xref: /llvm-project/llvm/lib/Transforms/Vectorize/VPlan.cpp (revision 49d00824bbbb8945b92c0f592c6951a881a6242f)
1 //===- VPlan.cpp - Vectorizer Plan ----------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This is the LLVM vectorization plan. It represents a candidate for
11 /// vectorization, allowing to plan and optimize how to vectorize a given loop
12 /// before generating LLVM-IR.
13 /// The vectorizer uses vectorization plans to estimate the costs of potential
14 /// candidates and if profitable to execute the desired plan, generating vector
15 /// LLVM-IR code.
16 ///
17 //===----------------------------------------------------------------------===//
18 
19 #include "VPlan.h"
20 #include "VPlanDominatorTree.h"
21 #include "llvm/ADT/DepthFirstIterator.h"
22 #include "llvm/ADT/PostOrderIterator.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/Twine.h"
25 #include "llvm/Analysis/LoopInfo.h"
26 #include "llvm/IR/BasicBlock.h"
27 #include "llvm/IR/CFG.h"
28 #include "llvm/IR/InstrTypes.h"
29 #include "llvm/IR/Instruction.h"
30 #include "llvm/IR/Instructions.h"
31 #include "llvm/IR/Type.h"
32 #include "llvm/IR/Value.h"
33 #include "llvm/Support/Casting.h"
34 #include "llvm/Support/CommandLine.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/ErrorHandling.h"
37 #include "llvm/Support/GenericDomTreeConstruction.h"
38 #include "llvm/Support/GraphWriter.h"
39 #include "llvm/Support/raw_ostream.h"
40 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
41 #include <cassert>
42 #include <iterator>
43 #include <string>
44 #include <vector>
45 
46 using namespace llvm;
47 extern cl::opt<bool> EnableVPlanNativePath;
48 
49 #define DEBUG_TYPE "vplan"
50 
51 raw_ostream &llvm::operator<<(raw_ostream &OS, const VPValue &V) {
52   const VPInstruction *Instr = dyn_cast<VPInstruction>(&V);
53   VPSlotTracker SlotTracker(
54       (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr);
55   V.print(OS, SlotTracker);
56   return OS;
57 }
58 
59 void VPValue::print(raw_ostream &OS, VPSlotTracker &SlotTracker) const {
60   if (const VPInstruction *Instr = dyn_cast<VPInstruction>(this))
61     Instr->print(OS, SlotTracker);
62   else
63     printAsOperand(OS, SlotTracker);
64 }
65 
66 // Get the top-most entry block of \p Start. This is the entry block of the
67 // containing VPlan. This function is templated to support both const and non-const blocks
68 template <typename T> static T *getPlanEntry(T *Start) {
69   T *Next = Start;
70   T *Current = Start;
71   while ((Next = Next->getParent()))
72     Current = Next;
73 
74   SmallSetVector<T *, 8> WorkList;
75   WorkList.insert(Current);
76 
77   for (unsigned i = 0; i < WorkList.size(); i++) {
78     T *Current = WorkList[i];
79     if (Current->getNumPredecessors() == 0)
80       return Current;
81     auto &Predecessors = Current->getPredecessors();
82     WorkList.insert(Predecessors.begin(), Predecessors.end());
83   }
84 
85   llvm_unreachable("VPlan without any entry node without predecessors");
86 }
87 
88 VPlan *VPBlockBase::getPlan() { return getPlanEntry(this)->Plan; }
89 
90 const VPlan *VPBlockBase::getPlan() const { return getPlanEntry(this)->Plan; }
91 
92 /// \return the VPBasicBlock that is the entry of Block, possibly indirectly.
93 const VPBasicBlock *VPBlockBase::getEntryBasicBlock() const {
94   const VPBlockBase *Block = this;
95   while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
96     Block = Region->getEntry();
97   return cast<VPBasicBlock>(Block);
98 }
99 
100 VPBasicBlock *VPBlockBase::getEntryBasicBlock() {
101   VPBlockBase *Block = this;
102   while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
103     Block = Region->getEntry();
104   return cast<VPBasicBlock>(Block);
105 }
106 
107 void VPBlockBase::setPlan(VPlan *ParentPlan) {
108   assert(ParentPlan->getEntry() == this &&
109          "Can only set plan on its entry block.");
110   Plan = ParentPlan;
111 }
112 
113 /// \return the VPBasicBlock that is the exit of Block, possibly indirectly.
114 const VPBasicBlock *VPBlockBase::getExitBasicBlock() const {
115   const VPBlockBase *Block = this;
116   while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
117     Block = Region->getExit();
118   return cast<VPBasicBlock>(Block);
119 }
120 
121 VPBasicBlock *VPBlockBase::getExitBasicBlock() {
122   VPBlockBase *Block = this;
123   while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
124     Block = Region->getExit();
125   return cast<VPBasicBlock>(Block);
126 }
127 
128 VPBlockBase *VPBlockBase::getEnclosingBlockWithSuccessors() {
129   if (!Successors.empty() || !Parent)
130     return this;
131   assert(Parent->getExit() == this &&
132          "Block w/o successors not the exit of its parent.");
133   return Parent->getEnclosingBlockWithSuccessors();
134 }
135 
136 VPBlockBase *VPBlockBase::getEnclosingBlockWithPredecessors() {
137   if (!Predecessors.empty() || !Parent)
138     return this;
139   assert(Parent->getEntry() == this &&
140          "Block w/o predecessors not the entry of its parent.");
141   return Parent->getEnclosingBlockWithPredecessors();
142 }
143 
144 void VPBlockBase::deleteCFG(VPBlockBase *Entry) {
145   SmallVector<VPBlockBase *, 8> Blocks;
146   for (VPBlockBase *Block : depth_first(Entry))
147     Blocks.push_back(Block);
148 
149   for (VPBlockBase *Block : Blocks)
150     delete Block;
151 }
152 
153 BasicBlock *
154 VPBasicBlock::createEmptyBasicBlock(VPTransformState::CFGState &CFG) {
155   // BB stands for IR BasicBlocks. VPBB stands for VPlan VPBasicBlocks.
156   // Pred stands for Predessor. Prev stands for Previous - last visited/created.
157   BasicBlock *PrevBB = CFG.PrevBB;
158   BasicBlock *NewBB = BasicBlock::Create(PrevBB->getContext(), getName(),
159                                          PrevBB->getParent(), CFG.LastBB);
160   LLVM_DEBUG(dbgs() << "LV: created " << NewBB->getName() << '\n');
161 
162   // Hook up the new basic block to its predecessors.
163   for (VPBlockBase *PredVPBlock : getHierarchicalPredecessors()) {
164     VPBasicBlock *PredVPBB = PredVPBlock->getExitBasicBlock();
165     auto &PredVPSuccessors = PredVPBB->getSuccessors();
166     BasicBlock *PredBB = CFG.VPBB2IRBB[PredVPBB];
167 
168     // In outer loop vectorization scenario, the predecessor BBlock may not yet
169     // be visited(backedge). Mark the VPBasicBlock for fixup at the end of
170     // vectorization. We do not encounter this case in inner loop vectorization
171     // as we start out by building a loop skeleton with the vector loop header
172     // and latch blocks. As a result, we never enter this function for the
173     // header block in the non VPlan-native path.
174     if (!PredBB) {
175       assert(EnableVPlanNativePath &&
176              "Unexpected null predecessor in non VPlan-native path");
177       CFG.VPBBsToFix.push_back(PredVPBB);
178       continue;
179     }
180 
181     assert(PredBB && "Predecessor basic-block not found building successor.");
182     auto *PredBBTerminator = PredBB->getTerminator();
183     LLVM_DEBUG(dbgs() << "LV: draw edge from" << PredBB->getName() << '\n');
184     if (isa<UnreachableInst>(PredBBTerminator)) {
185       assert(PredVPSuccessors.size() == 1 &&
186              "Predecessor ending w/o branch must have single successor.");
187       PredBBTerminator->eraseFromParent();
188       BranchInst::Create(NewBB, PredBB);
189     } else {
190       assert(PredVPSuccessors.size() == 2 &&
191              "Predecessor ending with branch must have two successors.");
192       unsigned idx = PredVPSuccessors.front() == this ? 0 : 1;
193       assert(!PredBBTerminator->getSuccessor(idx) &&
194              "Trying to reset an existing successor block.");
195       PredBBTerminator->setSuccessor(idx, NewBB);
196     }
197   }
198   return NewBB;
199 }
200 
201 void VPBasicBlock::execute(VPTransformState *State) {
202   bool Replica = State->Instance &&
203                  !(State->Instance->Part == 0 && State->Instance->Lane == 0);
204   VPBasicBlock *PrevVPBB = State->CFG.PrevVPBB;
205   VPBlockBase *SingleHPred = nullptr;
206   BasicBlock *NewBB = State->CFG.PrevBB; // Reuse it if possible.
207 
208   // 1. Create an IR basic block, or reuse the last one if possible.
209   // The last IR basic block is reused, as an optimization, in three cases:
210   // A. the first VPBB reuses the loop header BB - when PrevVPBB is null;
211   // B. when the current VPBB has a single (hierarchical) predecessor which
212   //    is PrevVPBB and the latter has a single (hierarchical) successor; and
213   // C. when the current VPBB is an entry of a region replica - where PrevVPBB
214   //    is the exit of this region from a previous instance, or the predecessor
215   //    of this region.
216   if (PrevVPBB && /* A */
217       !((SingleHPred = getSingleHierarchicalPredecessor()) &&
218         SingleHPred->getExitBasicBlock() == PrevVPBB &&
219         PrevVPBB->getSingleHierarchicalSuccessor()) && /* B */
220       !(Replica && getPredecessors().empty())) {       /* C */
221     NewBB = createEmptyBasicBlock(State->CFG);
222     State->Builder.SetInsertPoint(NewBB);
223     // Temporarily terminate with unreachable until CFG is rewired.
224     UnreachableInst *Terminator = State->Builder.CreateUnreachable();
225     State->Builder.SetInsertPoint(Terminator);
226     // Register NewBB in its loop. In innermost loops its the same for all BB's.
227     Loop *L = State->LI->getLoopFor(State->CFG.LastBB);
228     L->addBasicBlockToLoop(NewBB, *State->LI);
229     State->CFG.PrevBB = NewBB;
230   }
231 
232   // 2. Fill the IR basic block with IR instructions.
233   LLVM_DEBUG(dbgs() << "LV: vectorizing VPBB:" << getName()
234                     << " in BB:" << NewBB->getName() << '\n');
235 
236   State->CFG.VPBB2IRBB[this] = NewBB;
237   State->CFG.PrevVPBB = this;
238 
239   for (VPRecipeBase &Recipe : Recipes)
240     Recipe.execute(*State);
241 
242   VPValue *CBV;
243   if (EnableVPlanNativePath && (CBV = getCondBit())) {
244     Value *IRCBV = CBV->getUnderlyingValue();
245     assert(IRCBV && "Unexpected null underlying value for condition bit");
246 
247     // Condition bit value in a VPBasicBlock is used as the branch selector. In
248     // the VPlan-native path case, since all branches are uniform we generate a
249     // branch instruction using the condition value from vector lane 0 and dummy
250     // successors. The successors are fixed later when the successor blocks are
251     // visited.
252     Value *NewCond = State->Callback.getOrCreateVectorValues(IRCBV, 0);
253     NewCond = State->Builder.CreateExtractElement(NewCond,
254                                                   State->Builder.getInt32(0));
255 
256     // Replace the temporary unreachable terminator with the new conditional
257     // branch.
258     auto *CurrentTerminator = NewBB->getTerminator();
259     assert(isa<UnreachableInst>(CurrentTerminator) &&
260            "Expected to replace unreachable terminator with conditional "
261            "branch.");
262     auto *CondBr = BranchInst::Create(NewBB, nullptr, NewCond);
263     CondBr->setSuccessor(0, nullptr);
264     ReplaceInstWithInst(CurrentTerminator, CondBr);
265   }
266 
267   LLVM_DEBUG(dbgs() << "LV: filled BB:" << *NewBB);
268 }
269 
270 void VPRegionBlock::execute(VPTransformState *State) {
271   ReversePostOrderTraversal<VPBlockBase *> RPOT(Entry);
272 
273   if (!isReplicator()) {
274     // Visit the VPBlocks connected to "this", starting from it.
275     for (VPBlockBase *Block : RPOT) {
276       if (EnableVPlanNativePath) {
277         // The inner loop vectorization path does not represent loop preheader
278         // and exit blocks as part of the VPlan. In the VPlan-native path, skip
279         // vectorizing loop preheader block. In future, we may replace this
280         // check with the check for loop preheader.
281         if (Block->getNumPredecessors() == 0)
282           continue;
283 
284         // Skip vectorizing loop exit block. In future, we may replace this
285         // check with the check for loop exit.
286         if (Block->getNumSuccessors() == 0)
287           continue;
288       }
289 
290       LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n');
291       Block->execute(State);
292     }
293     return;
294   }
295 
296   assert(!State->Instance && "Replicating a Region with non-null instance.");
297 
298   // Enter replicating mode.
299   State->Instance = {0, 0};
300 
301   for (unsigned Part = 0, UF = State->UF; Part < UF; ++Part) {
302     State->Instance->Part = Part;
303     for (unsigned Lane = 0, VF = State->VF; Lane < VF; ++Lane) {
304       State->Instance->Lane = Lane;
305       // Visit the VPBlocks connected to \p this, starting from it.
306       for (VPBlockBase *Block : RPOT) {
307         LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n');
308         Block->execute(State);
309       }
310     }
311   }
312 
313   // Exit replicating mode.
314   State->Instance.reset();
315 }
316 
317 void VPRecipeBase::insertBefore(VPRecipeBase *InsertPos) {
318   assert(!Parent && "Recipe already in some VPBasicBlock");
319   assert(InsertPos->getParent() &&
320          "Insertion position not in any VPBasicBlock");
321   Parent = InsertPos->getParent();
322   Parent->getRecipeList().insert(InsertPos->getIterator(), this);
323 }
324 
325 void VPRecipeBase::insertAfter(VPRecipeBase *InsertPos) {
326   assert(!Parent && "Recipe already in some VPBasicBlock");
327   assert(InsertPos->getParent() &&
328          "Insertion position not in any VPBasicBlock");
329   Parent = InsertPos->getParent();
330   Parent->getRecipeList().insertAfter(InsertPos->getIterator(), this);
331 }
332 
333 void VPRecipeBase::removeFromParent() {
334   assert(getParent() && "Recipe not in any VPBasicBlock");
335   getParent()->getRecipeList().remove(getIterator());
336   Parent = nullptr;
337 }
338 
339 iplist<VPRecipeBase>::iterator VPRecipeBase::eraseFromParent() {
340   assert(getParent() && "Recipe not in any VPBasicBlock");
341   return getParent()->getRecipeList().erase(getIterator());
342 }
343 
344 void VPRecipeBase::moveAfter(VPRecipeBase *InsertPos) {
345   removeFromParent();
346   insertAfter(InsertPos);
347 }
348 
349 void VPInstruction::generateInstruction(VPTransformState &State,
350                                         unsigned Part) {
351   IRBuilder<> &Builder = State.Builder;
352 
353   if (Instruction::isBinaryOp(getOpcode())) {
354     Value *A = State.get(getOperand(0), Part);
355     Value *B = State.get(getOperand(1), Part);
356     Value *V = Builder.CreateBinOp((Instruction::BinaryOps)getOpcode(), A, B);
357     State.set(this, V, Part);
358     return;
359   }
360 
361   switch (getOpcode()) {
362   case VPInstruction::Not: {
363     Value *A = State.get(getOperand(0), Part);
364     Value *V = Builder.CreateNot(A);
365     State.set(this, V, Part);
366     break;
367   }
368   case VPInstruction::ICmpULE: {
369     Value *IV = State.get(getOperand(0), Part);
370     Value *TC = State.get(getOperand(1), Part);
371     Value *V = Builder.CreateICmpULE(IV, TC);
372     State.set(this, V, Part);
373     break;
374   }
375   case Instruction::Select: {
376     Value *Cond = State.get(getOperand(0), Part);
377     Value *Op1 = State.get(getOperand(1), Part);
378     Value *Op2 = State.get(getOperand(2), Part);
379     Value *V = Builder.CreateSelect(Cond, Op1, Op2);
380     State.set(this, V, Part);
381     break;
382   }
383   default:
384     llvm_unreachable("Unsupported opcode for instruction");
385   }
386 }
387 
388 void VPInstruction::execute(VPTransformState &State) {
389   assert(!State.Instance && "VPInstruction executing an Instance");
390   for (unsigned Part = 0; Part < State.UF; ++Part)
391     generateInstruction(State, Part);
392 }
393 
394 void VPInstruction::print(raw_ostream &O, const Twine &Indent,
395                           VPSlotTracker &SlotTracker) const {
396   O << " +\n" << Indent << "\"EMIT ";
397   print(O, SlotTracker);
398   O << "\\l\"";
399 }
400 
401 void VPInstruction::print(raw_ostream &O) const {
402   VPSlotTracker SlotTracker(getParent()->getPlan());
403   print(O, SlotTracker);
404 }
405 
406 void VPInstruction::print(raw_ostream &O, VPSlotTracker &SlotTracker) const {
407   if (hasResult()) {
408     printAsOperand(O, SlotTracker);
409     O << " = ";
410   }
411 
412   switch (getOpcode()) {
413   case VPInstruction::Not:
414     O << "not";
415     break;
416   case VPInstruction::ICmpULE:
417     O << "icmp ule";
418     break;
419   case VPInstruction::SLPLoad:
420     O << "combined load";
421     break;
422   case VPInstruction::SLPStore:
423     O << "combined store";
424     break;
425   default:
426     O << Instruction::getOpcodeName(getOpcode());
427   }
428 
429   for (const VPValue *Operand : operands()) {
430     O << " ";
431     Operand->printAsOperand(O, SlotTracker);
432   }
433 }
434 
435 /// Generate the code inside the body of the vectorized loop. Assumes a single
436 /// LoopVectorBody basic-block was created for this. Introduce additional
437 /// basic-blocks as needed, and fill them all.
438 void VPlan::execute(VPTransformState *State) {
439   // -1. Check if the backedge taken count is needed, and if so build it.
440   if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) {
441     Value *TC = State->TripCount;
442     IRBuilder<> Builder(State->CFG.PrevBB->getTerminator());
443     auto *TCMO = Builder.CreateSub(TC, ConstantInt::get(TC->getType(), 1),
444                                    "trip.count.minus.1");
445     Value2VPValue[TCMO] = BackedgeTakenCount;
446   }
447 
448   // 0. Set the reverse mapping from VPValues to Values for code generation.
449   for (auto &Entry : Value2VPValue)
450     State->VPValue2Value[Entry.second] = Entry.first;
451 
452   BasicBlock *VectorPreHeaderBB = State->CFG.PrevBB;
453   BasicBlock *VectorHeaderBB = VectorPreHeaderBB->getSingleSuccessor();
454   assert(VectorHeaderBB && "Loop preheader does not have a single successor.");
455 
456   // 1. Make room to generate basic-blocks inside loop body if needed.
457   BasicBlock *VectorLatchBB = VectorHeaderBB->splitBasicBlock(
458       VectorHeaderBB->getFirstInsertionPt(), "vector.body.latch");
459   Loop *L = State->LI->getLoopFor(VectorHeaderBB);
460   L->addBasicBlockToLoop(VectorLatchBB, *State->LI);
461   // Remove the edge between Header and Latch to allow other connections.
462   // Temporarily terminate with unreachable until CFG is rewired.
463   // Note: this asserts the generated code's assumption that
464   // getFirstInsertionPt() can be dereferenced into an Instruction.
465   VectorHeaderBB->getTerminator()->eraseFromParent();
466   State->Builder.SetInsertPoint(VectorHeaderBB);
467   UnreachableInst *Terminator = State->Builder.CreateUnreachable();
468   State->Builder.SetInsertPoint(Terminator);
469 
470   // 2. Generate code in loop body.
471   State->CFG.PrevVPBB = nullptr;
472   State->CFG.PrevBB = VectorHeaderBB;
473   State->CFG.LastBB = VectorLatchBB;
474 
475   for (VPBlockBase *Block : depth_first(Entry))
476     Block->execute(State);
477 
478   // Setup branch terminator successors for VPBBs in VPBBsToFix based on
479   // VPBB's successors.
480   for (auto VPBB : State->CFG.VPBBsToFix) {
481     assert(EnableVPlanNativePath &&
482            "Unexpected VPBBsToFix in non VPlan-native path");
483     BasicBlock *BB = State->CFG.VPBB2IRBB[VPBB];
484     assert(BB && "Unexpected null basic block for VPBB");
485 
486     unsigned Idx = 0;
487     auto *BBTerminator = BB->getTerminator();
488 
489     for (VPBlockBase *SuccVPBlock : VPBB->getHierarchicalSuccessors()) {
490       VPBasicBlock *SuccVPBB = SuccVPBlock->getEntryBasicBlock();
491       BBTerminator->setSuccessor(Idx, State->CFG.VPBB2IRBB[SuccVPBB]);
492       ++Idx;
493     }
494   }
495 
496   // 3. Merge the temporary latch created with the last basic-block filled.
497   BasicBlock *LastBB = State->CFG.PrevBB;
498   // Connect LastBB to VectorLatchBB to facilitate their merge.
499   assert((EnableVPlanNativePath ||
500           isa<UnreachableInst>(LastBB->getTerminator())) &&
501          "Expected InnerLoop VPlan CFG to terminate with unreachable");
502   assert((!EnableVPlanNativePath || isa<BranchInst>(LastBB->getTerminator())) &&
503          "Expected VPlan CFG to terminate with branch in NativePath");
504   LastBB->getTerminator()->eraseFromParent();
505   BranchInst::Create(VectorLatchBB, LastBB);
506 
507   // Merge LastBB with Latch.
508   bool Merged = MergeBlockIntoPredecessor(VectorLatchBB, nullptr, State->LI);
509   (void)Merged;
510   assert(Merged && "Could not merge last basic block with latch.");
511   VectorLatchBB = LastBB;
512 
513   // We do not attempt to preserve DT for outer loop vectorization currently.
514   if (!EnableVPlanNativePath)
515     updateDominatorTree(State->DT, VectorPreHeaderBB, VectorLatchBB,
516                         L->getExitBlock());
517 }
518 
519 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
520 LLVM_DUMP_METHOD
521 void VPlan::dump() const { dbgs() << *this << '\n'; }
522 #endif
523 
524 void VPlan::updateDominatorTree(DominatorTree *DT, BasicBlock *LoopPreHeaderBB,
525                                 BasicBlock *LoopLatchBB,
526                                 BasicBlock *LoopExitBB) {
527   BasicBlock *LoopHeaderBB = LoopPreHeaderBB->getSingleSuccessor();
528   assert(LoopHeaderBB && "Loop preheader does not have a single successor.");
529   // The vector body may be more than a single basic-block by this point.
530   // Update the dominator tree information inside the vector body by propagating
531   // it from header to latch, expecting only triangular control-flow, if any.
532   BasicBlock *PostDomSucc = nullptr;
533   for (auto *BB = LoopHeaderBB; BB != LoopLatchBB; BB = PostDomSucc) {
534     // Get the list of successors of this block.
535     std::vector<BasicBlock *> Succs(succ_begin(BB), succ_end(BB));
536     assert(Succs.size() <= 2 &&
537            "Basic block in vector loop has more than 2 successors.");
538     PostDomSucc = Succs[0];
539     if (Succs.size() == 1) {
540       assert(PostDomSucc->getSinglePredecessor() &&
541              "PostDom successor has more than one predecessor.");
542       DT->addNewBlock(PostDomSucc, BB);
543       continue;
544     }
545     BasicBlock *InterimSucc = Succs[1];
546     if (PostDomSucc->getSingleSuccessor() == InterimSucc) {
547       PostDomSucc = Succs[1];
548       InterimSucc = Succs[0];
549     }
550     assert(InterimSucc->getSingleSuccessor() == PostDomSucc &&
551            "One successor of a basic block does not lead to the other.");
552     assert(InterimSucc->getSinglePredecessor() &&
553            "Interim successor has more than one predecessor.");
554     assert(PostDomSucc->hasNPredecessors(2) &&
555            "PostDom successor has more than two predecessors.");
556     DT->addNewBlock(InterimSucc, BB);
557     DT->addNewBlock(PostDomSucc, BB);
558   }
559   // Latch block is a new dominator for the loop exit.
560   DT->changeImmediateDominator(LoopExitBB, LoopLatchBB);
561   assert(DT->verify(DominatorTree::VerificationLevel::Fast));
562 }
563 
564 const Twine VPlanPrinter::getUID(const VPBlockBase *Block) {
565   return (isa<VPRegionBlock>(Block) ? "cluster_N" : "N") +
566          Twine(getOrCreateBID(Block));
567 }
568 
569 const Twine VPlanPrinter::getOrCreateName(const VPBlockBase *Block) {
570   const std::string &Name = Block->getName();
571   if (!Name.empty())
572     return Name;
573   return "VPB" + Twine(getOrCreateBID(Block));
574 }
575 
576 void VPlanPrinter::dump() {
577   Depth = 1;
578   bumpIndent(0);
579   OS << "digraph VPlan {\n";
580   OS << "graph [labelloc=t, fontsize=30; label=\"Vectorization Plan";
581   if (!Plan.getName().empty())
582     OS << "\\n" << DOT::EscapeString(Plan.getName());
583   if (Plan.BackedgeTakenCount) {
584     OS << ", where:\\n";
585     Plan.BackedgeTakenCount->print(OS, SlotTracker);
586     OS << " := BackedgeTakenCount";
587   }
588   OS << "\"]\n";
589   OS << "node [shape=rect, fontname=Courier, fontsize=30]\n";
590   OS << "edge [fontname=Courier, fontsize=30]\n";
591   OS << "compound=true\n";
592 
593   for (const VPBlockBase *Block : depth_first(Plan.getEntry()))
594     dumpBlock(Block);
595 
596   OS << "}\n";
597 }
598 
599 void VPlanPrinter::dumpBlock(const VPBlockBase *Block) {
600   if (const VPBasicBlock *BasicBlock = dyn_cast<VPBasicBlock>(Block))
601     dumpBasicBlock(BasicBlock);
602   else if (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
603     dumpRegion(Region);
604   else
605     llvm_unreachable("Unsupported kind of VPBlock.");
606 }
607 
608 void VPlanPrinter::drawEdge(const VPBlockBase *From, const VPBlockBase *To,
609                             bool Hidden, const Twine &Label) {
610   // Due to "dot" we print an edge between two regions as an edge between the
611   // exit basic block and the entry basic of the respective regions.
612   const VPBlockBase *Tail = From->getExitBasicBlock();
613   const VPBlockBase *Head = To->getEntryBasicBlock();
614   OS << Indent << getUID(Tail) << " -> " << getUID(Head);
615   OS << " [ label=\"" << Label << '\"';
616   if (Tail != From)
617     OS << " ltail=" << getUID(From);
618   if (Head != To)
619     OS << " lhead=" << getUID(To);
620   if (Hidden)
621     OS << "; splines=none";
622   OS << "]\n";
623 }
624 
625 void VPlanPrinter::dumpEdges(const VPBlockBase *Block) {
626   auto &Successors = Block->getSuccessors();
627   if (Successors.size() == 1)
628     drawEdge(Block, Successors.front(), false, "");
629   else if (Successors.size() == 2) {
630     drawEdge(Block, Successors.front(), false, "T");
631     drawEdge(Block, Successors.back(), false, "F");
632   } else {
633     unsigned SuccessorNumber = 0;
634     for (auto *Successor : Successors)
635       drawEdge(Block, Successor, false, Twine(SuccessorNumber++));
636   }
637 }
638 
639 void VPlanPrinter::dumpBasicBlock(const VPBasicBlock *BasicBlock) {
640   OS << Indent << getUID(BasicBlock) << " [label =\n";
641   bumpIndent(1);
642   OS << Indent << "\"" << DOT::EscapeString(BasicBlock->getName()) << ":\\n\"";
643   bumpIndent(1);
644 
645   // Dump the block predicate.
646   const VPValue *Pred = BasicBlock->getPredicate();
647   if (Pred) {
648     OS << " +\n" << Indent << " \"BlockPredicate: ";
649     if (const VPInstruction *PredI = dyn_cast<VPInstruction>(Pred)) {
650       PredI->printAsOperand(OS, SlotTracker);
651       OS << " (" << DOT::EscapeString(PredI->getParent()->getName())
652          << ")\\l\"";
653     } else
654       Pred->printAsOperand(OS, SlotTracker);
655   }
656 
657   for (const VPRecipeBase &Recipe : *BasicBlock)
658     Recipe.print(OS, Indent, SlotTracker);
659 
660   // Dump the condition bit.
661   const VPValue *CBV = BasicBlock->getCondBit();
662   if (CBV) {
663     OS << " +\n" << Indent << " \"CondBit: ";
664     if (const VPInstruction *CBI = dyn_cast<VPInstruction>(CBV)) {
665       CBI->printAsOperand(OS, SlotTracker);
666       OS << " (" << DOT::EscapeString(CBI->getParent()->getName()) << ")\\l\"";
667     } else {
668       CBV->printAsOperand(OS, SlotTracker);
669       OS << "\"";
670     }
671   }
672 
673   bumpIndent(-2);
674   OS << "\n" << Indent << "]\n";
675   dumpEdges(BasicBlock);
676 }
677 
678 void VPlanPrinter::dumpRegion(const VPRegionBlock *Region) {
679   OS << Indent << "subgraph " << getUID(Region) << " {\n";
680   bumpIndent(1);
681   OS << Indent << "fontname=Courier\n"
682      << Indent << "label=\""
683      << DOT::EscapeString(Region->isReplicator() ? "<xVFxUF> " : "<x1> ")
684      << DOT::EscapeString(Region->getName()) << "\"\n";
685   // Dump the blocks of the region.
686   assert(Region->getEntry() && "Region contains no inner blocks.");
687   for (const VPBlockBase *Block : depth_first(Region->getEntry()))
688     dumpBlock(Block);
689   bumpIndent(-1);
690   OS << Indent << "}\n";
691   dumpEdges(Region);
692 }
693 
694 void VPlanPrinter::printAsIngredient(raw_ostream &O, Value *V) {
695   std::string IngredientString;
696   raw_string_ostream RSO(IngredientString);
697   if (auto *Inst = dyn_cast<Instruction>(V)) {
698     if (!Inst->getType()->isVoidTy()) {
699       Inst->printAsOperand(RSO, false);
700       RSO << " = ";
701     }
702     RSO << Inst->getOpcodeName() << " ";
703     unsigned E = Inst->getNumOperands();
704     if (E > 0) {
705       Inst->getOperand(0)->printAsOperand(RSO, false);
706       for (unsigned I = 1; I < E; ++I)
707         Inst->getOperand(I)->printAsOperand(RSO << ", ", false);
708     }
709   } else // !Inst
710     V->printAsOperand(RSO, false);
711   RSO.flush();
712   O << DOT::EscapeString(IngredientString);
713 }
714 
715 void VPWidenRecipe::print(raw_ostream &O, const Twine &Indent,
716                           VPSlotTracker &SlotTracker) const {
717   O << " +\n" << Indent << "\"WIDEN\\l\"";
718   O << "\"  " << VPlanIngredient(&Ingredient) << "\\l\"";
719 }
720 
721 void VPWidenIntOrFpInductionRecipe::print(raw_ostream &O, const Twine &Indent,
722                                           VPSlotTracker &SlotTracker) const {
723   O << " +\n" << Indent << "\"WIDEN-INDUCTION";
724   if (Trunc) {
725     O << "\\l\"";
726     O << " +\n" << Indent << "\"  " << VPlanIngredient(IV) << "\\l\"";
727     O << " +\n" << Indent << "\"  " << VPlanIngredient(Trunc) << "\\l\"";
728   } else
729     O << " " << VPlanIngredient(IV) << "\\l\"";
730 }
731 
732 void VPWidenGEPRecipe::print(raw_ostream &O, const Twine &Indent,
733                              VPSlotTracker &SlotTracker) const {
734   O << " +\n" << Indent << "\"WIDEN-GEP ";
735   O << (IsPtrLoopInvariant ? "Inv" : "Var");
736   size_t IndicesNumber = IsIndexLoopInvariant.size();
737   for (size_t I = 0; I < IndicesNumber; ++I)
738     O << "[" << (IsIndexLoopInvariant[I] ? "Inv" : "Var") << "]";
739   O << "\\l\"";
740   O << " +\n" << Indent << "\"  "  << VPlanIngredient(GEP) << "\\l\"";
741 }
742 
743 void VPWidenPHIRecipe::print(raw_ostream &O, const Twine &Indent,
744                              VPSlotTracker &SlotTracker) const {
745   O << " +\n" << Indent << "\"WIDEN-PHI " << VPlanIngredient(Phi) << "\\l\"";
746 }
747 
748 void VPBlendRecipe::print(raw_ostream &O, const Twine &Indent,
749                           VPSlotTracker &SlotTracker) const {
750   O << " +\n" << Indent << "\"BLEND ";
751   Phi->printAsOperand(O, false);
752   O << " =";
753   if (!User) {
754     // Not a User of any mask: not really blending, this is a
755     // single-predecessor phi.
756     O << " ";
757     Phi->getIncomingValue(0)->printAsOperand(O, false);
758   } else {
759     for (unsigned I = 0, E = User->getNumOperands(); I < E; ++I) {
760       O << " ";
761       Phi->getIncomingValue(I)->printAsOperand(O, false);
762       O << "/";
763       User->getOperand(I)->printAsOperand(O, SlotTracker);
764     }
765   }
766   O << "\\l\"";
767 }
768 
769 void VPReplicateRecipe::print(raw_ostream &O, const Twine &Indent,
770                               VPSlotTracker &SlotTracker) const {
771   O << " +\n"
772     << Indent << "\"" << (IsUniform ? "CLONE " : "REPLICATE ")
773     << VPlanIngredient(Ingredient);
774   if (AlsoPack)
775     O << " (S->V)";
776   O << "\\l\"";
777 }
778 
779 void VPPredInstPHIRecipe::print(raw_ostream &O, const Twine &Indent,
780                                 VPSlotTracker &SlotTracker) const {
781   O << " +\n"
782     << Indent << "\"PHI-PREDICATED-INSTRUCTION " << VPlanIngredient(PredInst)
783     << "\\l\"";
784 }
785 
786 void VPWidenMemoryInstructionRecipe::print(raw_ostream &O, const Twine &Indent,
787                                            VPSlotTracker &SlotTracker) const {
788   O << " +\n" << Indent << "\"WIDEN " << VPlanIngredient(&Instr);
789   O << ", ";
790   getAddr()->printAsOperand(O, SlotTracker);
791   VPValue *Mask = getMask();
792   if (Mask) {
793     O << ", ";
794     Mask->printAsOperand(O, SlotTracker);
795   }
796   O << "\\l\"";
797 }
798 
799 template void DomTreeBuilder::Calculate<VPDominatorTree>(VPDominatorTree &DT);
800 
801 void VPValue::replaceAllUsesWith(VPValue *New) {
802   for (VPUser *User : users())
803     for (unsigned I = 0, E = User->getNumOperands(); I < E; ++I)
804       if (User->getOperand(I) == this)
805         User->setOperand(I, New);
806 }
807 
808 void VPValue::printAsOperand(raw_ostream &OS, VPSlotTracker &Tracker) const {
809   if (const Value *UV = getUnderlyingValue()) {
810     OS << "ir<";
811     UV->printAsOperand(OS, false);
812     OS << ">";
813     return;
814   }
815 
816   unsigned Slot = Tracker.getSlot(this);
817   if (Slot == unsigned(-1))
818     OS << "<badref>";
819   else
820     OS << "vp<%" << Tracker.getSlot(this) << ">";
821 }
822 
823 void VPInterleavedAccessInfo::visitRegion(VPRegionBlock *Region,
824                                           Old2NewTy &Old2New,
825                                           InterleavedAccessInfo &IAI) {
826   ReversePostOrderTraversal<VPBlockBase *> RPOT(Region->getEntry());
827   for (VPBlockBase *Base : RPOT) {
828     visitBlock(Base, Old2New, IAI);
829   }
830 }
831 
832 void VPInterleavedAccessInfo::visitBlock(VPBlockBase *Block, Old2NewTy &Old2New,
833                                          InterleavedAccessInfo &IAI) {
834   if (VPBasicBlock *VPBB = dyn_cast<VPBasicBlock>(Block)) {
835     for (VPRecipeBase &VPI : *VPBB) {
836       assert(isa<VPInstruction>(&VPI) && "Can only handle VPInstructions");
837       auto *VPInst = cast<VPInstruction>(&VPI);
838       auto *Inst = cast<Instruction>(VPInst->getUnderlyingValue());
839       auto *IG = IAI.getInterleaveGroup(Inst);
840       if (!IG)
841         continue;
842 
843       auto NewIGIter = Old2New.find(IG);
844       if (NewIGIter == Old2New.end())
845         Old2New[IG] = new InterleaveGroup<VPInstruction>(
846             IG->getFactor(), IG->isReverse(), IG->getAlign());
847 
848       if (Inst == IG->getInsertPos())
849         Old2New[IG]->setInsertPos(VPInst);
850 
851       InterleaveGroupMap[VPInst] = Old2New[IG];
852       InterleaveGroupMap[VPInst]->insertMember(
853           VPInst, IG->getIndex(Inst),
854           Align(IG->isReverse() ? (-1) * int(IG->getFactor())
855                                 : IG->getFactor()));
856     }
857   } else if (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
858     visitRegion(Region, Old2New, IAI);
859   else
860     llvm_unreachable("Unsupported kind of VPBlock.");
861 }
862 
863 VPInterleavedAccessInfo::VPInterleavedAccessInfo(VPlan &Plan,
864                                                  InterleavedAccessInfo &IAI) {
865   Old2NewTy Old2New;
866   visitRegion(cast<VPRegionBlock>(Plan.getEntry()), Old2New, IAI);
867 }
868 
869 void VPSlotTracker::assignSlot(const VPValue *V) {
870   assert(Slots.find(V) == Slots.end() && "VPValue already has a slot!");
871   const Value *UV = V->getUnderlyingValue();
872   if (UV)
873     return;
874   const auto *VPI = dyn_cast<VPInstruction>(V);
875   if (VPI && !VPI->hasResult())
876     return;
877 
878   Slots[V] = NextSlot++;
879 }
880 
881 void VPSlotTracker::assignSlots(const VPBlockBase *VPBB) {
882   if (auto *Region = dyn_cast<VPRegionBlock>(VPBB))
883     assignSlots(Region);
884   else
885     assignSlots(cast<VPBasicBlock>(VPBB));
886 }
887 
888 void VPSlotTracker::assignSlots(const VPRegionBlock *Region) {
889   ReversePostOrderTraversal<const VPBlockBase *> RPOT(Region->getEntry());
890   for (const VPBlockBase *Block : RPOT)
891     assignSlots(Block);
892 }
893 
894 void VPSlotTracker::assignSlots(const VPBasicBlock *VPBB) {
895   for (const VPRecipeBase &Recipe : *VPBB) {
896     if (const auto *VPI = dyn_cast<VPInstruction>(&Recipe))
897       assignSlot(VPI);
898   }
899 }
900 
901 void VPSlotTracker::assignSlots(const VPlan &Plan) {
902 
903   for (const VPValue *V : Plan.VPExternalDefs)
904     assignSlot(V);
905 
906   for (auto &E : Plan.Value2VPValue)
907     if (!isa<VPInstruction>(E.second))
908       assignSlot(E.second);
909 
910   for (const VPValue *V : Plan.VPCBVs)
911     assignSlot(V);
912 
913   if (Plan.BackedgeTakenCount)
914     assignSlot(Plan.BackedgeTakenCount);
915 
916   ReversePostOrderTraversal<const VPBlockBase *> RPOT(Plan.getEntry());
917   for (const VPBlockBase *Block : RPOT)
918     assignSlots(Block);
919 }
920