 DL.print(O); 883 } 884 } 885 #endif 886 887 void VPInstruction::setFastMathFlags(FastMathFlags FMFNew) { 888 // Make sure the VPInstruction is a floating-point operation. 889 assert((Opcode == Instruction::FAdd || Opcode == Instruction::FMul || 890 Opcode == Instruction::FNeg || Opcode == Instruction::FSub || 891 Opcode == Instruction::FDiv || Opcode == Instruction::FRem || 892 Opcode == Instruction::FCmp) && 893 "this op can't take fast-math flags"); 894 FMF = FMFNew; 895 } 896 897 void VPlan::prepareToExecute(Value *TripCountV, Value *VectorTripCountV, 898 Value *CanonicalIVStartValue, 899 VPTransformState &State) { 900 901 VPBasicBlock *ExitingVPBB = getVectorLoopRegion()->getExitingBasicBlock(); 902 auto *Term = dyn_cast<VPInstruction>(&ExitingVPBB->back()); 903 // Try to simplify BranchOnCount to 'BranchOnCond true' if TC <= VF * UF when 904 // preparing to execute the plan for the main vector loop. 905 if (!CanonicalIVStartValue && Term && 906 Term->getOpcode() == VPInstruction::BranchOnCount && 907 isa<ConstantInt>(TripCountV)) { 908 ConstantInt *C = cast<ConstantInt>(TripCountV); 909 uint64_t TCVal = C->getZExtValue(); 910 if (TCVal && TCVal <= State.VF.getKnownMinValue() * State.UF) { 911 auto *BOC = 912 new VPInstruction(VPInstruction::BranchOnCond, 913 {getOrAddExternalDef(State.Builder.getTrue())}); 914 Term->eraseFromParent(); 915 ExitingVPBB->appendRecipe(BOC); 916 // TODO: Further simplifications are possible 917 // 1. Replace inductions with constants. 918 // 2. Replace vector loop region with VPBasicBlock. 919 } 920 } 921 922 // Check if the trip count is needed, and if so build it. 923 if (TripCount && TripCount->getNumUsers()) { 924 for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part) 925 State.set(TripCount, TripCountV, Part); 926 } 927 928 // Check if the backedge taken count is needed, and if so build it. 929 if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) { 930 IRBuilder<> Builder(State.CFG.PrevBB->getTerminator()); 931 auto *TCMO = Builder.CreateSub(TripCountV, 932 ConstantInt::get(TripCountV->getType(), 1), 933 "trip.count.minus.1"); 934 auto VF = State.VF; 935 Value *VTCMO = 936 VF.isScalar() ? TCMO : Builder.CreateVectorSplat(VF, TCMO, "broadcast"); 937 for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part) 938 State.set(BackedgeTakenCount, VTCMO, Part); 939 } 940 941 for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part) 942 State.set(&VectorTripCount, VectorTripCountV, Part); 943 944 // When vectorizing the epilogue loop, the canonical induction start value 945 // needs to be changed from zero to the value after the main vector loop. 946 if (CanonicalIVStartValue) { 947 VPValue *VPV = getOrAddExternalDef(CanonicalIVStartValue); 948 auto *IV = getCanonicalIV(); 949 assert(all_of(IV->users(), 950 [](const VPUser *U) { 951 if (isa<VPScalarIVStepsRecipe>(U)) 952 return true; 953 auto *VPI = cast<VPInstruction>(U); 954 return VPI->getOpcode() == 955 VPInstruction::CanonicalIVIncrement || 956 VPI->getOpcode() == 957 VPInstruction::CanonicalIVIncrementNUW; 958 }) && 959 "the canonical IV should only be used by its increments or " 960 "ScalarIVSteps when " 961 "resetting the start value"); 962 IV->setOperand(0, VPV); 963 } 964 } 965 966 /// Generate the code inside the preheader and body of the vectorized loop. 967 /// Assumes a single pre-header basic-block was created for this. Introduce 968 /// additional basic-blocks as needed, and fill them all. 969 void VPlan::execute(VPTransformState *State) { 970 // Set the reverse mapping from VPValues to Values for code generation. 971 for (auto &Entry : Value2VPValue) 972 State->VPValue2Value[Entry.second] = Entry.first; 973 974 // Initialize CFG state. 975 State->CFG.PrevVPBB = nullptr; 976 State->CFG.ExitBB = State->CFG.PrevBB->getSingleSuccessor(); 977 BasicBlock *VectorPreHeader = State->CFG.PrevBB; 978 State->Builder.SetInsertPoint(VectorPreHeader->getTerminator()); 979 980 // Generate code in the loop pre-header and body. 981 for (VPBlockBase *Block : depth_first(Entry)) 982 Block->execute(State); 983 984 VPBasicBlock *LatchVPBB = getVectorLoopRegion()->getExitingBasicBlock(); 985 BasicBlock *VectorLatchBB = State->CFG.VPBB2IRBB[LatchVPBB]; 986 987 // Fix the latch value of canonical, reduction and first-order recurrences 988 // phis in the vector loop. 989 VPBasicBlock *Header = getVectorLoopRegion()->getEntryBasicBlock(); 990 for (VPRecipeBase &R : Header->phis()) { 991 // Skip phi-like recipes that generate their backedege values themselves. 992 if (isa<VPWidenPHIRecipe>(&R)) 993 continue; 994 995 if (isa<VPWidenPointerInductionRecipe>(&R) || 996 isa<VPWidenIntOrFpInductionRecipe>(&R)) { 997 PHINode *Phi = nullptr; 998 if (isa<VPWidenIntOrFpInductionRecipe>(&R)) { 999 Phi = cast<PHINode>(State->get(R.getVPSingleValue(), 0)); 1000 } else { 1001 auto *WidenPhi = cast<VPWidenPointerInductionRecipe>(&R); 1002 // TODO: Split off the case that all users of a pointer phi are scalar 1003 // from the VPWidenPointerInductionRecipe. 1004 if (WidenPhi->onlyScalarsGenerated(State->VF)) 1005 continue; 1006 1007 auto *GEP = cast<GetElementPtrInst>(State->get(WidenPhi, 0)); 1008 Phi = cast<PHINode>(GEP->getPointerOperand()); 1009 } 1010 1011 Phi->setIncomingBlock(1, VectorLatchBB); 1012 1013 // Move the last step to the end of the latch block. This ensures 1014 // consistent placement of all induction updates. 1015 Instruction *Inc = cast<Instruction>(Phi->getIncomingValue(1)); 1016 Inc->moveBefore(VectorLatchBB->getTerminator()->getPrevNode()); 1017 continue; 1018 } 1019 1020 auto *PhiR = cast<VPHeaderPHIRecipe>(&R); 1021 // For canonical IV, first-order recurrences and in-order reduction phis, 1022 // only a single part is generated, which provides the last part from the 1023 // previous iteration. For non-ordered reductions all UF parts are 1024 // generated. 1025 bool SinglePartNeeded = isa<VPCanonicalIVPHIRecipe>(PhiR) || 1026 isa<VPFirstOrderRecurrencePHIRecipe>(PhiR) || 1027 cast<VPReductionPHIRecipe>(PhiR)->isOrdered(); 1028 unsigned LastPartForNewPhi = SinglePartNeeded ? 1 : State->UF; 1029 1030 for (unsigned Part = 0; Part < LastPartForNewPhi; ++Part) { 1031 Value *Phi = State->get(PhiR, Part); 1032 Value *Val = State->get(PhiR->getBackedgeValue(), 1033 SinglePartNeeded ? State->UF - 1 : Part); 1034 cast<PHINode>(Phi)->addIncoming(Val, VectorLatchBB); 1035 } 1036 } 1037 1038 // We do not attempt to preserve DT for outer loop vectorization currently. 1039 if (!EnableVPlanNativePath) { 1040 BasicBlock *VectorHeaderBB = State->CFG.VPBB2IRBB[Header]; 1041 State->DT->addNewBlock(VectorHeaderBB, VectorPreHeader); 1042 updateDominatorTree(State->DT, VectorHeaderBB, VectorLatchBB, 1043 State->CFG.ExitBB); 1044 } 1045 } 1046 1047 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1048 LLVM_DUMP_METHOD 1049 void VPlan::print(raw_ostream &O) const { 1050 VPSlotTracker SlotTracker(this); 1051 1052 O << "VPlan '" << Name << "' {"; 1053 1054 if (VectorTripCount.getNumUsers() > 0) { 1055 O << "\nLive-in "; 1056 VectorTripCount.printAsOperand(O, SlotTracker); 1057 O << " = vector-trip-count\n"; 1058 } 1059 1060 if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) { 1061 O << "\nLive-in "; 1062 BackedgeTakenCount->printAsOperand(O, SlotTracker); 1063 O << " = backedge-taken count\n"; 1064 } 1065 1066 for (const VPBlockBase *Block : depth_first(getEntry())) { 1067 O << '\n'; 1068 Block->print(O, "", SlotTracker); 1069 } 1070 1071 if (!LiveOuts.empty()) 1072 O << "\n"; 1073 for (auto &KV : LiveOuts) { 1074 O << "Live-out "; 1075 KV.second->getPhi()->printAsOperand(O); 1076 O << " = "; 1077 KV.second->getOperand(0)->printAsOperand(O, SlotTracker); 1078 O << "\n"; 1079 } 1080 1081 O << "}\n"; 1082 } 1083 1084 LLVM_DUMP_METHOD 1085 void VPlan::printDOT(raw_ostream &O) const { 1086 VPlanPrinter Printer(O, *this); 1087 Printer.dump(); 1088 } 1089 1090 LLVM_DUMP_METHOD 1091 void VPlan::dump() const { print(dbgs()); } 1092 #endif 1093 1094 void VPlan::addLiveOut(PHINode *PN, VPValue *V) { 1095 assert(LiveOuts.count(PN) == 0 && "an exit value for PN already exists"); 1096 LiveOuts.insert({PN, new VPLiveOut(PN, V)}); 1097 } 1098 1099 void VPlan::updateDominatorTree(DominatorTree *DT, BasicBlock *LoopHeaderBB, 1100 BasicBlock *LoopLatchBB, 1101 BasicBlock *LoopExitBB) { 1102 // The vector body may be more than a single basic-block by this point. 1103 // Update the dominator tree information inside the vector body by propagating 1104 // it from header to latch, expecting only triangular control-flow, if any. 1105 BasicBlock *PostDomSucc = nullptr; 1106 for (auto *BB = LoopHeaderBB; BB != LoopLatchBB; BB = PostDomSucc) { 1107 // Get the list of successors of this block. 1108 std::vector<BasicBlock *> Succs(succ_begin(BB), succ_end(BB)); 1109 assert(Succs.size() <= 2 && 1110 "Basic block in vector loop has more than 2 successors."); 1111 PostDomSucc = Succs[0]; 1112 if (Succs.size() == 1) { 1113 assert(PostDomSucc->getSinglePredecessor() && 1114 "PostDom successor has more than one predecessor."); 1115 DT->addNewBlock(PostDomSucc, BB); 1116 continue; 1117 } 1118 BasicBlock *InterimSucc = Succs[1]; 1119 if (PostDomSucc->getSingleSuccessor() == InterimSucc) { 1120 PostDomSucc = Succs[1]; 1121 InterimSucc = Succs[0]; 1122 } 1123 assert(InterimSucc->getSingleSuccessor() == PostDomSucc && 1124 "One successor of a basic block does not lead to the other."); 1125 assert(InterimSucc->getSinglePredecessor() && 1126 "Interim successor has more than one predecessor."); 1127 assert(PostDomSucc->hasNPredecessors(2) && 1128 "PostDom successor has more than two predecessors."); 1129 DT->addNewBlock(InterimSucc, BB); 1130 DT->addNewBlock(PostDomSucc, BB); 1131 } 1132 // Latch block is a new dominator for the loop exit. 1133 DT->changeImmediateDominator(LoopExitBB, LoopLatchBB); 1134 assert(DT->verify(DominatorTree::VerificationLevel::Fast)); 1135 } 1136 1137 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1138 Twine VPlanPrinter::getUID(const VPBlockBase *Block) { 1139 return (isa<VPRegionBlock>(Block) ? "cluster_N" : "N") + 1140 Twine(getOrCreateBID(Block)); 1141 } 1142 1143 Twine VPlanPrinter::getOrCreateName(const VPBlockBase *Block) { 1144 const std::string &Name = Block->getName(); 1145 if (!Name.empty()) 1146 return Name; 1147 return "VPB" + Twine(getOrCreateBID(Block)); 1148 } 1149 1150 void VPlanPrinter::dump() { 1151 Depth = 1; 1152 bumpIndent(0); 1153 OS << "digraph VPlan {\n"; 1154 OS << "graph [labelloc=t, fontsize=30; label=\"Vectorization Plan"; 1155 if (!Plan.getName().empty()) 1156 OS << "\\n" << DOT::EscapeString(Plan.getName()); 1157 if (Plan.BackedgeTakenCount) { 1158 OS << ", where:\\n"; 1159 Plan.BackedgeTakenCount->print(OS, SlotTracker); 1160 OS << " := BackedgeTakenCount"; 1161 } 1162 OS << "\"]\n"; 1163 OS << "node [shape=rect, fontname=Courier, fontsize=30]\n"; 1164 OS << "edge [fontname=Courier, fontsize=30]\n"; 1165 OS << "compound=true\n"; 1166 1167 for (const VPBlockBase *Block : depth_first(Plan.getEntry())) 1168 dumpBlock(Block); 1169 1170 OS << "}\n"; 1171 } 1172 1173 void VPlanPrinter::dumpBlock(const VPBlockBase *Block) { 1174 if (const VPBasicBlock *BasicBlock = dyn_cast<VPBasicBlock>(Block)) 1175 dumpBasicBlock(BasicBlock); 1176 else if (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 1177 dumpRegion(Region); 1178 else 1179 llvm_unreachable("Unsupported kind of VPBlock."); 1180 } 1181 1182 void VPlanPrinter::drawEdge(const VPBlockBase *From, const VPBlockBase *To, 1183 bool Hidden, const Twine &Label) { 1184 // Due to "dot" we print an edge between two regions as an edge between the 1185 // exiting basic block and the entry basic of the respective regions. 1186 const VPBlockBase *Tail = From->getExitingBasicBlock(); 1187 const VPBlockBase *Head = To->getEntryBasicBlock(); 1188 OS << Indent << getUID(Tail) << " -> " << getUID(Head); 1189 OS << " [ label=\"" << Label << '\"'; 1190 if (Tail != From) 1191 OS << " ltail=" << getUID(From); 1192 if (Head != To) 1193 OS << " lhead=" << getUID(To); 1194 if (Hidden) 1195 OS << "; splines=none"; 1196 OS << "]\n"; 1197 } 1198 1199 void VPlanPrinter::dumpEdges(const VPBlockBase *Block) { 1200 auto &Successors = Block->getSuccessors(); 1201 if (Successors.size() == 1) 1202 drawEdge(Block, Successors.front(), false, ""); 1203 else if (Successors.size() == 2) { 1204 drawEdge(Block, Successors.front(), false, "T"); 1205 drawEdge(Block, Successors.back(), false, "F"); 1206 } else { 1207 unsigned SuccessorNumber = 0; 1208 for (auto *Successor : Successors) 1209 drawEdge(Block, Successor, false, Twine(SuccessorNumber++)); 1210 } 1211 } 1212 1213 void VPlanPrinter::dumpBasicBlock(const VPBasicBlock *BasicBlock) { 1214 // Implement dot-formatted dump by performing plain-text dump into the 1215 // temporary storage followed by some post-processing. 1216 OS << Indent << getUID(BasicBlock) << " [label =\n"; 1217 bumpIndent(1); 1218 std::string Str; 1219 raw_string_ostream SS(Str); 1220 // Use no indentation as we need to wrap the lines into quotes ourselves. 1221 BasicBlock->print(SS, "", SlotTracker); 1222 1223 // We need to process each line of the output separately, so split 1224 // single-string plain-text dump. 1225 SmallVector<StringRef, 0> Lines; 1226 StringRef(Str).rtrim('\n').split(Lines, "\n"); 1227 1228 auto EmitLine = [&](StringRef Line, StringRef Suffix) { 1229 OS << Indent << '"' << DOT::EscapeString(Line.str()) << "\\l\"" << Suffix; 1230 }; 1231 1232 // Don't need the "+" after the last line. 1233 for (auto Line : make_range(Lines.begin(), Lines.end() - 1)) 1234 EmitLine(Line, " +\n"); 1235 EmitLine(Lines.back(), "\n"); 1236 1237 bumpIndent(-1); 1238 OS << Indent << "]\n"; 1239 1240 dumpEdges(BasicBlock); 1241 } 1242 1243 void VPlanPrinter::dumpRegion(const VPRegionBlock *Region) { 1244 OS << Indent << "subgraph " << getUID(Region) << " {\n"; 1245 bumpIndent(1); 1246 OS << Indent << "fontname=Courier\n" 1247 << Indent << "label=\"" 1248 << DOT::EscapeString(Region->isReplicator() ? "<xVFxUF> " : "<x1> ") 1249 << DOT::EscapeString(Region->getName()) << "\"\n"; 1250 // Dump the blocks of the region. 1251 assert(Region->getEntry() && "Region contains no inner blocks."); 1252 for (const VPBlockBase *Block : depth_first(Region->getEntry())) 1253 dumpBlock(Block); 1254 bumpIndent(-1); 1255 OS << Indent << "}\n"; 1256 dumpEdges(Region); 1257 } 1258 1259 void VPlanIngredient::print(raw_ostream &O) const { 1260 if (auto *Inst = dyn_cast<Instruction>(V)) { 1261 if (!Inst->getType()->isVoidTy()) { 1262 Inst->printAsOperand(O, false); 1263 O << " = "; 1264 } 1265 O << Inst->getOpcodeName() << " "; 1266 unsigned E = Inst->getNumOperands(); 1267 if (E > 0) { 1268 Inst->getOperand(0)->printAsOperand(O, false); 1269 for (unsigned I = 1; I < E; ++I) 1270 Inst->getOperand(I)->printAsOperand(O << ", ", false); 1271 } 1272 } else // !Inst 1273 V->printAsOperand(O, false); 1274 } 1275 1276 void VPWidenCallRecipe::print(raw_ostream &O, const Twine &Indent, 1277 VPSlotTracker &SlotTracker) const { 1278 O << Indent << "WIDEN-CALL "; 1279 1280 auto *CI = cast<CallInst>(getUnderlyingInstr()); 1281 if (CI->getType()->isVoidTy()) 1282 O << "void "; 1283 else { 1284 printAsOperand(O, SlotTracker); 1285 O << " = "; 1286 } 1287 1288 O << "call @" << CI->getCalledFunction()->getName() << "("; 1289 printOperands(O, SlotTracker); 1290 O << ")"; 1291 } 1292 1293 void VPWidenSelectRecipe::print(raw_ostream &O, const Twine &Indent, 1294 VPSlotTracker &SlotTracker) const { 1295 O << Indent << "WIDEN-SELECT "; 1296 printAsOperand(O, SlotTracker); 1297 O << " = select "; 1298 getOperand(0)->printAsOperand(O, SlotTracker); 1299 O << ", "; 1300 getOperand(1)->printAsOperand(O, SlotTracker); 1301 O << ", "; 1302 getOperand(2)->printAsOperand(O, SlotTracker); 1303 O << (InvariantCond ? " (condition is loop invariant)" : ""); 1304 } 1305 1306 void VPWidenRecipe::print(raw_ostream &O, const Twine &Indent, 1307 VPSlotTracker &SlotTracker) const { 1308 O << Indent << "WIDEN "; 1309 printAsOperand(O, SlotTracker); 1310 O << " = " << getUnderlyingInstr()->getOpcodeName() << " "; 1311 printOperands(O, SlotTracker); 1312 } 1313 1314 void VPWidenIntOrFpInductionRecipe::print(raw_ostream &O, const Twine &Indent, 1315 VPSlotTracker &SlotTracker) const { 1316 O << Indent << "WIDEN-INDUCTION"; 1317 if (getTruncInst()) { 1318 O << "\\l\""; 1319 O << " +\n" << Indent << "\" " << VPlanIngredient(IV) << "\\l\""; 1320 O << " +\n" << Indent << "\" "; 1321 getVPValue(0)->printAsOperand(O, SlotTracker); 1322 } else 1323 O << " " << VPlanIngredient(IV); 1324 1325 O << ", "; 1326 getStepValue()->printAsOperand(O, SlotTracker); 1327 } 1328 1329 void VPWidenPointerInductionRecipe::print(raw_ostream &O, const Twine &Indent, 1330 VPSlotTracker &SlotTracker) const { 1331 O << Indent << "EMIT "; 1332 printAsOperand(O, SlotTracker); 1333 O << " = WIDEN-POINTER-INDUCTION "; 1334 getStartValue()->printAsOperand(O, SlotTracker); 1335 O << ", " << *IndDesc.getStep(); 1336 } 1337 1338 #endif 1339 1340 bool VPWidenIntOrFpInductionRecipe::isCanonical() const { 1341 auto *StartC = dyn_cast<ConstantInt>(getStartValue()->getLiveInIRValue()); 1342 auto *StepC = dyn_cast<SCEVConstant>(getInductionDescriptor().getStep()); 1343 return StartC && StartC->isZero() && StepC && StepC->isOne(); 1344 } 1345 1346 VPCanonicalIVPHIRecipe *VPScalarIVStepsRecipe::getCanonicalIV() const { 1347 return cast<VPCanonicalIVPHIRecipe>(getOperand(0)); 1348 } 1349 1350 bool VPScalarIVStepsRecipe::isCanonical() const { 1351 auto *CanIV = getCanonicalIV(); 1352 // The start value of the steps-recipe must match the start value of the 1353 // canonical induction and it must step by 1. 1354 if (CanIV->getStartValue() != getStartValue()) 1355 return false; 1356 auto *StepVPV = getStepValue(); 1357 if (StepVPV->getDef()) 1358 return false; 1359 auto *StepC = dyn_cast_or_null<ConstantInt>(StepVPV->getLiveInIRValue()); 1360 return StepC && StepC->isOne(); 1361 } 1362 1363 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1364 void VPScalarIVStepsRecipe::print(raw_ostream &O, const Twine &Indent, 1365 VPSlotTracker &SlotTracker) const { 1366 O << Indent; 1367 printAsOperand(O, SlotTracker); 1368 O << Indent << "= SCALAR-STEPS "; 1369 printOperands(O, SlotTracker); 1370 } 1371 1372 void VPWidenGEPRecipe::print(raw_ostream &O, const Twine &Indent, 1373 VPSlotTracker &SlotTracker) const { 1374 O << Indent << "WIDEN-GEP "; 1375 O << (IsPtrLoopInvariant ? "Inv" : "Var"); 1376 size_t IndicesNumber = IsIndexLoopInvariant.size(); 1377 for (size_t I = 0; I < IndicesNumber; ++I) 1378 O << "[" << (IsIndexLoopInvariant[I] ? "Inv" : "Var") << "]"; 1379 1380 O << " "; 1381 printAsOperand(O, SlotTracker); 1382 O << " = getelementptr "; 1383 printOperands(O, SlotTracker); 1384 } 1385 1386 void VPWidenPHIRecipe::print(raw_ostream &O, const Twine &Indent, 1387 VPSlotTracker &SlotTracker) const { 1388 O << Indent << "WIDEN-PHI "; 1389 1390 auto *OriginalPhi = cast<PHINode>(getUnderlyingValue()); 1391 // Unless all incoming values are modeled in VPlan print the original PHI 1392 // directly. 1393 // TODO: Remove once all VPWidenPHIRecipe instances keep all relevant incoming 1394 // values as VPValues. 1395 if (getNumOperands() != OriginalPhi->getNumOperands()) { 1396 O << VPlanIngredient(OriginalPhi); 1397 return; 1398 } 1399 1400 printAsOperand(O, SlotTracker); 1401 O << " = phi "; 1402 printOperands(O, SlotTracker); 1403 } 1404 1405 void VPBlendRecipe::print(raw_ostream &O, const Twine &Indent, 1406 VPSlotTracker &SlotTracker) const { 1407 O << Indent << "BLEND "; 1408 Phi->printAsOperand(O, false); 1409 O << " ="; 1410 if (getNumIncomingValues() == 1) { 1411 // Not a User of any mask: not really blending, this is a 1412 // single-predecessor phi. 1413 O << " "; 1414 getIncomingValue(0)->printAsOperand(O, SlotTracker); 1415 } else { 1416 for (unsigned I = 0, E = getNumIncomingValues(); I < E; ++I) { 1417 O << " "; 1418 getIncomingValue(I)->printAsOperand(O, SlotTracker); 1419 O << "/"; 1420 getMask(I)->printAsOperand(O, SlotTracker); 1421 } 1422 } 1423 } 1424 1425 void VPReductionRecipe::print(raw_ostream &O, const Twine &Indent, 1426 VPSlotTracker &SlotTracker) const { 1427 O << Indent << "REDUCE "; 1428 printAsOperand(O, SlotTracker); 1429 O << " = "; 1430 getChainOp()->printAsOperand(O, SlotTracker); 1431 O << " +"; 1432 if (isa<FPMathOperator>(getUnderlyingInstr())) 1433 O << getUnderlyingInstr()->getFastMathFlags(); 1434 O << " reduce." << Instruction::getOpcodeName(RdxDesc->getOpcode()) << " ("; 1435 getVecOp()->printAsOperand(O, SlotTracker); 1436 if (getCondOp()) { 1437 O << ", "; 1438 getCondOp()->printAsOperand(O, SlotTracker); 1439 } 1440 O << ")"; 1441 if (RdxDesc->IntermediateStore) 1442 O << " (with final reduction value stored in invariant address sank " 1443 "outside of loop)"; 1444 } 1445 1446 void VPReplicateRecipe::print(raw_ostream &O, const Twine &Indent, 1447 VPSlotTracker &SlotTracker) const { 1448 O << Indent << (IsUniform ? "CLONE " : "REPLICATE "); 1449 1450 if (!getUnderlyingInstr()->getType()->isVoidTy()) { 1451 printAsOperand(O, SlotTracker); 1452 O << " = "; 1453 } 1454 if (auto *CB = dyn_cast<CallBase>(getUnderlyingInstr())) { 1455 O << "call @" << CB->getCalledFunction()->getName() << "("; 1456 interleaveComma(make_range(op_begin(), op_begin() + (getNumOperands() - 1)), 1457 O, [&O, &SlotTracker](VPValue *Op) { 1458 Op->printAsOperand(O, SlotTracker); 1459 }); 1460 O << ")"; 1461 } else { 1462 O << Instruction::getOpcodeName(getUnderlyingInstr()->getOpcode()) << " "; 1463 printOperands(O, SlotTracker); 1464 } 1465 1466 if (AlsoPack) 1467 O << " (S->V)"; 1468 } 1469 1470 void VPPredInstPHIRecipe::print(raw_ostream &O, const Twine &Indent, 1471 VPSlotTracker &SlotTracker) const { 1472 O << Indent << "PHI-PREDICATED-INSTRUCTION "; 1473 printAsOperand(O, SlotTracker); 1474 O << " = "; 1475 printOperands(O, SlotTracker); 1476 } 1477 1478 void VPWidenMemoryInstructionRecipe::print(raw_ostream &O, const Twine &Indent, 1479 VPSlotTracker &SlotTracker) const { 1480 O << Indent << "WIDEN "; 1481 1482 if (!isStore()) { 1483 getVPSingleValue()->printAsOperand(O, SlotTracker); 1484 O << " = "; 1485 } 1486 O << Instruction::getOpcodeName(Ingredient.getOpcode()) << " "; 1487 1488 printOperands(O, SlotTracker); 1489 } 1490 #endif 1491 1492 void VPCanonicalIVPHIRecipe::execute(VPTransformState &State) { 1493 Value *Start = getStartValue()->getLiveInIRValue(); 1494 PHINode *EntryPart = PHINode::Create( 1495 Start->getType(), 2, "index", &*State.CFG.PrevBB->getFirstInsertionPt()); 1496 1497 BasicBlock *VectorPH = State.CFG.getPreheaderBBFor(this); 1498 EntryPart->addIncoming(Start, VectorPH); 1499 EntryPart->setDebugLoc(DL); 1500 for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part) 1501 State.set(this, EntryPart, Part); 1502 } 1503 1504 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1505 void VPCanonicalIVPHIRecipe::print(raw_ostream &O, const Twine &Indent, 1506 VPSlotTracker &SlotTracker) const { 1507 O << Indent << "EMIT "; 1508 printAsOperand(O, SlotTracker); 1509 O << " = CANONICAL-INDUCTION"; 1510 } 1511 #endif 1512 1513 bool VPWidenPointerInductionRecipe::onlyScalarsGenerated(ElementCount VF) { 1514 bool IsUniform = vputils::onlyFirstLaneUsed(this); 1515 return all_of(users(), 1516 [&](const VPUser *U) { return U->usesScalars(this); }) && 1517 (IsUniform || !VF.isScalable()); 1518 } 1519 1520 void VPExpandSCEVRecipe::execute(VPTransformState &State) { 1521 assert(!State.Instance && "cannot be used in per-lane"); 1522 const DataLayout &DL = State.CFG.PrevBB->getModule()->getDataLayout(); 1523 SCEVExpander Exp(SE, DL, "induction"); 1524 1525 Value *Res = Exp.expandCodeFor(Expr, Expr->getType(), 1526 &*State.Builder.GetInsertPoint()); 1527 1528 for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part) 1529 State.set(this, Res, Part); 1530 } 1531 1532 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1533 void VPExpandSCEVRecipe::print(raw_ostream &O, const Twine &Indent, 1534 VPSlotTracker &SlotTracker) const { 1535 O << Indent << "EMIT "; 1536 getVPSingleValue()->printAsOperand(O, SlotTracker); 1537 O << " = EXPAND SCEV " << *Expr; 1538 } 1539 #endif 1540 1541 void VPWidenCanonicalIVRecipe::execute(VPTransformState &State) { 1542 Value *CanonicalIV = State.get(getOperand(0), 0); 1543 Type *STy = CanonicalIV->getType(); 1544 IRBuilder<> Builder(State.CFG.PrevBB->getTerminator()); 1545 ElementCount VF = State.VF; 1546 Value *VStart = VF.isScalar() 1547 ? CanonicalIV 1548 : Builder.CreateVectorSplat(VF, CanonicalIV, "broadcast"); 1549 for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part) { 1550 Value *VStep = createStepForVF(Builder, STy, VF, Part); 1551 if (VF.isVector()) { 1552 VStep = Builder.CreateVectorSplat(VF, VStep); 1553 VStep = Builder.CreateAdd(VStep, Builder.CreateStepVector(VStep->getType())); 1554 } 1555 Value *CanonicalVectorIV = Builder.CreateAdd(VStart, VStep, "vec.iv"); 1556 State.set(this, CanonicalVectorIV, Part); 1557 } 1558 } 1559 1560 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1561 void VPWidenCanonicalIVRecipe::print(raw_ostream &O, const Twine &Indent, 1562 VPSlotTracker &SlotTracker) const { 1563 O << Indent << "EMIT "; 1564 printAsOperand(O, SlotTracker); 1565 O << " = WIDEN-CANONICAL-INDUCTION "; 1566 printOperands(O, SlotTracker); 1567 } 1568 #endif 1569 1570 void VPFirstOrderRecurrencePHIRecipe::execute(VPTransformState &State) { 1571 auto &Builder = State.Builder; 1572 // Create a vector from the initial value. 1573 auto *VectorInit = getStartValue()->getLiveInIRValue(); 1574 1575 Type *VecTy = State.VF.isScalar() 1576 ? VectorInit->getType() 1577 : VectorType::get(VectorInit->getType(), State.VF); 1578 1579 BasicBlock *VectorPH = State.CFG.getPreheaderBBFor(this); 1580 if (State.VF.isVector()) { 1581 auto *IdxTy = Builder.getInt32Ty(); 1582 auto *One = ConstantInt::get(IdxTy, 1); 1583 IRBuilder<>::InsertPointGuard Guard(Builder); 1584 Builder.SetInsertPoint(VectorPH->getTerminator()); 1585 auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, State.VF); 1586 auto *LastIdx = Builder.CreateSub(RuntimeVF, One); 1587 VectorInit = Builder.CreateInsertElement( 1588 PoisonValue::get(VecTy), VectorInit, LastIdx, "vector.recur.init"); 1589 } 1590 1591 // Create a phi node for the new recurrence. 1592 PHINode *EntryPart = PHINode::Create( 1593 VecTy, 2, "vector.recur", &*State.CFG.PrevBB->getFirstInsertionPt()); 1594 EntryPart->addIncoming(VectorInit, VectorPH); 1595 State.set(this, EntryPart, 0); 1596 } 1597 1598 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1599 void VPFirstOrderRecurrencePHIRecipe::print(raw_ostream &O, const Twine &Indent, 1600 VPSlotTracker &SlotTracker) const { 1601 O << Indent << "FIRST-ORDER-RECURRENCE-PHI "; 1602 printAsOperand(O, SlotTracker); 1603 O << " = phi "; 1604 printOperands(O, SlotTracker); 1605 } 1606 #endif 1607 1608 void VPReductionPHIRecipe::execute(VPTransformState &State) { 1609 PHINode *PN = cast<PHINode>(getUnderlyingValue()); 1610 auto &Builder = State.Builder; 1611 1612 // In order to support recurrences we need to be able to vectorize Phi nodes. 1613 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 1614 // stage #1: We create a new vector PHI node with no incoming edges. We'll use 1615 // this value when we vectorize all of the instructions that use the PHI. 1616 bool ScalarPHI = State.VF.isScalar() || IsInLoop; 1617 Type *VecTy = 1618 ScalarPHI ? PN->getType() : VectorType::get(PN->getType(), State.VF); 1619 1620 BasicBlock *HeaderBB = State.CFG.PrevBB; 1621 assert(State.CurrentVectorLoop->getHeader() == HeaderBB && 1622 "recipe must be in the vector loop header"); 1623 unsigned LastPartForNewPhi = isOrdered() ? 1 : State.UF; 1624 for (unsigned Part = 0; Part < LastPartForNewPhi; ++Part) { 1625 Value *EntryPart = 1626 PHINode::Create(VecTy, 2, "vec.phi", &*HeaderBB->getFirstInsertionPt()); 1627 State.set(this, EntryPart, Part); 1628 } 1629 1630 BasicBlock *VectorPH = State.CFG.getPreheaderBBFor(this); 1631 1632 // Reductions do not have to start at zero. They can start with 1633 // any loop invariant values. 1634 VPValue *StartVPV = getStartValue(); 1635 Value *StartV = StartVPV->getLiveInIRValue(); 1636 1637 Value *Iden = nullptr; 1638 RecurKind RK = RdxDesc.getRecurrenceKind(); 1639 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(RK) || 1640 RecurrenceDescriptor::isSelectCmpRecurrenceKind(RK)) { 1641 // MinMax reduction have the start value as their identify. 1642 if (ScalarPHI) { 1643 Iden = StartV; 1644 } else { 1645 IRBuilderBase::InsertPointGuard IPBuilder(Builder); 1646 Builder.SetInsertPoint(VectorPH->getTerminator()); 1647 StartV = Iden = 1648 Builder.CreateVectorSplat(State.VF, StartV, "minmax.ident"); 1649 } 1650 } else { 1651 Iden = RdxDesc.getRecurrenceIdentity(RK, VecTy->getScalarType(), 1652 RdxDesc.getFastMathFlags()); 1653 1654 if (!ScalarPHI) { 1655 Iden = Builder.CreateVectorSplat(State.VF, Iden); 1656 IRBuilderBase::InsertPointGuard IPBuilder(Builder); 1657 Builder.SetInsertPoint(VectorPH->getTerminator()); 1658 Constant *Zero = Builder.getInt32(0); 1659 StartV = Builder.CreateInsertElement(Iden, StartV, Zero); 1660 } 1661 } 1662 1663 for (unsigned Part = 0; Part < LastPartForNewPhi; ++Part) { 1664 Value *EntryPart = State.get(this, Part); 1665 // Make sure to add the reduction start value only to the 1666 // first unroll part. 1667 Value *StartVal = (Part == 0) ? StartV : Iden; 1668 cast<PHINode>(EntryPart)->addIncoming(StartVal, VectorPH); 1669 } 1670 } 1671 1672 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1673 void VPReductionPHIRecipe::print(raw_ostream &O, const Twine &Indent, 1674 VPSlotTracker &SlotTracker) const { 1675 O << Indent << "WIDEN-REDUCTION-PHI "; 1676 1677 printAsOperand(O, SlotTracker); 1678 O << " = phi "; 1679 printOperands(O, SlotTracker); 1680 } 1681 #endif 1682 1683 void VPWidenPHIRecipe::execute(VPTransformState &State) { 1684 assert(EnableVPlanNativePath && 1685 "Non-native vplans are not expected to have VPWidenPHIRecipes."); 1686 1687 // Currently we enter here in the VPlan-native path for non-induction 1688 // PHIs where all control flow is uniform. We simply widen these PHIs. 1689 // Create a vector phi with no operands - the vector phi operands will be 1690 // set at the end of vector code generation. 1691 VPBasicBlock *Parent = getParent(); 1692 VPRegionBlock *LoopRegion = Parent->getEnclosingLoopRegion(); 1693 unsigned StartIdx = 0; 1694 // For phis in header blocks of loop regions, use the index of the value 1695 // coming from the preheader. 1696 if (LoopRegion->getEntryBasicBlock() == Parent) { 1697 for (unsigned I = 0; I < getNumOperands(); ++I) { 1698 if (getIncomingBlock(I) == 1699 LoopRegion->getSinglePredecessor()->getExitingBasicBlock()) 1700 StartIdx = I; 1701 } 1702 } 1703 Value *Op0 = State.get(getOperand(StartIdx), 0); 1704 Type *VecTy = Op0->getType(); 1705 Value *VecPhi = State.Builder.CreatePHI(VecTy, 2, "vec.phi"); 1706 State.set(this, VecPhi, 0); 1707 } 1708 1709 template void DomTreeBuilder::Calculate<VPDominatorTree>(VPDominatorTree &DT); 1710 1711 void VPValue::replaceAllUsesWith(VPValue *New) { 1712 for (unsigned J = 0; J < getNumUsers();) { 1713 VPUser *User = Users[J]; 1714 unsigned NumUsers = getNumUsers(); 1715 for (unsigned I = 0, E = User->getNumOperands(); I < E; ++I) 1716 if (User->getOperand(I) == this) 1717 User->setOperand(I, New); 1718 // If a user got removed after updating the current user, the next user to 1719 // update will be moved to the current position, so we only need to 1720 // increment the index if the number of users did not change. 1721 if (NumUsers == getNumUsers()) 1722 J++; 1723 } 1724 } 1725 1726 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1727 void VPValue::printAsOperand(raw_ostream &OS, VPSlotTracker &Tracker) const { 1728 if (const Value *UV = getUnderlyingValue()) { 1729 OS << "ir<"; 1730 UV->printAsOperand(OS, false); 1731 OS << ">"; 1732 return; 1733 } 1734 1735 unsigned Slot = Tracker.getSlot(this); 1736 if (Slot == unsigned(-1)) 1737 OS << "<badref>"; 1738 else 1739 OS << "vp<%" << Tracker.getSlot(this) << ">"; 1740 } 1741 1742 void VPUser::printOperands(raw_ostream &O, VPSlotTracker &SlotTracker) const { 1743 interleaveComma(operands(), O, [&O, &SlotTracker](VPValue *Op) { 1744 Op->printAsOperand(O, SlotTracker); 1745 }); 1746 } 1747 #endif 1748 1749 void VPInterleavedAccessInfo::visitRegion(VPRegionBlock *Region, 1750 Old2NewTy &Old2New, 1751 InterleavedAccessInfo &IAI) { 1752 ReversePostOrderTraversal<VPBlockBase *> RPOT(Region->getEntry()); 1753 for (VPBlockBase *Base : RPOT) { 1754 visitBlock(Base, Old2New, IAI); 1755 } 1756 } 1757 1758 void VPInterleavedAccessInfo::visitBlock(VPBlockBase *Block, Old2NewTy &Old2New, 1759 InterleavedAccessInfo &IAI) { 1760 if (VPBasicBlock *VPBB = dyn_cast<VPBasicBlock>(Block)) { 1761 for (VPRecipeBase &VPI : *VPBB) { 1762 if (isa<VPHeaderPHIRecipe>(&VPI)) 1763 continue; 1764 assert(isa<VPInstruction>(&VPI) && "Can only handle VPInstructions"); 1765 auto *VPInst = cast<VPInstruction>(&VPI); 1766 1767 auto *Inst = dyn_cast_or_null<Instruction>(VPInst->getUnderlyingValue()); 1768 if (!Inst) 1769 continue; 1770 auto *IG = IAI.getInterleaveGroup(Inst); 1771 if (!IG) 1772 continue; 1773 1774 auto NewIGIter = Old2New.find(IG); 1775 if (NewIGIter == Old2New.end()) 1776 Old2New[IG] = new InterleaveGroup<VPInstruction>( 1777 IG->getFactor(), IG->isReverse(), IG->getAlign()); 1778 1779 if (Inst == IG->getInsertPos()) 1780 Old2New[IG]->setInsertPos(VPInst); 1781 1782 InterleaveGroupMap[VPInst] = Old2New[IG]; 1783 InterleaveGroupMap[VPInst]->insertMember( 1784 VPInst, IG->getIndex(Inst), 1785 Align(IG->isReverse() ? (-1) * int(IG->getFactor()) 1786 : IG->getFactor())); 1787 } 1788 } else if (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 1789 visitRegion(Region, Old2New, IAI); 1790 else 1791 llvm_unreachable("Unsupported kind of VPBlock."); 1792 } 1793 1794 VPInterleavedAccessInfo::VPInterleavedAccessInfo(VPlan &Plan, 1795 InterleavedAccessInfo &IAI) { 1796 Old2NewTy Old2New; 1797 visitRegion(Plan.getVectorLoopRegion(), Old2New, IAI); 1798 } 1799 1800 void VPSlotTracker::assignSlot(const VPValue *V) { 1801 assert(Slots.find(V) == Slots.end() && "VPValue already has a slot!"); 1802 Slots[V] = NextSlot++; 1803 } 1804 1805 void VPSlotTracker::assignSlots(const VPlan &Plan) { 1806 1807 for (const auto &P : Plan.VPExternalDefs) 1808 assignSlot(P.second); 1809 1810 assignSlot(&Plan.VectorTripCount); 1811 if (Plan.BackedgeTakenCount) 1812 assignSlot(Plan.BackedgeTakenCount); 1813 1814 ReversePostOrderTraversal< 1815 VPBlockRecursiveTraversalWrapper<const VPBlockBase *>> 1816 RPOT(VPBlockRecursiveTraversalWrapper<const VPBlockBase *>( 1817 Plan.getEntry())); 1818 for (const VPBasicBlock *VPBB : 1819 VPBlockUtils::blocksOnly<const VPBasicBlock>(RPOT)) 1820 for (const VPRecipeBase &Recipe : *VPBB) 1821 for (VPValue *Def : Recipe.definedValues()) 1822 assignSlot(Def); 1823 } 1824 1825 bool vputils::onlyFirstLaneUsed(VPValue *Def) { 1826 return all_of(Def->users(), 1827 [Def](VPUser *U) { return U->onlyFirstLaneUsed(Def); }); 1828 } 1829 1830 VPValue *vputils::getOrCreateVPValueForSCEVExpr(VPlan &Plan, const SCEV *Expr, 1831 ScalarEvolution &SE) { 1832 if (auto *E = dyn_cast<SCEVConstant>(Expr)) 1833 return Plan.getOrAddExternalDef(E->getValue()); 1834 if (auto *E = dyn_cast<SCEVUnknown>(Expr)) 1835 return Plan.getOrAddExternalDef(E->getValue()); 1836 1837 VPBasicBlock *Preheader = Plan.getEntry()->getEntryBasicBlock(); 1838 VPValue *Step = new VPExpandSCEVRecipe(Expr, SE); 1839 Preheader->appendRecipe(cast<VPRecipeBase>(Step->getDef())); 1840 return Step; 1841 } 1842