1 //===- VPlan.cpp - Vectorizer Plan ----------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This is the LLVM vectorization plan. It represents a candidate for 11 /// vectorization, allowing to plan and optimize how to vectorize a given loop 12 /// before generating LLVM-IR. 13 /// The vectorizer uses vectorization plans to estimate the costs of potential 14 /// candidates and if profitable to execute the desired plan, generating vector 15 /// LLVM-IR code. 16 /// 17 //===----------------------------------------------------------------------===// 18 19 #include "VPlan.h" 20 #include "LoopVectorizationPlanner.h" 21 #include "VPlanCFG.h" 22 #include "VPlanDominatorTree.h" 23 #include "VPlanPatternMatch.h" 24 #include "VPlanTransforms.h" 25 #include "VPlanUtils.h" 26 #include "llvm/ADT/PostOrderIterator.h" 27 #include "llvm/ADT/STLExtras.h" 28 #include "llvm/ADT/SmallVector.h" 29 #include "llvm/ADT/StringExtras.h" 30 #include "llvm/ADT/Twine.h" 31 #include "llvm/Analysis/DomTreeUpdater.h" 32 #include "llvm/Analysis/LoopInfo.h" 33 #include "llvm/IR/BasicBlock.h" 34 #include "llvm/IR/CFG.h" 35 #include "llvm/IR/IRBuilder.h" 36 #include "llvm/IR/Instruction.h" 37 #include "llvm/IR/Instructions.h" 38 #include "llvm/IR/Type.h" 39 #include "llvm/IR/Value.h" 40 #include "llvm/Support/Casting.h" 41 #include "llvm/Support/CommandLine.h" 42 #include "llvm/Support/Debug.h" 43 #include "llvm/Support/GraphWriter.h" 44 #include "llvm/Support/raw_ostream.h" 45 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 46 #include "llvm/Transforms/Utils/LoopVersioning.h" 47 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 48 #include <cassert> 49 #include <string> 50 #include <vector> 51 52 using namespace llvm; 53 using namespace llvm::VPlanPatternMatch; 54 55 namespace llvm { 56 extern cl::opt<bool> EnableVPlanNativePath; 57 } 58 extern cl::opt<unsigned> ForceTargetInstructionCost; 59 60 static cl::opt<bool> PrintVPlansInDotFormat( 61 "vplan-print-in-dot-format", cl::Hidden, 62 cl::desc("Use dot format instead of plain text when dumping VPlans")); 63 64 #define DEBUG_TYPE "vplan" 65 66 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 67 raw_ostream &llvm::operator<<(raw_ostream &OS, const VPValue &V) { 68 const VPInstruction *Instr = dyn_cast<VPInstruction>(&V); 69 VPSlotTracker SlotTracker( 70 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr); 71 V.print(OS, SlotTracker); 72 return OS; 73 } 74 #endif 75 76 Value *VPLane::getAsRuntimeExpr(IRBuilderBase &Builder, 77 const ElementCount &VF) const { 78 switch (LaneKind) { 79 case VPLane::Kind::ScalableLast: 80 // Lane = RuntimeVF - VF.getKnownMinValue() + Lane 81 return Builder.CreateSub(getRuntimeVF(Builder, Builder.getInt32Ty(), VF), 82 Builder.getInt32(VF.getKnownMinValue() - Lane)); 83 case VPLane::Kind::First: 84 return Builder.getInt32(Lane); 85 } 86 llvm_unreachable("Unknown lane kind"); 87 } 88 89 VPValue::VPValue(const unsigned char SC, Value *UV, VPDef *Def) 90 : SubclassID(SC), UnderlyingVal(UV), Def(Def) { 91 if (Def) 92 Def->addDefinedValue(this); 93 } 94 95 VPValue::~VPValue() { 96 assert(Users.empty() && "trying to delete a VPValue with remaining users"); 97 if (Def) 98 Def->removeDefinedValue(this); 99 } 100 101 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 102 void VPValue::print(raw_ostream &OS, VPSlotTracker &SlotTracker) const { 103 if (const VPRecipeBase *R = dyn_cast_or_null<VPRecipeBase>(Def)) 104 R->print(OS, "", SlotTracker); 105 else 106 printAsOperand(OS, SlotTracker); 107 } 108 109 void VPValue::dump() const { 110 const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this->Def); 111 VPSlotTracker SlotTracker( 112 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr); 113 print(dbgs(), SlotTracker); 114 dbgs() << "\n"; 115 } 116 117 void VPDef::dump() const { 118 const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this); 119 VPSlotTracker SlotTracker( 120 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr); 121 print(dbgs(), "", SlotTracker); 122 dbgs() << "\n"; 123 } 124 #endif 125 126 VPRecipeBase *VPValue::getDefiningRecipe() { 127 return cast_or_null<VPRecipeBase>(Def); 128 } 129 130 const VPRecipeBase *VPValue::getDefiningRecipe() const { 131 return cast_or_null<VPRecipeBase>(Def); 132 } 133 134 // Get the top-most entry block of \p Start. This is the entry block of the 135 // containing VPlan. This function is templated to support both const and non-const blocks 136 template <typename T> static T *getPlanEntry(T *Start) { 137 T *Next = Start; 138 T *Current = Start; 139 while ((Next = Next->getParent())) 140 Current = Next; 141 142 SmallSetVector<T *, 8> WorkList; 143 WorkList.insert(Current); 144 145 for (unsigned i = 0; i < WorkList.size(); i++) { 146 T *Current = WorkList[i]; 147 if (Current->getNumPredecessors() == 0) 148 return Current; 149 auto &Predecessors = Current->getPredecessors(); 150 WorkList.insert(Predecessors.begin(), Predecessors.end()); 151 } 152 153 llvm_unreachable("VPlan without any entry node without predecessors"); 154 } 155 156 VPlan *VPBlockBase::getPlan() { return getPlanEntry(this)->Plan; } 157 158 const VPlan *VPBlockBase::getPlan() const { return getPlanEntry(this)->Plan; } 159 160 /// \return the VPBasicBlock that is the entry of Block, possibly indirectly. 161 const VPBasicBlock *VPBlockBase::getEntryBasicBlock() const { 162 const VPBlockBase *Block = this; 163 while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 164 Block = Region->getEntry(); 165 return cast<VPBasicBlock>(Block); 166 } 167 168 VPBasicBlock *VPBlockBase::getEntryBasicBlock() { 169 VPBlockBase *Block = this; 170 while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 171 Block = Region->getEntry(); 172 return cast<VPBasicBlock>(Block); 173 } 174 175 void VPBlockBase::setPlan(VPlan *ParentPlan) { 176 assert( 177 (ParentPlan->getEntry() == this || ParentPlan->getPreheader() == this) && 178 "Can only set plan on its entry or preheader block."); 179 Plan = ParentPlan; 180 } 181 182 /// \return the VPBasicBlock that is the exit of Block, possibly indirectly. 183 const VPBasicBlock *VPBlockBase::getExitingBasicBlock() const { 184 const VPBlockBase *Block = this; 185 while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 186 Block = Region->getExiting(); 187 return cast<VPBasicBlock>(Block); 188 } 189 190 VPBasicBlock *VPBlockBase::getExitingBasicBlock() { 191 VPBlockBase *Block = this; 192 while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 193 Block = Region->getExiting(); 194 return cast<VPBasicBlock>(Block); 195 } 196 197 VPBlockBase *VPBlockBase::getEnclosingBlockWithSuccessors() { 198 if (!Successors.empty() || !Parent) 199 return this; 200 assert(Parent->getExiting() == this && 201 "Block w/o successors not the exiting block of its parent."); 202 return Parent->getEnclosingBlockWithSuccessors(); 203 } 204 205 VPBlockBase *VPBlockBase::getEnclosingBlockWithPredecessors() { 206 if (!Predecessors.empty() || !Parent) 207 return this; 208 assert(Parent->getEntry() == this && 209 "Block w/o predecessors not the entry of its parent."); 210 return Parent->getEnclosingBlockWithPredecessors(); 211 } 212 213 void VPBlockBase::deleteCFG(VPBlockBase *Entry) { 214 for (VPBlockBase *Block : to_vector(vp_depth_first_shallow(Entry))) 215 delete Block; 216 } 217 218 VPBasicBlock::iterator VPBasicBlock::getFirstNonPhi() { 219 iterator It = begin(); 220 while (It != end() && It->isPhi()) 221 It++; 222 return It; 223 } 224 225 VPTransformState::VPTransformState(ElementCount VF, unsigned UF, LoopInfo *LI, 226 DominatorTree *DT, IRBuilderBase &Builder, 227 InnerLoopVectorizer *ILV, VPlan *Plan) 228 : VF(VF), UF(UF), CFG(DT), LI(LI), Builder(Builder), ILV(ILV), Plan(Plan), 229 LVer(nullptr), TypeAnalysis(Plan->getCanonicalIV()->getScalarType()) {} 230 231 Value *VPTransformState::get(VPValue *Def, const VPIteration &Instance) { 232 if (Def->isLiveIn()) 233 return Def->getLiveInIRValue(); 234 235 if (hasScalarValue(Def, Instance)) { 236 return Data 237 .PerPartScalars[Def][Instance.Part][Instance.Lane.mapToCacheIndex(VF)]; 238 } 239 if (!Instance.Lane.isFirstLane() && 240 vputils::isUniformAfterVectorization(Def) && 241 hasScalarValue(Def, {Instance.Part, VPLane::getFirstLane()})) { 242 return Data.PerPartScalars[Def][Instance.Part][0]; 243 } 244 245 assert(hasVectorValue(Def, Instance.Part)); 246 auto *VecPart = Data.PerPartOutput[Def][Instance.Part]; 247 if (!VecPart->getType()->isVectorTy()) { 248 assert(Instance.Lane.isFirstLane() && "cannot get lane > 0 for scalar"); 249 return VecPart; 250 } 251 // TODO: Cache created scalar values. 252 Value *Lane = Instance.Lane.getAsRuntimeExpr(Builder, VF); 253 auto *Extract = Builder.CreateExtractElement(VecPart, Lane); 254 // set(Def, Extract, Instance); 255 return Extract; 256 } 257 258 Value *VPTransformState::get(VPValue *Def, unsigned Part, bool NeedsScalar) { 259 if (NeedsScalar) { 260 assert((VF.isScalar() || Def->isLiveIn() || hasVectorValue(Def, Part) || 261 !vputils::onlyFirstLaneUsed(Def) || 262 (hasScalarValue(Def, VPIteration(Part, 0)) && 263 Data.PerPartScalars[Def][Part].size() == 1)) && 264 "Trying to access a single scalar per part but has multiple scalars " 265 "per part."); 266 return get(Def, VPIteration(Part, 0)); 267 } 268 269 // If Values have been set for this Def return the one relevant for \p Part. 270 if (hasVectorValue(Def, Part)) 271 return Data.PerPartOutput[Def][Part]; 272 273 auto GetBroadcastInstrs = [this, Def](Value *V) { 274 bool SafeToHoist = Def->isDefinedOutsideLoopRegions(); 275 if (VF.isScalar()) 276 return V; 277 // Place the code for broadcasting invariant variables in the new preheader. 278 IRBuilder<>::InsertPointGuard Guard(Builder); 279 if (SafeToHoist) { 280 BasicBlock *LoopVectorPreHeader = CFG.VPBB2IRBB[cast<VPBasicBlock>( 281 Plan->getVectorLoopRegion()->getSinglePredecessor())]; 282 if (LoopVectorPreHeader) 283 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 284 } 285 286 // Place the code for broadcasting invariant variables in the new preheader. 287 // Broadcast the scalar into all locations in the vector. 288 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 289 290 return Shuf; 291 }; 292 293 if (!hasScalarValue(Def, {Part, 0})) { 294 assert(Def->isLiveIn() && "expected a live-in"); 295 if (Part != 0) 296 return get(Def, 0); 297 Value *IRV = Def->getLiveInIRValue(); 298 Value *B = GetBroadcastInstrs(IRV); 299 set(Def, B, Part); 300 return B; 301 } 302 303 Value *ScalarValue = get(Def, {Part, 0}); 304 // If we aren't vectorizing, we can just copy the scalar map values over 305 // to the vector map. 306 if (VF.isScalar()) { 307 set(Def, ScalarValue, Part); 308 return ScalarValue; 309 } 310 311 bool IsUniform = vputils::isUniformAfterVectorization(Def); 312 313 unsigned LastLane = IsUniform ? 0 : VF.getKnownMinValue() - 1; 314 // Check if there is a scalar value for the selected lane. 315 if (!hasScalarValue(Def, {Part, LastLane})) { 316 // At the moment, VPWidenIntOrFpInductionRecipes, VPScalarIVStepsRecipes and 317 // VPExpandSCEVRecipes can also be uniform. 318 assert((isa<VPWidenIntOrFpInductionRecipe>(Def->getDefiningRecipe()) || 319 isa<VPScalarIVStepsRecipe>(Def->getDefiningRecipe()) || 320 isa<VPExpandSCEVRecipe>(Def->getDefiningRecipe())) && 321 "unexpected recipe found to be invariant"); 322 IsUniform = true; 323 LastLane = 0; 324 } 325 326 auto *LastInst = cast<Instruction>(get(Def, {Part, LastLane})); 327 // Set the insert point after the last scalarized instruction or after the 328 // last PHI, if LastInst is a PHI. This ensures the insertelement sequence 329 // will directly follow the scalar definitions. 330 auto OldIP = Builder.saveIP(); 331 auto NewIP = 332 isa<PHINode>(LastInst) 333 ? BasicBlock::iterator(LastInst->getParent()->getFirstNonPHI()) 334 : std::next(BasicBlock::iterator(LastInst)); 335 Builder.SetInsertPoint(&*NewIP); 336 337 // However, if we are vectorizing, we need to construct the vector values. 338 // If the value is known to be uniform after vectorization, we can just 339 // broadcast the scalar value corresponding to lane zero for each unroll 340 // iteration. Otherwise, we construct the vector values using 341 // insertelement instructions. Since the resulting vectors are stored in 342 // State, we will only generate the insertelements once. 343 Value *VectorValue = nullptr; 344 if (IsUniform) { 345 VectorValue = GetBroadcastInstrs(ScalarValue); 346 set(Def, VectorValue, Part); 347 } else { 348 // Initialize packing with insertelements to start from undef. 349 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 350 Value *Undef = PoisonValue::get(VectorType::get(LastInst->getType(), VF)); 351 set(Def, Undef, Part); 352 for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane) 353 packScalarIntoVectorValue(Def, {Part, Lane}); 354 VectorValue = get(Def, Part); 355 } 356 Builder.restoreIP(OldIP); 357 return VectorValue; 358 } 359 360 BasicBlock *VPTransformState::CFGState::getPreheaderBBFor(VPRecipeBase *R) { 361 VPRegionBlock *LoopRegion = R->getParent()->getEnclosingLoopRegion(); 362 return VPBB2IRBB[LoopRegion->getPreheaderVPBB()]; 363 } 364 365 void VPTransformState::addNewMetadata(Instruction *To, 366 const Instruction *Orig) { 367 // If the loop was versioned with memchecks, add the corresponding no-alias 368 // metadata. 369 if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig))) 370 LVer->annotateInstWithNoAlias(To, Orig); 371 } 372 373 void VPTransformState::addMetadata(Value *To, Instruction *From) { 374 // No source instruction to transfer metadata from? 375 if (!From) 376 return; 377 378 if (Instruction *ToI = dyn_cast<Instruction>(To)) { 379 propagateMetadata(ToI, From); 380 addNewMetadata(ToI, From); 381 } 382 } 383 384 void VPTransformState::setDebugLocFrom(DebugLoc DL) { 385 const DILocation *DIL = DL; 386 // When a FSDiscriminator is enabled, we don't need to add the multiply 387 // factors to the discriminators. 388 if (DIL && 389 Builder.GetInsertBlock() 390 ->getParent() 391 ->shouldEmitDebugInfoForProfiling() && 392 !EnableFSDiscriminator) { 393 // FIXME: For scalable vectors, assume vscale=1. 394 auto NewDIL = 395 DIL->cloneByMultiplyingDuplicationFactor(UF * VF.getKnownMinValue()); 396 if (NewDIL) 397 Builder.SetCurrentDebugLocation(*NewDIL); 398 else 399 LLVM_DEBUG(dbgs() << "Failed to create new discriminator: " 400 << DIL->getFilename() << " Line: " << DIL->getLine()); 401 } else 402 Builder.SetCurrentDebugLocation(DIL); 403 } 404 405 void VPTransformState::packScalarIntoVectorValue(VPValue *Def, 406 const VPIteration &Instance) { 407 Value *ScalarInst = get(Def, Instance); 408 Value *VectorValue = get(Def, Instance.Part); 409 VectorValue = Builder.CreateInsertElement( 410 VectorValue, ScalarInst, Instance.Lane.getAsRuntimeExpr(Builder, VF)); 411 set(Def, VectorValue, Instance.Part); 412 } 413 414 BasicBlock * 415 VPBasicBlock::createEmptyBasicBlock(VPTransformState::CFGState &CFG) { 416 // BB stands for IR BasicBlocks. VPBB stands for VPlan VPBasicBlocks. 417 // Pred stands for Predessor. Prev stands for Previous - last visited/created. 418 BasicBlock *PrevBB = CFG.PrevBB; 419 BasicBlock *NewBB = BasicBlock::Create(PrevBB->getContext(), getName(), 420 PrevBB->getParent(), CFG.ExitBB); 421 LLVM_DEBUG(dbgs() << "LV: created " << NewBB->getName() << '\n'); 422 423 // Hook up the new basic block to its predecessors. 424 for (VPBlockBase *PredVPBlock : getHierarchicalPredecessors()) { 425 VPBasicBlock *PredVPBB = PredVPBlock->getExitingBasicBlock(); 426 auto &PredVPSuccessors = PredVPBB->getHierarchicalSuccessors(); 427 BasicBlock *PredBB = CFG.VPBB2IRBB[PredVPBB]; 428 429 assert(PredBB && "Predecessor basic-block not found building successor."); 430 auto *PredBBTerminator = PredBB->getTerminator(); 431 LLVM_DEBUG(dbgs() << "LV: draw edge from" << PredBB->getName() << '\n'); 432 433 auto *TermBr = dyn_cast<BranchInst>(PredBBTerminator); 434 if (isa<UnreachableInst>(PredBBTerminator)) { 435 assert(PredVPSuccessors.size() == 1 && 436 "Predecessor ending w/o branch must have single successor."); 437 DebugLoc DL = PredBBTerminator->getDebugLoc(); 438 PredBBTerminator->eraseFromParent(); 439 auto *Br = BranchInst::Create(NewBB, PredBB); 440 Br->setDebugLoc(DL); 441 } else if (TermBr && !TermBr->isConditional()) { 442 TermBr->setSuccessor(0, NewBB); 443 } else { 444 // Set each forward successor here when it is created, excluding 445 // backedges. A backward successor is set when the branch is created. 446 unsigned idx = PredVPSuccessors.front() == this ? 0 : 1; 447 assert(!TermBr->getSuccessor(idx) && 448 "Trying to reset an existing successor block."); 449 TermBr->setSuccessor(idx, NewBB); 450 } 451 CFG.DTU.applyUpdates({{DominatorTree::Insert, PredBB, NewBB}}); 452 } 453 return NewBB; 454 } 455 456 void VPIRBasicBlock::execute(VPTransformState *State) { 457 assert(getHierarchicalSuccessors().size() <= 2 && 458 "VPIRBasicBlock can have at most two successors at the moment!"); 459 State->Builder.SetInsertPoint(getIRBasicBlock()->getTerminator()); 460 executeRecipes(State, getIRBasicBlock()); 461 if (getSingleSuccessor()) { 462 assert(isa<UnreachableInst>(getIRBasicBlock()->getTerminator())); 463 auto *Br = State->Builder.CreateBr(getIRBasicBlock()); 464 Br->setOperand(0, nullptr); 465 getIRBasicBlock()->getTerminator()->eraseFromParent(); 466 } 467 468 for (VPBlockBase *PredVPBlock : getHierarchicalPredecessors()) { 469 VPBasicBlock *PredVPBB = PredVPBlock->getExitingBasicBlock(); 470 BasicBlock *PredBB = State->CFG.VPBB2IRBB[PredVPBB]; 471 assert(PredBB && "Predecessor basic-block not found building successor."); 472 LLVM_DEBUG(dbgs() << "LV: draw edge from" << PredBB->getName() << '\n'); 473 474 auto *PredBBTerminator = PredBB->getTerminator(); 475 auto *TermBr = cast<BranchInst>(PredBBTerminator); 476 // Set each forward successor here when it is created, excluding 477 // backedges. A backward successor is set when the branch is created. 478 const auto &PredVPSuccessors = PredVPBB->getHierarchicalSuccessors(); 479 unsigned idx = PredVPSuccessors.front() == this ? 0 : 1; 480 assert(!TermBr->getSuccessor(idx) && 481 "Trying to reset an existing successor block."); 482 TermBr->setSuccessor(idx, IRBB); 483 State->CFG.DTU.applyUpdates({{DominatorTree::Insert, PredBB, IRBB}}); 484 } 485 } 486 487 void VPBasicBlock::execute(VPTransformState *State) { 488 bool Replica = State->Instance && !State->Instance->isFirstIteration(); 489 VPBasicBlock *PrevVPBB = State->CFG.PrevVPBB; 490 VPBlockBase *SingleHPred = nullptr; 491 BasicBlock *NewBB = State->CFG.PrevBB; // Reuse it if possible. 492 493 auto IsLoopRegion = [](VPBlockBase *BB) { 494 auto *R = dyn_cast<VPRegionBlock>(BB); 495 return R && !R->isReplicator(); 496 }; 497 498 // 1. Create an IR basic block. 499 if (PrevVPBB && /* A */ 500 !((SingleHPred = getSingleHierarchicalPredecessor()) && 501 SingleHPred->getExitingBasicBlock() == PrevVPBB && 502 PrevVPBB->getSingleHierarchicalSuccessor() && 503 (SingleHPred->getParent() == getEnclosingLoopRegion() && 504 !IsLoopRegion(SingleHPred))) && /* B */ 505 !(Replica && getPredecessors().empty())) { /* C */ 506 // The last IR basic block is reused, as an optimization, in three cases: 507 // A. the first VPBB reuses the loop pre-header BB - when PrevVPBB is null; 508 // B. when the current VPBB has a single (hierarchical) predecessor which 509 // is PrevVPBB and the latter has a single (hierarchical) successor which 510 // both are in the same non-replicator region; and 511 // C. when the current VPBB is an entry of a region replica - where PrevVPBB 512 // is the exiting VPBB of this region from a previous instance, or the 513 // predecessor of this region. 514 515 NewBB = createEmptyBasicBlock(State->CFG); 516 State->Builder.SetInsertPoint(NewBB); 517 // Temporarily terminate with unreachable until CFG is rewired. 518 UnreachableInst *Terminator = State->Builder.CreateUnreachable(); 519 // Register NewBB in its loop. In innermost loops its the same for all 520 // BB's. 521 if (State->CurrentVectorLoop) 522 State->CurrentVectorLoop->addBasicBlockToLoop(NewBB, *State->LI); 523 State->Builder.SetInsertPoint(Terminator); 524 State->CFG.PrevBB = NewBB; 525 } 526 527 // 2. Fill the IR basic block with IR instructions. 528 executeRecipes(State, NewBB); 529 } 530 531 void VPBasicBlock::dropAllReferences(VPValue *NewValue) { 532 for (VPRecipeBase &R : Recipes) { 533 for (auto *Def : R.definedValues()) 534 Def->replaceAllUsesWith(NewValue); 535 536 for (unsigned I = 0, E = R.getNumOperands(); I != E; I++) 537 R.setOperand(I, NewValue); 538 } 539 } 540 541 void VPBasicBlock::executeRecipes(VPTransformState *State, BasicBlock *BB) { 542 LLVM_DEBUG(dbgs() << "LV: vectorizing VPBB:" << getName() 543 << " in BB:" << BB->getName() << '\n'); 544 545 State->CFG.VPBB2IRBB[this] = BB; 546 State->CFG.PrevVPBB = this; 547 548 for (VPRecipeBase &Recipe : Recipes) 549 Recipe.execute(*State); 550 551 LLVM_DEBUG(dbgs() << "LV: filled BB:" << *BB); 552 } 553 554 VPBasicBlock *VPBasicBlock::splitAt(iterator SplitAt) { 555 assert((SplitAt == end() || SplitAt->getParent() == this) && 556 "can only split at a position in the same block"); 557 558 SmallVector<VPBlockBase *, 2> Succs(successors()); 559 // First, disconnect the current block from its successors. 560 for (VPBlockBase *Succ : Succs) 561 VPBlockUtils::disconnectBlocks(this, Succ); 562 563 // Create new empty block after the block to split. 564 auto *SplitBlock = new VPBasicBlock(getName() + ".split"); 565 VPBlockUtils::insertBlockAfter(SplitBlock, this); 566 567 // Add successors for block to split to new block. 568 for (VPBlockBase *Succ : Succs) 569 VPBlockUtils::connectBlocks(SplitBlock, Succ); 570 571 // Finally, move the recipes starting at SplitAt to new block. 572 for (VPRecipeBase &ToMove : 573 make_early_inc_range(make_range(SplitAt, this->end()))) 574 ToMove.moveBefore(*SplitBlock, SplitBlock->end()); 575 576 return SplitBlock; 577 } 578 579 /// Return the enclosing loop region for region \p P. The templated version is 580 /// used to support both const and non-const block arguments. 581 template <typename T> static T *getEnclosingLoopRegionForRegion(T *P) { 582 if (P && P->isReplicator()) { 583 P = P->getParent(); 584 assert(!cast<VPRegionBlock>(P)->isReplicator() && 585 "unexpected nested replicate regions"); 586 } 587 return P; 588 } 589 590 VPRegionBlock *VPBasicBlock::getEnclosingLoopRegion() { 591 return getEnclosingLoopRegionForRegion(getParent()); 592 } 593 594 const VPRegionBlock *VPBasicBlock::getEnclosingLoopRegion() const { 595 return getEnclosingLoopRegionForRegion(getParent()); 596 } 597 598 static bool hasConditionalTerminator(const VPBasicBlock *VPBB) { 599 if (VPBB->empty()) { 600 assert( 601 VPBB->getNumSuccessors() < 2 && 602 "block with multiple successors doesn't have a recipe as terminator"); 603 return false; 604 } 605 606 const VPRecipeBase *R = &VPBB->back(); 607 bool IsCondBranch = isa<VPBranchOnMaskRecipe>(R) || 608 match(R, m_BranchOnCond(m_VPValue())) || 609 match(R, m_BranchOnCount(m_VPValue(), m_VPValue())); 610 (void)IsCondBranch; 611 612 if (VPBB->getNumSuccessors() >= 2 || 613 (VPBB->isExiting() && !VPBB->getParent()->isReplicator())) { 614 assert(IsCondBranch && "block with multiple successors not terminated by " 615 "conditional branch recipe"); 616 617 return true; 618 } 619 620 assert( 621 !IsCondBranch && 622 "block with 0 or 1 successors terminated by conditional branch recipe"); 623 return false; 624 } 625 626 VPRecipeBase *VPBasicBlock::getTerminator() { 627 if (hasConditionalTerminator(this)) 628 return &back(); 629 return nullptr; 630 } 631 632 const VPRecipeBase *VPBasicBlock::getTerminator() const { 633 if (hasConditionalTerminator(this)) 634 return &back(); 635 return nullptr; 636 } 637 638 bool VPBasicBlock::isExiting() const { 639 return getParent() && getParent()->getExitingBasicBlock() == this; 640 } 641 642 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 643 void VPBlockBase::printSuccessors(raw_ostream &O, const Twine &Indent) const { 644 if (getSuccessors().empty()) { 645 O << Indent << "No successors\n"; 646 } else { 647 O << Indent << "Successor(s): "; 648 ListSeparator LS; 649 for (auto *Succ : getSuccessors()) 650 O << LS << Succ->getName(); 651 O << '\n'; 652 } 653 } 654 655 void VPBasicBlock::print(raw_ostream &O, const Twine &Indent, 656 VPSlotTracker &SlotTracker) const { 657 O << Indent << getName() << ":\n"; 658 659 auto RecipeIndent = Indent + " "; 660 for (const VPRecipeBase &Recipe : *this) { 661 Recipe.print(O, RecipeIndent, SlotTracker); 662 O << '\n'; 663 } 664 665 printSuccessors(O, Indent); 666 } 667 #endif 668 669 static std::pair<VPBlockBase *, VPBlockBase *> cloneFrom(VPBlockBase *Entry); 670 671 // Clone the CFG for all nodes reachable from \p Entry, this includes cloning 672 // the blocks and their recipes. Operands of cloned recipes will NOT be updated. 673 // Remapping of operands must be done separately. Returns a pair with the new 674 // entry and exiting blocks of the cloned region. If \p Entry isn't part of a 675 // region, return nullptr for the exiting block. 676 static std::pair<VPBlockBase *, VPBlockBase *> cloneFrom(VPBlockBase *Entry) { 677 DenseMap<VPBlockBase *, VPBlockBase *> Old2NewVPBlocks; 678 VPBlockBase *Exiting = nullptr; 679 bool InRegion = Entry->getParent(); 680 // First, clone blocks reachable from Entry. 681 for (VPBlockBase *BB : vp_depth_first_shallow(Entry)) { 682 VPBlockBase *NewBB = BB->clone(); 683 Old2NewVPBlocks[BB] = NewBB; 684 if (InRegion && BB->getNumSuccessors() == 0) { 685 assert(!Exiting && "Multiple exiting blocks?"); 686 Exiting = BB; 687 } 688 } 689 assert((!InRegion || Exiting) && "regions must have a single exiting block"); 690 691 // Second, update the predecessors & successors of the cloned blocks. 692 for (VPBlockBase *BB : vp_depth_first_shallow(Entry)) { 693 VPBlockBase *NewBB = Old2NewVPBlocks[BB]; 694 SmallVector<VPBlockBase *> NewPreds; 695 for (VPBlockBase *Pred : BB->getPredecessors()) { 696 NewPreds.push_back(Old2NewVPBlocks[Pred]); 697 } 698 NewBB->setPredecessors(NewPreds); 699 SmallVector<VPBlockBase *> NewSuccs; 700 for (VPBlockBase *Succ : BB->successors()) { 701 NewSuccs.push_back(Old2NewVPBlocks[Succ]); 702 } 703 NewBB->setSuccessors(NewSuccs); 704 } 705 706 #if !defined(NDEBUG) 707 // Verify that the order of predecessors and successors matches in the cloned 708 // version. 709 for (const auto &[OldBB, NewBB] : 710 zip(vp_depth_first_shallow(Entry), 711 vp_depth_first_shallow(Old2NewVPBlocks[Entry]))) { 712 for (const auto &[OldPred, NewPred] : 713 zip(OldBB->getPredecessors(), NewBB->getPredecessors())) 714 assert(NewPred == Old2NewVPBlocks[OldPred] && "Different predecessors"); 715 716 for (const auto &[OldSucc, NewSucc] : 717 zip(OldBB->successors(), NewBB->successors())) 718 assert(NewSucc == Old2NewVPBlocks[OldSucc] && "Different successors"); 719 } 720 #endif 721 722 return std::make_pair(Old2NewVPBlocks[Entry], 723 Exiting ? Old2NewVPBlocks[Exiting] : nullptr); 724 } 725 726 VPRegionBlock *VPRegionBlock::clone() { 727 const auto &[NewEntry, NewExiting] = cloneFrom(getEntry()); 728 auto *NewRegion = 729 new VPRegionBlock(NewEntry, NewExiting, getName(), isReplicator()); 730 for (VPBlockBase *Block : vp_depth_first_shallow(NewEntry)) 731 Block->setParent(NewRegion); 732 return NewRegion; 733 } 734 735 void VPRegionBlock::dropAllReferences(VPValue *NewValue) { 736 for (VPBlockBase *Block : vp_depth_first_shallow(Entry)) 737 // Drop all references in VPBasicBlocks and replace all uses with 738 // DummyValue. 739 Block->dropAllReferences(NewValue); 740 } 741 742 void VPRegionBlock::execute(VPTransformState *State) { 743 ReversePostOrderTraversal<VPBlockShallowTraversalWrapper<VPBlockBase *>> 744 RPOT(Entry); 745 746 if (!isReplicator()) { 747 // Create and register the new vector loop. 748 Loop *PrevLoop = State->CurrentVectorLoop; 749 State->CurrentVectorLoop = State->LI->AllocateLoop(); 750 BasicBlock *VectorPH = State->CFG.VPBB2IRBB[getPreheaderVPBB()]; 751 Loop *ParentLoop = State->LI->getLoopFor(VectorPH); 752 753 // Insert the new loop into the loop nest and register the new basic blocks 754 // before calling any utilities such as SCEV that require valid LoopInfo. 755 if (ParentLoop) 756 ParentLoop->addChildLoop(State->CurrentVectorLoop); 757 else 758 State->LI->addTopLevelLoop(State->CurrentVectorLoop); 759 760 // Visit the VPBlocks connected to "this", starting from it. 761 for (VPBlockBase *Block : RPOT) { 762 LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n'); 763 Block->execute(State); 764 } 765 766 State->CurrentVectorLoop = PrevLoop; 767 return; 768 } 769 770 assert(!State->Instance && "Replicating a Region with non-null instance."); 771 772 // Enter replicating mode. 773 State->Instance = VPIteration(0, 0); 774 775 for (unsigned Part = 0, UF = State->UF; Part < UF; ++Part) { 776 State->Instance->Part = Part; 777 assert(!State->VF.isScalable() && "VF is assumed to be non scalable."); 778 for (unsigned Lane = 0, VF = State->VF.getKnownMinValue(); Lane < VF; 779 ++Lane) { 780 State->Instance->Lane = VPLane(Lane, VPLane::Kind::First); 781 // Visit the VPBlocks connected to \p this, starting from it. 782 for (VPBlockBase *Block : RPOT) { 783 LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n'); 784 Block->execute(State); 785 } 786 } 787 } 788 789 // Exit replicating mode. 790 State->Instance.reset(); 791 } 792 793 InstructionCost VPBasicBlock::cost(ElementCount VF, VPCostContext &Ctx) { 794 InstructionCost Cost = 0; 795 for (VPRecipeBase &R : Recipes) 796 Cost += R.cost(VF, Ctx); 797 return Cost; 798 } 799 800 InstructionCost VPRegionBlock::cost(ElementCount VF, VPCostContext &Ctx) { 801 if (!isReplicator()) { 802 InstructionCost Cost = 0; 803 for (VPBlockBase *Block : vp_depth_first_shallow(getEntry())) 804 Cost += Block->cost(VF, Ctx); 805 InstructionCost BackedgeCost = 806 ForceTargetInstructionCost.getNumOccurrences() 807 ? InstructionCost(ForceTargetInstructionCost.getNumOccurrences()) 808 : Ctx.TTI.getCFInstrCost(Instruction::Br, TTI::TCK_RecipThroughput); 809 LLVM_DEBUG(dbgs() << "Cost of " << BackedgeCost << " for VF " << VF 810 << ": vector loop backedge\n"); 811 Cost += BackedgeCost; 812 return Cost; 813 } 814 815 // Compute the cost of a replicate region. Replicating isn't supported for 816 // scalable vectors, return an invalid cost for them. 817 // TODO: Discard scalable VPlans with replicate recipes earlier after 818 // construction. 819 if (VF.isScalable()) 820 return InstructionCost::getInvalid(); 821 822 // First compute the cost of the conditionally executed recipes, followed by 823 // account for the branching cost, except if the mask is a header mask or 824 // uniform condition. 825 using namespace llvm::VPlanPatternMatch; 826 VPBasicBlock *Then = cast<VPBasicBlock>(getEntry()->getSuccessors()[0]); 827 InstructionCost ThenCost = Then->cost(VF, Ctx); 828 829 // For the scalar case, we may not always execute the original predicated 830 // block, Thus, scale the block's cost by the probability of executing it. 831 if (VF.isScalar()) 832 return ThenCost / getReciprocalPredBlockProb(); 833 834 return ThenCost; 835 } 836 837 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 838 void VPRegionBlock::print(raw_ostream &O, const Twine &Indent, 839 VPSlotTracker &SlotTracker) const { 840 O << Indent << (isReplicator() ? "<xVFxUF> " : "<x1> ") << getName() << ": {"; 841 auto NewIndent = Indent + " "; 842 for (auto *BlockBase : vp_depth_first_shallow(Entry)) { 843 O << '\n'; 844 BlockBase->print(O, NewIndent, SlotTracker); 845 } 846 O << Indent << "}\n"; 847 848 printSuccessors(O, Indent); 849 } 850 #endif 851 852 VPlan::~VPlan() { 853 for (auto &KV : LiveOuts) 854 delete KV.second; 855 LiveOuts.clear(); 856 857 if (Entry) { 858 VPValue DummyValue; 859 for (VPBlockBase *Block : vp_depth_first_shallow(Entry)) 860 Block->dropAllReferences(&DummyValue); 861 862 VPBlockBase::deleteCFG(Entry); 863 864 Preheader->dropAllReferences(&DummyValue); 865 delete Preheader; 866 } 867 for (VPValue *VPV : VPLiveInsToFree) 868 delete VPV; 869 if (BackedgeTakenCount) 870 delete BackedgeTakenCount; 871 } 872 873 static VPIRBasicBlock *createVPIRBasicBlockFor(BasicBlock *BB) { 874 auto *VPIRBB = new VPIRBasicBlock(BB); 875 for (Instruction &I : 876 make_range(BB->begin(), BB->getTerminator()->getIterator())) 877 VPIRBB->appendRecipe(new VPIRInstruction(I)); 878 return VPIRBB; 879 } 880 881 VPlanPtr VPlan::createInitialVPlan(Type *InductionTy, 882 PredicatedScalarEvolution &PSE, 883 bool RequiresScalarEpilogueCheck, 884 bool TailFolded, Loop *TheLoop) { 885 VPIRBasicBlock *Entry = createVPIRBasicBlockFor(TheLoop->getLoopPreheader()); 886 VPBasicBlock *VecPreheader = new VPBasicBlock("vector.ph"); 887 auto Plan = std::make_unique<VPlan>(Entry, VecPreheader); 888 889 // Create SCEV and VPValue for the trip count. 890 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 891 assert(!isa<SCEVCouldNotCompute>(BackedgeTakenCount) && "Invalid loop count"); 892 ScalarEvolution &SE = *PSE.getSE(); 893 const SCEV *TripCount = 894 SE.getTripCountFromExitCount(BackedgeTakenCount, InductionTy, TheLoop); 895 Plan->TripCount = 896 vputils::getOrCreateVPValueForSCEVExpr(*Plan, TripCount, SE); 897 898 // Create VPRegionBlock, with empty header and latch blocks, to be filled 899 // during processing later. 900 VPBasicBlock *HeaderVPBB = new VPBasicBlock("vector.body"); 901 VPBasicBlock *LatchVPBB = new VPBasicBlock("vector.latch"); 902 VPBlockUtils::insertBlockAfter(LatchVPBB, HeaderVPBB); 903 auto *TopRegion = new VPRegionBlock(HeaderVPBB, LatchVPBB, "vector loop", 904 false /*isReplicator*/); 905 906 VPBlockUtils::insertBlockAfter(TopRegion, VecPreheader); 907 VPBasicBlock *MiddleVPBB = new VPBasicBlock("middle.block"); 908 VPBlockUtils::insertBlockAfter(MiddleVPBB, TopRegion); 909 910 VPBasicBlock *ScalarPH = new VPBasicBlock("scalar.ph"); 911 if (!RequiresScalarEpilogueCheck) { 912 VPBlockUtils::connectBlocks(MiddleVPBB, ScalarPH); 913 return Plan; 914 } 915 916 // If needed, add a check in the middle block to see if we have completed 917 // all of the iterations in the first vector loop. Three cases: 918 // 1) If (N - N%VF) == N, then we *don't* need to run the remainder. 919 // Thus if tail is to be folded, we know we don't need to run the 920 // remainder and we can set the condition to true. 921 // 2) If we require a scalar epilogue, there is no conditional branch as 922 // we unconditionally branch to the scalar preheader. Do nothing. 923 // 3) Otherwise, construct a runtime check. 924 BasicBlock *IRExitBlock = TheLoop->getUniqueExitBlock(); 925 auto *VPExitBlock = createVPIRBasicBlockFor(IRExitBlock); 926 // The connection order corresponds to the operands of the conditional branch. 927 VPBlockUtils::insertBlockAfter(VPExitBlock, MiddleVPBB); 928 VPBlockUtils::connectBlocks(MiddleVPBB, ScalarPH); 929 930 auto *ScalarLatchTerm = TheLoop->getLoopLatch()->getTerminator(); 931 // Here we use the same DebugLoc as the scalar loop latch terminator instead 932 // of the corresponding compare because they may have ended up with 933 // different line numbers and we want to avoid awkward line stepping while 934 // debugging. Eg. if the compare has got a line number inside the loop. 935 VPBuilder Builder(MiddleVPBB); 936 VPValue *Cmp = 937 TailFolded 938 ? Plan->getOrAddLiveIn(ConstantInt::getTrue( 939 IntegerType::getInt1Ty(TripCount->getType()->getContext()))) 940 : Builder.createICmp(CmpInst::ICMP_EQ, Plan->getTripCount(), 941 &Plan->getVectorTripCount(), 942 ScalarLatchTerm->getDebugLoc(), "cmp.n"); 943 Builder.createNaryOp(VPInstruction::BranchOnCond, {Cmp}, 944 ScalarLatchTerm->getDebugLoc()); 945 return Plan; 946 } 947 948 void VPlan::prepareToExecute(Value *TripCountV, Value *VectorTripCountV, 949 Value *CanonicalIVStartValue, 950 VPTransformState &State) { 951 Type *TCTy = TripCountV->getType(); 952 // Check if the backedge taken count is needed, and if so build it. 953 if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) { 954 IRBuilder<> Builder(State.CFG.PrevBB->getTerminator()); 955 auto *TCMO = Builder.CreateSub(TripCountV, ConstantInt::get(TCTy, 1), 956 "trip.count.minus.1"); 957 BackedgeTakenCount->setUnderlyingValue(TCMO); 958 } 959 960 VectorTripCount.setUnderlyingValue(VectorTripCountV); 961 962 IRBuilder<> Builder(State.CFG.PrevBB->getTerminator()); 963 // FIXME: Model VF * UF computation completely in VPlan. 964 assert(VFxUF.getNumUsers() && "VFxUF expected to always have users"); 965 if (VF.getNumUsers()) { 966 Value *RuntimeVF = getRuntimeVF(Builder, TCTy, State.VF); 967 VF.setUnderlyingValue(RuntimeVF); 968 VFxUF.setUnderlyingValue( 969 State.UF > 1 970 ? Builder.CreateMul(RuntimeVF, ConstantInt::get(TCTy, State.UF)) 971 : RuntimeVF); 972 } else { 973 VFxUF.setUnderlyingValue( 974 createStepForVF(Builder, TCTy, State.VF, State.UF)); 975 } 976 977 // When vectorizing the epilogue loop, the canonical induction start value 978 // needs to be changed from zero to the value after the main vector loop. 979 // FIXME: Improve modeling for canonical IV start values in the epilogue loop. 980 if (CanonicalIVStartValue) { 981 VPValue *VPV = getOrAddLiveIn(CanonicalIVStartValue); 982 auto *IV = getCanonicalIV(); 983 assert(all_of(IV->users(), 984 [](const VPUser *U) { 985 return isa<VPScalarIVStepsRecipe>(U) || 986 isa<VPScalarCastRecipe>(U) || 987 isa<VPDerivedIVRecipe>(U) || 988 cast<VPInstruction>(U)->getOpcode() == 989 Instruction::Add; 990 }) && 991 "the canonical IV should only be used by its increment or " 992 "ScalarIVSteps when resetting the start value"); 993 IV->setOperand(0, VPV); 994 } 995 } 996 997 /// Replace \p VPBB with a VPIRBasicBlock wrapping \p IRBB. All recipes from \p 998 /// VPBB are moved to the end of the newly created VPIRBasicBlock. VPBB must 999 /// have a single predecessor, which is rewired to the new VPIRBasicBlock. All 1000 /// successors of VPBB, if any, are rewired to the new VPIRBasicBlock. 1001 static void replaceVPBBWithIRVPBB(VPBasicBlock *VPBB, BasicBlock *IRBB) { 1002 VPIRBasicBlock *IRVPBB = createVPIRBasicBlockFor(IRBB); 1003 for (auto &R : make_early_inc_range(*VPBB)) { 1004 assert(!R.isPhi() && "Tried to move phi recipe to end of block"); 1005 R.moveBefore(*IRVPBB, IRVPBB->end()); 1006 } 1007 VPBlockBase *PredVPBB = VPBB->getSinglePredecessor(); 1008 VPBlockUtils::disconnectBlocks(PredVPBB, VPBB); 1009 VPBlockUtils::connectBlocks(PredVPBB, IRVPBB); 1010 for (auto *Succ : to_vector(VPBB->getSuccessors())) { 1011 VPBlockUtils::connectBlocks(IRVPBB, Succ); 1012 VPBlockUtils::disconnectBlocks(VPBB, Succ); 1013 } 1014 delete VPBB; 1015 } 1016 1017 /// Generate the code inside the preheader and body of the vectorized loop. 1018 /// Assumes a single pre-header basic-block was created for this. Introduce 1019 /// additional basic-blocks as needed, and fill them all. 1020 void VPlan::execute(VPTransformState *State) { 1021 // Initialize CFG state. 1022 State->CFG.PrevVPBB = nullptr; 1023 State->CFG.ExitBB = State->CFG.PrevBB->getSingleSuccessor(); 1024 BasicBlock *VectorPreHeader = State->CFG.PrevBB; 1025 State->Builder.SetInsertPoint(VectorPreHeader->getTerminator()); 1026 1027 // Disconnect VectorPreHeader from ExitBB in both the CFG and DT. 1028 cast<BranchInst>(VectorPreHeader->getTerminator())->setSuccessor(0, nullptr); 1029 State->CFG.DTU.applyUpdates( 1030 {{DominatorTree::Delete, VectorPreHeader, State->CFG.ExitBB}}); 1031 1032 // Replace regular VPBB's for the middle and scalar preheader blocks with 1033 // VPIRBasicBlocks wrapping their IR blocks. The IR blocks are created during 1034 // skeleton creation, so we can only create the VPIRBasicBlocks now during 1035 // VPlan execution rather than earlier during VPlan construction. 1036 BasicBlock *MiddleBB = State->CFG.ExitBB; 1037 VPBasicBlock *MiddleVPBB = 1038 cast<VPBasicBlock>(getVectorLoopRegion()->getSingleSuccessor()); 1039 // Find the VPBB for the scalar preheader, relying on the current structure 1040 // when creating the middle block and its successrs: if there's a single 1041 // predecessor, it must be the scalar preheader. Otherwise, the second 1042 // successor is the scalar preheader. 1043 BasicBlock *ScalarPh = MiddleBB->getSingleSuccessor(); 1044 auto &MiddleSuccs = MiddleVPBB->getSuccessors(); 1045 assert((MiddleSuccs.size() == 1 || MiddleSuccs.size() == 2) && 1046 "middle block has unexpected successors"); 1047 VPBasicBlock *ScalarPhVPBB = cast<VPBasicBlock>( 1048 MiddleSuccs.size() == 1 ? MiddleSuccs[0] : MiddleSuccs[1]); 1049 assert(!isa<VPIRBasicBlock>(ScalarPhVPBB) && 1050 "scalar preheader cannot be wrapped already"); 1051 replaceVPBBWithIRVPBB(ScalarPhVPBB, ScalarPh); 1052 replaceVPBBWithIRVPBB(MiddleVPBB, MiddleBB); 1053 1054 // Disconnect the middle block from its single successor (the scalar loop 1055 // header) in both the CFG and DT. The branch will be recreated during VPlan 1056 // execution. 1057 auto *BrInst = new UnreachableInst(MiddleBB->getContext()); 1058 BrInst->insertBefore(MiddleBB->getTerminator()); 1059 MiddleBB->getTerminator()->eraseFromParent(); 1060 State->CFG.DTU.applyUpdates({{DominatorTree::Delete, MiddleBB, ScalarPh}}); 1061 1062 // Generate code in the loop pre-header and body. 1063 for (VPBlockBase *Block : vp_depth_first_shallow(Entry)) 1064 Block->execute(State); 1065 1066 VPBasicBlock *LatchVPBB = getVectorLoopRegion()->getExitingBasicBlock(); 1067 BasicBlock *VectorLatchBB = State->CFG.VPBB2IRBB[LatchVPBB]; 1068 1069 // Fix the latch value of canonical, reduction and first-order recurrences 1070 // phis in the vector loop. 1071 VPBasicBlock *Header = getVectorLoopRegion()->getEntryBasicBlock(); 1072 for (VPRecipeBase &R : Header->phis()) { 1073 // Skip phi-like recipes that generate their backedege values themselves. 1074 if (isa<VPWidenPHIRecipe>(&R)) 1075 continue; 1076 1077 if (isa<VPWidenPointerInductionRecipe>(&R) || 1078 isa<VPWidenIntOrFpInductionRecipe>(&R)) { 1079 PHINode *Phi = nullptr; 1080 if (isa<VPWidenIntOrFpInductionRecipe>(&R)) { 1081 Phi = cast<PHINode>(State->get(R.getVPSingleValue(), 0)); 1082 } else { 1083 auto *WidenPhi = cast<VPWidenPointerInductionRecipe>(&R); 1084 assert(!WidenPhi->onlyScalarsGenerated(State->VF.isScalable()) && 1085 "recipe generating only scalars should have been replaced"); 1086 auto *GEP = cast<GetElementPtrInst>(State->get(WidenPhi, 0)); 1087 Phi = cast<PHINode>(GEP->getPointerOperand()); 1088 } 1089 1090 Phi->setIncomingBlock(1, VectorLatchBB); 1091 1092 // Move the last step to the end of the latch block. This ensures 1093 // consistent placement of all induction updates. 1094 Instruction *Inc = cast<Instruction>(Phi->getIncomingValue(1)); 1095 Inc->moveBefore(VectorLatchBB->getTerminator()->getPrevNode()); 1096 continue; 1097 } 1098 1099 auto *PhiR = cast<VPHeaderPHIRecipe>(&R); 1100 // For canonical IV, first-order recurrences and in-order reduction phis, 1101 // only a single part is generated, which provides the last part from the 1102 // previous iteration. For non-ordered reductions all UF parts are 1103 // generated. 1104 bool SinglePartNeeded = 1105 isa<VPCanonicalIVPHIRecipe>(PhiR) || 1106 isa<VPFirstOrderRecurrencePHIRecipe, VPEVLBasedIVPHIRecipe>(PhiR) || 1107 (isa<VPReductionPHIRecipe>(PhiR) && 1108 cast<VPReductionPHIRecipe>(PhiR)->isOrdered()); 1109 bool NeedsScalar = 1110 isa<VPCanonicalIVPHIRecipe, VPEVLBasedIVPHIRecipe>(PhiR) || 1111 (isa<VPReductionPHIRecipe>(PhiR) && 1112 cast<VPReductionPHIRecipe>(PhiR)->isInLoop()); 1113 unsigned LastPartForNewPhi = SinglePartNeeded ? 1 : State->UF; 1114 1115 for (unsigned Part = 0; Part < LastPartForNewPhi; ++Part) { 1116 Value *Phi = State->get(PhiR, Part, NeedsScalar); 1117 Value *Val = 1118 State->get(PhiR->getBackedgeValue(), 1119 SinglePartNeeded ? State->UF - 1 : Part, NeedsScalar); 1120 cast<PHINode>(Phi)->addIncoming(Val, VectorLatchBB); 1121 } 1122 } 1123 1124 State->CFG.DTU.flush(); 1125 assert(State->CFG.DTU.getDomTree().verify( 1126 DominatorTree::VerificationLevel::Fast) && 1127 "DT not preserved correctly"); 1128 } 1129 1130 InstructionCost VPlan::cost(ElementCount VF, VPCostContext &Ctx) { 1131 // For now only return the cost of the vector loop region, ignoring any other 1132 // blocks, like the preheader or middle blocks. 1133 return getVectorLoopRegion()->cost(VF, Ctx); 1134 } 1135 1136 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1137 void VPlan::printLiveIns(raw_ostream &O) const { 1138 VPSlotTracker SlotTracker(this); 1139 1140 if (VF.getNumUsers() > 0) { 1141 O << "\nLive-in "; 1142 VF.printAsOperand(O, SlotTracker); 1143 O << " = VF"; 1144 } 1145 1146 if (VFxUF.getNumUsers() > 0) { 1147 O << "\nLive-in "; 1148 VFxUF.printAsOperand(O, SlotTracker); 1149 O << " = VF * UF"; 1150 } 1151 1152 if (VectorTripCount.getNumUsers() > 0) { 1153 O << "\nLive-in "; 1154 VectorTripCount.printAsOperand(O, SlotTracker); 1155 O << " = vector-trip-count"; 1156 } 1157 1158 if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) { 1159 O << "\nLive-in "; 1160 BackedgeTakenCount->printAsOperand(O, SlotTracker); 1161 O << " = backedge-taken count"; 1162 } 1163 1164 O << "\n"; 1165 if (TripCount->isLiveIn()) 1166 O << "Live-in "; 1167 TripCount->printAsOperand(O, SlotTracker); 1168 O << " = original trip-count"; 1169 O << "\n"; 1170 } 1171 1172 LLVM_DUMP_METHOD 1173 void VPlan::print(raw_ostream &O) const { 1174 VPSlotTracker SlotTracker(this); 1175 1176 O << "VPlan '" << getName() << "' {"; 1177 1178 printLiveIns(O); 1179 1180 if (!getPreheader()->empty()) { 1181 O << "\n"; 1182 getPreheader()->print(O, "", SlotTracker); 1183 } 1184 1185 for (const VPBlockBase *Block : vp_depth_first_shallow(getEntry())) { 1186 O << '\n'; 1187 Block->print(O, "", SlotTracker); 1188 } 1189 1190 if (!LiveOuts.empty()) 1191 O << "\n"; 1192 for (const auto &KV : LiveOuts) { 1193 KV.second->print(O, SlotTracker); 1194 } 1195 1196 O << "}\n"; 1197 } 1198 1199 std::string VPlan::getName() const { 1200 std::string Out; 1201 raw_string_ostream RSO(Out); 1202 RSO << Name << " for "; 1203 if (!VFs.empty()) { 1204 RSO << "VF={" << VFs[0]; 1205 for (ElementCount VF : drop_begin(VFs)) 1206 RSO << "," << VF; 1207 RSO << "},"; 1208 } 1209 1210 if (UFs.empty()) { 1211 RSO << "UF>=1"; 1212 } else { 1213 RSO << "UF={" << UFs[0]; 1214 for (unsigned UF : drop_begin(UFs)) 1215 RSO << "," << UF; 1216 RSO << "}"; 1217 } 1218 1219 return Out; 1220 } 1221 1222 LLVM_DUMP_METHOD 1223 void VPlan::printDOT(raw_ostream &O) const { 1224 VPlanPrinter Printer(O, *this); 1225 Printer.dump(); 1226 } 1227 1228 LLVM_DUMP_METHOD 1229 void VPlan::dump() const { print(dbgs()); } 1230 #endif 1231 1232 void VPlan::addLiveOut(PHINode *PN, VPValue *V) { 1233 assert(LiveOuts.count(PN) == 0 && "an exit value for PN already exists"); 1234 LiveOuts.insert({PN, new VPLiveOut(PN, V)}); 1235 } 1236 1237 static void remapOperands(VPBlockBase *Entry, VPBlockBase *NewEntry, 1238 DenseMap<VPValue *, VPValue *> &Old2NewVPValues) { 1239 // Update the operands of all cloned recipes starting at NewEntry. This 1240 // traverses all reachable blocks. This is done in two steps, to handle cycles 1241 // in PHI recipes. 1242 ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<VPBlockBase *>> 1243 OldDeepRPOT(Entry); 1244 ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<VPBlockBase *>> 1245 NewDeepRPOT(NewEntry); 1246 // First, collect all mappings from old to new VPValues defined by cloned 1247 // recipes. 1248 for (const auto &[OldBB, NewBB] : 1249 zip(VPBlockUtils::blocksOnly<VPBasicBlock>(OldDeepRPOT), 1250 VPBlockUtils::blocksOnly<VPBasicBlock>(NewDeepRPOT))) { 1251 assert(OldBB->getRecipeList().size() == NewBB->getRecipeList().size() && 1252 "blocks must have the same number of recipes"); 1253 for (const auto &[OldR, NewR] : zip(*OldBB, *NewBB)) { 1254 assert(OldR.getNumOperands() == NewR.getNumOperands() && 1255 "recipes must have the same number of operands"); 1256 assert(OldR.getNumDefinedValues() == NewR.getNumDefinedValues() && 1257 "recipes must define the same number of operands"); 1258 for (const auto &[OldV, NewV] : 1259 zip(OldR.definedValues(), NewR.definedValues())) 1260 Old2NewVPValues[OldV] = NewV; 1261 } 1262 } 1263 1264 // Update all operands to use cloned VPValues. 1265 for (VPBasicBlock *NewBB : 1266 VPBlockUtils::blocksOnly<VPBasicBlock>(NewDeepRPOT)) { 1267 for (VPRecipeBase &NewR : *NewBB) 1268 for (unsigned I = 0, E = NewR.getNumOperands(); I != E; ++I) { 1269 VPValue *NewOp = Old2NewVPValues.lookup(NewR.getOperand(I)); 1270 NewR.setOperand(I, NewOp); 1271 } 1272 } 1273 } 1274 1275 VPlan *VPlan::duplicate() { 1276 // Clone blocks. 1277 VPBasicBlock *NewPreheader = Preheader->clone(); 1278 const auto &[NewEntry, __] = cloneFrom(Entry); 1279 1280 // Create VPlan, clone live-ins and remap operands in the cloned blocks. 1281 auto *NewPlan = new VPlan(NewPreheader, cast<VPBasicBlock>(NewEntry)); 1282 DenseMap<VPValue *, VPValue *> Old2NewVPValues; 1283 for (VPValue *OldLiveIn : VPLiveInsToFree) { 1284 Old2NewVPValues[OldLiveIn] = 1285 NewPlan->getOrAddLiveIn(OldLiveIn->getLiveInIRValue()); 1286 } 1287 Old2NewVPValues[&VectorTripCount] = &NewPlan->VectorTripCount; 1288 Old2NewVPValues[&VF] = &NewPlan->VF; 1289 Old2NewVPValues[&VFxUF] = &NewPlan->VFxUF; 1290 if (BackedgeTakenCount) { 1291 NewPlan->BackedgeTakenCount = new VPValue(); 1292 Old2NewVPValues[BackedgeTakenCount] = NewPlan->BackedgeTakenCount; 1293 } 1294 assert(TripCount && "trip count must be set"); 1295 if (TripCount->isLiveIn()) 1296 Old2NewVPValues[TripCount] = 1297 NewPlan->getOrAddLiveIn(TripCount->getLiveInIRValue()); 1298 // else NewTripCount will be created and inserted into Old2NewVPValues when 1299 // TripCount is cloned. In any case NewPlan->TripCount is updated below. 1300 1301 remapOperands(Preheader, NewPreheader, Old2NewVPValues); 1302 remapOperands(Entry, NewEntry, Old2NewVPValues); 1303 1304 // Clone live-outs. 1305 for (const auto &[_, LO] : LiveOuts) 1306 NewPlan->addLiveOut(LO->getPhi(), Old2NewVPValues[LO->getOperand(0)]); 1307 1308 // Initialize remaining fields of cloned VPlan. 1309 NewPlan->VFs = VFs; 1310 NewPlan->UFs = UFs; 1311 // TODO: Adjust names. 1312 NewPlan->Name = Name; 1313 assert(Old2NewVPValues.contains(TripCount) && 1314 "TripCount must have been added to Old2NewVPValues"); 1315 NewPlan->TripCount = Old2NewVPValues[TripCount]; 1316 return NewPlan; 1317 } 1318 1319 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1320 1321 Twine VPlanPrinter::getUID(const VPBlockBase *Block) { 1322 return (isa<VPRegionBlock>(Block) ? "cluster_N" : "N") + 1323 Twine(getOrCreateBID(Block)); 1324 } 1325 1326 Twine VPlanPrinter::getOrCreateName(const VPBlockBase *Block) { 1327 const std::string &Name = Block->getName(); 1328 if (!Name.empty()) 1329 return Name; 1330 return "VPB" + Twine(getOrCreateBID(Block)); 1331 } 1332 1333 void VPlanPrinter::dump() { 1334 Depth = 1; 1335 bumpIndent(0); 1336 OS << "digraph VPlan {\n"; 1337 OS << "graph [labelloc=t, fontsize=30; label=\"Vectorization Plan"; 1338 if (!Plan.getName().empty()) 1339 OS << "\\n" << DOT::EscapeString(Plan.getName()); 1340 1341 { 1342 // Print live-ins. 1343 std::string Str; 1344 raw_string_ostream SS(Str); 1345 Plan.printLiveIns(SS); 1346 SmallVector<StringRef, 0> Lines; 1347 StringRef(Str).rtrim('\n').split(Lines, "\n"); 1348 for (auto Line : Lines) 1349 OS << DOT::EscapeString(Line.str()) << "\\n"; 1350 } 1351 1352 OS << "\"]\n"; 1353 OS << "node [shape=rect, fontname=Courier, fontsize=30]\n"; 1354 OS << "edge [fontname=Courier, fontsize=30]\n"; 1355 OS << "compound=true\n"; 1356 1357 dumpBlock(Plan.getPreheader()); 1358 1359 for (const VPBlockBase *Block : vp_depth_first_shallow(Plan.getEntry())) 1360 dumpBlock(Block); 1361 1362 OS << "}\n"; 1363 } 1364 1365 void VPlanPrinter::dumpBlock(const VPBlockBase *Block) { 1366 if (const VPBasicBlock *BasicBlock = dyn_cast<VPBasicBlock>(Block)) 1367 dumpBasicBlock(BasicBlock); 1368 else if (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 1369 dumpRegion(Region); 1370 else 1371 llvm_unreachable("Unsupported kind of VPBlock."); 1372 } 1373 1374 void VPlanPrinter::drawEdge(const VPBlockBase *From, const VPBlockBase *To, 1375 bool Hidden, const Twine &Label) { 1376 // Due to "dot" we print an edge between two regions as an edge between the 1377 // exiting basic block and the entry basic of the respective regions. 1378 const VPBlockBase *Tail = From->getExitingBasicBlock(); 1379 const VPBlockBase *Head = To->getEntryBasicBlock(); 1380 OS << Indent << getUID(Tail) << " -> " << getUID(Head); 1381 OS << " [ label=\"" << Label << '\"'; 1382 if (Tail != From) 1383 OS << " ltail=" << getUID(From); 1384 if (Head != To) 1385 OS << " lhead=" << getUID(To); 1386 if (Hidden) 1387 OS << "; splines=none"; 1388 OS << "]\n"; 1389 } 1390 1391 void VPlanPrinter::dumpEdges(const VPBlockBase *Block) { 1392 auto &Successors = Block->getSuccessors(); 1393 if (Successors.size() == 1) 1394 drawEdge(Block, Successors.front(), false, ""); 1395 else if (Successors.size() == 2) { 1396 drawEdge(Block, Successors.front(), false, "T"); 1397 drawEdge(Block, Successors.back(), false, "F"); 1398 } else { 1399 unsigned SuccessorNumber = 0; 1400 for (auto *Successor : Successors) 1401 drawEdge(Block, Successor, false, Twine(SuccessorNumber++)); 1402 } 1403 } 1404 1405 void VPlanPrinter::dumpBasicBlock(const VPBasicBlock *BasicBlock) { 1406 // Implement dot-formatted dump by performing plain-text dump into the 1407 // temporary storage followed by some post-processing. 1408 OS << Indent << getUID(BasicBlock) << " [label =\n"; 1409 bumpIndent(1); 1410 std::string Str; 1411 raw_string_ostream SS(Str); 1412 // Use no indentation as we need to wrap the lines into quotes ourselves. 1413 BasicBlock->print(SS, "", SlotTracker); 1414 1415 // We need to process each line of the output separately, so split 1416 // single-string plain-text dump. 1417 SmallVector<StringRef, 0> Lines; 1418 StringRef(Str).rtrim('\n').split(Lines, "\n"); 1419 1420 auto EmitLine = [&](StringRef Line, StringRef Suffix) { 1421 OS << Indent << '"' << DOT::EscapeString(Line.str()) << "\\l\"" << Suffix; 1422 }; 1423 1424 // Don't need the "+" after the last line. 1425 for (auto Line : make_range(Lines.begin(), Lines.end() - 1)) 1426 EmitLine(Line, " +\n"); 1427 EmitLine(Lines.back(), "\n"); 1428 1429 bumpIndent(-1); 1430 OS << Indent << "]\n"; 1431 1432 dumpEdges(BasicBlock); 1433 } 1434 1435 void VPlanPrinter::dumpRegion(const VPRegionBlock *Region) { 1436 OS << Indent << "subgraph " << getUID(Region) << " {\n"; 1437 bumpIndent(1); 1438 OS << Indent << "fontname=Courier\n" 1439 << Indent << "label=\"" 1440 << DOT::EscapeString(Region->isReplicator() ? "<xVFxUF> " : "<x1> ") 1441 << DOT::EscapeString(Region->getName()) << "\"\n"; 1442 // Dump the blocks of the region. 1443 assert(Region->getEntry() && "Region contains no inner blocks."); 1444 for (const VPBlockBase *Block : vp_depth_first_shallow(Region->getEntry())) 1445 dumpBlock(Block); 1446 bumpIndent(-1); 1447 OS << Indent << "}\n"; 1448 dumpEdges(Region); 1449 } 1450 1451 void VPlanIngredient::print(raw_ostream &O) const { 1452 if (auto *Inst = dyn_cast<Instruction>(V)) { 1453 if (!Inst->getType()->isVoidTy()) { 1454 Inst->printAsOperand(O, false); 1455 O << " = "; 1456 } 1457 O << Inst->getOpcodeName() << " "; 1458 unsigned E = Inst->getNumOperands(); 1459 if (E > 0) { 1460 Inst->getOperand(0)->printAsOperand(O, false); 1461 for (unsigned I = 1; I < E; ++I) 1462 Inst->getOperand(I)->printAsOperand(O << ", ", false); 1463 } 1464 } else // !Inst 1465 V->printAsOperand(O, false); 1466 } 1467 1468 #endif 1469 1470 bool VPValue::isDefinedOutsideLoopRegions() const { 1471 return !hasDefiningRecipe() || 1472 !getDefiningRecipe()->getParent()->getEnclosingLoopRegion(); 1473 } 1474 1475 void VPValue::replaceAllUsesWith(VPValue *New) { 1476 replaceUsesWithIf(New, [](VPUser &, unsigned) { return true; }); 1477 } 1478 1479 void VPValue::replaceUsesWithIf( 1480 VPValue *New, 1481 llvm::function_ref<bool(VPUser &U, unsigned Idx)> ShouldReplace) { 1482 // Note that this early exit is required for correctness; the implementation 1483 // below relies on the number of users for this VPValue to decrease, which 1484 // isn't the case if this == New. 1485 if (this == New) 1486 return; 1487 1488 for (unsigned J = 0; J < getNumUsers();) { 1489 VPUser *User = Users[J]; 1490 bool RemovedUser = false; 1491 for (unsigned I = 0, E = User->getNumOperands(); I < E; ++I) { 1492 if (User->getOperand(I) != this || !ShouldReplace(*User, I)) 1493 continue; 1494 1495 RemovedUser = true; 1496 User->setOperand(I, New); 1497 } 1498 // If a user got removed after updating the current user, the next user to 1499 // update will be moved to the current position, so we only need to 1500 // increment the index if the number of users did not change. 1501 if (!RemovedUser) 1502 J++; 1503 } 1504 } 1505 1506 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1507 void VPValue::printAsOperand(raw_ostream &OS, VPSlotTracker &Tracker) const { 1508 OS << Tracker.getOrCreateName(this); 1509 } 1510 1511 void VPUser::printOperands(raw_ostream &O, VPSlotTracker &SlotTracker) const { 1512 interleaveComma(operands(), O, [&O, &SlotTracker](VPValue *Op) { 1513 Op->printAsOperand(O, SlotTracker); 1514 }); 1515 } 1516 #endif 1517 1518 void VPInterleavedAccessInfo::visitRegion(VPRegionBlock *Region, 1519 Old2NewTy &Old2New, 1520 InterleavedAccessInfo &IAI) { 1521 ReversePostOrderTraversal<VPBlockShallowTraversalWrapper<VPBlockBase *>> 1522 RPOT(Region->getEntry()); 1523 for (VPBlockBase *Base : RPOT) { 1524 visitBlock(Base, Old2New, IAI); 1525 } 1526 } 1527 1528 void VPInterleavedAccessInfo::visitBlock(VPBlockBase *Block, Old2NewTy &Old2New, 1529 InterleavedAccessInfo &IAI) { 1530 if (VPBasicBlock *VPBB = dyn_cast<VPBasicBlock>(Block)) { 1531 for (VPRecipeBase &VPI : *VPBB) { 1532 if (isa<VPWidenPHIRecipe>(&VPI)) 1533 continue; 1534 assert(isa<VPInstruction>(&VPI) && "Can only handle VPInstructions"); 1535 auto *VPInst = cast<VPInstruction>(&VPI); 1536 1537 auto *Inst = dyn_cast_or_null<Instruction>(VPInst->getUnderlyingValue()); 1538 if (!Inst) 1539 continue; 1540 auto *IG = IAI.getInterleaveGroup(Inst); 1541 if (!IG) 1542 continue; 1543 1544 auto NewIGIter = Old2New.find(IG); 1545 if (NewIGIter == Old2New.end()) 1546 Old2New[IG] = new InterleaveGroup<VPInstruction>( 1547 IG->getFactor(), IG->isReverse(), IG->getAlign()); 1548 1549 if (Inst == IG->getInsertPos()) 1550 Old2New[IG]->setInsertPos(VPInst); 1551 1552 InterleaveGroupMap[VPInst] = Old2New[IG]; 1553 InterleaveGroupMap[VPInst]->insertMember( 1554 VPInst, IG->getIndex(Inst), 1555 Align(IG->isReverse() ? (-1) * int(IG->getFactor()) 1556 : IG->getFactor())); 1557 } 1558 } else if (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 1559 visitRegion(Region, Old2New, IAI); 1560 else 1561 llvm_unreachable("Unsupported kind of VPBlock."); 1562 } 1563 1564 VPInterleavedAccessInfo::VPInterleavedAccessInfo(VPlan &Plan, 1565 InterleavedAccessInfo &IAI) { 1566 Old2NewTy Old2New; 1567 visitRegion(Plan.getVectorLoopRegion(), Old2New, IAI); 1568 } 1569 1570 void VPSlotTracker::assignName(const VPValue *V) { 1571 assert(!VPValue2Name.contains(V) && "VPValue already has a name!"); 1572 auto *UV = V->getUnderlyingValue(); 1573 if (!UV) { 1574 VPValue2Name[V] = (Twine("vp<%") + Twine(NextSlot) + ">").str(); 1575 NextSlot++; 1576 return; 1577 } 1578 1579 // Use the name of the underlying Value, wrapped in "ir<>", and versioned by 1580 // appending ".Number" to the name if there are multiple uses. 1581 std::string Name; 1582 raw_string_ostream S(Name); 1583 UV->printAsOperand(S, false); 1584 assert(!Name.empty() && "Name cannot be empty."); 1585 std::string BaseName = (Twine("ir<") + Name + Twine(">")).str(); 1586 1587 // First assign the base name for V. 1588 const auto &[A, _] = VPValue2Name.insert({V, BaseName}); 1589 // Integer or FP constants with different types will result in he same string 1590 // due to stripping types. 1591 if (V->isLiveIn() && isa<ConstantInt, ConstantFP>(UV)) 1592 return; 1593 1594 // If it is already used by C > 0 other VPValues, increase the version counter 1595 // C and use it for V. 1596 const auto &[C, UseInserted] = BaseName2Version.insert({BaseName, 0}); 1597 if (!UseInserted) { 1598 C->second++; 1599 A->second = (BaseName + Twine(".") + Twine(C->second)).str(); 1600 } 1601 } 1602 1603 void VPSlotTracker::assignNames(const VPlan &Plan) { 1604 if (Plan.VF.getNumUsers() > 0) 1605 assignName(&Plan.VF); 1606 if (Plan.VFxUF.getNumUsers() > 0) 1607 assignName(&Plan.VFxUF); 1608 assignName(&Plan.VectorTripCount); 1609 if (Plan.BackedgeTakenCount) 1610 assignName(Plan.BackedgeTakenCount); 1611 for (VPValue *LI : Plan.VPLiveInsToFree) 1612 assignName(LI); 1613 assignNames(Plan.getPreheader()); 1614 1615 ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<const VPBlockBase *>> 1616 RPOT(VPBlockDeepTraversalWrapper<const VPBlockBase *>(Plan.getEntry())); 1617 for (const VPBasicBlock *VPBB : 1618 VPBlockUtils::blocksOnly<const VPBasicBlock>(RPOT)) 1619 assignNames(VPBB); 1620 } 1621 1622 void VPSlotTracker::assignNames(const VPBasicBlock *VPBB) { 1623 for (const VPRecipeBase &Recipe : *VPBB) 1624 for (VPValue *Def : Recipe.definedValues()) 1625 assignName(Def); 1626 } 1627 1628 std::string VPSlotTracker::getOrCreateName(const VPValue *V) const { 1629 std::string Name = VPValue2Name.lookup(V); 1630 if (!Name.empty()) 1631 return Name; 1632 1633 // If no name was assigned, no VPlan was provided when creating the slot 1634 // tracker or it is not reachable from the provided VPlan. This can happen, 1635 // e.g. when trying to print a recipe that has not been inserted into a VPlan 1636 // in a debugger. 1637 // TODO: Update VPSlotTracker constructor to assign names to recipes & 1638 // VPValues not associated with a VPlan, instead of constructing names ad-hoc 1639 // here. 1640 const VPRecipeBase *DefR = V->getDefiningRecipe(); 1641 (void)DefR; 1642 assert((!DefR || !DefR->getParent() || !DefR->getParent()->getPlan()) && 1643 "VPValue defined by a recipe in a VPlan?"); 1644 1645 // Use the underlying value's name, if there is one. 1646 if (auto *UV = V->getUnderlyingValue()) { 1647 std::string Name; 1648 raw_string_ostream S(Name); 1649 UV->printAsOperand(S, false); 1650 return (Twine("ir<") + Name + ">").str(); 1651 } 1652 1653 return "<badref>"; 1654 } 1655 1656 bool LoopVectorizationPlanner::getDecisionAndClampRange( 1657 const std::function<bool(ElementCount)> &Predicate, VFRange &Range) { 1658 assert(!Range.isEmpty() && "Trying to test an empty VF range."); 1659 bool PredicateAtRangeStart = Predicate(Range.Start); 1660 1661 for (ElementCount TmpVF : VFRange(Range.Start * 2, Range.End)) 1662 if (Predicate(TmpVF) != PredicateAtRangeStart) { 1663 Range.End = TmpVF; 1664 break; 1665 } 1666 1667 return PredicateAtRangeStart; 1668 } 1669 1670 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF, 1671 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range 1672 /// of VF's starting at a given VF and extending it as much as possible. Each 1673 /// vectorization decision can potentially shorten this sub-range during 1674 /// buildVPlan(). 1675 void LoopVectorizationPlanner::buildVPlans(ElementCount MinVF, 1676 ElementCount MaxVF) { 1677 auto MaxVFTimes2 = MaxVF * 2; 1678 for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFTimes2);) { 1679 VFRange SubRange = {VF, MaxVFTimes2}; 1680 auto Plan = buildVPlan(SubRange); 1681 VPlanTransforms::optimize(*Plan); 1682 VPlans.push_back(std::move(Plan)); 1683 VF = SubRange.End; 1684 } 1685 } 1686 1687 VPlan &LoopVectorizationPlanner::getPlanFor(ElementCount VF) const { 1688 assert(count_if(VPlans, 1689 [VF](const VPlanPtr &Plan) { return Plan->hasVF(VF); }) == 1690 1 && 1691 "Multiple VPlans for VF."); 1692 1693 for (const VPlanPtr &Plan : VPlans) { 1694 if (Plan->hasVF(VF)) 1695 return *Plan.get(); 1696 } 1697 llvm_unreachable("No plan found!"); 1698 } 1699 1700 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1701 void LoopVectorizationPlanner::printPlans(raw_ostream &O) { 1702 if (VPlans.empty()) { 1703 O << "LV: No VPlans built.\n"; 1704 return; 1705 } 1706 for (const auto &Plan : VPlans) 1707 if (PrintVPlansInDotFormat) 1708 Plan->printDOT(O); 1709 else 1710 Plan->print(O); 1711 } 1712 #endif 1713