xref: /llvm-project/llvm/lib/Transforms/Vectorize/VPlan.cpp (revision 54a14c264a245ae31e40581ab21be2ca5b6b1962)
1 //===- VPlan.cpp - Vectorizer Plan ----------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This is the LLVM vectorization plan. It represents a candidate for
11 /// vectorization, allowing to plan and optimize how to vectorize a given loop
12 /// before generating LLVM-IR.
13 /// The vectorizer uses vectorization plans to estimate the costs of potential
14 /// candidates and if profitable to execute the desired plan, generating vector
15 /// LLVM-IR code.
16 ///
17 //===----------------------------------------------------------------------===//
18 
19 #include "VPlan.h"
20 #include "VPlanDominatorTree.h"
21 #include "llvm/ADT/DepthFirstIterator.h"
22 #include "llvm/ADT/PostOrderIterator.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/Twine.h"
26 #include "llvm/Analysis/IVDescriptors.h"
27 #include "llvm/Analysis/LoopInfo.h"
28 #include "llvm/IR/BasicBlock.h"
29 #include "llvm/IR/CFG.h"
30 #include "llvm/IR/InstrTypes.h"
31 #include "llvm/IR/Instruction.h"
32 #include "llvm/IR/Instructions.h"
33 #include "llvm/IR/Type.h"
34 #include "llvm/IR/Value.h"
35 #include "llvm/Support/Casting.h"
36 #include "llvm/Support/CommandLine.h"
37 #include "llvm/Support/Debug.h"
38 #include "llvm/Support/ErrorHandling.h"
39 #include "llvm/Support/GenericDomTreeConstruction.h"
40 #include "llvm/Support/GraphWriter.h"
41 #include "llvm/Support/raw_ostream.h"
42 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
43 #include <cassert>
44 #include <iterator>
45 #include <string>
46 #include <vector>
47 
48 using namespace llvm;
49 extern cl::opt<bool> EnableVPlanNativePath;
50 
51 #define DEBUG_TYPE "vplan"
52 
53 raw_ostream &llvm::operator<<(raw_ostream &OS, const VPValue &V) {
54   const VPInstruction *Instr = dyn_cast<VPInstruction>(&V);
55   VPSlotTracker SlotTracker(
56       (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr);
57   V.print(OS, SlotTracker);
58   return OS;
59 }
60 
61 VPValue::VPValue(const unsigned char SC, Value *UV, VPDef *Def)
62     : SubclassID(SC), UnderlyingVal(UV), Def(Def) {
63   if (Def)
64     Def->addDefinedValue(this);
65 }
66 
67 VPValue::~VPValue() {
68   assert(Users.empty() && "trying to delete a VPValue with remaining users");
69   if (Def)
70     Def->removeDefinedValue(this);
71 }
72 
73 void VPValue::print(raw_ostream &OS, VPSlotTracker &SlotTracker) const {
74   if (const VPRecipeBase *R = dyn_cast_or_null<VPRecipeBase>(Def))
75     R->print(OS, "", SlotTracker);
76   else
77     printAsOperand(OS, SlotTracker);
78 }
79 
80 void VPValue::dump() const {
81   const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this->Def);
82   VPSlotTracker SlotTracker(
83       (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr);
84   print(dbgs(), SlotTracker);
85   dbgs() << "\n";
86 }
87 
88 void VPDef::dump() const {
89   const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this);
90   VPSlotTracker SlotTracker(
91       (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr);
92   print(dbgs(), "", SlotTracker);
93   dbgs() << "\n";
94 }
95 
96 // Get the top-most entry block of \p Start. This is the entry block of the
97 // containing VPlan. This function is templated to support both const and non-const blocks
98 template <typename T> static T *getPlanEntry(T *Start) {
99   T *Next = Start;
100   T *Current = Start;
101   while ((Next = Next->getParent()))
102     Current = Next;
103 
104   SmallSetVector<T *, 8> WorkList;
105   WorkList.insert(Current);
106 
107   for (unsigned i = 0; i < WorkList.size(); i++) {
108     T *Current = WorkList[i];
109     if (Current->getNumPredecessors() == 0)
110       return Current;
111     auto &Predecessors = Current->getPredecessors();
112     WorkList.insert(Predecessors.begin(), Predecessors.end());
113   }
114 
115   llvm_unreachable("VPlan without any entry node without predecessors");
116 }
117 
118 VPlan *VPBlockBase::getPlan() { return getPlanEntry(this)->Plan; }
119 
120 const VPlan *VPBlockBase::getPlan() const { return getPlanEntry(this)->Plan; }
121 
122 /// \return the VPBasicBlock that is the entry of Block, possibly indirectly.
123 const VPBasicBlock *VPBlockBase::getEntryBasicBlock() const {
124   const VPBlockBase *Block = this;
125   while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
126     Block = Region->getEntry();
127   return cast<VPBasicBlock>(Block);
128 }
129 
130 VPBasicBlock *VPBlockBase::getEntryBasicBlock() {
131   VPBlockBase *Block = this;
132   while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
133     Block = Region->getEntry();
134   return cast<VPBasicBlock>(Block);
135 }
136 
137 void VPBlockBase::setPlan(VPlan *ParentPlan) {
138   assert(ParentPlan->getEntry() == this &&
139          "Can only set plan on its entry block.");
140   Plan = ParentPlan;
141 }
142 
143 /// \return the VPBasicBlock that is the exit of Block, possibly indirectly.
144 const VPBasicBlock *VPBlockBase::getExitBasicBlock() const {
145   const VPBlockBase *Block = this;
146   while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
147     Block = Region->getExit();
148   return cast<VPBasicBlock>(Block);
149 }
150 
151 VPBasicBlock *VPBlockBase::getExitBasicBlock() {
152   VPBlockBase *Block = this;
153   while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
154     Block = Region->getExit();
155   return cast<VPBasicBlock>(Block);
156 }
157 
158 VPBlockBase *VPBlockBase::getEnclosingBlockWithSuccessors() {
159   if (!Successors.empty() || !Parent)
160     return this;
161   assert(Parent->getExit() == this &&
162          "Block w/o successors not the exit of its parent.");
163   return Parent->getEnclosingBlockWithSuccessors();
164 }
165 
166 VPBlockBase *VPBlockBase::getEnclosingBlockWithPredecessors() {
167   if (!Predecessors.empty() || !Parent)
168     return this;
169   assert(Parent->getEntry() == this &&
170          "Block w/o predecessors not the entry of its parent.");
171   return Parent->getEnclosingBlockWithPredecessors();
172 }
173 
174 void VPBlockBase::deleteCFG(VPBlockBase *Entry) {
175   SmallVector<VPBlockBase *, 8> Blocks(depth_first(Entry));
176 
177   for (VPBlockBase *Block : Blocks)
178     delete Block;
179 }
180 
181 VPBasicBlock::iterator VPBasicBlock::getFirstNonPhi() {
182   iterator It = begin();
183   while (It != end() && (isa<VPWidenPHIRecipe>(&*It) ||
184                          isa<VPWidenIntOrFpInductionRecipe>(&*It) ||
185                          isa<VPPredInstPHIRecipe>(&*It) ||
186                          isa<VPWidenCanonicalIVRecipe>(&*It)))
187     It++;
188   return It;
189 }
190 
191 Value *VPTransformState::get(VPValue *Def, const VPIteration &Instance) {
192   if (!Def->getDef())
193     return Def->getLiveInIRValue();
194 
195   if (hasScalarValue(Def, Instance))
196     return Data.PerPartScalars[Def][Instance.Part][Instance.Lane];
197 
198   assert(hasVectorValue(Def, Instance.Part));
199   auto *VecPart = Data.PerPartOutput[Def][Instance.Part];
200   if (!VecPart->getType()->isVectorTy()) {
201     assert(Instance.Lane == 0 && "cannot get lane > 0 for scalar");
202     return VecPart;
203   }
204   // TODO: Cache created scalar values.
205   auto *Extract =
206       Builder.CreateExtractElement(VecPart, Builder.getInt32(Instance.Lane));
207   // set(Def, Extract, Instance);
208   return Extract;
209 }
210 
211 BasicBlock *
212 VPBasicBlock::createEmptyBasicBlock(VPTransformState::CFGState &CFG) {
213   // BB stands for IR BasicBlocks. VPBB stands for VPlan VPBasicBlocks.
214   // Pred stands for Predessor. Prev stands for Previous - last visited/created.
215   BasicBlock *PrevBB = CFG.PrevBB;
216   BasicBlock *NewBB = BasicBlock::Create(PrevBB->getContext(), getName(),
217                                          PrevBB->getParent(), CFG.LastBB);
218   LLVM_DEBUG(dbgs() << "LV: created " << NewBB->getName() << '\n');
219 
220   // Hook up the new basic block to its predecessors.
221   for (VPBlockBase *PredVPBlock : getHierarchicalPredecessors()) {
222     VPBasicBlock *PredVPBB = PredVPBlock->getExitBasicBlock();
223     auto &PredVPSuccessors = PredVPBB->getSuccessors();
224     BasicBlock *PredBB = CFG.VPBB2IRBB[PredVPBB];
225 
226     // In outer loop vectorization scenario, the predecessor BBlock may not yet
227     // be visited(backedge). Mark the VPBasicBlock for fixup at the end of
228     // vectorization. We do not encounter this case in inner loop vectorization
229     // as we start out by building a loop skeleton with the vector loop header
230     // and latch blocks. As a result, we never enter this function for the
231     // header block in the non VPlan-native path.
232     if (!PredBB) {
233       assert(EnableVPlanNativePath &&
234              "Unexpected null predecessor in non VPlan-native path");
235       CFG.VPBBsToFix.push_back(PredVPBB);
236       continue;
237     }
238 
239     assert(PredBB && "Predecessor basic-block not found building successor.");
240     auto *PredBBTerminator = PredBB->getTerminator();
241     LLVM_DEBUG(dbgs() << "LV: draw edge from" << PredBB->getName() << '\n');
242     if (isa<UnreachableInst>(PredBBTerminator)) {
243       assert(PredVPSuccessors.size() == 1 &&
244              "Predecessor ending w/o branch must have single successor.");
245       PredBBTerminator->eraseFromParent();
246       BranchInst::Create(NewBB, PredBB);
247     } else {
248       assert(PredVPSuccessors.size() == 2 &&
249              "Predecessor ending with branch must have two successors.");
250       unsigned idx = PredVPSuccessors.front() == this ? 0 : 1;
251       assert(!PredBBTerminator->getSuccessor(idx) &&
252              "Trying to reset an existing successor block.");
253       PredBBTerminator->setSuccessor(idx, NewBB);
254     }
255   }
256   return NewBB;
257 }
258 
259 void VPBasicBlock::execute(VPTransformState *State) {
260   bool Replica = State->Instance && !State->Instance->isFirstIteration();
261   VPBasicBlock *PrevVPBB = State->CFG.PrevVPBB;
262   VPBlockBase *SingleHPred = nullptr;
263   BasicBlock *NewBB = State->CFG.PrevBB; // Reuse it if possible.
264 
265   // 1. Create an IR basic block, or reuse the last one if possible.
266   // The last IR basic block is reused, as an optimization, in three cases:
267   // A. the first VPBB reuses the loop header BB - when PrevVPBB is null;
268   // B. when the current VPBB has a single (hierarchical) predecessor which
269   //    is PrevVPBB and the latter has a single (hierarchical) successor; and
270   // C. when the current VPBB is an entry of a region replica - where PrevVPBB
271   //    is the exit of this region from a previous instance, or the predecessor
272   //    of this region.
273   if (PrevVPBB && /* A */
274       !((SingleHPred = getSingleHierarchicalPredecessor()) &&
275         SingleHPred->getExitBasicBlock() == PrevVPBB &&
276         PrevVPBB->getSingleHierarchicalSuccessor()) && /* B */
277       !(Replica && getPredecessors().empty())) {       /* C */
278     NewBB = createEmptyBasicBlock(State->CFG);
279     State->Builder.SetInsertPoint(NewBB);
280     // Temporarily terminate with unreachable until CFG is rewired.
281     UnreachableInst *Terminator = State->Builder.CreateUnreachable();
282     State->Builder.SetInsertPoint(Terminator);
283     // Register NewBB in its loop. In innermost loops its the same for all BB's.
284     Loop *L = State->LI->getLoopFor(State->CFG.LastBB);
285     L->addBasicBlockToLoop(NewBB, *State->LI);
286     State->CFG.PrevBB = NewBB;
287   }
288 
289   // 2. Fill the IR basic block with IR instructions.
290   LLVM_DEBUG(dbgs() << "LV: vectorizing VPBB:" << getName()
291                     << " in BB:" << NewBB->getName() << '\n');
292 
293   State->CFG.VPBB2IRBB[this] = NewBB;
294   State->CFG.PrevVPBB = this;
295 
296   for (VPRecipeBase &Recipe : Recipes)
297     Recipe.execute(*State);
298 
299   VPValue *CBV;
300   if (EnableVPlanNativePath && (CBV = getCondBit())) {
301     Value *IRCBV = CBV->getUnderlyingValue();
302     assert(IRCBV && "Unexpected null underlying value for condition bit");
303 
304     // Condition bit value in a VPBasicBlock is used as the branch selector. In
305     // the VPlan-native path case, since all branches are uniform we generate a
306     // branch instruction using the condition value from vector lane 0 and dummy
307     // successors. The successors are fixed later when the successor blocks are
308     // visited.
309     Value *NewCond = State->Callback.getOrCreateVectorValues(IRCBV, 0);
310     NewCond = State->Builder.CreateExtractElement(NewCond,
311                                                   State->Builder.getInt32(0));
312 
313     // Replace the temporary unreachable terminator with the new conditional
314     // branch.
315     auto *CurrentTerminator = NewBB->getTerminator();
316     assert(isa<UnreachableInst>(CurrentTerminator) &&
317            "Expected to replace unreachable terminator with conditional "
318            "branch.");
319     auto *CondBr = BranchInst::Create(NewBB, nullptr, NewCond);
320     CondBr->setSuccessor(0, nullptr);
321     ReplaceInstWithInst(CurrentTerminator, CondBr);
322   }
323 
324   LLVM_DEBUG(dbgs() << "LV: filled BB:" << *NewBB);
325 }
326 
327 void VPBasicBlock::dropAllReferences(VPValue *NewValue) {
328   for (VPRecipeBase &R : Recipes) {
329     for (auto *Def : R.definedValues())
330       Def->replaceAllUsesWith(NewValue);
331 
332     for (unsigned I = 0, E = R.getNumOperands(); I != E; I++)
333       R.setOperand(I, NewValue);
334   }
335 }
336 
337 void VPRegionBlock::dropAllReferences(VPValue *NewValue) {
338   for (VPBlockBase *Block : depth_first(Entry))
339     // Drop all references in VPBasicBlocks and replace all uses with
340     // DummyValue.
341     Block->dropAllReferences(NewValue);
342 }
343 
344 void VPRegionBlock::execute(VPTransformState *State) {
345   ReversePostOrderTraversal<VPBlockBase *> RPOT(Entry);
346 
347   if (!isReplicator()) {
348     // Visit the VPBlocks connected to "this", starting from it.
349     for (VPBlockBase *Block : RPOT) {
350       if (EnableVPlanNativePath) {
351         // The inner loop vectorization path does not represent loop preheader
352         // and exit blocks as part of the VPlan. In the VPlan-native path, skip
353         // vectorizing loop preheader block. In future, we may replace this
354         // check with the check for loop preheader.
355         if (Block->getNumPredecessors() == 0)
356           continue;
357 
358         // Skip vectorizing loop exit block. In future, we may replace this
359         // check with the check for loop exit.
360         if (Block->getNumSuccessors() == 0)
361           continue;
362       }
363 
364       LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n');
365       Block->execute(State);
366     }
367     return;
368   }
369 
370   assert(!State->Instance && "Replicating a Region with non-null instance.");
371 
372   // Enter replicating mode.
373   State->Instance = VPIteration(0, 0);
374 
375   for (unsigned Part = 0, UF = State->UF; Part < UF; ++Part) {
376     State->Instance->Part = Part;
377     assert(!State->VF.isScalable() && "VF is assumed to be non scalable.");
378     for (unsigned Lane = 0, VF = State->VF.getKnownMinValue(); Lane < VF;
379          ++Lane) {
380       State->Instance->Lane = Lane;
381       // Visit the VPBlocks connected to \p this, starting from it.
382       for (VPBlockBase *Block : RPOT) {
383         LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n');
384         Block->execute(State);
385       }
386     }
387   }
388 
389   // Exit replicating mode.
390   State->Instance.reset();
391 }
392 
393 void VPRecipeBase::insertBefore(VPRecipeBase *InsertPos) {
394   assert(!Parent && "Recipe already in some VPBasicBlock");
395   assert(InsertPos->getParent() &&
396          "Insertion position not in any VPBasicBlock");
397   Parent = InsertPos->getParent();
398   Parent->getRecipeList().insert(InsertPos->getIterator(), this);
399 }
400 
401 void VPRecipeBase::insertAfter(VPRecipeBase *InsertPos) {
402   assert(!Parent && "Recipe already in some VPBasicBlock");
403   assert(InsertPos->getParent() &&
404          "Insertion position not in any VPBasicBlock");
405   Parent = InsertPos->getParent();
406   Parent->getRecipeList().insertAfter(InsertPos->getIterator(), this);
407 }
408 
409 void VPRecipeBase::removeFromParent() {
410   assert(getParent() && "Recipe not in any VPBasicBlock");
411   getParent()->getRecipeList().remove(getIterator());
412   Parent = nullptr;
413 }
414 
415 iplist<VPRecipeBase>::iterator VPRecipeBase::eraseFromParent() {
416   assert(getParent() && "Recipe not in any VPBasicBlock");
417   return getParent()->getRecipeList().erase(getIterator());
418 }
419 
420 void VPRecipeBase::moveAfter(VPRecipeBase *InsertPos) {
421   removeFromParent();
422   insertAfter(InsertPos);
423 }
424 
425 void VPRecipeBase::moveBefore(VPBasicBlock &BB,
426                               iplist<VPRecipeBase>::iterator I) {
427   assert(I == BB.end() || I->getParent() == &BB);
428   removeFromParent();
429   Parent = &BB;
430   BB.getRecipeList().insert(I, this);
431 }
432 
433 void VPInstruction::generateInstruction(VPTransformState &State,
434                                         unsigned Part) {
435   IRBuilder<> &Builder = State.Builder;
436 
437   if (Instruction::isBinaryOp(getOpcode())) {
438     Value *A = State.get(getOperand(0), Part);
439     Value *B = State.get(getOperand(1), Part);
440     Value *V = Builder.CreateBinOp((Instruction::BinaryOps)getOpcode(), A, B);
441     State.set(this, V, Part);
442     return;
443   }
444 
445   switch (getOpcode()) {
446   case VPInstruction::Not: {
447     Value *A = State.get(getOperand(0), Part);
448     Value *V = Builder.CreateNot(A);
449     State.set(this, V, Part);
450     break;
451   }
452   case VPInstruction::ICmpULE: {
453     Value *IV = State.get(getOperand(0), Part);
454     Value *TC = State.get(getOperand(1), Part);
455     Value *V = Builder.CreateICmpULE(IV, TC);
456     State.set(this, V, Part);
457     break;
458   }
459   case Instruction::Select: {
460     Value *Cond = State.get(getOperand(0), Part);
461     Value *Op1 = State.get(getOperand(1), Part);
462     Value *Op2 = State.get(getOperand(2), Part);
463     Value *V = Builder.CreateSelect(Cond, Op1, Op2);
464     State.set(this, V, Part);
465     break;
466   }
467   case VPInstruction::ActiveLaneMask: {
468     // Get first lane of vector induction variable.
469     Value *VIVElem0 = State.get(getOperand(0), VPIteration(Part, 0));
470     // Get the original loop tripcount.
471     Value *ScalarTC = State.TripCount;
472 
473     auto *Int1Ty = Type::getInt1Ty(Builder.getContext());
474     auto *PredTy = FixedVectorType::get(Int1Ty, State.VF.getKnownMinValue());
475     Instruction *Call = Builder.CreateIntrinsic(
476         Intrinsic::get_active_lane_mask, {PredTy, ScalarTC->getType()},
477         {VIVElem0, ScalarTC}, nullptr, "active.lane.mask");
478     State.set(this, Call, Part);
479     break;
480   }
481   default:
482     llvm_unreachable("Unsupported opcode for instruction");
483   }
484 }
485 
486 void VPInstruction::execute(VPTransformState &State) {
487   assert(!State.Instance && "VPInstruction executing an Instance");
488   for (unsigned Part = 0; Part < State.UF; ++Part)
489     generateInstruction(State, Part);
490 }
491 
492 void VPInstruction::dump() const {
493   VPSlotTracker SlotTracker(getParent()->getPlan());
494   print(dbgs(), "", SlotTracker);
495 }
496 
497 void VPInstruction::print(raw_ostream &O, const Twine &Indent,
498                           VPSlotTracker &SlotTracker) const {
499   O << "EMIT ";
500 
501   if (hasResult()) {
502     printAsOperand(O, SlotTracker);
503     O << " = ";
504   }
505 
506   switch (getOpcode()) {
507   case VPInstruction::Not:
508     O << "not";
509     break;
510   case VPInstruction::ICmpULE:
511     O << "icmp ule";
512     break;
513   case VPInstruction::SLPLoad:
514     O << "combined load";
515     break;
516   case VPInstruction::SLPStore:
517     O << "combined store";
518     break;
519   case VPInstruction::ActiveLaneMask:
520     O << "active lane mask";
521     break;
522 
523   default:
524     O << Instruction::getOpcodeName(getOpcode());
525   }
526 
527   for (const VPValue *Operand : operands()) {
528     O << " ";
529     Operand->printAsOperand(O, SlotTracker);
530   }
531 }
532 
533 /// Generate the code inside the body of the vectorized loop. Assumes a single
534 /// LoopVectorBody basic-block was created for this. Introduce additional
535 /// basic-blocks as needed, and fill them all.
536 void VPlan::execute(VPTransformState *State) {
537   // -1. Check if the backedge taken count is needed, and if so build it.
538   if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) {
539     Value *TC = State->TripCount;
540     IRBuilder<> Builder(State->CFG.PrevBB->getTerminator());
541     auto *TCMO = Builder.CreateSub(TC, ConstantInt::get(TC->getType(), 1),
542                                    "trip.count.minus.1");
543     auto VF = State->VF;
544     Value *VTCMO =
545         VF.isScalar() ? TCMO : Builder.CreateVectorSplat(VF, TCMO, "broadcast");
546     for (unsigned Part = 0, UF = State->UF; Part < UF; ++Part)
547       State->set(BackedgeTakenCount, VTCMO, Part);
548   }
549 
550   // 0. Set the reverse mapping from VPValues to Values for code generation.
551   for (auto &Entry : Value2VPValue)
552     State->VPValue2Value[Entry.second] = Entry.first;
553 
554   BasicBlock *VectorPreHeaderBB = State->CFG.PrevBB;
555   BasicBlock *VectorHeaderBB = VectorPreHeaderBB->getSingleSuccessor();
556   assert(VectorHeaderBB && "Loop preheader does not have a single successor.");
557 
558   // 1. Make room to generate basic-blocks inside loop body if needed.
559   BasicBlock *VectorLatchBB = VectorHeaderBB->splitBasicBlock(
560       VectorHeaderBB->getFirstInsertionPt(), "vector.body.latch");
561   Loop *L = State->LI->getLoopFor(VectorHeaderBB);
562   L->addBasicBlockToLoop(VectorLatchBB, *State->LI);
563   // Remove the edge between Header and Latch to allow other connections.
564   // Temporarily terminate with unreachable until CFG is rewired.
565   // Note: this asserts the generated code's assumption that
566   // getFirstInsertionPt() can be dereferenced into an Instruction.
567   VectorHeaderBB->getTerminator()->eraseFromParent();
568   State->Builder.SetInsertPoint(VectorHeaderBB);
569   UnreachableInst *Terminator = State->Builder.CreateUnreachable();
570   State->Builder.SetInsertPoint(Terminator);
571 
572   // 2. Generate code in loop body.
573   State->CFG.PrevVPBB = nullptr;
574   State->CFG.PrevBB = VectorHeaderBB;
575   State->CFG.LastBB = VectorLatchBB;
576 
577   for (VPBlockBase *Block : depth_first(Entry))
578     Block->execute(State);
579 
580   // Setup branch terminator successors for VPBBs in VPBBsToFix based on
581   // VPBB's successors.
582   for (auto VPBB : State->CFG.VPBBsToFix) {
583     assert(EnableVPlanNativePath &&
584            "Unexpected VPBBsToFix in non VPlan-native path");
585     BasicBlock *BB = State->CFG.VPBB2IRBB[VPBB];
586     assert(BB && "Unexpected null basic block for VPBB");
587 
588     unsigned Idx = 0;
589     auto *BBTerminator = BB->getTerminator();
590 
591     for (VPBlockBase *SuccVPBlock : VPBB->getHierarchicalSuccessors()) {
592       VPBasicBlock *SuccVPBB = SuccVPBlock->getEntryBasicBlock();
593       BBTerminator->setSuccessor(Idx, State->CFG.VPBB2IRBB[SuccVPBB]);
594       ++Idx;
595     }
596   }
597 
598   // 3. Merge the temporary latch created with the last basic-block filled.
599   BasicBlock *LastBB = State->CFG.PrevBB;
600   // Connect LastBB to VectorLatchBB to facilitate their merge.
601   assert((EnableVPlanNativePath ||
602           isa<UnreachableInst>(LastBB->getTerminator())) &&
603          "Expected InnerLoop VPlan CFG to terminate with unreachable");
604   assert((!EnableVPlanNativePath || isa<BranchInst>(LastBB->getTerminator())) &&
605          "Expected VPlan CFG to terminate with branch in NativePath");
606   LastBB->getTerminator()->eraseFromParent();
607   BranchInst::Create(VectorLatchBB, LastBB);
608 
609   // Merge LastBB with Latch.
610   bool Merged = MergeBlockIntoPredecessor(VectorLatchBB, nullptr, State->LI);
611   (void)Merged;
612   assert(Merged && "Could not merge last basic block with latch.");
613   VectorLatchBB = LastBB;
614 
615   // We do not attempt to preserve DT for outer loop vectorization currently.
616   if (!EnableVPlanNativePath)
617     updateDominatorTree(State->DT, VectorPreHeaderBB, VectorLatchBB,
618                         L->getExitBlock());
619 }
620 
621 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
622 LLVM_DUMP_METHOD
623 void VPlan::dump() const { dbgs() << *this << '\n'; }
624 #endif
625 
626 void VPlan::updateDominatorTree(DominatorTree *DT, BasicBlock *LoopPreHeaderBB,
627                                 BasicBlock *LoopLatchBB,
628                                 BasicBlock *LoopExitBB) {
629   BasicBlock *LoopHeaderBB = LoopPreHeaderBB->getSingleSuccessor();
630   assert(LoopHeaderBB && "Loop preheader does not have a single successor.");
631   // The vector body may be more than a single basic-block by this point.
632   // Update the dominator tree information inside the vector body by propagating
633   // it from header to latch, expecting only triangular control-flow, if any.
634   BasicBlock *PostDomSucc = nullptr;
635   for (auto *BB = LoopHeaderBB; BB != LoopLatchBB; BB = PostDomSucc) {
636     // Get the list of successors of this block.
637     std::vector<BasicBlock *> Succs(succ_begin(BB), succ_end(BB));
638     assert(Succs.size() <= 2 &&
639            "Basic block in vector loop has more than 2 successors.");
640     PostDomSucc = Succs[0];
641     if (Succs.size() == 1) {
642       assert(PostDomSucc->getSinglePredecessor() &&
643              "PostDom successor has more than one predecessor.");
644       DT->addNewBlock(PostDomSucc, BB);
645       continue;
646     }
647     BasicBlock *InterimSucc = Succs[1];
648     if (PostDomSucc->getSingleSuccessor() == InterimSucc) {
649       PostDomSucc = Succs[1];
650       InterimSucc = Succs[0];
651     }
652     assert(InterimSucc->getSingleSuccessor() == PostDomSucc &&
653            "One successor of a basic block does not lead to the other.");
654     assert(InterimSucc->getSinglePredecessor() &&
655            "Interim successor has more than one predecessor.");
656     assert(PostDomSucc->hasNPredecessors(2) &&
657            "PostDom successor has more than two predecessors.");
658     DT->addNewBlock(InterimSucc, BB);
659     DT->addNewBlock(PostDomSucc, BB);
660   }
661   // Latch block is a new dominator for the loop exit.
662   DT->changeImmediateDominator(LoopExitBB, LoopLatchBB);
663   assert(DT->verify(DominatorTree::VerificationLevel::Fast));
664 }
665 
666 const Twine VPlanPrinter::getUID(const VPBlockBase *Block) {
667   return (isa<VPRegionBlock>(Block) ? "cluster_N" : "N") +
668          Twine(getOrCreateBID(Block));
669 }
670 
671 const Twine VPlanPrinter::getOrCreateName(const VPBlockBase *Block) {
672   const std::string &Name = Block->getName();
673   if (!Name.empty())
674     return Name;
675   return "VPB" + Twine(getOrCreateBID(Block));
676 }
677 
678 void VPlanPrinter::dump() {
679   Depth = 1;
680   bumpIndent(0);
681   OS << "digraph VPlan {\n";
682   OS << "graph [labelloc=t, fontsize=30; label=\"Vectorization Plan";
683   if (!Plan.getName().empty())
684     OS << "\\n" << DOT::EscapeString(Plan.getName());
685   if (Plan.BackedgeTakenCount) {
686     OS << ", where:\\n";
687     Plan.BackedgeTakenCount->print(OS, SlotTracker);
688     OS << " := BackedgeTakenCount";
689   }
690   OS << "\"]\n";
691   OS << "node [shape=rect, fontname=Courier, fontsize=30]\n";
692   OS << "edge [fontname=Courier, fontsize=30]\n";
693   OS << "compound=true\n";
694 
695   for (const VPBlockBase *Block : depth_first(Plan.getEntry()))
696     dumpBlock(Block);
697 
698   OS << "}\n";
699 }
700 
701 void VPlanPrinter::dumpBlock(const VPBlockBase *Block) {
702   if (const VPBasicBlock *BasicBlock = dyn_cast<VPBasicBlock>(Block))
703     dumpBasicBlock(BasicBlock);
704   else if (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
705     dumpRegion(Region);
706   else
707     llvm_unreachable("Unsupported kind of VPBlock.");
708 }
709 
710 void VPlanPrinter::drawEdge(const VPBlockBase *From, const VPBlockBase *To,
711                             bool Hidden, const Twine &Label) {
712   // Due to "dot" we print an edge between two regions as an edge between the
713   // exit basic block and the entry basic of the respective regions.
714   const VPBlockBase *Tail = From->getExitBasicBlock();
715   const VPBlockBase *Head = To->getEntryBasicBlock();
716   OS << Indent << getUID(Tail) << " -> " << getUID(Head);
717   OS << " [ label=\"" << Label << '\"';
718   if (Tail != From)
719     OS << " ltail=" << getUID(From);
720   if (Head != To)
721     OS << " lhead=" << getUID(To);
722   if (Hidden)
723     OS << "; splines=none";
724   OS << "]\n";
725 }
726 
727 void VPlanPrinter::dumpEdges(const VPBlockBase *Block) {
728   auto &Successors = Block->getSuccessors();
729   if (Successors.size() == 1)
730     drawEdge(Block, Successors.front(), false, "");
731   else if (Successors.size() == 2) {
732     drawEdge(Block, Successors.front(), false, "T");
733     drawEdge(Block, Successors.back(), false, "F");
734   } else {
735     unsigned SuccessorNumber = 0;
736     for (auto *Successor : Successors)
737       drawEdge(Block, Successor, false, Twine(SuccessorNumber++));
738   }
739 }
740 
741 void VPlanPrinter::dumpBasicBlock(const VPBasicBlock *BasicBlock) {
742   OS << Indent << getUID(BasicBlock) << " [label =\n";
743   bumpIndent(1);
744   OS << Indent << "\"" << DOT::EscapeString(BasicBlock->getName()) << ":\\n\"";
745   bumpIndent(1);
746 
747   // Dump the block predicate.
748   const VPValue *Pred = BasicBlock->getPredicate();
749   if (Pred) {
750     OS << " +\n" << Indent << " \"BlockPredicate: \"";
751     if (const VPInstruction *PredI = dyn_cast<VPInstruction>(Pred)) {
752       PredI->printAsOperand(OS, SlotTracker);
753       OS << " (" << DOT::EscapeString(PredI->getParent()->getName())
754          << ")\\l\"";
755     } else
756       Pred->printAsOperand(OS, SlotTracker);
757   }
758 
759   for (const VPRecipeBase &Recipe : *BasicBlock) {
760     OS << " +\n" << Indent << "\"";
761     Recipe.print(OS, Indent, SlotTracker);
762     OS << "\\l\"";
763   }
764 
765   // Dump the condition bit.
766   const VPValue *CBV = BasicBlock->getCondBit();
767   if (CBV) {
768     OS << " +\n" << Indent << " \"CondBit: ";
769     if (const VPInstruction *CBI = dyn_cast<VPInstruction>(CBV)) {
770       CBI->printAsOperand(OS, SlotTracker);
771       OS << " (" << DOT::EscapeString(CBI->getParent()->getName()) << ")\\l\"";
772     } else {
773       CBV->printAsOperand(OS, SlotTracker);
774       OS << "\"";
775     }
776   }
777 
778   bumpIndent(-2);
779   OS << "\n" << Indent << "]\n";
780   dumpEdges(BasicBlock);
781 }
782 
783 void VPlanPrinter::dumpRegion(const VPRegionBlock *Region) {
784   OS << Indent << "subgraph " << getUID(Region) << " {\n";
785   bumpIndent(1);
786   OS << Indent << "fontname=Courier\n"
787      << Indent << "label=\""
788      << DOT::EscapeString(Region->isReplicator() ? "<xVFxUF> " : "<x1> ")
789      << DOT::EscapeString(Region->getName()) << "\"\n";
790   // Dump the blocks of the region.
791   assert(Region->getEntry() && "Region contains no inner blocks.");
792   for (const VPBlockBase *Block : depth_first(Region->getEntry()))
793     dumpBlock(Block);
794   bumpIndent(-1);
795   OS << Indent << "}\n";
796   dumpEdges(Region);
797 }
798 
799 void VPlanPrinter::printAsIngredient(raw_ostream &O, const Value *V) {
800   std::string IngredientString;
801   raw_string_ostream RSO(IngredientString);
802   if (auto *Inst = dyn_cast<Instruction>(V)) {
803     if (!Inst->getType()->isVoidTy()) {
804       Inst->printAsOperand(RSO, false);
805       RSO << " = ";
806     }
807     RSO << Inst->getOpcodeName() << " ";
808     unsigned E = Inst->getNumOperands();
809     if (E > 0) {
810       Inst->getOperand(0)->printAsOperand(RSO, false);
811       for (unsigned I = 1; I < E; ++I)
812         Inst->getOperand(I)->printAsOperand(RSO << ", ", false);
813     }
814   } else // !Inst
815     V->printAsOperand(RSO, false);
816   RSO.flush();
817   O << DOT::EscapeString(IngredientString);
818 }
819 
820 void VPWidenCallRecipe::print(raw_ostream &O, const Twine &Indent,
821                               VPSlotTracker &SlotTracker) const {
822   O << "WIDEN-CALL ";
823 
824   auto *CI = cast<CallInst>(getUnderlyingInstr());
825   if (CI->getType()->isVoidTy())
826     O << "void ";
827   else {
828     printAsOperand(O, SlotTracker);
829     O << " = ";
830   }
831 
832   O << "call @" << CI->getCalledFunction()->getName() << "(";
833   printOperands(O, SlotTracker);
834   O << ")";
835 }
836 
837 void VPWidenSelectRecipe::print(raw_ostream &O, const Twine &Indent,
838                                 VPSlotTracker &SlotTracker) const {
839   O << "WIDEN-SELECT ";
840   printAsOperand(O, SlotTracker);
841   O << " = select ";
842   getOperand(0)->printAsOperand(O, SlotTracker);
843   O << ", ";
844   getOperand(1)->printAsOperand(O, SlotTracker);
845   O << ", ";
846   getOperand(2)->printAsOperand(O, SlotTracker);
847   O << (InvariantCond ? " (condition is loop invariant)" : "");
848 }
849 
850 void VPWidenRecipe::print(raw_ostream &O, const Twine &Indent,
851                           VPSlotTracker &SlotTracker) const {
852   O << "WIDEN ";
853   printAsOperand(O, SlotTracker);
854   O << " = " << getUnderlyingInstr()->getOpcodeName() << " ";
855   printOperands(O, SlotTracker);
856 }
857 
858 void VPWidenIntOrFpInductionRecipe::print(raw_ostream &O, const Twine &Indent,
859                                           VPSlotTracker &SlotTracker) const {
860   O << "WIDEN-INDUCTION";
861   if (getTruncInst()) {
862     O << "\\l\"";
863     O << " +\n" << Indent << "\"  " << VPlanIngredient(IV) << "\\l\"";
864     O << " +\n" << Indent << "\"  ";
865     getVPValue(0)->printAsOperand(O, SlotTracker);
866   } else
867     O << " " << VPlanIngredient(IV);
868 }
869 
870 void VPWidenGEPRecipe::print(raw_ostream &O, const Twine &Indent,
871                              VPSlotTracker &SlotTracker) const {
872   O << "WIDEN-GEP ";
873   O << (IsPtrLoopInvariant ? "Inv" : "Var");
874   size_t IndicesNumber = IsIndexLoopInvariant.size();
875   for (size_t I = 0; I < IndicesNumber; ++I)
876     O << "[" << (IsIndexLoopInvariant[I] ? "Inv" : "Var") << "]";
877 
878   O << " ";
879   printAsOperand(O, SlotTracker);
880   O << " = getelementptr ";
881   printOperands(O, SlotTracker);
882 }
883 
884 void VPWidenPHIRecipe::print(raw_ostream &O, const Twine &Indent,
885                              VPSlotTracker &SlotTracker) const {
886   O << "WIDEN-PHI " << VPlanIngredient(getUnderlyingValue());
887 }
888 
889 void VPBlendRecipe::print(raw_ostream &O, const Twine &Indent,
890                           VPSlotTracker &SlotTracker) const {
891   O << "BLEND ";
892   Phi->printAsOperand(O, false);
893   O << " =";
894   if (getNumIncomingValues() == 1) {
895     // Not a User of any mask: not really blending, this is a
896     // single-predecessor phi.
897     O << " ";
898     getIncomingValue(0)->printAsOperand(O, SlotTracker);
899   } else {
900     for (unsigned I = 0, E = getNumIncomingValues(); I < E; ++I) {
901       O << " ";
902       getIncomingValue(I)->printAsOperand(O, SlotTracker);
903       O << "/";
904       getMask(I)->printAsOperand(O, SlotTracker);
905     }
906   }
907 }
908 
909 void VPReductionRecipe::print(raw_ostream &O, const Twine &Indent,
910                               VPSlotTracker &SlotTracker) const {
911   O << "REDUCE ";
912   printAsOperand(O, SlotTracker);
913   O << " = ";
914   getChainOp()->printAsOperand(O, SlotTracker);
915   O << " + reduce." << Instruction::getOpcodeName(RdxDesc->getOpcode())
916     << " (";
917   getVecOp()->printAsOperand(O, SlotTracker);
918   if (getCondOp()) {
919     O << ", ";
920     getCondOp()->printAsOperand(O, SlotTracker);
921   }
922   O << ")";
923 }
924 
925 void VPReplicateRecipe::print(raw_ostream &O, const Twine &Indent,
926                               VPSlotTracker &SlotTracker) const {
927   O << (IsUniform ? "CLONE " : "REPLICATE ");
928 
929   if (!getUnderlyingInstr()->getType()->isVoidTy()) {
930     printAsOperand(O, SlotTracker);
931     O << " = ";
932   }
933   O << Instruction::getOpcodeName(getUnderlyingInstr()->getOpcode()) << " ";
934   printOperands(O, SlotTracker);
935 
936   if (AlsoPack)
937     O << " (S->V)";
938 }
939 
940 void VPPredInstPHIRecipe::print(raw_ostream &O, const Twine &Indent,
941                                 VPSlotTracker &SlotTracker) const {
942   O << "PHI-PREDICATED-INSTRUCTION ";
943   printAsOperand(O, SlotTracker);
944   O << " = ";
945   printOperands(O, SlotTracker);
946 }
947 
948 void VPWidenMemoryInstructionRecipe::print(raw_ostream &O, const Twine &Indent,
949                                            VPSlotTracker &SlotTracker) const {
950   O << "WIDEN ";
951 
952   if (!isStore()) {
953     getVPValue()->printAsOperand(O, SlotTracker);
954     O << " = ";
955   }
956   O << Instruction::getOpcodeName(Ingredient.getOpcode()) << " ";
957 
958   printOperands(O, SlotTracker);
959 }
960 
961 void VPWidenCanonicalIVRecipe::execute(VPTransformState &State) {
962   Value *CanonicalIV = State.CanonicalIV;
963   Type *STy = CanonicalIV->getType();
964   IRBuilder<> Builder(State.CFG.PrevBB->getTerminator());
965   ElementCount VF = State.VF;
966   assert(!VF.isScalable() && "the code following assumes non scalables ECs");
967   Value *VStart = VF.isScalar()
968                       ? CanonicalIV
969                       : Builder.CreateVectorSplat(VF.getKnownMinValue(),
970                                                   CanonicalIV, "broadcast");
971   for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part) {
972     SmallVector<Constant *, 8> Indices;
973     for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane)
974       Indices.push_back(
975           ConstantInt::get(STy, Part * VF.getKnownMinValue() + Lane));
976     // If VF == 1, there is only one iteration in the loop above, thus the
977     // element pushed back into Indices is ConstantInt::get(STy, Part)
978     Constant *VStep =
979         VF.isScalar() ? Indices.back() : ConstantVector::get(Indices);
980     // Add the consecutive indices to the vector value.
981     Value *CanonicalVectorIV = Builder.CreateAdd(VStart, VStep, "vec.iv");
982     State.set(getVPValue(), CanonicalVectorIV, Part);
983   }
984 }
985 
986 void VPWidenCanonicalIVRecipe::print(raw_ostream &O, const Twine &Indent,
987                                      VPSlotTracker &SlotTracker) const {
988   O << "EMIT ";
989   getVPValue()->printAsOperand(O, SlotTracker);
990   O << " = WIDEN-CANONICAL-INDUCTION";
991 }
992 
993 template void DomTreeBuilder::Calculate<VPDominatorTree>(VPDominatorTree &DT);
994 
995 void VPValue::replaceAllUsesWith(VPValue *New) {
996   for (unsigned J = 0; J < getNumUsers();) {
997     VPUser *User = Users[J];
998     unsigned NumUsers = getNumUsers();
999     for (unsigned I = 0, E = User->getNumOperands(); I < E; ++I)
1000       if (User->getOperand(I) == this)
1001         User->setOperand(I, New);
1002     // If a user got removed after updating the current user, the next user to
1003     // update will be moved to the current position, so we only need to
1004     // increment the index if the number of users did not change.
1005     if (NumUsers == getNumUsers())
1006       J++;
1007   }
1008 }
1009 
1010 void VPValue::printAsOperand(raw_ostream &OS, VPSlotTracker &Tracker) const {
1011   if (const Value *UV = getUnderlyingValue()) {
1012     OS << "ir<";
1013     UV->printAsOperand(OS, false);
1014     OS << ">";
1015     return;
1016   }
1017 
1018   unsigned Slot = Tracker.getSlot(this);
1019   if (Slot == unsigned(-1))
1020     OS << "<badref>";
1021   else
1022     OS << "vp<%" << Tracker.getSlot(this) << ">";
1023 }
1024 
1025 void VPUser::printOperands(raw_ostream &O, VPSlotTracker &SlotTracker) const {
1026   interleaveComma(operands(), O, [&O, &SlotTracker](VPValue *Op) {
1027     Op->printAsOperand(O, SlotTracker);
1028   });
1029 }
1030 
1031 void VPInterleavedAccessInfo::visitRegion(VPRegionBlock *Region,
1032                                           Old2NewTy &Old2New,
1033                                           InterleavedAccessInfo &IAI) {
1034   ReversePostOrderTraversal<VPBlockBase *> RPOT(Region->getEntry());
1035   for (VPBlockBase *Base : RPOT) {
1036     visitBlock(Base, Old2New, IAI);
1037   }
1038 }
1039 
1040 void VPInterleavedAccessInfo::visitBlock(VPBlockBase *Block, Old2NewTy &Old2New,
1041                                          InterleavedAccessInfo &IAI) {
1042   if (VPBasicBlock *VPBB = dyn_cast<VPBasicBlock>(Block)) {
1043     for (VPRecipeBase &VPI : *VPBB) {
1044       assert(isa<VPInstruction>(&VPI) && "Can only handle VPInstructions");
1045       auto *VPInst = cast<VPInstruction>(&VPI);
1046       auto *Inst = cast<Instruction>(VPInst->getUnderlyingValue());
1047       auto *IG = IAI.getInterleaveGroup(Inst);
1048       if (!IG)
1049         continue;
1050 
1051       auto NewIGIter = Old2New.find(IG);
1052       if (NewIGIter == Old2New.end())
1053         Old2New[IG] = new InterleaveGroup<VPInstruction>(
1054             IG->getFactor(), IG->isReverse(), IG->getAlign());
1055 
1056       if (Inst == IG->getInsertPos())
1057         Old2New[IG]->setInsertPos(VPInst);
1058 
1059       InterleaveGroupMap[VPInst] = Old2New[IG];
1060       InterleaveGroupMap[VPInst]->insertMember(
1061           VPInst, IG->getIndex(Inst),
1062           Align(IG->isReverse() ? (-1) * int(IG->getFactor())
1063                                 : IG->getFactor()));
1064     }
1065   } else if (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
1066     visitRegion(Region, Old2New, IAI);
1067   else
1068     llvm_unreachable("Unsupported kind of VPBlock.");
1069 }
1070 
1071 VPInterleavedAccessInfo::VPInterleavedAccessInfo(VPlan &Plan,
1072                                                  InterleavedAccessInfo &IAI) {
1073   Old2NewTy Old2New;
1074   visitRegion(cast<VPRegionBlock>(Plan.getEntry()), Old2New, IAI);
1075 }
1076 
1077 void VPSlotTracker::assignSlot(const VPValue *V) {
1078   assert(Slots.find(V) == Slots.end() && "VPValue already has a slot!");
1079   Slots[V] = NextSlot++;
1080 }
1081 
1082 void VPSlotTracker::assignSlots(const VPBlockBase *VPBB) {
1083   if (auto *Region = dyn_cast<VPRegionBlock>(VPBB))
1084     assignSlots(Region);
1085   else
1086     assignSlots(cast<VPBasicBlock>(VPBB));
1087 }
1088 
1089 void VPSlotTracker::assignSlots(const VPRegionBlock *Region) {
1090   ReversePostOrderTraversal<const VPBlockBase *> RPOT(Region->getEntry());
1091   for (const VPBlockBase *Block : RPOT)
1092     assignSlots(Block);
1093 }
1094 
1095 void VPSlotTracker::assignSlots(const VPBasicBlock *VPBB) {
1096   for (const VPRecipeBase &Recipe : *VPBB) {
1097     for (VPValue *Def : Recipe.definedValues())
1098       assignSlot(Def);
1099   }
1100 }
1101 
1102 void VPSlotTracker::assignSlots(const VPlan &Plan) {
1103 
1104   for (const VPValue *V : Plan.VPExternalDefs)
1105     assignSlot(V);
1106 
1107   if (Plan.BackedgeTakenCount)
1108     assignSlot(Plan.BackedgeTakenCount);
1109 
1110   ReversePostOrderTraversal<const VPBlockBase *> RPOT(Plan.getEntry());
1111   for (const VPBlockBase *Block : RPOT)
1112     assignSlots(Block);
1113 }
1114