1 //===- VPlan.cpp - Vectorizer Plan ----------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This is the LLVM vectorization plan. It represents a candidate for 11 /// vectorization, allowing to plan and optimize how to vectorize a given loop 12 /// before generating LLVM-IR. 13 /// The vectorizer uses vectorization plans to estimate the costs of potential 14 /// candidates and if profitable to execute the desired plan, generating vector 15 /// LLVM-IR code. 16 /// 17 //===----------------------------------------------------------------------===// 18 19 #include "VPlan.h" 20 #include "VPlanDominatorTree.h" 21 #include "llvm/ADT/DepthFirstIterator.h" 22 #include "llvm/ADT/PostOrderIterator.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/Twine.h" 25 #include "llvm/Analysis/LoopInfo.h" 26 #include "llvm/IR/BasicBlock.h" 27 #include "llvm/IR/CFG.h" 28 #include "llvm/IR/InstrTypes.h" 29 #include "llvm/IR/Instruction.h" 30 #include "llvm/IR/Instructions.h" 31 #include "llvm/IR/Type.h" 32 #include "llvm/IR/Value.h" 33 #include "llvm/Support/Casting.h" 34 #include "llvm/Support/CommandLine.h" 35 #include "llvm/Support/Debug.h" 36 #include "llvm/Support/ErrorHandling.h" 37 #include "llvm/Support/GenericDomTreeConstruction.h" 38 #include "llvm/Support/GraphWriter.h" 39 #include "llvm/Support/raw_ostream.h" 40 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 41 #include <cassert> 42 #include <iterator> 43 #include <string> 44 #include <vector> 45 46 using namespace llvm; 47 extern cl::opt<bool> EnableVPlanNativePath; 48 49 #define DEBUG_TYPE "vplan" 50 51 raw_ostream &llvm::operator<<(raw_ostream &OS, const VPValue &V) { 52 const VPInstruction *Instr = dyn_cast<VPInstruction>(&V); 53 VPSlotTracker SlotTracker( 54 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr); 55 V.print(OS, SlotTracker); 56 return OS; 57 } 58 59 void VPValue::print(raw_ostream &OS, VPSlotTracker &SlotTracker) const { 60 if (const VPInstruction *Instr = dyn_cast<VPInstruction>(this)) 61 Instr->print(OS, SlotTracker); 62 else 63 printAsOperand(OS, SlotTracker); 64 } 65 66 // Get the top-most entry block of \p Start. This is the entry block of the 67 // containing VPlan. This function is templated to support both const and non-const blocks 68 template <typename T> static T *getPlanEntry(T *Start) { 69 T *Next = Start; 70 T *Current = Start; 71 while ((Next = Next->getParent())) 72 Current = Next; 73 74 SmallSetVector<T *, 8> WorkList; 75 WorkList.insert(Current); 76 77 for (unsigned i = 0; i < WorkList.size(); i++) { 78 T *Current = WorkList[i]; 79 if (Current->getNumPredecessors() == 0) 80 return Current; 81 auto &Predecessors = Current->getPredecessors(); 82 WorkList.insert(Predecessors.begin(), Predecessors.end()); 83 } 84 85 llvm_unreachable("VPlan without any entry node without predecessors"); 86 } 87 88 VPlan *VPBlockBase::getPlan() { return getPlanEntry(this)->Plan; } 89 90 const VPlan *VPBlockBase::getPlan() const { return getPlanEntry(this)->Plan; } 91 92 /// \return the VPBasicBlock that is the entry of Block, possibly indirectly. 93 const VPBasicBlock *VPBlockBase::getEntryBasicBlock() const { 94 const VPBlockBase *Block = this; 95 while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 96 Block = Region->getEntry(); 97 return cast<VPBasicBlock>(Block); 98 } 99 100 VPBasicBlock *VPBlockBase::getEntryBasicBlock() { 101 VPBlockBase *Block = this; 102 while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 103 Block = Region->getEntry(); 104 return cast<VPBasicBlock>(Block); 105 } 106 107 void VPBlockBase::setPlan(VPlan *ParentPlan) { 108 assert(ParentPlan->getEntry() == this && 109 "Can only set plan on its entry block."); 110 Plan = ParentPlan; 111 } 112 113 /// \return the VPBasicBlock that is the exit of Block, possibly indirectly. 114 const VPBasicBlock *VPBlockBase::getExitBasicBlock() const { 115 const VPBlockBase *Block = this; 116 while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 117 Block = Region->getExit(); 118 return cast<VPBasicBlock>(Block); 119 } 120 121 VPBasicBlock *VPBlockBase::getExitBasicBlock() { 122 VPBlockBase *Block = this; 123 while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 124 Block = Region->getExit(); 125 return cast<VPBasicBlock>(Block); 126 } 127 128 VPBlockBase *VPBlockBase::getEnclosingBlockWithSuccessors() { 129 if (!Successors.empty() || !Parent) 130 return this; 131 assert(Parent->getExit() == this && 132 "Block w/o successors not the exit of its parent."); 133 return Parent->getEnclosingBlockWithSuccessors(); 134 } 135 136 VPBlockBase *VPBlockBase::getEnclosingBlockWithPredecessors() { 137 if (!Predecessors.empty() || !Parent) 138 return this; 139 assert(Parent->getEntry() == this && 140 "Block w/o predecessors not the entry of its parent."); 141 return Parent->getEnclosingBlockWithPredecessors(); 142 } 143 144 void VPBlockBase::deleteCFG(VPBlockBase *Entry) { 145 SmallVector<VPBlockBase *, 8> Blocks; 146 for (VPBlockBase *Block : depth_first(Entry)) 147 Blocks.push_back(Block); 148 149 for (VPBlockBase *Block : Blocks) 150 delete Block; 151 } 152 153 BasicBlock * 154 VPBasicBlock::createEmptyBasicBlock(VPTransformState::CFGState &CFG) { 155 // BB stands for IR BasicBlocks. VPBB stands for VPlan VPBasicBlocks. 156 // Pred stands for Predessor. Prev stands for Previous - last visited/created. 157 BasicBlock *PrevBB = CFG.PrevBB; 158 BasicBlock *NewBB = BasicBlock::Create(PrevBB->getContext(), getName(), 159 PrevBB->getParent(), CFG.LastBB); 160 LLVM_DEBUG(dbgs() << "LV: created " << NewBB->getName() << '\n'); 161 162 // Hook up the new basic block to its predecessors. 163 for (VPBlockBase *PredVPBlock : getHierarchicalPredecessors()) { 164 VPBasicBlock *PredVPBB = PredVPBlock->getExitBasicBlock(); 165 auto &PredVPSuccessors = PredVPBB->getSuccessors(); 166 BasicBlock *PredBB = CFG.VPBB2IRBB[PredVPBB]; 167 168 // In outer loop vectorization scenario, the predecessor BBlock may not yet 169 // be visited(backedge). Mark the VPBasicBlock for fixup at the end of 170 // vectorization. We do not encounter this case in inner loop vectorization 171 // as we start out by building a loop skeleton with the vector loop header 172 // and latch blocks. As a result, we never enter this function for the 173 // header block in the non VPlan-native path. 174 if (!PredBB) { 175 assert(EnableVPlanNativePath && 176 "Unexpected null predecessor in non VPlan-native path"); 177 CFG.VPBBsToFix.push_back(PredVPBB); 178 continue; 179 } 180 181 assert(PredBB && "Predecessor basic-block not found building successor."); 182 auto *PredBBTerminator = PredBB->getTerminator(); 183 LLVM_DEBUG(dbgs() << "LV: draw edge from" << PredBB->getName() << '\n'); 184 if (isa<UnreachableInst>(PredBBTerminator)) { 185 assert(PredVPSuccessors.size() == 1 && 186 "Predecessor ending w/o branch must have single successor."); 187 PredBBTerminator->eraseFromParent(); 188 BranchInst::Create(NewBB, PredBB); 189 } else { 190 assert(PredVPSuccessors.size() == 2 && 191 "Predecessor ending with branch must have two successors."); 192 unsigned idx = PredVPSuccessors.front() == this ? 0 : 1; 193 assert(!PredBBTerminator->getSuccessor(idx) && 194 "Trying to reset an existing successor block."); 195 PredBBTerminator->setSuccessor(idx, NewBB); 196 } 197 } 198 return NewBB; 199 } 200 201 void VPBasicBlock::execute(VPTransformState *State) { 202 bool Replica = State->Instance && 203 !(State->Instance->Part == 0 && State->Instance->Lane == 0); 204 VPBasicBlock *PrevVPBB = State->CFG.PrevVPBB; 205 VPBlockBase *SingleHPred = nullptr; 206 BasicBlock *NewBB = State->CFG.PrevBB; // Reuse it if possible. 207 208 // 1. Create an IR basic block, or reuse the last one if possible. 209 // The last IR basic block is reused, as an optimization, in three cases: 210 // A. the first VPBB reuses the loop header BB - when PrevVPBB is null; 211 // B. when the current VPBB has a single (hierarchical) predecessor which 212 // is PrevVPBB and the latter has a single (hierarchical) successor; and 213 // C. when the current VPBB is an entry of a region replica - where PrevVPBB 214 // is the exit of this region from a previous instance, or the predecessor 215 // of this region. 216 if (PrevVPBB && /* A */ 217 !((SingleHPred = getSingleHierarchicalPredecessor()) && 218 SingleHPred->getExitBasicBlock() == PrevVPBB && 219 PrevVPBB->getSingleHierarchicalSuccessor()) && /* B */ 220 !(Replica && getPredecessors().empty())) { /* C */ 221 NewBB = createEmptyBasicBlock(State->CFG); 222 State->Builder.SetInsertPoint(NewBB); 223 // Temporarily terminate with unreachable until CFG is rewired. 224 UnreachableInst *Terminator = State->Builder.CreateUnreachable(); 225 State->Builder.SetInsertPoint(Terminator); 226 // Register NewBB in its loop. In innermost loops its the same for all BB's. 227 Loop *L = State->LI->getLoopFor(State->CFG.LastBB); 228 L->addBasicBlockToLoop(NewBB, *State->LI); 229 State->CFG.PrevBB = NewBB; 230 } 231 232 // 2. Fill the IR basic block with IR instructions. 233 LLVM_DEBUG(dbgs() << "LV: vectorizing VPBB:" << getName() 234 << " in BB:" << NewBB->getName() << '\n'); 235 236 State->CFG.VPBB2IRBB[this] = NewBB; 237 State->CFG.PrevVPBB = this; 238 239 for (VPRecipeBase &Recipe : Recipes) 240 Recipe.execute(*State); 241 242 VPValue *CBV; 243 if (EnableVPlanNativePath && (CBV = getCondBit())) { 244 Value *IRCBV = CBV->getUnderlyingValue(); 245 assert(IRCBV && "Unexpected null underlying value for condition bit"); 246 247 // Condition bit value in a VPBasicBlock is used as the branch selector. In 248 // the VPlan-native path case, since all branches are uniform we generate a 249 // branch instruction using the condition value from vector lane 0 and dummy 250 // successors. The successors are fixed later when the successor blocks are 251 // visited. 252 Value *NewCond = State->Callback.getOrCreateVectorValues(IRCBV, 0); 253 NewCond = State->Builder.CreateExtractElement(NewCond, 254 State->Builder.getInt32(0)); 255 256 // Replace the temporary unreachable terminator with the new conditional 257 // branch. 258 auto *CurrentTerminator = NewBB->getTerminator(); 259 assert(isa<UnreachableInst>(CurrentTerminator) && 260 "Expected to replace unreachable terminator with conditional " 261 "branch."); 262 auto *CondBr = BranchInst::Create(NewBB, nullptr, NewCond); 263 CondBr->setSuccessor(0, nullptr); 264 ReplaceInstWithInst(CurrentTerminator, CondBr); 265 } 266 267 LLVM_DEBUG(dbgs() << "LV: filled BB:" << *NewBB); 268 } 269 270 void VPRegionBlock::execute(VPTransformState *State) { 271 ReversePostOrderTraversal<VPBlockBase *> RPOT(Entry); 272 273 if (!isReplicator()) { 274 // Visit the VPBlocks connected to "this", starting from it. 275 for (VPBlockBase *Block : RPOT) { 276 if (EnableVPlanNativePath) { 277 // The inner loop vectorization path does not represent loop preheader 278 // and exit blocks as part of the VPlan. In the VPlan-native path, skip 279 // vectorizing loop preheader block. In future, we may replace this 280 // check with the check for loop preheader. 281 if (Block->getNumPredecessors() == 0) 282 continue; 283 284 // Skip vectorizing loop exit block. In future, we may replace this 285 // check with the check for loop exit. 286 if (Block->getNumSuccessors() == 0) 287 continue; 288 } 289 290 LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n'); 291 Block->execute(State); 292 } 293 return; 294 } 295 296 assert(!State->Instance && "Replicating a Region with non-null instance."); 297 298 // Enter replicating mode. 299 State->Instance = {0, 0}; 300 301 for (unsigned Part = 0, UF = State->UF; Part < UF; ++Part) { 302 State->Instance->Part = Part; 303 for (unsigned Lane = 0, VF = State->VF; Lane < VF; ++Lane) { 304 State->Instance->Lane = Lane; 305 // Visit the VPBlocks connected to \p this, starting from it. 306 for (VPBlockBase *Block : RPOT) { 307 LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n'); 308 Block->execute(State); 309 } 310 } 311 } 312 313 // Exit replicating mode. 314 State->Instance.reset(); 315 } 316 317 void VPRecipeBase::insertBefore(VPRecipeBase *InsertPos) { 318 assert(!Parent && "Recipe already in some VPBasicBlock"); 319 assert(InsertPos->getParent() && 320 "Insertion position not in any VPBasicBlock"); 321 Parent = InsertPos->getParent(); 322 Parent->getRecipeList().insert(InsertPos->getIterator(), this); 323 } 324 325 void VPRecipeBase::insertAfter(VPRecipeBase *InsertPos) { 326 assert(!Parent && "Recipe already in some VPBasicBlock"); 327 assert(InsertPos->getParent() && 328 "Insertion position not in any VPBasicBlock"); 329 Parent = InsertPos->getParent(); 330 Parent->getRecipeList().insertAfter(InsertPos->getIterator(), this); 331 } 332 333 void VPRecipeBase::removeFromParent() { 334 assert(getParent() && "Recipe not in any VPBasicBlock"); 335 getParent()->getRecipeList().remove(getIterator()); 336 Parent = nullptr; 337 } 338 339 iplist<VPRecipeBase>::iterator VPRecipeBase::eraseFromParent() { 340 assert(getParent() && "Recipe not in any VPBasicBlock"); 341 return getParent()->getRecipeList().erase(getIterator()); 342 } 343 344 void VPRecipeBase::moveAfter(VPRecipeBase *InsertPos) { 345 removeFromParent(); 346 insertAfter(InsertPos); 347 } 348 349 void VPInstruction::generateInstruction(VPTransformState &State, 350 unsigned Part) { 351 IRBuilder<> &Builder = State.Builder; 352 353 if (Instruction::isBinaryOp(getOpcode())) { 354 Value *A = State.get(getOperand(0), Part); 355 Value *B = State.get(getOperand(1), Part); 356 Value *V = Builder.CreateBinOp((Instruction::BinaryOps)getOpcode(), A, B); 357 State.set(this, V, Part); 358 return; 359 } 360 361 switch (getOpcode()) { 362 case VPInstruction::Not: { 363 Value *A = State.get(getOperand(0), Part); 364 Value *V = Builder.CreateNot(A); 365 State.set(this, V, Part); 366 break; 367 } 368 case VPInstruction::ICmpULE: { 369 Value *IV = State.get(getOperand(0), Part); 370 Value *TC = State.get(getOperand(1), Part); 371 Value *V = Builder.CreateICmpULE(IV, TC); 372 State.set(this, V, Part); 373 break; 374 } 375 case Instruction::Select: { 376 Value *Cond = State.get(getOperand(0), Part); 377 Value *Op1 = State.get(getOperand(1), Part); 378 Value *Op2 = State.get(getOperand(2), Part); 379 Value *V = Builder.CreateSelect(Cond, Op1, Op2); 380 State.set(this, V, Part); 381 break; 382 } 383 default: 384 llvm_unreachable("Unsupported opcode for instruction"); 385 } 386 } 387 388 void VPInstruction::execute(VPTransformState &State) { 389 assert(!State.Instance && "VPInstruction executing an Instance"); 390 for (unsigned Part = 0; Part < State.UF; ++Part) 391 generateInstruction(State, Part); 392 } 393 394 void VPInstruction::print(raw_ostream &O, const Twine &Indent, 395 VPSlotTracker &SlotTracker) const { 396 O << " +\n" << Indent << "\"EMIT "; 397 print(O, SlotTracker); 398 O << "\\l\""; 399 } 400 401 void VPInstruction::print(raw_ostream &O) const { 402 VPSlotTracker SlotTracker(getParent()->getPlan()); 403 print(O, SlotTracker); 404 } 405 406 void VPInstruction::print(raw_ostream &O, VPSlotTracker &SlotTracker) const { 407 printAsOperand(O, SlotTracker); 408 O << " = "; 409 410 switch (getOpcode()) { 411 case VPInstruction::Not: 412 O << "not"; 413 break; 414 case VPInstruction::ICmpULE: 415 O << "icmp ule"; 416 break; 417 case VPInstruction::SLPLoad: 418 O << "combined load"; 419 break; 420 case VPInstruction::SLPStore: 421 O << "combined store"; 422 break; 423 default: 424 O << Instruction::getOpcodeName(getOpcode()); 425 } 426 427 for (const VPValue *Operand : operands()) { 428 O << " "; 429 Operand->printAsOperand(O, SlotTracker); 430 } 431 } 432 433 /// Generate the code inside the body of the vectorized loop. Assumes a single 434 /// LoopVectorBody basic-block was created for this. Introduce additional 435 /// basic-blocks as needed, and fill them all. 436 void VPlan::execute(VPTransformState *State) { 437 // -1. Check if the backedge taken count is needed, and if so build it. 438 if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) { 439 Value *TC = State->TripCount; 440 IRBuilder<> Builder(State->CFG.PrevBB->getTerminator()); 441 auto *TCMO = Builder.CreateSub(TC, ConstantInt::get(TC->getType(), 1), 442 "trip.count.minus.1"); 443 Value2VPValue[TCMO] = BackedgeTakenCount; 444 } 445 446 // 0. Set the reverse mapping from VPValues to Values for code generation. 447 for (auto &Entry : Value2VPValue) 448 State->VPValue2Value[Entry.second] = Entry.first; 449 450 BasicBlock *VectorPreHeaderBB = State->CFG.PrevBB; 451 BasicBlock *VectorHeaderBB = VectorPreHeaderBB->getSingleSuccessor(); 452 assert(VectorHeaderBB && "Loop preheader does not have a single successor."); 453 454 // 1. Make room to generate basic-blocks inside loop body if needed. 455 BasicBlock *VectorLatchBB = VectorHeaderBB->splitBasicBlock( 456 VectorHeaderBB->getFirstInsertionPt(), "vector.body.latch"); 457 Loop *L = State->LI->getLoopFor(VectorHeaderBB); 458 L->addBasicBlockToLoop(VectorLatchBB, *State->LI); 459 // Remove the edge between Header and Latch to allow other connections. 460 // Temporarily terminate with unreachable until CFG is rewired. 461 // Note: this asserts the generated code's assumption that 462 // getFirstInsertionPt() can be dereferenced into an Instruction. 463 VectorHeaderBB->getTerminator()->eraseFromParent(); 464 State->Builder.SetInsertPoint(VectorHeaderBB); 465 UnreachableInst *Terminator = State->Builder.CreateUnreachable(); 466 State->Builder.SetInsertPoint(Terminator); 467 468 // 2. Generate code in loop body. 469 State->CFG.PrevVPBB = nullptr; 470 State->CFG.PrevBB = VectorHeaderBB; 471 State->CFG.LastBB = VectorLatchBB; 472 473 for (VPBlockBase *Block : depth_first(Entry)) 474 Block->execute(State); 475 476 // Setup branch terminator successors for VPBBs in VPBBsToFix based on 477 // VPBB's successors. 478 for (auto VPBB : State->CFG.VPBBsToFix) { 479 assert(EnableVPlanNativePath && 480 "Unexpected VPBBsToFix in non VPlan-native path"); 481 BasicBlock *BB = State->CFG.VPBB2IRBB[VPBB]; 482 assert(BB && "Unexpected null basic block for VPBB"); 483 484 unsigned Idx = 0; 485 auto *BBTerminator = BB->getTerminator(); 486 487 for (VPBlockBase *SuccVPBlock : VPBB->getHierarchicalSuccessors()) { 488 VPBasicBlock *SuccVPBB = SuccVPBlock->getEntryBasicBlock(); 489 BBTerminator->setSuccessor(Idx, State->CFG.VPBB2IRBB[SuccVPBB]); 490 ++Idx; 491 } 492 } 493 494 // 3. Merge the temporary latch created with the last basic-block filled. 495 BasicBlock *LastBB = State->CFG.PrevBB; 496 // Connect LastBB to VectorLatchBB to facilitate their merge. 497 assert((EnableVPlanNativePath || 498 isa<UnreachableInst>(LastBB->getTerminator())) && 499 "Expected InnerLoop VPlan CFG to terminate with unreachable"); 500 assert((!EnableVPlanNativePath || isa<BranchInst>(LastBB->getTerminator())) && 501 "Expected VPlan CFG to terminate with branch in NativePath"); 502 LastBB->getTerminator()->eraseFromParent(); 503 BranchInst::Create(VectorLatchBB, LastBB); 504 505 // Merge LastBB with Latch. 506 bool Merged = MergeBlockIntoPredecessor(VectorLatchBB, nullptr, State->LI); 507 (void)Merged; 508 assert(Merged && "Could not merge last basic block with latch."); 509 VectorLatchBB = LastBB; 510 511 // We do not attempt to preserve DT for outer loop vectorization currently. 512 if (!EnableVPlanNativePath) 513 updateDominatorTree(State->DT, VectorPreHeaderBB, VectorLatchBB, 514 L->getExitBlock()); 515 } 516 517 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 518 LLVM_DUMP_METHOD 519 void VPlan::dump() const { dbgs() << *this << '\n'; } 520 #endif 521 522 void VPlan::updateDominatorTree(DominatorTree *DT, BasicBlock *LoopPreHeaderBB, 523 BasicBlock *LoopLatchBB, 524 BasicBlock *LoopExitBB) { 525 BasicBlock *LoopHeaderBB = LoopPreHeaderBB->getSingleSuccessor(); 526 assert(LoopHeaderBB && "Loop preheader does not have a single successor."); 527 // The vector body may be more than a single basic-block by this point. 528 // Update the dominator tree information inside the vector body by propagating 529 // it from header to latch, expecting only triangular control-flow, if any. 530 BasicBlock *PostDomSucc = nullptr; 531 for (auto *BB = LoopHeaderBB; BB != LoopLatchBB; BB = PostDomSucc) { 532 // Get the list of successors of this block. 533 std::vector<BasicBlock *> Succs(succ_begin(BB), succ_end(BB)); 534 assert(Succs.size() <= 2 && 535 "Basic block in vector loop has more than 2 successors."); 536 PostDomSucc = Succs[0]; 537 if (Succs.size() == 1) { 538 assert(PostDomSucc->getSinglePredecessor() && 539 "PostDom successor has more than one predecessor."); 540 DT->addNewBlock(PostDomSucc, BB); 541 continue; 542 } 543 BasicBlock *InterimSucc = Succs[1]; 544 if (PostDomSucc->getSingleSuccessor() == InterimSucc) { 545 PostDomSucc = Succs[1]; 546 InterimSucc = Succs[0]; 547 } 548 assert(InterimSucc->getSingleSuccessor() == PostDomSucc && 549 "One successor of a basic block does not lead to the other."); 550 assert(InterimSucc->getSinglePredecessor() && 551 "Interim successor has more than one predecessor."); 552 assert(PostDomSucc->hasNPredecessors(2) && 553 "PostDom successor has more than two predecessors."); 554 DT->addNewBlock(InterimSucc, BB); 555 DT->addNewBlock(PostDomSucc, BB); 556 } 557 // Latch block is a new dominator for the loop exit. 558 DT->changeImmediateDominator(LoopExitBB, LoopLatchBB); 559 assert(DT->verify(DominatorTree::VerificationLevel::Fast)); 560 } 561 562 const Twine VPlanPrinter::getUID(const VPBlockBase *Block) { 563 return (isa<VPRegionBlock>(Block) ? "cluster_N" : "N") + 564 Twine(getOrCreateBID(Block)); 565 } 566 567 const Twine VPlanPrinter::getOrCreateName(const VPBlockBase *Block) { 568 const std::string &Name = Block->getName(); 569 if (!Name.empty()) 570 return Name; 571 return "VPB" + Twine(getOrCreateBID(Block)); 572 } 573 574 void VPlanPrinter::dump() { 575 Depth = 1; 576 bumpIndent(0); 577 OS << "digraph VPlan {\n"; 578 OS << "graph [labelloc=t, fontsize=30; label=\"Vectorization Plan"; 579 if (!Plan.getName().empty()) 580 OS << "\\n" << DOT::EscapeString(Plan.getName()); 581 if (!Plan.Value2VPValue.empty() || Plan.BackedgeTakenCount) { 582 OS << ", where:"; 583 if (Plan.BackedgeTakenCount) { 584 OS << "\\n"; 585 Plan.BackedgeTakenCount->print(OS, SlotTracker); 586 OS << " := BackedgeTakenCount"; 587 } 588 for (auto Entry : Plan.Value2VPValue) { 589 OS << "\\n"; 590 Entry.second->print(OS, SlotTracker); 591 OS << DOT::EscapeString(" := "); 592 Entry.first->printAsOperand(OS, false); 593 } 594 } 595 OS << "\"]\n"; 596 OS << "node [shape=rect, fontname=Courier, fontsize=30]\n"; 597 OS << "edge [fontname=Courier, fontsize=30]\n"; 598 OS << "compound=true\n"; 599 600 for (const VPBlockBase *Block : depth_first(Plan.getEntry())) 601 dumpBlock(Block); 602 603 OS << "}\n"; 604 } 605 606 void VPlanPrinter::dumpBlock(const VPBlockBase *Block) { 607 if (const VPBasicBlock *BasicBlock = dyn_cast<VPBasicBlock>(Block)) 608 dumpBasicBlock(BasicBlock); 609 else if (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 610 dumpRegion(Region); 611 else 612 llvm_unreachable("Unsupported kind of VPBlock."); 613 } 614 615 void VPlanPrinter::drawEdge(const VPBlockBase *From, const VPBlockBase *To, 616 bool Hidden, const Twine &Label) { 617 // Due to "dot" we print an edge between two regions as an edge between the 618 // exit basic block and the entry basic of the respective regions. 619 const VPBlockBase *Tail = From->getExitBasicBlock(); 620 const VPBlockBase *Head = To->getEntryBasicBlock(); 621 OS << Indent << getUID(Tail) << " -> " << getUID(Head); 622 OS << " [ label=\"" << Label << '\"'; 623 if (Tail != From) 624 OS << " ltail=" << getUID(From); 625 if (Head != To) 626 OS << " lhead=" << getUID(To); 627 if (Hidden) 628 OS << "; splines=none"; 629 OS << "]\n"; 630 } 631 632 void VPlanPrinter::dumpEdges(const VPBlockBase *Block) { 633 auto &Successors = Block->getSuccessors(); 634 if (Successors.size() == 1) 635 drawEdge(Block, Successors.front(), false, ""); 636 else if (Successors.size() == 2) { 637 drawEdge(Block, Successors.front(), false, "T"); 638 drawEdge(Block, Successors.back(), false, "F"); 639 } else { 640 unsigned SuccessorNumber = 0; 641 for (auto *Successor : Successors) 642 drawEdge(Block, Successor, false, Twine(SuccessorNumber++)); 643 } 644 } 645 646 void VPlanPrinter::dumpBasicBlock(const VPBasicBlock *BasicBlock) { 647 OS << Indent << getUID(BasicBlock) << " [label =\n"; 648 bumpIndent(1); 649 OS << Indent << "\"" << DOT::EscapeString(BasicBlock->getName()) << ":\\n\""; 650 bumpIndent(1); 651 652 // Dump the block predicate. 653 const VPValue *Pred = BasicBlock->getPredicate(); 654 if (Pred) { 655 OS << " +\n" << Indent << " \"BlockPredicate: "; 656 if (const VPInstruction *PredI = dyn_cast<VPInstruction>(Pred)) { 657 PredI->printAsOperand(OS, SlotTracker); 658 OS << " (" << DOT::EscapeString(PredI->getParent()->getName()) 659 << ")\\l\""; 660 } else 661 Pred->printAsOperand(OS, SlotTracker); 662 } 663 664 for (const VPRecipeBase &Recipe : *BasicBlock) 665 Recipe.print(OS, Indent, SlotTracker); 666 667 // Dump the condition bit. 668 const VPValue *CBV = BasicBlock->getCondBit(); 669 if (CBV) { 670 OS << " +\n" << Indent << " \"CondBit: "; 671 if (const VPInstruction *CBI = dyn_cast<VPInstruction>(CBV)) { 672 CBI->printAsOperand(OS, SlotTracker); 673 OS << " (" << DOT::EscapeString(CBI->getParent()->getName()) << ")\\l\""; 674 } else { 675 CBV->printAsOperand(OS, SlotTracker); 676 OS << "\""; 677 } 678 } 679 680 bumpIndent(-2); 681 OS << "\n" << Indent << "]\n"; 682 dumpEdges(BasicBlock); 683 } 684 685 void VPlanPrinter::dumpRegion(const VPRegionBlock *Region) { 686 OS << Indent << "subgraph " << getUID(Region) << " {\n"; 687 bumpIndent(1); 688 OS << Indent << "fontname=Courier\n" 689 << Indent << "label=\"" 690 << DOT::EscapeString(Region->isReplicator() ? "<xVFxUF> " : "<x1> ") 691 << DOT::EscapeString(Region->getName()) << "\"\n"; 692 // Dump the blocks of the region. 693 assert(Region->getEntry() && "Region contains no inner blocks."); 694 for (const VPBlockBase *Block : depth_first(Region->getEntry())) 695 dumpBlock(Block); 696 bumpIndent(-1); 697 OS << Indent << "}\n"; 698 dumpEdges(Region); 699 } 700 701 void VPlanPrinter::printAsIngredient(raw_ostream &O, Value *V) { 702 std::string IngredientString; 703 raw_string_ostream RSO(IngredientString); 704 if (auto *Inst = dyn_cast<Instruction>(V)) { 705 if (!Inst->getType()->isVoidTy()) { 706 Inst->printAsOperand(RSO, false); 707 RSO << " = "; 708 } 709 RSO << Inst->getOpcodeName() << " "; 710 unsigned E = Inst->getNumOperands(); 711 if (E > 0) { 712 Inst->getOperand(0)->printAsOperand(RSO, false); 713 for (unsigned I = 1; I < E; ++I) 714 Inst->getOperand(I)->printAsOperand(RSO << ", ", false); 715 } 716 } else // !Inst 717 V->printAsOperand(RSO, false); 718 RSO.flush(); 719 O << DOT::EscapeString(IngredientString); 720 } 721 722 void VPWidenRecipe::print(raw_ostream &O, const Twine &Indent, 723 VPSlotTracker &SlotTracker) const { 724 O << " +\n" << Indent << "\"WIDEN\\l\""; 725 for (auto &Instr : make_range(Begin, End)) 726 O << " +\n" << Indent << "\" " << VPlanIngredient(&Instr) << "\\l\""; 727 } 728 729 void VPWidenIntOrFpInductionRecipe::print(raw_ostream &O, const Twine &Indent, 730 VPSlotTracker &SlotTracker) const { 731 O << " +\n" << Indent << "\"WIDEN-INDUCTION"; 732 if (Trunc) { 733 O << "\\l\""; 734 O << " +\n" << Indent << "\" " << VPlanIngredient(IV) << "\\l\""; 735 O << " +\n" << Indent << "\" " << VPlanIngredient(Trunc) << "\\l\""; 736 } else 737 O << " " << VPlanIngredient(IV) << "\\l\""; 738 } 739 740 void VPWidenGEPRecipe::print(raw_ostream &O, const Twine &Indent, 741 VPSlotTracker &SlotTracker) const { 742 O << " +\n" << Indent << "\"WIDEN-GEP "; 743 O << (IsPtrLoopInvariant ? "Inv" : "Var"); 744 size_t IndicesNumber = IsIndexLoopInvariant.size(); 745 for (size_t I = 0; I < IndicesNumber; ++I) 746 O << "[" << (IsIndexLoopInvariant[I] ? "Inv" : "Var") << "]"; 747 O << "\\l\""; 748 O << " +\n" << Indent << "\" " << VPlanIngredient(GEP) << "\\l\""; 749 } 750 751 void VPWidenPHIRecipe::print(raw_ostream &O, const Twine &Indent, 752 VPSlotTracker &SlotTracker) const { 753 O << " +\n" << Indent << "\"WIDEN-PHI " << VPlanIngredient(Phi) << "\\l\""; 754 } 755 756 void VPBlendRecipe::print(raw_ostream &O, const Twine &Indent, 757 VPSlotTracker &SlotTracker) const { 758 O << " +\n" << Indent << "\"BLEND "; 759 Phi->printAsOperand(O, false); 760 O << " ="; 761 if (!User) { 762 // Not a User of any mask: not really blending, this is a 763 // single-predecessor phi. 764 O << " "; 765 Phi->getIncomingValue(0)->printAsOperand(O, false); 766 } else { 767 for (unsigned I = 0, E = User->getNumOperands(); I < E; ++I) { 768 O << " "; 769 Phi->getIncomingValue(I)->printAsOperand(O, false); 770 O << "/"; 771 User->getOperand(I)->printAsOperand(O, SlotTracker); 772 } 773 } 774 O << "\\l\""; 775 } 776 777 void VPReplicateRecipe::print(raw_ostream &O, const Twine &Indent, 778 VPSlotTracker &SlotTracker) const { 779 O << " +\n" 780 << Indent << "\"" << (IsUniform ? "CLONE " : "REPLICATE ") 781 << VPlanIngredient(Ingredient); 782 if (AlsoPack) 783 O << " (S->V)"; 784 O << "\\l\""; 785 } 786 787 void VPPredInstPHIRecipe::print(raw_ostream &O, const Twine &Indent, 788 VPSlotTracker &SlotTracker) const { 789 O << " +\n" 790 << Indent << "\"PHI-PREDICATED-INSTRUCTION " << VPlanIngredient(PredInst) 791 << "\\l\""; 792 } 793 794 void VPWidenMemoryInstructionRecipe::print(raw_ostream &O, const Twine &Indent, 795 VPSlotTracker &SlotTracker) const { 796 O << " +\n" << Indent << "\"WIDEN " << VPlanIngredient(&Instr); 797 O << ", "; 798 getAddr()->printAsOperand(O, SlotTracker); 799 VPValue *Mask = getMask(); 800 if (Mask) { 801 O << ", "; 802 Mask->printAsOperand(O, SlotTracker); 803 } 804 O << "\\l\""; 805 } 806 807 template void DomTreeBuilder::Calculate<VPDominatorTree>(VPDominatorTree &DT); 808 809 void VPValue::replaceAllUsesWith(VPValue *New) { 810 for (VPUser *User : users()) 811 for (unsigned I = 0, E = User->getNumOperands(); I < E; ++I) 812 if (User->getOperand(I) == this) 813 User->setOperand(I, New); 814 } 815 816 void VPValue::printAsOperand(raw_ostream &OS, VPSlotTracker &Tracker) const { 817 unsigned Slot = Tracker.getSlot(this); 818 if (Slot == unsigned(-1)) 819 OS << "<badref>"; 820 else 821 OS << "%vp" << Tracker.getSlot(this); 822 } 823 824 void VPInterleavedAccessInfo::visitRegion(VPRegionBlock *Region, 825 Old2NewTy &Old2New, 826 InterleavedAccessInfo &IAI) { 827 ReversePostOrderTraversal<VPBlockBase *> RPOT(Region->getEntry()); 828 for (VPBlockBase *Base : RPOT) { 829 visitBlock(Base, Old2New, IAI); 830 } 831 } 832 833 void VPInterleavedAccessInfo::visitBlock(VPBlockBase *Block, Old2NewTy &Old2New, 834 InterleavedAccessInfo &IAI) { 835 if (VPBasicBlock *VPBB = dyn_cast<VPBasicBlock>(Block)) { 836 for (VPRecipeBase &VPI : *VPBB) { 837 assert(isa<VPInstruction>(&VPI) && "Can only handle VPInstructions"); 838 auto *VPInst = cast<VPInstruction>(&VPI); 839 auto *Inst = cast<Instruction>(VPInst->getUnderlyingValue()); 840 auto *IG = IAI.getInterleaveGroup(Inst); 841 if (!IG) 842 continue; 843 844 auto NewIGIter = Old2New.find(IG); 845 if (NewIGIter == Old2New.end()) 846 Old2New[IG] = new InterleaveGroup<VPInstruction>( 847 IG->getFactor(), IG->isReverse(), Align(IG->getAlignment())); 848 849 if (Inst == IG->getInsertPos()) 850 Old2New[IG]->setInsertPos(VPInst); 851 852 InterleaveGroupMap[VPInst] = Old2New[IG]; 853 InterleaveGroupMap[VPInst]->insertMember( 854 VPInst, IG->getIndex(Inst), 855 Align(IG->isReverse() ? (-1) * int(IG->getFactor()) 856 : IG->getFactor())); 857 } 858 } else if (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 859 visitRegion(Region, Old2New, IAI); 860 else 861 llvm_unreachable("Unsupported kind of VPBlock."); 862 } 863 864 VPInterleavedAccessInfo::VPInterleavedAccessInfo(VPlan &Plan, 865 InterleavedAccessInfo &IAI) { 866 Old2NewTy Old2New; 867 visitRegion(cast<VPRegionBlock>(Plan.getEntry()), Old2New, IAI); 868 } 869 870 void VPSlotTracker::assignSlot(const VPValue *V) { 871 assert(Slots.find(V) == Slots.end() && "VPValue already has a slot!"); 872 Slots[V] = NextSlot++; 873 } 874 875 void VPSlotTracker::assignSlots(const VPBlockBase *VPBB) { 876 if (auto *Region = dyn_cast<VPRegionBlock>(VPBB)) 877 assignSlots(Region); 878 else 879 assignSlots(cast<VPBasicBlock>(VPBB)); 880 } 881 882 void VPSlotTracker::assignSlots(const VPRegionBlock *Region) { 883 ReversePostOrderTraversal<const VPBlockBase *> RPOT(Region->getEntry()); 884 for (const VPBlockBase *Block : RPOT) 885 assignSlots(Block); 886 } 887 888 void VPSlotTracker::assignSlots(const VPBasicBlock *VPBB) { 889 for (const VPRecipeBase &Recipe : *VPBB) { 890 if (const auto *VPI = dyn_cast<VPInstruction>(&Recipe)) 891 assignSlot(VPI); 892 } 893 } 894 895 void VPSlotTracker::assignSlots(const VPlan &Plan) { 896 897 for (const VPValue *V : Plan.VPExternalDefs) 898 assignSlot(V); 899 900 for (auto &E : Plan.Value2VPValue) 901 if (!isa<VPInstruction>(E.second)) 902 assignSlot(E.second); 903 904 for (const VPValue *V : Plan.VPCBVs) 905 assignSlot(V); 906 907 if (Plan.BackedgeTakenCount) 908 assignSlot(Plan.BackedgeTakenCount); 909 910 ReversePostOrderTraversal<const VPBlockBase *> RPOT(Plan.getEntry()); 911 for (const VPBlockBase *Block : RPOT) 912 assignSlots(Block); 913 } 914