xref: /llvm-project/llvm/lib/Transforms/Vectorize/VPlan.cpp (revision 3bcff3662c74980832c7ca8fe3436cfa32899e5a)
1 //===- VPlan.cpp - Vectorizer Plan ----------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 ///
10 /// \file
11 /// This is the LLVM vectorization plan. It represents a candidate for
12 /// vectorization, allowing to plan and optimize how to vectorize a given loop
13 /// before generating LLVM-IR.
14 /// The vectorizer uses vectorization plans to estimate the costs of potential
15 /// candidates and if profitable to execute the desired plan, generating vector
16 /// LLVM-IR code.
17 ///
18 //===----------------------------------------------------------------------===//
19 
20 #include "VPlan.h"
21 #include "llvm/ADT/DepthFirstIterator.h"
22 #include "llvm/ADT/PostOrderIterator.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/Twine.h"
25 #include "llvm/Analysis/LoopInfo.h"
26 #include "llvm/IR/BasicBlock.h"
27 #include "llvm/IR/CFG.h"
28 #include "llvm/IR/Dominators.h"
29 #include "llvm/IR/InstrTypes.h"
30 #include "llvm/IR/Instruction.h"
31 #include "llvm/IR/Instructions.h"
32 #include "llvm/IR/Type.h"
33 #include "llvm/IR/Value.h"
34 #include "llvm/Support/Casting.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/ErrorHandling.h"
37 #include "llvm/Support/GraphWriter.h"
38 #include "llvm/Support/raw_ostream.h"
39 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
40 #include <cassert>
41 #include <iterator>
42 #include <string>
43 #include <vector>
44 
45 using namespace llvm;
46 
47 #define DEBUG_TYPE "vplan"
48 
49 raw_ostream &llvm::operator<<(raw_ostream &OS, const VPValue &V) {
50   if (const VPInstruction *Instr = dyn_cast<VPInstruction>(&V))
51     Instr->print(OS);
52   else
53     V.printAsOperand(OS);
54   return OS;
55 }
56 
57 /// \return the VPBasicBlock that is the entry of Block, possibly indirectly.
58 const VPBasicBlock *VPBlockBase::getEntryBasicBlock() const {
59   const VPBlockBase *Block = this;
60   while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
61     Block = Region->getEntry();
62   return cast<VPBasicBlock>(Block);
63 }
64 
65 VPBasicBlock *VPBlockBase::getEntryBasicBlock() {
66   VPBlockBase *Block = this;
67   while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
68     Block = Region->getEntry();
69   return cast<VPBasicBlock>(Block);
70 }
71 
72 /// \return the VPBasicBlock that is the exit of Block, possibly indirectly.
73 const VPBasicBlock *VPBlockBase::getExitBasicBlock() const {
74   const VPBlockBase *Block = this;
75   while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
76     Block = Region->getExit();
77   return cast<VPBasicBlock>(Block);
78 }
79 
80 VPBasicBlock *VPBlockBase::getExitBasicBlock() {
81   VPBlockBase *Block = this;
82   while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
83     Block = Region->getExit();
84   return cast<VPBasicBlock>(Block);
85 }
86 
87 VPBlockBase *VPBlockBase::getEnclosingBlockWithSuccessors() {
88   if (!Successors.empty() || !Parent)
89     return this;
90   assert(Parent->getExit() == this &&
91          "Block w/o successors not the exit of its parent.");
92   return Parent->getEnclosingBlockWithSuccessors();
93 }
94 
95 VPBlockBase *VPBlockBase::getEnclosingBlockWithPredecessors() {
96   if (!Predecessors.empty() || !Parent)
97     return this;
98   assert(Parent->getEntry() == this &&
99          "Block w/o predecessors not the entry of its parent.");
100   return Parent->getEnclosingBlockWithPredecessors();
101 }
102 
103 void VPBlockBase::deleteCFG(VPBlockBase *Entry) {
104   SmallVector<VPBlockBase *, 8> Blocks;
105   for (VPBlockBase *Block : depth_first(Entry))
106     Blocks.push_back(Block);
107 
108   for (VPBlockBase *Block : Blocks)
109     delete Block;
110 }
111 
112 BasicBlock *
113 VPBasicBlock::createEmptyBasicBlock(VPTransformState::CFGState &CFG) {
114   // BB stands for IR BasicBlocks. VPBB stands for VPlan VPBasicBlocks.
115   // Pred stands for Predessor. Prev stands for Previous - last visited/created.
116   BasicBlock *PrevBB = CFG.PrevBB;
117   BasicBlock *NewBB = BasicBlock::Create(PrevBB->getContext(), getName(),
118                                          PrevBB->getParent(), CFG.LastBB);
119   LLVM_DEBUG(dbgs() << "LV: created " << NewBB->getName() << '\n');
120 
121   // Hook up the new basic block to its predecessors.
122   for (VPBlockBase *PredVPBlock : getHierarchicalPredecessors()) {
123     VPBasicBlock *PredVPBB = PredVPBlock->getExitBasicBlock();
124     auto &PredVPSuccessors = PredVPBB->getSuccessors();
125     BasicBlock *PredBB = CFG.VPBB2IRBB[PredVPBB];
126     assert(PredBB && "Predecessor basic-block not found building successor.");
127     auto *PredBBTerminator = PredBB->getTerminator();
128     LLVM_DEBUG(dbgs() << "LV: draw edge from" << PredBB->getName() << '\n');
129     if (isa<UnreachableInst>(PredBBTerminator)) {
130       assert(PredVPSuccessors.size() == 1 &&
131              "Predecessor ending w/o branch must have single successor.");
132       PredBBTerminator->eraseFromParent();
133       BranchInst::Create(NewBB, PredBB);
134     } else {
135       assert(PredVPSuccessors.size() == 2 &&
136              "Predecessor ending with branch must have two successors.");
137       unsigned idx = PredVPSuccessors.front() == this ? 0 : 1;
138       assert(!PredBBTerminator->getSuccessor(idx) &&
139              "Trying to reset an existing successor block.");
140       PredBBTerminator->setSuccessor(idx, NewBB);
141     }
142   }
143   return NewBB;
144 }
145 
146 void VPBasicBlock::execute(VPTransformState *State) {
147   bool Replica = State->Instance &&
148                  !(State->Instance->Part == 0 && State->Instance->Lane == 0);
149   VPBasicBlock *PrevVPBB = State->CFG.PrevVPBB;
150   VPBlockBase *SingleHPred = nullptr;
151   BasicBlock *NewBB = State->CFG.PrevBB; // Reuse it if possible.
152 
153   // 1. Create an IR basic block, or reuse the last one if possible.
154   // The last IR basic block is reused, as an optimization, in three cases:
155   // A. the first VPBB reuses the loop header BB - when PrevVPBB is null;
156   // B. when the current VPBB has a single (hierarchical) predecessor which
157   //    is PrevVPBB and the latter has a single (hierarchical) successor; and
158   // C. when the current VPBB is an entry of a region replica - where PrevVPBB
159   //    is the exit of this region from a previous instance, or the predecessor
160   //    of this region.
161   if (PrevVPBB && /* A */
162       !((SingleHPred = getSingleHierarchicalPredecessor()) &&
163         SingleHPred->getExitBasicBlock() == PrevVPBB &&
164         PrevVPBB->getSingleHierarchicalSuccessor()) && /* B */
165       !(Replica && getPredecessors().empty())) {       /* C */
166     NewBB = createEmptyBasicBlock(State->CFG);
167     State->Builder.SetInsertPoint(NewBB);
168     // Temporarily terminate with unreachable until CFG is rewired.
169     UnreachableInst *Terminator = State->Builder.CreateUnreachable();
170     State->Builder.SetInsertPoint(Terminator);
171     // Register NewBB in its loop. In innermost loops its the same for all BB's.
172     Loop *L = State->LI->getLoopFor(State->CFG.LastBB);
173     L->addBasicBlockToLoop(NewBB, *State->LI);
174     State->CFG.PrevBB = NewBB;
175   }
176 
177   // 2. Fill the IR basic block with IR instructions.
178   LLVM_DEBUG(dbgs() << "LV: vectorizing VPBB:" << getName()
179                     << " in BB:" << NewBB->getName() << '\n');
180 
181   State->CFG.VPBB2IRBB[this] = NewBB;
182   State->CFG.PrevVPBB = this;
183 
184   for (VPRecipeBase &Recipe : Recipes)
185     Recipe.execute(*State);
186 
187   LLVM_DEBUG(dbgs() << "LV: filled BB:" << *NewBB);
188 }
189 
190 void VPRegionBlock::execute(VPTransformState *State) {
191   ReversePostOrderTraversal<VPBlockBase *> RPOT(Entry);
192 
193   if (!isReplicator()) {
194     // Visit the VPBlocks connected to "this", starting from it.
195     for (VPBlockBase *Block : RPOT) {
196       LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n');
197       Block->execute(State);
198     }
199     return;
200   }
201 
202   assert(!State->Instance && "Replicating a Region with non-null instance.");
203 
204   // Enter replicating mode.
205   State->Instance = {0, 0};
206 
207   for (unsigned Part = 0, UF = State->UF; Part < UF; ++Part) {
208     State->Instance->Part = Part;
209     for (unsigned Lane = 0, VF = State->VF; Lane < VF; ++Lane) {
210       State->Instance->Lane = Lane;
211       // Visit the VPBlocks connected to \p this, starting from it.
212       for (VPBlockBase *Block : RPOT) {
213         LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n');
214         Block->execute(State);
215       }
216     }
217   }
218 
219   // Exit replicating mode.
220   State->Instance.reset();
221 }
222 
223 void VPRecipeBase::insertBefore(VPRecipeBase *InsertPos) {
224   Parent = InsertPos->getParent();
225   Parent->getRecipeList().insert(InsertPos->getIterator(), this);
226 }
227 
228 void VPInstruction::generateInstruction(VPTransformState &State,
229                                         unsigned Part) {
230   IRBuilder<> &Builder = State.Builder;
231 
232   if (Instruction::isBinaryOp(getOpcode())) {
233     Value *A = State.get(getOperand(0), Part);
234     Value *B = State.get(getOperand(1), Part);
235     Value *V = Builder.CreateBinOp((Instruction::BinaryOps)getOpcode(), A, B);
236     State.set(this, V, Part);
237     return;
238   }
239 
240   switch (getOpcode()) {
241   case VPInstruction::Not: {
242     Value *A = State.get(getOperand(0), Part);
243     Value *V = Builder.CreateNot(A);
244     State.set(this, V, Part);
245     break;
246   }
247   default:
248     llvm_unreachable("Unsupported opcode for instruction");
249   }
250 }
251 
252 void VPInstruction::execute(VPTransformState &State) {
253   assert(!State.Instance && "VPInstruction executing an Instance");
254   for (unsigned Part = 0; Part < State.UF; ++Part)
255     generateInstruction(State, Part);
256 }
257 
258 void VPInstruction::print(raw_ostream &O, const Twine &Indent) const {
259   O << " +\n" << Indent << "\"EMIT ";
260   print(O);
261   O << "\\l\"";
262 }
263 
264 void VPInstruction::print(raw_ostream &O) const {
265   printAsOperand(O);
266   O << " = ";
267 
268   switch (getOpcode()) {
269   case VPInstruction::Not:
270     O << "not";
271     break;
272   default:
273     O << Instruction::getOpcodeName(getOpcode());
274   }
275 
276   for (const VPValue *Operand : operands()) {
277     O << " ";
278     Operand->printAsOperand(O);
279   }
280 }
281 
282 /// Generate the code inside the body of the vectorized loop. Assumes a single
283 /// LoopVectorBody basic-block was created for this. Introduce additional
284 /// basic-blocks as needed, and fill them all.
285 void VPlan::execute(VPTransformState *State) {
286   // 0. Set the reverse mapping from VPValues to Values for code generation.
287   for (auto &Entry : Value2VPValue)
288     State->VPValue2Value[Entry.second] = Entry.first;
289 
290   BasicBlock *VectorPreHeaderBB = State->CFG.PrevBB;
291   BasicBlock *VectorHeaderBB = VectorPreHeaderBB->getSingleSuccessor();
292   assert(VectorHeaderBB && "Loop preheader does not have a single successor.");
293   BasicBlock *VectorLatchBB = VectorHeaderBB;
294 
295   // 1. Make room to generate basic-blocks inside loop body if needed.
296   VectorLatchBB = VectorHeaderBB->splitBasicBlock(
297       VectorHeaderBB->getFirstInsertionPt(), "vector.body.latch");
298   Loop *L = State->LI->getLoopFor(VectorHeaderBB);
299   L->addBasicBlockToLoop(VectorLatchBB, *State->LI);
300   // Remove the edge between Header and Latch to allow other connections.
301   // Temporarily terminate with unreachable until CFG is rewired.
302   // Note: this asserts the generated code's assumption that
303   // getFirstInsertionPt() can be dereferenced into an Instruction.
304   VectorHeaderBB->getTerminator()->eraseFromParent();
305   State->Builder.SetInsertPoint(VectorHeaderBB);
306   UnreachableInst *Terminator = State->Builder.CreateUnreachable();
307   State->Builder.SetInsertPoint(Terminator);
308 
309   // 2. Generate code in loop body.
310   State->CFG.PrevVPBB = nullptr;
311   State->CFG.PrevBB = VectorHeaderBB;
312   State->CFG.LastBB = VectorLatchBB;
313 
314   for (VPBlockBase *Block : depth_first(Entry))
315     Block->execute(State);
316 
317   // 3. Merge the temporary latch created with the last basic-block filled.
318   BasicBlock *LastBB = State->CFG.PrevBB;
319   // Connect LastBB to VectorLatchBB to facilitate their merge.
320   assert(isa<UnreachableInst>(LastBB->getTerminator()) &&
321          "Expected VPlan CFG to terminate with unreachable");
322   LastBB->getTerminator()->eraseFromParent();
323   BranchInst::Create(VectorLatchBB, LastBB);
324 
325   // Merge LastBB with Latch.
326   bool Merged = MergeBlockIntoPredecessor(VectorLatchBB, nullptr, State->LI);
327   (void)Merged;
328   assert(Merged && "Could not merge last basic block with latch.");
329   VectorLatchBB = LastBB;
330 
331   updateDominatorTree(State->DT, VectorPreHeaderBB, VectorLatchBB);
332 }
333 
334 void VPlan::updateDominatorTree(DominatorTree *DT, BasicBlock *LoopPreHeaderBB,
335                                 BasicBlock *LoopLatchBB) {
336   BasicBlock *LoopHeaderBB = LoopPreHeaderBB->getSingleSuccessor();
337   assert(LoopHeaderBB && "Loop preheader does not have a single successor.");
338   DT->addNewBlock(LoopHeaderBB, LoopPreHeaderBB);
339   // The vector body may be more than a single basic-block by this point.
340   // Update the dominator tree information inside the vector body by propagating
341   // it from header to latch, expecting only triangular control-flow, if any.
342   BasicBlock *PostDomSucc = nullptr;
343   for (auto *BB = LoopHeaderBB; BB != LoopLatchBB; BB = PostDomSucc) {
344     // Get the list of successors of this block.
345     std::vector<BasicBlock *> Succs(succ_begin(BB), succ_end(BB));
346     assert(Succs.size() <= 2 &&
347            "Basic block in vector loop has more than 2 successors.");
348     PostDomSucc = Succs[0];
349     if (Succs.size() == 1) {
350       assert(PostDomSucc->getSinglePredecessor() &&
351              "PostDom successor has more than one predecessor.");
352       DT->addNewBlock(PostDomSucc, BB);
353       continue;
354     }
355     BasicBlock *InterimSucc = Succs[1];
356     if (PostDomSucc->getSingleSuccessor() == InterimSucc) {
357       PostDomSucc = Succs[1];
358       InterimSucc = Succs[0];
359     }
360     assert(InterimSucc->getSingleSuccessor() == PostDomSucc &&
361            "One successor of a basic block does not lead to the other.");
362     assert(InterimSucc->getSinglePredecessor() &&
363            "Interim successor has more than one predecessor.");
364     assert(pred_size(PostDomSucc) == 2 &&
365            "PostDom successor has more than two predecessors.");
366     DT->addNewBlock(InterimSucc, BB);
367     DT->addNewBlock(PostDomSucc, BB);
368   }
369 }
370 
371 const Twine VPlanPrinter::getUID(const VPBlockBase *Block) {
372   return (isa<VPRegionBlock>(Block) ? "cluster_N" : "N") +
373          Twine(getOrCreateBID(Block));
374 }
375 
376 const Twine VPlanPrinter::getOrCreateName(const VPBlockBase *Block) {
377   const std::string &Name = Block->getName();
378   if (!Name.empty())
379     return Name;
380   return "VPB" + Twine(getOrCreateBID(Block));
381 }
382 
383 void VPlanPrinter::dump() {
384   Depth = 1;
385   bumpIndent(0);
386   OS << "digraph VPlan {\n";
387   OS << "graph [labelloc=t, fontsize=30; label=\"Vectorization Plan";
388   if (!Plan.getName().empty())
389     OS << "\\n" << DOT::EscapeString(Plan.getName());
390   if (!Plan.Value2VPValue.empty()) {
391     OS << ", where:";
392     for (auto Entry : Plan.Value2VPValue) {
393       OS << "\\n" << *Entry.second;
394       OS << DOT::EscapeString(" := ");
395       Entry.first->printAsOperand(OS, false);
396     }
397   }
398   OS << "\"]\n";
399   OS << "node [shape=rect, fontname=Courier, fontsize=30]\n";
400   OS << "edge [fontname=Courier, fontsize=30]\n";
401   OS << "compound=true\n";
402 
403   for (VPBlockBase *Block : depth_first(Plan.getEntry()))
404     dumpBlock(Block);
405 
406   OS << "}\n";
407 }
408 
409 void VPlanPrinter::dumpBlock(const VPBlockBase *Block) {
410   if (const VPBasicBlock *BasicBlock = dyn_cast<VPBasicBlock>(Block))
411     dumpBasicBlock(BasicBlock);
412   else if (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
413     dumpRegion(Region);
414   else
415     llvm_unreachable("Unsupported kind of VPBlock.");
416 }
417 
418 void VPlanPrinter::drawEdge(const VPBlockBase *From, const VPBlockBase *To,
419                             bool Hidden, const Twine &Label) {
420   // Due to "dot" we print an edge between two regions as an edge between the
421   // exit basic block and the entry basic of the respective regions.
422   const VPBlockBase *Tail = From->getExitBasicBlock();
423   const VPBlockBase *Head = To->getEntryBasicBlock();
424   OS << Indent << getUID(Tail) << " -> " << getUID(Head);
425   OS << " [ label=\"" << Label << '\"';
426   if (Tail != From)
427     OS << " ltail=" << getUID(From);
428   if (Head != To)
429     OS << " lhead=" << getUID(To);
430   if (Hidden)
431     OS << "; splines=none";
432   OS << "]\n";
433 }
434 
435 void VPlanPrinter::dumpEdges(const VPBlockBase *Block) {
436   auto &Successors = Block->getSuccessors();
437   if (Successors.size() == 1)
438     drawEdge(Block, Successors.front(), false, "");
439   else if (Successors.size() == 2) {
440     drawEdge(Block, Successors.front(), false, "T");
441     drawEdge(Block, Successors.back(), false, "F");
442   } else {
443     unsigned SuccessorNumber = 0;
444     for (auto *Successor : Successors)
445       drawEdge(Block, Successor, false, Twine(SuccessorNumber++));
446   }
447 }
448 
449 void VPlanPrinter::dumpBasicBlock(const VPBasicBlock *BasicBlock) {
450   OS << Indent << getUID(BasicBlock) << " [label =\n";
451   bumpIndent(1);
452   OS << Indent << "\"" << DOT::EscapeString(BasicBlock->getName()) << ":\\n\"";
453   bumpIndent(1);
454   for (const VPRecipeBase &Recipe : *BasicBlock)
455     Recipe.print(OS, Indent);
456   bumpIndent(-2);
457   OS << "\n" << Indent << "]\n";
458   dumpEdges(BasicBlock);
459 }
460 
461 void VPlanPrinter::dumpRegion(const VPRegionBlock *Region) {
462   OS << Indent << "subgraph " << getUID(Region) << " {\n";
463   bumpIndent(1);
464   OS << Indent << "fontname=Courier\n"
465      << Indent << "label=\""
466      << DOT::EscapeString(Region->isReplicator() ? "<xVFxUF> " : "<x1> ")
467      << DOT::EscapeString(Region->getName()) << "\"\n";
468   // Dump the blocks of the region.
469   assert(Region->getEntry() && "Region contains no inner blocks.");
470   for (const VPBlockBase *Block : depth_first(Region->getEntry()))
471     dumpBlock(Block);
472   bumpIndent(-1);
473   OS << Indent << "}\n";
474   dumpEdges(Region);
475 }
476 
477 void VPlanPrinter::printAsIngredient(raw_ostream &O, Value *V) {
478   std::string IngredientString;
479   raw_string_ostream RSO(IngredientString);
480   if (auto *Inst = dyn_cast<Instruction>(V)) {
481     if (!Inst->getType()->isVoidTy()) {
482       Inst->printAsOperand(RSO, false);
483       RSO << " = ";
484     }
485     RSO << Inst->getOpcodeName() << " ";
486     unsigned E = Inst->getNumOperands();
487     if (E > 0) {
488       Inst->getOperand(0)->printAsOperand(RSO, false);
489       for (unsigned I = 1; I < E; ++I)
490         Inst->getOperand(I)->printAsOperand(RSO << ", ", false);
491     }
492   } else // !Inst
493     V->printAsOperand(RSO, false);
494   RSO.flush();
495   O << DOT::EscapeString(IngredientString);
496 }
497 
498 void VPWidenRecipe::print(raw_ostream &O, const Twine &Indent) const {
499   O << " +\n" << Indent << "\"WIDEN\\l\"";
500   for (auto &Instr : make_range(Begin, End))
501     O << " +\n" << Indent << "\"  " << VPlanIngredient(&Instr) << "\\l\"";
502 }
503 
504 void VPWidenIntOrFpInductionRecipe::print(raw_ostream &O,
505                                           const Twine &Indent) const {
506   O << " +\n" << Indent << "\"WIDEN-INDUCTION";
507   if (Trunc) {
508     O << "\\l\"";
509     O << " +\n" << Indent << "\"  " << VPlanIngredient(IV) << "\\l\"";
510     O << " +\n" << Indent << "\"  " << VPlanIngredient(Trunc) << "\\l\"";
511   } else
512     O << " " << VPlanIngredient(IV) << "\\l\"";
513 }
514 
515 void VPWidenPHIRecipe::print(raw_ostream &O, const Twine &Indent) const {
516   O << " +\n" << Indent << "\"WIDEN-PHI " << VPlanIngredient(Phi) << "\\l\"";
517 }
518 
519 void VPBlendRecipe::print(raw_ostream &O, const Twine &Indent) const {
520   O << " +\n" << Indent << "\"BLEND ";
521   Phi->printAsOperand(O, false);
522   O << " =";
523   if (!User) {
524     // Not a User of any mask: not really blending, this is a
525     // single-predecessor phi.
526     O << " ";
527     Phi->getIncomingValue(0)->printAsOperand(O, false);
528   } else {
529     for (unsigned I = 0, E = User->getNumOperands(); I < E; ++I) {
530       O << " ";
531       Phi->getIncomingValue(I)->printAsOperand(O, false);
532       O << "/";
533       User->getOperand(I)->printAsOperand(O);
534     }
535   }
536   O << "\\l\"";
537 }
538 
539 void VPReplicateRecipe::print(raw_ostream &O, const Twine &Indent) const {
540   O << " +\n"
541     << Indent << "\"" << (IsUniform ? "CLONE " : "REPLICATE ")
542     << VPlanIngredient(Ingredient);
543   if (AlsoPack)
544     O << " (S->V)";
545   O << "\\l\"";
546 }
547 
548 void VPPredInstPHIRecipe::print(raw_ostream &O, const Twine &Indent) const {
549   O << " +\n"
550     << Indent << "\"PHI-PREDICATED-INSTRUCTION " << VPlanIngredient(PredInst)
551     << "\\l\"";
552 }
553 
554 void VPWidenMemoryInstructionRecipe::print(raw_ostream &O,
555                                            const Twine &Indent) const {
556   O << " +\n" << Indent << "\"WIDEN " << VPlanIngredient(&Instr);
557   if (User) {
558     O << ", ";
559     User->getOperand(0)->printAsOperand(O);
560   }
561   O << "\\l\"";
562 }
563