1 //===- VPlan.cpp - Vectorizer Plan ----------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This is the LLVM vectorization plan. It represents a candidate for 11 /// vectorization, allowing to plan and optimize how to vectorize a given loop 12 /// before generating LLVM-IR. 13 /// The vectorizer uses vectorization plans to estimate the costs of potential 14 /// candidates and if profitable to execute the desired plan, generating vector 15 /// LLVM-IR code. 16 /// 17 //===----------------------------------------------------------------------===// 18 19 #include "VPlan.h" 20 #include "VPlanDominatorTree.h" 21 #include "llvm/ADT/DepthFirstIterator.h" 22 #include "llvm/ADT/PostOrderIterator.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/Twine.h" 25 #include "llvm/Analysis/LoopInfo.h" 26 #include "llvm/IR/BasicBlock.h" 27 #include "llvm/IR/CFG.h" 28 #include "llvm/IR/InstrTypes.h" 29 #include "llvm/IR/Instruction.h" 30 #include "llvm/IR/Instructions.h" 31 #include "llvm/IR/Type.h" 32 #include "llvm/IR/Value.h" 33 #include "llvm/Support/Casting.h" 34 #include "llvm/Support/CommandLine.h" 35 #include "llvm/Support/Debug.h" 36 #include "llvm/Support/ErrorHandling.h" 37 #include "llvm/Support/GenericDomTreeConstruction.h" 38 #include "llvm/Support/GraphWriter.h" 39 #include "llvm/Support/raw_ostream.h" 40 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 41 #include <cassert> 42 #include <iterator> 43 #include <string> 44 #include <vector> 45 46 using namespace llvm; 47 extern cl::opt<bool> EnableVPlanNativePath; 48 49 #define DEBUG_TYPE "vplan" 50 51 raw_ostream &llvm::operator<<(raw_ostream &OS, const VPValue &V) { 52 const VPInstruction *Instr = dyn_cast<VPInstruction>(&V); 53 VPSlotTracker SlotTracker( 54 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr); 55 V.print(OS, SlotTracker); 56 return OS; 57 } 58 59 VPValue::VPValue(const unsigned char SC, Value *UV, VPDef *Def) 60 : SubclassID(SC), UnderlyingVal(UV), Def(Def) { 61 if (Def) 62 Def->addDefinedValue(this); 63 } 64 65 VPValue::~VPValue() { 66 assert(Users.empty() && "trying to delete a VPValue with remaining users"); 67 if (Def) 68 Def->removeDefinedValue(this); 69 } 70 71 void VPValue::print(raw_ostream &OS, VPSlotTracker &SlotTracker) const { 72 if (const VPInstruction *Instr = dyn_cast<VPInstruction>(this)) 73 Instr->print(OS, SlotTracker); 74 else 75 printAsOperand(OS, SlotTracker); 76 } 77 78 void VPValue::dump() const { 79 const VPInstruction *Instr = dyn_cast<VPInstruction>(this); 80 VPSlotTracker SlotTracker( 81 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr); 82 print(dbgs(), SlotTracker); 83 dbgs() << "\n"; 84 } 85 86 void VPRecipeBase::dump() const { 87 VPSlotTracker SlotTracker(nullptr); 88 print(dbgs(), "", SlotTracker); 89 dbgs() << "\n"; 90 } 91 92 VPUser *VPRecipeBase::toVPUser() { 93 if (auto *U = dyn_cast<VPInstruction>(this)) 94 return U; 95 if (auto *U = dyn_cast<VPWidenRecipe>(this)) 96 return U; 97 if (auto *U = dyn_cast<VPWidenCallRecipe>(this)) 98 return U; 99 if (auto *U = dyn_cast<VPWidenSelectRecipe>(this)) 100 return U; 101 if (auto *U = dyn_cast<VPWidenGEPRecipe>(this)) 102 return U; 103 if (auto *U = dyn_cast<VPBlendRecipe>(this)) 104 return U; 105 if (auto *U = dyn_cast<VPInterleaveRecipe>(this)) 106 return U; 107 if (auto *U = dyn_cast<VPReplicateRecipe>(this)) 108 return U; 109 if (auto *U = dyn_cast<VPBranchOnMaskRecipe>(this)) 110 return U; 111 if (auto *U = dyn_cast<VPWidenMemoryInstructionRecipe>(this)) 112 return U; 113 return nullptr; 114 } 115 116 VPValue *VPRecipeBase::toVPValue() { 117 if (auto *V = dyn_cast<VPInstruction>(this)) 118 return V; 119 if (auto *V = dyn_cast<VPWidenMemoryInstructionRecipe>(this)) 120 return V; 121 if (auto *V = dyn_cast<VPWidenCallRecipe>(this)) 122 return V; 123 if (auto *V = dyn_cast<VPWidenSelectRecipe>(this)) 124 return V; 125 if (auto *V = dyn_cast<VPWidenGEPRecipe>(this)) 126 return V; 127 return nullptr; 128 } 129 130 const VPValue *VPRecipeBase::toVPValue() const { 131 if (auto *V = dyn_cast<VPInstruction>(this)) 132 return V; 133 if (auto *V = dyn_cast<VPWidenMemoryInstructionRecipe>(this)) 134 return V; 135 if (auto *V = dyn_cast<VPWidenCallRecipe>(this)) 136 return V; 137 if (auto *V = dyn_cast<VPWidenSelectRecipe>(this)) 138 return V; 139 if (auto *V = dyn_cast<VPWidenGEPRecipe>(this)) 140 return V; 141 return nullptr; 142 } 143 144 // Get the top-most entry block of \p Start. This is the entry block of the 145 // containing VPlan. This function is templated to support both const and non-const blocks 146 template <typename T> static T *getPlanEntry(T *Start) { 147 T *Next = Start; 148 T *Current = Start; 149 while ((Next = Next->getParent())) 150 Current = Next; 151 152 SmallSetVector<T *, 8> WorkList; 153 WorkList.insert(Current); 154 155 for (unsigned i = 0; i < WorkList.size(); i++) { 156 T *Current = WorkList[i]; 157 if (Current->getNumPredecessors() == 0) 158 return Current; 159 auto &Predecessors = Current->getPredecessors(); 160 WorkList.insert(Predecessors.begin(), Predecessors.end()); 161 } 162 163 llvm_unreachable("VPlan without any entry node without predecessors"); 164 } 165 166 VPlan *VPBlockBase::getPlan() { return getPlanEntry(this)->Plan; } 167 168 const VPlan *VPBlockBase::getPlan() const { return getPlanEntry(this)->Plan; } 169 170 /// \return the VPBasicBlock that is the entry of Block, possibly indirectly. 171 const VPBasicBlock *VPBlockBase::getEntryBasicBlock() const { 172 const VPBlockBase *Block = this; 173 while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 174 Block = Region->getEntry(); 175 return cast<VPBasicBlock>(Block); 176 } 177 178 VPBasicBlock *VPBlockBase::getEntryBasicBlock() { 179 VPBlockBase *Block = this; 180 while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 181 Block = Region->getEntry(); 182 return cast<VPBasicBlock>(Block); 183 } 184 185 void VPBlockBase::setPlan(VPlan *ParentPlan) { 186 assert(ParentPlan->getEntry() == this && 187 "Can only set plan on its entry block."); 188 Plan = ParentPlan; 189 } 190 191 /// \return the VPBasicBlock that is the exit of Block, possibly indirectly. 192 const VPBasicBlock *VPBlockBase::getExitBasicBlock() const { 193 const VPBlockBase *Block = this; 194 while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 195 Block = Region->getExit(); 196 return cast<VPBasicBlock>(Block); 197 } 198 199 VPBasicBlock *VPBlockBase::getExitBasicBlock() { 200 VPBlockBase *Block = this; 201 while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 202 Block = Region->getExit(); 203 return cast<VPBasicBlock>(Block); 204 } 205 206 VPBlockBase *VPBlockBase::getEnclosingBlockWithSuccessors() { 207 if (!Successors.empty() || !Parent) 208 return this; 209 assert(Parent->getExit() == this && 210 "Block w/o successors not the exit of its parent."); 211 return Parent->getEnclosingBlockWithSuccessors(); 212 } 213 214 VPBlockBase *VPBlockBase::getEnclosingBlockWithPredecessors() { 215 if (!Predecessors.empty() || !Parent) 216 return this; 217 assert(Parent->getEntry() == this && 218 "Block w/o predecessors not the entry of its parent."); 219 return Parent->getEnclosingBlockWithPredecessors(); 220 } 221 222 void VPBlockBase::deleteCFG(VPBlockBase *Entry) { 223 SmallVector<VPBlockBase *, 8> Blocks; 224 225 VPValue DummyValue; 226 for (VPBlockBase *Block : depth_first(Entry)) { 227 // Drop all references in VPBasicBlocks and replace all uses with 228 // DummyValue. 229 if (auto *VPBB = dyn_cast<VPBasicBlock>(Block)) 230 VPBB->dropAllReferences(&DummyValue); 231 Blocks.push_back(Block); 232 } 233 234 for (VPBlockBase *Block : Blocks) 235 delete Block; 236 } 237 238 VPBasicBlock::iterator VPBasicBlock::getFirstNonPhi() { 239 iterator It = begin(); 240 while (It != end() && (isa<VPWidenPHIRecipe>(&*It) || 241 isa<VPWidenIntOrFpInductionRecipe>(&*It) || 242 isa<VPPredInstPHIRecipe>(&*It) || 243 isa<VPWidenCanonicalIVRecipe>(&*It))) 244 It++; 245 return It; 246 } 247 248 BasicBlock * 249 VPBasicBlock::createEmptyBasicBlock(VPTransformState::CFGState &CFG) { 250 // BB stands for IR BasicBlocks. VPBB stands for VPlan VPBasicBlocks. 251 // Pred stands for Predessor. Prev stands for Previous - last visited/created. 252 BasicBlock *PrevBB = CFG.PrevBB; 253 BasicBlock *NewBB = BasicBlock::Create(PrevBB->getContext(), getName(), 254 PrevBB->getParent(), CFG.LastBB); 255 LLVM_DEBUG(dbgs() << "LV: created " << NewBB->getName() << '\n'); 256 257 // Hook up the new basic block to its predecessors. 258 for (VPBlockBase *PredVPBlock : getHierarchicalPredecessors()) { 259 VPBasicBlock *PredVPBB = PredVPBlock->getExitBasicBlock(); 260 auto &PredVPSuccessors = PredVPBB->getSuccessors(); 261 BasicBlock *PredBB = CFG.VPBB2IRBB[PredVPBB]; 262 263 // In outer loop vectorization scenario, the predecessor BBlock may not yet 264 // be visited(backedge). Mark the VPBasicBlock for fixup at the end of 265 // vectorization. We do not encounter this case in inner loop vectorization 266 // as we start out by building a loop skeleton with the vector loop header 267 // and latch blocks. As a result, we never enter this function for the 268 // header block in the non VPlan-native path. 269 if (!PredBB) { 270 assert(EnableVPlanNativePath && 271 "Unexpected null predecessor in non VPlan-native path"); 272 CFG.VPBBsToFix.push_back(PredVPBB); 273 continue; 274 } 275 276 assert(PredBB && "Predecessor basic-block not found building successor."); 277 auto *PredBBTerminator = PredBB->getTerminator(); 278 LLVM_DEBUG(dbgs() << "LV: draw edge from" << PredBB->getName() << '\n'); 279 if (isa<UnreachableInst>(PredBBTerminator)) { 280 assert(PredVPSuccessors.size() == 1 && 281 "Predecessor ending w/o branch must have single successor."); 282 PredBBTerminator->eraseFromParent(); 283 BranchInst::Create(NewBB, PredBB); 284 } else { 285 assert(PredVPSuccessors.size() == 2 && 286 "Predecessor ending with branch must have two successors."); 287 unsigned idx = PredVPSuccessors.front() == this ? 0 : 1; 288 assert(!PredBBTerminator->getSuccessor(idx) && 289 "Trying to reset an existing successor block."); 290 PredBBTerminator->setSuccessor(idx, NewBB); 291 } 292 } 293 return NewBB; 294 } 295 296 void VPBasicBlock::execute(VPTransformState *State) { 297 bool Replica = State->Instance && 298 !(State->Instance->Part == 0 && State->Instance->Lane == 0); 299 VPBasicBlock *PrevVPBB = State->CFG.PrevVPBB; 300 VPBlockBase *SingleHPred = nullptr; 301 BasicBlock *NewBB = State->CFG.PrevBB; // Reuse it if possible. 302 303 // 1. Create an IR basic block, or reuse the last one if possible. 304 // The last IR basic block is reused, as an optimization, in three cases: 305 // A. the first VPBB reuses the loop header BB - when PrevVPBB is null; 306 // B. when the current VPBB has a single (hierarchical) predecessor which 307 // is PrevVPBB and the latter has a single (hierarchical) successor; and 308 // C. when the current VPBB is an entry of a region replica - where PrevVPBB 309 // is the exit of this region from a previous instance, or the predecessor 310 // of this region. 311 if (PrevVPBB && /* A */ 312 !((SingleHPred = getSingleHierarchicalPredecessor()) && 313 SingleHPred->getExitBasicBlock() == PrevVPBB && 314 PrevVPBB->getSingleHierarchicalSuccessor()) && /* B */ 315 !(Replica && getPredecessors().empty())) { /* C */ 316 NewBB = createEmptyBasicBlock(State->CFG); 317 State->Builder.SetInsertPoint(NewBB); 318 // Temporarily terminate with unreachable until CFG is rewired. 319 UnreachableInst *Terminator = State->Builder.CreateUnreachable(); 320 State->Builder.SetInsertPoint(Terminator); 321 // Register NewBB in its loop. In innermost loops its the same for all BB's. 322 Loop *L = State->LI->getLoopFor(State->CFG.LastBB); 323 L->addBasicBlockToLoop(NewBB, *State->LI); 324 State->CFG.PrevBB = NewBB; 325 } 326 327 // 2. Fill the IR basic block with IR instructions. 328 LLVM_DEBUG(dbgs() << "LV: vectorizing VPBB:" << getName() 329 << " in BB:" << NewBB->getName() << '\n'); 330 331 State->CFG.VPBB2IRBB[this] = NewBB; 332 State->CFG.PrevVPBB = this; 333 334 for (VPRecipeBase &Recipe : Recipes) 335 Recipe.execute(*State); 336 337 VPValue *CBV; 338 if (EnableVPlanNativePath && (CBV = getCondBit())) { 339 Value *IRCBV = CBV->getUnderlyingValue(); 340 assert(IRCBV && "Unexpected null underlying value for condition bit"); 341 342 // Condition bit value in a VPBasicBlock is used as the branch selector. In 343 // the VPlan-native path case, since all branches are uniform we generate a 344 // branch instruction using the condition value from vector lane 0 and dummy 345 // successors. The successors are fixed later when the successor blocks are 346 // visited. 347 Value *NewCond = State->Callback.getOrCreateVectorValues(IRCBV, 0); 348 NewCond = State->Builder.CreateExtractElement(NewCond, 349 State->Builder.getInt32(0)); 350 351 // Replace the temporary unreachable terminator with the new conditional 352 // branch. 353 auto *CurrentTerminator = NewBB->getTerminator(); 354 assert(isa<UnreachableInst>(CurrentTerminator) && 355 "Expected to replace unreachable terminator with conditional " 356 "branch."); 357 auto *CondBr = BranchInst::Create(NewBB, nullptr, NewCond); 358 CondBr->setSuccessor(0, nullptr); 359 ReplaceInstWithInst(CurrentTerminator, CondBr); 360 } 361 362 LLVM_DEBUG(dbgs() << "LV: filled BB:" << *NewBB); 363 } 364 365 void VPBasicBlock::dropAllReferences(VPValue *NewValue) { 366 for (VPRecipeBase &R : Recipes) { 367 if (auto *VPV = R.toVPValue()) 368 VPV->replaceAllUsesWith(NewValue); 369 370 if (auto *User = R.toVPUser()) 371 for (unsigned I = 0, E = User->getNumOperands(); I != E; I++) 372 User->setOperand(I, NewValue); 373 } 374 } 375 376 void VPRegionBlock::execute(VPTransformState *State) { 377 ReversePostOrderTraversal<VPBlockBase *> RPOT(Entry); 378 379 if (!isReplicator()) { 380 // Visit the VPBlocks connected to "this", starting from it. 381 for (VPBlockBase *Block : RPOT) { 382 if (EnableVPlanNativePath) { 383 // The inner loop vectorization path does not represent loop preheader 384 // and exit blocks as part of the VPlan. In the VPlan-native path, skip 385 // vectorizing loop preheader block. In future, we may replace this 386 // check with the check for loop preheader. 387 if (Block->getNumPredecessors() == 0) 388 continue; 389 390 // Skip vectorizing loop exit block. In future, we may replace this 391 // check with the check for loop exit. 392 if (Block->getNumSuccessors() == 0) 393 continue; 394 } 395 396 LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n'); 397 Block->execute(State); 398 } 399 return; 400 } 401 402 assert(!State->Instance && "Replicating a Region with non-null instance."); 403 404 // Enter replicating mode. 405 State->Instance = {0, 0}; 406 407 for (unsigned Part = 0, UF = State->UF; Part < UF; ++Part) { 408 State->Instance->Part = Part; 409 assert(!State->VF.isScalable() && "VF is assumed to be non scalable."); 410 for (unsigned Lane = 0, VF = State->VF.getKnownMinValue(); Lane < VF; 411 ++Lane) { 412 State->Instance->Lane = Lane; 413 // Visit the VPBlocks connected to \p this, starting from it. 414 for (VPBlockBase *Block : RPOT) { 415 LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n'); 416 Block->execute(State); 417 } 418 } 419 } 420 421 // Exit replicating mode. 422 State->Instance.reset(); 423 } 424 425 void VPRecipeBase::insertBefore(VPRecipeBase *InsertPos) { 426 assert(!Parent && "Recipe already in some VPBasicBlock"); 427 assert(InsertPos->getParent() && 428 "Insertion position not in any VPBasicBlock"); 429 Parent = InsertPos->getParent(); 430 Parent->getRecipeList().insert(InsertPos->getIterator(), this); 431 } 432 433 void VPRecipeBase::insertAfter(VPRecipeBase *InsertPos) { 434 assert(!Parent && "Recipe already in some VPBasicBlock"); 435 assert(InsertPos->getParent() && 436 "Insertion position not in any VPBasicBlock"); 437 Parent = InsertPos->getParent(); 438 Parent->getRecipeList().insertAfter(InsertPos->getIterator(), this); 439 } 440 441 void VPRecipeBase::removeFromParent() { 442 assert(getParent() && "Recipe not in any VPBasicBlock"); 443 getParent()->getRecipeList().remove(getIterator()); 444 Parent = nullptr; 445 } 446 447 iplist<VPRecipeBase>::iterator VPRecipeBase::eraseFromParent() { 448 assert(getParent() && "Recipe not in any VPBasicBlock"); 449 return getParent()->getRecipeList().erase(getIterator()); 450 } 451 452 void VPRecipeBase::moveAfter(VPRecipeBase *InsertPos) { 453 removeFromParent(); 454 insertAfter(InsertPos); 455 } 456 457 void VPInstruction::generateInstruction(VPTransformState &State, 458 unsigned Part) { 459 IRBuilder<> &Builder = State.Builder; 460 461 if (Instruction::isBinaryOp(getOpcode())) { 462 Value *A = State.get(getOperand(0), Part); 463 Value *B = State.get(getOperand(1), Part); 464 Value *V = Builder.CreateBinOp((Instruction::BinaryOps)getOpcode(), A, B); 465 State.set(this, V, Part); 466 return; 467 } 468 469 switch (getOpcode()) { 470 case VPInstruction::Not: { 471 Value *A = State.get(getOperand(0), Part); 472 Value *V = Builder.CreateNot(A); 473 State.set(this, V, Part); 474 break; 475 } 476 case VPInstruction::ICmpULE: { 477 Value *IV = State.get(getOperand(0), Part); 478 Value *TC = State.get(getOperand(1), Part); 479 Value *V = Builder.CreateICmpULE(IV, TC); 480 State.set(this, V, Part); 481 break; 482 } 483 case Instruction::Select: { 484 Value *Cond = State.get(getOperand(0), Part); 485 Value *Op1 = State.get(getOperand(1), Part); 486 Value *Op2 = State.get(getOperand(2), Part); 487 Value *V = Builder.CreateSelect(Cond, Op1, Op2); 488 State.set(this, V, Part); 489 break; 490 } 491 case VPInstruction::ActiveLaneMask: { 492 // Get first lane of vector induction variable. 493 Value *VIVElem0 = State.get(getOperand(0), {Part, 0}); 494 // Get the original loop tripcount. 495 Value *ScalarTC = State.TripCount; 496 497 auto *Int1Ty = Type::getInt1Ty(Builder.getContext()); 498 auto *PredTy = FixedVectorType::get(Int1Ty, State.VF.getKnownMinValue()); 499 Instruction *Call = Builder.CreateIntrinsic( 500 Intrinsic::get_active_lane_mask, {PredTy, ScalarTC->getType()}, 501 {VIVElem0, ScalarTC}, nullptr, "active.lane.mask"); 502 State.set(this, Call, Part); 503 break; 504 } 505 default: 506 llvm_unreachable("Unsupported opcode for instruction"); 507 } 508 } 509 510 void VPInstruction::execute(VPTransformState &State) { 511 assert(!State.Instance && "VPInstruction executing an Instance"); 512 for (unsigned Part = 0; Part < State.UF; ++Part) 513 generateInstruction(State, Part); 514 } 515 516 void VPInstruction::print(raw_ostream &O, const Twine &Indent, 517 VPSlotTracker &SlotTracker) const { 518 O << "\"EMIT "; 519 print(O, SlotTracker); 520 } 521 522 void VPInstruction::print(raw_ostream &O) const { 523 VPSlotTracker SlotTracker(getParent()->getPlan()); 524 print(O, SlotTracker); 525 } 526 527 void VPInstruction::print(raw_ostream &O, VPSlotTracker &SlotTracker) const { 528 if (hasResult()) { 529 printAsOperand(O, SlotTracker); 530 O << " = "; 531 } 532 533 switch (getOpcode()) { 534 case VPInstruction::Not: 535 O << "not"; 536 break; 537 case VPInstruction::ICmpULE: 538 O << "icmp ule"; 539 break; 540 case VPInstruction::SLPLoad: 541 O << "combined load"; 542 break; 543 case VPInstruction::SLPStore: 544 O << "combined store"; 545 break; 546 case VPInstruction::ActiveLaneMask: 547 O << "active lane mask"; 548 break; 549 550 default: 551 O << Instruction::getOpcodeName(getOpcode()); 552 } 553 554 for (const VPValue *Operand : operands()) { 555 O << " "; 556 Operand->printAsOperand(O, SlotTracker); 557 } 558 } 559 560 /// Generate the code inside the body of the vectorized loop. Assumes a single 561 /// LoopVectorBody basic-block was created for this. Introduce additional 562 /// basic-blocks as needed, and fill them all. 563 void VPlan::execute(VPTransformState *State) { 564 // -1. Check if the backedge taken count is needed, and if so build it. 565 if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) { 566 Value *TC = State->TripCount; 567 IRBuilder<> Builder(State->CFG.PrevBB->getTerminator()); 568 auto *TCMO = Builder.CreateSub(TC, ConstantInt::get(TC->getType(), 1), 569 "trip.count.minus.1"); 570 auto VF = State->VF; 571 Value *VTCMO = 572 VF.isScalar() ? TCMO : Builder.CreateVectorSplat(VF, TCMO, "broadcast"); 573 for (unsigned Part = 0, UF = State->UF; Part < UF; ++Part) 574 State->set(BackedgeTakenCount, VTCMO, Part); 575 } 576 577 // 0. Set the reverse mapping from VPValues to Values for code generation. 578 for (auto &Entry : Value2VPValue) 579 State->VPValue2Value[Entry.second] = Entry.first; 580 581 BasicBlock *VectorPreHeaderBB = State->CFG.PrevBB; 582 BasicBlock *VectorHeaderBB = VectorPreHeaderBB->getSingleSuccessor(); 583 assert(VectorHeaderBB && "Loop preheader does not have a single successor."); 584 585 // 1. Make room to generate basic-blocks inside loop body if needed. 586 BasicBlock *VectorLatchBB = VectorHeaderBB->splitBasicBlock( 587 VectorHeaderBB->getFirstInsertionPt(), "vector.body.latch"); 588 Loop *L = State->LI->getLoopFor(VectorHeaderBB); 589 L->addBasicBlockToLoop(VectorLatchBB, *State->LI); 590 // Remove the edge between Header and Latch to allow other connections. 591 // Temporarily terminate with unreachable until CFG is rewired. 592 // Note: this asserts the generated code's assumption that 593 // getFirstInsertionPt() can be dereferenced into an Instruction. 594 VectorHeaderBB->getTerminator()->eraseFromParent(); 595 State->Builder.SetInsertPoint(VectorHeaderBB); 596 UnreachableInst *Terminator = State->Builder.CreateUnreachable(); 597 State->Builder.SetInsertPoint(Terminator); 598 599 // 2. Generate code in loop body. 600 State->CFG.PrevVPBB = nullptr; 601 State->CFG.PrevBB = VectorHeaderBB; 602 State->CFG.LastBB = VectorLatchBB; 603 604 for (VPBlockBase *Block : depth_first(Entry)) 605 Block->execute(State); 606 607 // Setup branch terminator successors for VPBBs in VPBBsToFix based on 608 // VPBB's successors. 609 for (auto VPBB : State->CFG.VPBBsToFix) { 610 assert(EnableVPlanNativePath && 611 "Unexpected VPBBsToFix in non VPlan-native path"); 612 BasicBlock *BB = State->CFG.VPBB2IRBB[VPBB]; 613 assert(BB && "Unexpected null basic block for VPBB"); 614 615 unsigned Idx = 0; 616 auto *BBTerminator = BB->getTerminator(); 617 618 for (VPBlockBase *SuccVPBlock : VPBB->getHierarchicalSuccessors()) { 619 VPBasicBlock *SuccVPBB = SuccVPBlock->getEntryBasicBlock(); 620 BBTerminator->setSuccessor(Idx, State->CFG.VPBB2IRBB[SuccVPBB]); 621 ++Idx; 622 } 623 } 624 625 // 3. Merge the temporary latch created with the last basic-block filled. 626 BasicBlock *LastBB = State->CFG.PrevBB; 627 // Connect LastBB to VectorLatchBB to facilitate their merge. 628 assert((EnableVPlanNativePath || 629 isa<UnreachableInst>(LastBB->getTerminator())) && 630 "Expected InnerLoop VPlan CFG to terminate with unreachable"); 631 assert((!EnableVPlanNativePath || isa<BranchInst>(LastBB->getTerminator())) && 632 "Expected VPlan CFG to terminate with branch in NativePath"); 633 LastBB->getTerminator()->eraseFromParent(); 634 BranchInst::Create(VectorLatchBB, LastBB); 635 636 // Merge LastBB with Latch. 637 bool Merged = MergeBlockIntoPredecessor(VectorLatchBB, nullptr, State->LI); 638 (void)Merged; 639 assert(Merged && "Could not merge last basic block with latch."); 640 VectorLatchBB = LastBB; 641 642 // We do not attempt to preserve DT for outer loop vectorization currently. 643 if (!EnableVPlanNativePath) 644 updateDominatorTree(State->DT, VectorPreHeaderBB, VectorLatchBB, 645 L->getExitBlock()); 646 } 647 648 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 649 LLVM_DUMP_METHOD 650 void VPlan::dump() const { dbgs() << *this << '\n'; } 651 #endif 652 653 void VPlan::updateDominatorTree(DominatorTree *DT, BasicBlock *LoopPreHeaderBB, 654 BasicBlock *LoopLatchBB, 655 BasicBlock *LoopExitBB) { 656 BasicBlock *LoopHeaderBB = LoopPreHeaderBB->getSingleSuccessor(); 657 assert(LoopHeaderBB && "Loop preheader does not have a single successor."); 658 // The vector body may be more than a single basic-block by this point. 659 // Update the dominator tree information inside the vector body by propagating 660 // it from header to latch, expecting only triangular control-flow, if any. 661 BasicBlock *PostDomSucc = nullptr; 662 for (auto *BB = LoopHeaderBB; BB != LoopLatchBB; BB = PostDomSucc) { 663 // Get the list of successors of this block. 664 std::vector<BasicBlock *> Succs(succ_begin(BB), succ_end(BB)); 665 assert(Succs.size() <= 2 && 666 "Basic block in vector loop has more than 2 successors."); 667 PostDomSucc = Succs[0]; 668 if (Succs.size() == 1) { 669 assert(PostDomSucc->getSinglePredecessor() && 670 "PostDom successor has more than one predecessor."); 671 DT->addNewBlock(PostDomSucc, BB); 672 continue; 673 } 674 BasicBlock *InterimSucc = Succs[1]; 675 if (PostDomSucc->getSingleSuccessor() == InterimSucc) { 676 PostDomSucc = Succs[1]; 677 InterimSucc = Succs[0]; 678 } 679 assert(InterimSucc->getSingleSuccessor() == PostDomSucc && 680 "One successor of a basic block does not lead to the other."); 681 assert(InterimSucc->getSinglePredecessor() && 682 "Interim successor has more than one predecessor."); 683 assert(PostDomSucc->hasNPredecessors(2) && 684 "PostDom successor has more than two predecessors."); 685 DT->addNewBlock(InterimSucc, BB); 686 DT->addNewBlock(PostDomSucc, BB); 687 } 688 // Latch block is a new dominator for the loop exit. 689 DT->changeImmediateDominator(LoopExitBB, LoopLatchBB); 690 assert(DT->verify(DominatorTree::VerificationLevel::Fast)); 691 } 692 693 const Twine VPlanPrinter::getUID(const VPBlockBase *Block) { 694 return (isa<VPRegionBlock>(Block) ? "cluster_N" : "N") + 695 Twine(getOrCreateBID(Block)); 696 } 697 698 const Twine VPlanPrinter::getOrCreateName(const VPBlockBase *Block) { 699 const std::string &Name = Block->getName(); 700 if (!Name.empty()) 701 return Name; 702 return "VPB" + Twine(getOrCreateBID(Block)); 703 } 704 705 void VPlanPrinter::dump() { 706 Depth = 1; 707 bumpIndent(0); 708 OS << "digraph VPlan {\n"; 709 OS << "graph [labelloc=t, fontsize=30; label=\"Vectorization Plan"; 710 if (!Plan.getName().empty()) 711 OS << "\\n" << DOT::EscapeString(Plan.getName()); 712 if (Plan.BackedgeTakenCount) { 713 OS << ", where:\\n"; 714 Plan.BackedgeTakenCount->print(OS, SlotTracker); 715 OS << " := BackedgeTakenCount"; 716 } 717 OS << "\"]\n"; 718 OS << "node [shape=rect, fontname=Courier, fontsize=30]\n"; 719 OS << "edge [fontname=Courier, fontsize=30]\n"; 720 OS << "compound=true\n"; 721 722 for (const VPBlockBase *Block : depth_first(Plan.getEntry())) 723 dumpBlock(Block); 724 725 OS << "}\n"; 726 } 727 728 void VPlanPrinter::dumpBlock(const VPBlockBase *Block) { 729 if (const VPBasicBlock *BasicBlock = dyn_cast<VPBasicBlock>(Block)) 730 dumpBasicBlock(BasicBlock); 731 else if (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 732 dumpRegion(Region); 733 else 734 llvm_unreachable("Unsupported kind of VPBlock."); 735 } 736 737 void VPlanPrinter::drawEdge(const VPBlockBase *From, const VPBlockBase *To, 738 bool Hidden, const Twine &Label) { 739 // Due to "dot" we print an edge between two regions as an edge between the 740 // exit basic block and the entry basic of the respective regions. 741 const VPBlockBase *Tail = From->getExitBasicBlock(); 742 const VPBlockBase *Head = To->getEntryBasicBlock(); 743 OS << Indent << getUID(Tail) << " -> " << getUID(Head); 744 OS << " [ label=\"" << Label << '\"'; 745 if (Tail != From) 746 OS << " ltail=" << getUID(From); 747 if (Head != To) 748 OS << " lhead=" << getUID(To); 749 if (Hidden) 750 OS << "; splines=none"; 751 OS << "]\n"; 752 } 753 754 void VPlanPrinter::dumpEdges(const VPBlockBase *Block) { 755 auto &Successors = Block->getSuccessors(); 756 if (Successors.size() == 1) 757 drawEdge(Block, Successors.front(), false, ""); 758 else if (Successors.size() == 2) { 759 drawEdge(Block, Successors.front(), false, "T"); 760 drawEdge(Block, Successors.back(), false, "F"); 761 } else { 762 unsigned SuccessorNumber = 0; 763 for (auto *Successor : Successors) 764 drawEdge(Block, Successor, false, Twine(SuccessorNumber++)); 765 } 766 } 767 768 void VPlanPrinter::dumpBasicBlock(const VPBasicBlock *BasicBlock) { 769 OS << Indent << getUID(BasicBlock) << " [label =\n"; 770 bumpIndent(1); 771 OS << Indent << "\"" << DOT::EscapeString(BasicBlock->getName()) << ":\\n\""; 772 bumpIndent(1); 773 774 // Dump the block predicate. 775 const VPValue *Pred = BasicBlock->getPredicate(); 776 if (Pred) { 777 OS << " +\n" << Indent << " \"BlockPredicate: "; 778 if (const VPInstruction *PredI = dyn_cast<VPInstruction>(Pred)) { 779 PredI->printAsOperand(OS, SlotTracker); 780 OS << " (" << DOT::EscapeString(PredI->getParent()->getName()) 781 << ")\\l\""; 782 } else 783 Pred->printAsOperand(OS, SlotTracker); 784 } 785 786 for (const VPRecipeBase &Recipe : *BasicBlock) { 787 OS << " +\n" << Indent; 788 Recipe.print(OS, Indent, SlotTracker); 789 OS << "\\l\""; 790 } 791 792 // Dump the condition bit. 793 const VPValue *CBV = BasicBlock->getCondBit(); 794 if (CBV) { 795 OS << " +\n" << Indent << " \"CondBit: "; 796 if (const VPInstruction *CBI = dyn_cast<VPInstruction>(CBV)) { 797 CBI->printAsOperand(OS, SlotTracker); 798 OS << " (" << DOT::EscapeString(CBI->getParent()->getName()) << ")\\l\""; 799 } else { 800 CBV->printAsOperand(OS, SlotTracker); 801 OS << "\""; 802 } 803 } 804 805 bumpIndent(-2); 806 OS << "\n" << Indent << "]\n"; 807 dumpEdges(BasicBlock); 808 } 809 810 void VPlanPrinter::dumpRegion(const VPRegionBlock *Region) { 811 OS << Indent << "subgraph " << getUID(Region) << " {\n"; 812 bumpIndent(1); 813 OS << Indent << "fontname=Courier\n" 814 << Indent << "label=\"" 815 << DOT::EscapeString(Region->isReplicator() ? "<xVFxUF> " : "<x1> ") 816 << DOT::EscapeString(Region->getName()) << "\"\n"; 817 // Dump the blocks of the region. 818 assert(Region->getEntry() && "Region contains no inner blocks."); 819 for (const VPBlockBase *Block : depth_first(Region->getEntry())) 820 dumpBlock(Block); 821 bumpIndent(-1); 822 OS << Indent << "}\n"; 823 dumpEdges(Region); 824 } 825 826 void VPlanPrinter::printAsIngredient(raw_ostream &O, const Value *V) { 827 std::string IngredientString; 828 raw_string_ostream RSO(IngredientString); 829 if (auto *Inst = dyn_cast<Instruction>(V)) { 830 if (!Inst->getType()->isVoidTy()) { 831 Inst->printAsOperand(RSO, false); 832 RSO << " = "; 833 } 834 RSO << Inst->getOpcodeName() << " "; 835 unsigned E = Inst->getNumOperands(); 836 if (E > 0) { 837 Inst->getOperand(0)->printAsOperand(RSO, false); 838 for (unsigned I = 1; I < E; ++I) 839 Inst->getOperand(I)->printAsOperand(RSO << ", ", false); 840 } 841 } else // !Inst 842 V->printAsOperand(RSO, false); 843 RSO.flush(); 844 O << DOT::EscapeString(IngredientString); 845 } 846 847 void VPWidenCallRecipe::print(raw_ostream &O, const Twine &Indent, 848 VPSlotTracker &SlotTracker) const { 849 O << "\"WIDEN-CALL "; 850 851 auto *CI = cast<CallInst>(getUnderlyingInstr()); 852 if (CI->getType()->isVoidTy()) 853 O << "void "; 854 else { 855 printAsOperand(O, SlotTracker); 856 O << " = "; 857 } 858 859 O << "call @" << CI->getCalledFunction()->getName() << "("; 860 printOperands(O, SlotTracker); 861 O << ")"; 862 } 863 864 void VPWidenSelectRecipe::print(raw_ostream &O, const Twine &Indent, 865 VPSlotTracker &SlotTracker) const { 866 O << "\"WIDEN-SELECT "; 867 printAsOperand(O, SlotTracker); 868 O << " = select "; 869 getOperand(0)->printAsOperand(O, SlotTracker); 870 O << ", "; 871 getOperand(1)->printAsOperand(O, SlotTracker); 872 O << ", "; 873 getOperand(2)->printAsOperand(O, SlotTracker); 874 O << (InvariantCond ? " (condition is loop invariant)" : ""); 875 } 876 877 void VPWidenRecipe::print(raw_ostream &O, const Twine &Indent, 878 VPSlotTracker &SlotTracker) const { 879 O << "\"WIDEN\\l\""; 880 O << "\" " << VPlanIngredient(&Ingredient); 881 } 882 883 void VPWidenIntOrFpInductionRecipe::print(raw_ostream &O, const Twine &Indent, 884 VPSlotTracker &SlotTracker) const { 885 O << "\"WIDEN-INDUCTION"; 886 if (Trunc) { 887 O << "\\l\""; 888 O << " +\n" << Indent << "\" " << VPlanIngredient(IV) << "\\l\""; 889 O << " +\n" << Indent << "\" " << VPlanIngredient(Trunc); 890 } else 891 O << " " << VPlanIngredient(IV); 892 } 893 894 void VPWidenGEPRecipe::print(raw_ostream &O, const Twine &Indent, 895 VPSlotTracker &SlotTracker) const { 896 O << "\"WIDEN-GEP "; 897 O << (IsPtrLoopInvariant ? "Inv" : "Var"); 898 size_t IndicesNumber = IsIndexLoopInvariant.size(); 899 for (size_t I = 0; I < IndicesNumber; ++I) 900 O << "[" << (IsIndexLoopInvariant[I] ? "Inv" : "Var") << "]"; 901 902 O << " "; 903 printAsOperand(O, SlotTracker); 904 O << " = getelementptr "; 905 printOperands(O, SlotTracker); 906 } 907 908 void VPWidenPHIRecipe::print(raw_ostream &O, const Twine &Indent, 909 VPSlotTracker &SlotTracker) const { 910 O << "\"WIDEN-PHI " << VPlanIngredient(Phi); 911 } 912 913 void VPBlendRecipe::print(raw_ostream &O, const Twine &Indent, 914 VPSlotTracker &SlotTracker) const { 915 O << "\"BLEND "; 916 Phi->printAsOperand(O, false); 917 O << " ="; 918 if (getNumIncomingValues() == 1) { 919 // Not a User of any mask: not really blending, this is a 920 // single-predecessor phi. 921 O << " "; 922 getIncomingValue(0)->printAsOperand(O, SlotTracker); 923 } else { 924 for (unsigned I = 0, E = getNumIncomingValues(); I < E; ++I) { 925 O << " "; 926 getIncomingValue(I)->printAsOperand(O, SlotTracker); 927 O << "/"; 928 getMask(I)->printAsOperand(O, SlotTracker); 929 } 930 } 931 } 932 933 void VPReductionRecipe::print(raw_ostream &O, const Twine &Indent, 934 VPSlotTracker &SlotTracker) const { 935 O << "\"REDUCE of" << *I << " as "; 936 ChainOp->printAsOperand(O, SlotTracker); 937 O << " + reduce("; 938 VecOp->printAsOperand(O, SlotTracker); 939 if (CondOp) { 940 O << ", "; 941 CondOp->printAsOperand(O, SlotTracker); 942 } 943 O << ")"; 944 } 945 946 void VPReplicateRecipe::print(raw_ostream &O, const Twine &Indent, 947 VPSlotTracker &SlotTracker) const { 948 O << "\"" << (IsUniform ? "CLONE " : "REPLICATE ") 949 << VPlanIngredient(Ingredient); 950 if (AlsoPack) 951 O << " (S->V)"; 952 } 953 954 void VPPredInstPHIRecipe::print(raw_ostream &O, const Twine &Indent, 955 VPSlotTracker &SlotTracker) const { 956 O << "\"PHI-PREDICATED-INSTRUCTION " << VPlanIngredient(PredInst); 957 } 958 959 void VPWidenMemoryInstructionRecipe::print(raw_ostream &O, const Twine &Indent, 960 VPSlotTracker &SlotTracker) const { 961 O << "\"WIDEN "; 962 963 if (!isStore()) { 964 printAsOperand(O, SlotTracker); 965 O << " = "; 966 } 967 O << Instruction::getOpcodeName(getUnderlyingInstr()->getOpcode()) << " "; 968 969 printOperands(O, SlotTracker); 970 } 971 972 void VPWidenCanonicalIVRecipe::execute(VPTransformState &State) { 973 Value *CanonicalIV = State.CanonicalIV; 974 Type *STy = CanonicalIV->getType(); 975 IRBuilder<> Builder(State.CFG.PrevBB->getTerminator()); 976 ElementCount VF = State.VF; 977 assert(!VF.isScalable() && "the code following assumes non scalables ECs"); 978 Value *VStart = VF.isScalar() 979 ? CanonicalIV 980 : Builder.CreateVectorSplat(VF.getKnownMinValue(), 981 CanonicalIV, "broadcast"); 982 for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part) { 983 SmallVector<Constant *, 8> Indices; 984 for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane) 985 Indices.push_back( 986 ConstantInt::get(STy, Part * VF.getKnownMinValue() + Lane)); 987 // If VF == 1, there is only one iteration in the loop above, thus the 988 // element pushed back into Indices is ConstantInt::get(STy, Part) 989 Constant *VStep = 990 VF.isScalar() ? Indices.back() : ConstantVector::get(Indices); 991 // Add the consecutive indices to the vector value. 992 Value *CanonicalVectorIV = Builder.CreateAdd(VStart, VStep, "vec.iv"); 993 State.set(getVPValue(), CanonicalVectorIV, Part); 994 } 995 } 996 997 void VPWidenCanonicalIVRecipe::print(raw_ostream &O, const Twine &Indent, 998 VPSlotTracker &SlotTracker) const { 999 O << "\"EMIT "; 1000 getVPValue()->printAsOperand(O, SlotTracker); 1001 O << " = WIDEN-CANONICAL-INDUCTION"; 1002 } 1003 1004 template void DomTreeBuilder::Calculate<VPDominatorTree>(VPDominatorTree &DT); 1005 1006 void VPValue::replaceAllUsesWith(VPValue *New) { 1007 for (unsigned J = 0; J < getNumUsers();) { 1008 VPUser *User = Users[J]; 1009 unsigned NumUsers = getNumUsers(); 1010 for (unsigned I = 0, E = User->getNumOperands(); I < E; ++I) 1011 if (User->getOperand(I) == this) 1012 User->setOperand(I, New); 1013 // If a user got removed after updating the current user, the next user to 1014 // update will be moved to the current position, so we only need to 1015 // increment the index if the number of users did not change. 1016 if (NumUsers == getNumUsers()) 1017 J++; 1018 } 1019 } 1020 1021 void VPValue::printAsOperand(raw_ostream &OS, VPSlotTracker &Tracker) const { 1022 if (const Value *UV = getUnderlyingValue()) { 1023 OS << "ir<"; 1024 UV->printAsOperand(OS, false); 1025 OS << ">"; 1026 return; 1027 } 1028 1029 unsigned Slot = Tracker.getSlot(this); 1030 if (Slot == unsigned(-1)) 1031 OS << "<badref>"; 1032 else 1033 OS << "vp<%" << Tracker.getSlot(this) << ">"; 1034 } 1035 1036 void VPUser::printOperands(raw_ostream &O, VPSlotTracker &SlotTracker) const { 1037 bool First = true; 1038 for (VPValue *Op : operands()) { 1039 if (!First) 1040 O << ", "; 1041 Op->printAsOperand(O, SlotTracker); 1042 First = false; 1043 } 1044 } 1045 1046 void VPInterleavedAccessInfo::visitRegion(VPRegionBlock *Region, 1047 Old2NewTy &Old2New, 1048 InterleavedAccessInfo &IAI) { 1049 ReversePostOrderTraversal<VPBlockBase *> RPOT(Region->getEntry()); 1050 for (VPBlockBase *Base : RPOT) { 1051 visitBlock(Base, Old2New, IAI); 1052 } 1053 } 1054 1055 void VPInterleavedAccessInfo::visitBlock(VPBlockBase *Block, Old2NewTy &Old2New, 1056 InterleavedAccessInfo &IAI) { 1057 if (VPBasicBlock *VPBB = dyn_cast<VPBasicBlock>(Block)) { 1058 for (VPRecipeBase &VPI : *VPBB) { 1059 assert(isa<VPInstruction>(&VPI) && "Can only handle VPInstructions"); 1060 auto *VPInst = cast<VPInstruction>(&VPI); 1061 auto *Inst = cast<Instruction>(VPInst->getUnderlyingValue()); 1062 auto *IG = IAI.getInterleaveGroup(Inst); 1063 if (!IG) 1064 continue; 1065 1066 auto NewIGIter = Old2New.find(IG); 1067 if (NewIGIter == Old2New.end()) 1068 Old2New[IG] = new InterleaveGroup<VPInstruction>( 1069 IG->getFactor(), IG->isReverse(), IG->getAlign()); 1070 1071 if (Inst == IG->getInsertPos()) 1072 Old2New[IG]->setInsertPos(VPInst); 1073 1074 InterleaveGroupMap[VPInst] = Old2New[IG]; 1075 InterleaveGroupMap[VPInst]->insertMember( 1076 VPInst, IG->getIndex(Inst), 1077 Align(IG->isReverse() ? (-1) * int(IG->getFactor()) 1078 : IG->getFactor())); 1079 } 1080 } else if (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 1081 visitRegion(Region, Old2New, IAI); 1082 else 1083 llvm_unreachable("Unsupported kind of VPBlock."); 1084 } 1085 1086 VPInterleavedAccessInfo::VPInterleavedAccessInfo(VPlan &Plan, 1087 InterleavedAccessInfo &IAI) { 1088 Old2NewTy Old2New; 1089 visitRegion(cast<VPRegionBlock>(Plan.getEntry()), Old2New, IAI); 1090 } 1091 1092 void VPSlotTracker::assignSlot(const VPValue *V) { 1093 assert(Slots.find(V) == Slots.end() && "VPValue already has a slot!"); 1094 const Value *UV = V->getUnderlyingValue(); 1095 if (UV) 1096 return; 1097 const auto *VPI = dyn_cast<VPInstruction>(V); 1098 if (VPI && !VPI->hasResult()) 1099 return; 1100 1101 Slots[V] = NextSlot++; 1102 } 1103 1104 void VPSlotTracker::assignSlots(const VPBlockBase *VPBB) { 1105 if (auto *Region = dyn_cast<VPRegionBlock>(VPBB)) 1106 assignSlots(Region); 1107 else 1108 assignSlots(cast<VPBasicBlock>(VPBB)); 1109 } 1110 1111 void VPSlotTracker::assignSlots(const VPRegionBlock *Region) { 1112 ReversePostOrderTraversal<const VPBlockBase *> RPOT(Region->getEntry()); 1113 for (const VPBlockBase *Block : RPOT) 1114 assignSlots(Block); 1115 } 1116 1117 void VPSlotTracker::assignSlots(const VPBasicBlock *VPBB) { 1118 for (const VPRecipeBase &Recipe : *VPBB) { 1119 if (const auto *VPI = dyn_cast<VPInstruction>(&Recipe)) 1120 assignSlot(VPI); 1121 else if (const auto *VPIV = dyn_cast<VPWidenCanonicalIVRecipe>(&Recipe)) 1122 assignSlot(VPIV->getVPValue()); 1123 } 1124 } 1125 1126 void VPSlotTracker::assignSlots(const VPlan &Plan) { 1127 1128 for (const VPValue *V : Plan.VPExternalDefs) 1129 assignSlot(V); 1130 1131 for (auto &E : Plan.Value2VPValue) 1132 if (!isa<VPInstruction>(E.second)) 1133 assignSlot(E.second); 1134 1135 for (const VPValue *V : Plan.VPCBVs) 1136 assignSlot(V); 1137 1138 if (Plan.BackedgeTakenCount) 1139 assignSlot(Plan.BackedgeTakenCount); 1140 1141 ReversePostOrderTraversal<const VPBlockBase *> RPOT(Plan.getEntry()); 1142 for (const VPBlockBase *Block : RPOT) 1143 assignSlots(Block); 1144 } 1145