1 //===- VPlan.cpp - Vectorizer Plan ----------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 /// 10 /// \file 11 /// This is the LLVM vectorization plan. It represents a candidate for 12 /// vectorization, allowing to plan and optimize how to vectorize a given loop 13 /// before generating LLVM-IR. 14 /// The vectorizer uses vectorization plans to estimate the costs of potential 15 /// candidates and if profitable to execute the desired plan, generating vector 16 /// LLVM-IR code. 17 /// 18 //===----------------------------------------------------------------------===// 19 20 #include "VPlan.h" 21 #include "llvm/ADT/DepthFirstIterator.h" 22 #include "llvm/ADT/PostOrderIterator.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/Twine.h" 25 #include "llvm/Analysis/LoopInfo.h" 26 #include "llvm/IR/BasicBlock.h" 27 #include "llvm/IR/CFG.h" 28 #include "llvm/IR/Dominators.h" 29 #include "llvm/IR/InstrTypes.h" 30 #include "llvm/IR/Instruction.h" 31 #include "llvm/IR/Instructions.h" 32 #include "llvm/IR/Type.h" 33 #include "llvm/IR/Value.h" 34 #include "llvm/Support/Casting.h" 35 #include "llvm/Support/Debug.h" 36 #include "llvm/Support/ErrorHandling.h" 37 #include "llvm/Support/GraphWriter.h" 38 #include "llvm/Support/raw_ostream.h" 39 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 40 #include <cassert> 41 #include <iterator> 42 #include <string> 43 #include <vector> 44 45 using namespace llvm; 46 47 #define DEBUG_TYPE "vplan" 48 49 raw_ostream &llvm::operator<<(raw_ostream &OS, const VPValue &V) { 50 if (const VPInstruction *Instr = dyn_cast<VPInstruction>(&V)) 51 Instr->print(OS); 52 else 53 V.printAsOperand(OS); 54 return OS; 55 } 56 57 /// \return the VPBasicBlock that is the entry of Block, possibly indirectly. 58 const VPBasicBlock *VPBlockBase::getEntryBasicBlock() const { 59 const VPBlockBase *Block = this; 60 while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 61 Block = Region->getEntry(); 62 return cast<VPBasicBlock>(Block); 63 } 64 65 VPBasicBlock *VPBlockBase::getEntryBasicBlock() { 66 VPBlockBase *Block = this; 67 while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 68 Block = Region->getEntry(); 69 return cast<VPBasicBlock>(Block); 70 } 71 72 /// \return the VPBasicBlock that is the exit of Block, possibly indirectly. 73 const VPBasicBlock *VPBlockBase::getExitBasicBlock() const { 74 const VPBlockBase *Block = this; 75 while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 76 Block = Region->getExit(); 77 return cast<VPBasicBlock>(Block); 78 } 79 80 VPBasicBlock *VPBlockBase::getExitBasicBlock() { 81 VPBlockBase *Block = this; 82 while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 83 Block = Region->getExit(); 84 return cast<VPBasicBlock>(Block); 85 } 86 87 VPBlockBase *VPBlockBase::getEnclosingBlockWithSuccessors() { 88 if (!Successors.empty() || !Parent) 89 return this; 90 assert(Parent->getExit() == this && 91 "Block w/o successors not the exit of its parent."); 92 return Parent->getEnclosingBlockWithSuccessors(); 93 } 94 95 VPBlockBase *VPBlockBase::getEnclosingBlockWithPredecessors() { 96 if (!Predecessors.empty() || !Parent) 97 return this; 98 assert(Parent->getEntry() == this && 99 "Block w/o predecessors not the entry of its parent."); 100 return Parent->getEnclosingBlockWithPredecessors(); 101 } 102 103 void VPBlockBase::deleteCFG(VPBlockBase *Entry) { 104 SmallVector<VPBlockBase *, 8> Blocks; 105 for (VPBlockBase *Block : depth_first(Entry)) 106 Blocks.push_back(Block); 107 108 for (VPBlockBase *Block : Blocks) 109 delete Block; 110 } 111 112 BasicBlock * 113 VPBasicBlock::createEmptyBasicBlock(VPTransformState::CFGState &CFG) { 114 // BB stands for IR BasicBlocks. VPBB stands for VPlan VPBasicBlocks. 115 // Pred stands for Predessor. Prev stands for Previous - last visited/created. 116 BasicBlock *PrevBB = CFG.PrevBB; 117 BasicBlock *NewBB = BasicBlock::Create(PrevBB->getContext(), getName(), 118 PrevBB->getParent(), CFG.LastBB); 119 LLVM_DEBUG(dbgs() << "LV: created " << NewBB->getName() << '\n'); 120 121 // Hook up the new basic block to its predecessors. 122 for (VPBlockBase *PredVPBlock : getHierarchicalPredecessors()) { 123 VPBasicBlock *PredVPBB = PredVPBlock->getExitBasicBlock(); 124 auto &PredVPSuccessors = PredVPBB->getSuccessors(); 125 BasicBlock *PredBB = CFG.VPBB2IRBB[PredVPBB]; 126 assert(PredBB && "Predecessor basic-block not found building successor."); 127 auto *PredBBTerminator = PredBB->getTerminator(); 128 LLVM_DEBUG(dbgs() << "LV: draw edge from" << PredBB->getName() << '\n'); 129 if (isa<UnreachableInst>(PredBBTerminator)) { 130 assert(PredVPSuccessors.size() == 1 && 131 "Predecessor ending w/o branch must have single successor."); 132 PredBBTerminator->eraseFromParent(); 133 BranchInst::Create(NewBB, PredBB); 134 } else { 135 assert(PredVPSuccessors.size() == 2 && 136 "Predecessor ending with branch must have two successors."); 137 unsigned idx = PredVPSuccessors.front() == this ? 0 : 1; 138 assert(!PredBBTerminator->getSuccessor(idx) && 139 "Trying to reset an existing successor block."); 140 PredBBTerminator->setSuccessor(idx, NewBB); 141 } 142 } 143 return NewBB; 144 } 145 146 void VPBasicBlock::execute(VPTransformState *State) { 147 bool Replica = State->Instance && 148 !(State->Instance->Part == 0 && State->Instance->Lane == 0); 149 VPBasicBlock *PrevVPBB = State->CFG.PrevVPBB; 150 VPBlockBase *SingleHPred = nullptr; 151 BasicBlock *NewBB = State->CFG.PrevBB; // Reuse it if possible. 152 153 // 1. Create an IR basic block, or reuse the last one if possible. 154 // The last IR basic block is reused, as an optimization, in three cases: 155 // A. the first VPBB reuses the loop header BB - when PrevVPBB is null; 156 // B. when the current VPBB has a single (hierarchical) predecessor which 157 // is PrevVPBB and the latter has a single (hierarchical) successor; and 158 // C. when the current VPBB is an entry of a region replica - where PrevVPBB 159 // is the exit of this region from a previous instance, or the predecessor 160 // of this region. 161 if (PrevVPBB && /* A */ 162 !((SingleHPred = getSingleHierarchicalPredecessor()) && 163 SingleHPred->getExitBasicBlock() == PrevVPBB && 164 PrevVPBB->getSingleHierarchicalSuccessor()) && /* B */ 165 !(Replica && getPredecessors().empty())) { /* C */ 166 NewBB = createEmptyBasicBlock(State->CFG); 167 State->Builder.SetInsertPoint(NewBB); 168 // Temporarily terminate with unreachable until CFG is rewired. 169 UnreachableInst *Terminator = State->Builder.CreateUnreachable(); 170 State->Builder.SetInsertPoint(Terminator); 171 // Register NewBB in its loop. In innermost loops its the same for all BB's. 172 Loop *L = State->LI->getLoopFor(State->CFG.LastBB); 173 L->addBasicBlockToLoop(NewBB, *State->LI); 174 State->CFG.PrevBB = NewBB; 175 } 176 177 // 2. Fill the IR basic block with IR instructions. 178 LLVM_DEBUG(dbgs() << "LV: vectorizing VPBB:" << getName() 179 << " in BB:" << NewBB->getName() << '\n'); 180 181 State->CFG.VPBB2IRBB[this] = NewBB; 182 State->CFG.PrevVPBB = this; 183 184 for (VPRecipeBase &Recipe : Recipes) 185 Recipe.execute(*State); 186 187 LLVM_DEBUG(dbgs() << "LV: filled BB:" << *NewBB); 188 } 189 190 void VPRegionBlock::execute(VPTransformState *State) { 191 ReversePostOrderTraversal<VPBlockBase *> RPOT(Entry); 192 193 if (!isReplicator()) { 194 // Visit the VPBlocks connected to "this", starting from it. 195 for (VPBlockBase *Block : RPOT) { 196 LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n'); 197 Block->execute(State); 198 } 199 return; 200 } 201 202 assert(!State->Instance && "Replicating a Region with non-null instance."); 203 204 // Enter replicating mode. 205 State->Instance = {0, 0}; 206 207 for (unsigned Part = 0, UF = State->UF; Part < UF; ++Part) { 208 State->Instance->Part = Part; 209 for (unsigned Lane = 0, VF = State->VF; Lane < VF; ++Lane) { 210 State->Instance->Lane = Lane; 211 // Visit the VPBlocks connected to \p this, starting from it. 212 for (VPBlockBase *Block : RPOT) { 213 LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n'); 214 Block->execute(State); 215 } 216 } 217 } 218 219 // Exit replicating mode. 220 State->Instance.reset(); 221 } 222 223 void VPRecipeBase::insertBefore(VPRecipeBase *InsertPos) { 224 Parent = InsertPos->getParent(); 225 Parent->getRecipeList().insert(InsertPos->getIterator(), this); 226 } 227 228 void VPInstruction::generateInstruction(VPTransformState &State, 229 unsigned Part) { 230 IRBuilder<> &Builder = State.Builder; 231 232 if (Instruction::isBinaryOp(getOpcode())) { 233 Value *A = State.get(getOperand(0), Part); 234 Value *B = State.get(getOperand(1), Part); 235 Value *V = Builder.CreateBinOp((Instruction::BinaryOps)getOpcode(), A, B); 236 State.set(this, V, Part); 237 return; 238 } 239 240 switch (getOpcode()) { 241 case VPInstruction::Not: { 242 Value *A = State.get(getOperand(0), Part); 243 Value *V = Builder.CreateNot(A); 244 State.set(this, V, Part); 245 break; 246 } 247 default: 248 llvm_unreachable("Unsupported opcode for instruction"); 249 } 250 } 251 252 void VPInstruction::execute(VPTransformState &State) { 253 assert(!State.Instance && "VPInstruction executing an Instance"); 254 for (unsigned Part = 0; Part < State.UF; ++Part) 255 generateInstruction(State, Part); 256 } 257 258 void VPInstruction::print(raw_ostream &O, const Twine &Indent) const { 259 O << " +\n" << Indent << "\"EMIT "; 260 print(O); 261 O << "\\l\""; 262 } 263 264 void VPInstruction::print(raw_ostream &O) const { 265 printAsOperand(O); 266 O << " = "; 267 268 switch (getOpcode()) { 269 case VPInstruction::Not: 270 O << "not"; 271 break; 272 default: 273 O << Instruction::getOpcodeName(getOpcode()); 274 } 275 276 for (const VPValue *Operand : operands()) { 277 O << " "; 278 Operand->printAsOperand(O); 279 } 280 } 281 282 /// Generate the code inside the body of the vectorized loop. Assumes a single 283 /// LoopVectorBody basic-block was created for this. Introduce additional 284 /// basic-blocks as needed, and fill them all. 285 void VPlan::execute(VPTransformState *State) { 286 // 0. Set the reverse mapping from VPValues to Values for code generation. 287 for (auto &Entry : Value2VPValue) 288 State->VPValue2Value[Entry.second] = Entry.first; 289 290 BasicBlock *VectorPreHeaderBB = State->CFG.PrevBB; 291 BasicBlock *VectorHeaderBB = VectorPreHeaderBB->getSingleSuccessor(); 292 assert(VectorHeaderBB && "Loop preheader does not have a single successor."); 293 BasicBlock *VectorLatchBB = VectorHeaderBB; 294 295 // 1. Make room to generate basic-blocks inside loop body if needed. 296 VectorLatchBB = VectorHeaderBB->splitBasicBlock( 297 VectorHeaderBB->getFirstInsertionPt(), "vector.body.latch"); 298 Loop *L = State->LI->getLoopFor(VectorHeaderBB); 299 L->addBasicBlockToLoop(VectorLatchBB, *State->LI); 300 // Remove the edge between Header and Latch to allow other connections. 301 // Temporarily terminate with unreachable until CFG is rewired. 302 // Note: this asserts the generated code's assumption that 303 // getFirstInsertionPt() can be dereferenced into an Instruction. 304 VectorHeaderBB->getTerminator()->eraseFromParent(); 305 State->Builder.SetInsertPoint(VectorHeaderBB); 306 UnreachableInst *Terminator = State->Builder.CreateUnreachable(); 307 State->Builder.SetInsertPoint(Terminator); 308 309 // 2. Generate code in loop body. 310 State->CFG.PrevVPBB = nullptr; 311 State->CFG.PrevBB = VectorHeaderBB; 312 State->CFG.LastBB = VectorLatchBB; 313 314 for (VPBlockBase *Block : depth_first(Entry)) 315 Block->execute(State); 316 317 // 3. Merge the temporary latch created with the last basic-block filled. 318 BasicBlock *LastBB = State->CFG.PrevBB; 319 // Connect LastBB to VectorLatchBB to facilitate their merge. 320 assert(isa<UnreachableInst>(LastBB->getTerminator()) && 321 "Expected VPlan CFG to terminate with unreachable"); 322 LastBB->getTerminator()->eraseFromParent(); 323 BranchInst::Create(VectorLatchBB, LastBB); 324 325 // Merge LastBB with Latch. 326 bool Merged = MergeBlockIntoPredecessor(VectorLatchBB, nullptr, State->LI); 327 (void)Merged; 328 assert(Merged && "Could not merge last basic block with latch."); 329 VectorLatchBB = LastBB; 330 331 updateDominatorTree(State->DT, VectorPreHeaderBB, VectorLatchBB); 332 } 333 334 void VPlan::updateDominatorTree(DominatorTree *DT, BasicBlock *LoopPreHeaderBB, 335 BasicBlock *LoopLatchBB) { 336 BasicBlock *LoopHeaderBB = LoopPreHeaderBB->getSingleSuccessor(); 337 assert(LoopHeaderBB && "Loop preheader does not have a single successor."); 338 DT->addNewBlock(LoopHeaderBB, LoopPreHeaderBB); 339 // The vector body may be more than a single basic-block by this point. 340 // Update the dominator tree information inside the vector body by propagating 341 // it from header to latch, expecting only triangular control-flow, if any. 342 BasicBlock *PostDomSucc = nullptr; 343 for (auto *BB = LoopHeaderBB; BB != LoopLatchBB; BB = PostDomSucc) { 344 // Get the list of successors of this block. 345 std::vector<BasicBlock *> Succs(succ_begin(BB), succ_end(BB)); 346 assert(Succs.size() <= 2 && 347 "Basic block in vector loop has more than 2 successors."); 348 PostDomSucc = Succs[0]; 349 if (Succs.size() == 1) { 350 assert(PostDomSucc->getSinglePredecessor() && 351 "PostDom successor has more than one predecessor."); 352 DT->addNewBlock(PostDomSucc, BB); 353 continue; 354 } 355 BasicBlock *InterimSucc = Succs[1]; 356 if (PostDomSucc->getSingleSuccessor() == InterimSucc) { 357 PostDomSucc = Succs[1]; 358 InterimSucc = Succs[0]; 359 } 360 assert(InterimSucc->getSingleSuccessor() == PostDomSucc && 361 "One successor of a basic block does not lead to the other."); 362 assert(InterimSucc->getSinglePredecessor() && 363 "Interim successor has more than one predecessor."); 364 assert(pred_size(PostDomSucc) == 2 && 365 "PostDom successor has more than two predecessors."); 366 DT->addNewBlock(InterimSucc, BB); 367 DT->addNewBlock(PostDomSucc, BB); 368 } 369 } 370 371 const Twine VPlanPrinter::getUID(const VPBlockBase *Block) { 372 return (isa<VPRegionBlock>(Block) ? "cluster_N" : "N") + 373 Twine(getOrCreateBID(Block)); 374 } 375 376 const Twine VPlanPrinter::getOrCreateName(const VPBlockBase *Block) { 377 const std::string &Name = Block->getName(); 378 if (!Name.empty()) 379 return Name; 380 return "VPB" + Twine(getOrCreateBID(Block)); 381 } 382 383 void VPlanPrinter::dump() { 384 Depth = 1; 385 bumpIndent(0); 386 OS << "digraph VPlan {\n"; 387 OS << "graph [labelloc=t, fontsize=30; label=\"Vectorization Plan"; 388 if (!Plan.getName().empty()) 389 OS << "\\n" << DOT::EscapeString(Plan.getName()); 390 if (!Plan.Value2VPValue.empty()) { 391 OS << ", where:"; 392 for (auto Entry : Plan.Value2VPValue) { 393 OS << "\\n" << *Entry.second; 394 OS << DOT::EscapeString(" := "); 395 Entry.first->printAsOperand(OS, false); 396 } 397 } 398 OS << "\"]\n"; 399 OS << "node [shape=rect, fontname=Courier, fontsize=30]\n"; 400 OS << "edge [fontname=Courier, fontsize=30]\n"; 401 OS << "compound=true\n"; 402 403 for (VPBlockBase *Block : depth_first(Plan.getEntry())) 404 dumpBlock(Block); 405 406 OS << "}\n"; 407 } 408 409 void VPlanPrinter::dumpBlock(const VPBlockBase *Block) { 410 if (const VPBasicBlock *BasicBlock = dyn_cast<VPBasicBlock>(Block)) 411 dumpBasicBlock(BasicBlock); 412 else if (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 413 dumpRegion(Region); 414 else 415 llvm_unreachable("Unsupported kind of VPBlock."); 416 } 417 418 void VPlanPrinter::drawEdge(const VPBlockBase *From, const VPBlockBase *To, 419 bool Hidden, const Twine &Label) { 420 // Due to "dot" we print an edge between two regions as an edge between the 421 // exit basic block and the entry basic of the respective regions. 422 const VPBlockBase *Tail = From->getExitBasicBlock(); 423 const VPBlockBase *Head = To->getEntryBasicBlock(); 424 OS << Indent << getUID(Tail) << " -> " << getUID(Head); 425 OS << " [ label=\"" << Label << '\"'; 426 if (Tail != From) 427 OS << " ltail=" << getUID(From); 428 if (Head != To) 429 OS << " lhead=" << getUID(To); 430 if (Hidden) 431 OS << "; splines=none"; 432 OS << "]\n"; 433 } 434 435 void VPlanPrinter::dumpEdges(const VPBlockBase *Block) { 436 auto &Successors = Block->getSuccessors(); 437 if (Successors.size() == 1) 438 drawEdge(Block, Successors.front(), false, ""); 439 else if (Successors.size() == 2) { 440 drawEdge(Block, Successors.front(), false, "T"); 441 drawEdge(Block, Successors.back(), false, "F"); 442 } else { 443 unsigned SuccessorNumber = 0; 444 for (auto *Successor : Successors) 445 drawEdge(Block, Successor, false, Twine(SuccessorNumber++)); 446 } 447 } 448 449 void VPlanPrinter::dumpBasicBlock(const VPBasicBlock *BasicBlock) { 450 OS << Indent << getUID(BasicBlock) << " [label =\n"; 451 bumpIndent(1); 452 OS << Indent << "\"" << DOT::EscapeString(BasicBlock->getName()) << ":\\n\""; 453 bumpIndent(1); 454 for (const VPRecipeBase &Recipe : *BasicBlock) 455 Recipe.print(OS, Indent); 456 bumpIndent(-2); 457 OS << "\n" << Indent << "]\n"; 458 dumpEdges(BasicBlock); 459 } 460 461 void VPlanPrinter::dumpRegion(const VPRegionBlock *Region) { 462 OS << Indent << "subgraph " << getUID(Region) << " {\n"; 463 bumpIndent(1); 464 OS << Indent << "fontname=Courier\n" 465 << Indent << "label=\"" 466 << DOT::EscapeString(Region->isReplicator() ? "<xVFxUF> " : "<x1> ") 467 << DOT::EscapeString(Region->getName()) << "\"\n"; 468 // Dump the blocks of the region. 469 assert(Region->getEntry() && "Region contains no inner blocks."); 470 for (const VPBlockBase *Block : depth_first(Region->getEntry())) 471 dumpBlock(Block); 472 bumpIndent(-1); 473 OS << Indent << "}\n"; 474 dumpEdges(Region); 475 } 476 477 void VPlanPrinter::printAsIngredient(raw_ostream &O, Value *V) { 478 std::string IngredientString; 479 raw_string_ostream RSO(IngredientString); 480 if (auto *Inst = dyn_cast<Instruction>(V)) { 481 if (!Inst->getType()->isVoidTy()) { 482 Inst->printAsOperand(RSO, false); 483 RSO << " = "; 484 } 485 RSO << Inst->getOpcodeName() << " "; 486 unsigned E = Inst->getNumOperands(); 487 if (E > 0) { 488 Inst->getOperand(0)->printAsOperand(RSO, false); 489 for (unsigned I = 1; I < E; ++I) 490 Inst->getOperand(I)->printAsOperand(RSO << ", ", false); 491 } 492 } else // !Inst 493 V->printAsOperand(RSO, false); 494 RSO.flush(); 495 O << DOT::EscapeString(IngredientString); 496 } 497 498 void VPWidenRecipe::print(raw_ostream &O, const Twine &Indent) const { 499 O << " +\n" << Indent << "\"WIDEN\\l\""; 500 for (auto &Instr : make_range(Begin, End)) 501 O << " +\n" << Indent << "\" " << VPlanIngredient(&Instr) << "\\l\""; 502 } 503 504 void VPWidenIntOrFpInductionRecipe::print(raw_ostream &O, 505 const Twine &Indent) const { 506 O << " +\n" << Indent << "\"WIDEN-INDUCTION"; 507 if (Trunc) { 508 O << "\\l\""; 509 O << " +\n" << Indent << "\" " << VPlanIngredient(IV) << "\\l\""; 510 O << " +\n" << Indent << "\" " << VPlanIngredient(Trunc) << "\\l\""; 511 } else 512 O << " " << VPlanIngredient(IV) << "\\l\""; 513 } 514 515 void VPWidenPHIRecipe::print(raw_ostream &O, const Twine &Indent) const { 516 O << " +\n" << Indent << "\"WIDEN-PHI " << VPlanIngredient(Phi) << "\\l\""; 517 } 518 519 void VPBlendRecipe::print(raw_ostream &O, const Twine &Indent) const { 520 O << " +\n" << Indent << "\"BLEND "; 521 Phi->printAsOperand(O, false); 522 O << " ="; 523 if (!User) { 524 // Not a User of any mask: not really blending, this is a 525 // single-predecessor phi. 526 O << " "; 527 Phi->getIncomingValue(0)->printAsOperand(O, false); 528 } else { 529 for (unsigned I = 0, E = User->getNumOperands(); I < E; ++I) { 530 O << " "; 531 Phi->getIncomingValue(I)->printAsOperand(O, false); 532 O << "/"; 533 User->getOperand(I)->printAsOperand(O); 534 } 535 } 536 O << "\\l\""; 537 } 538 539 void VPReplicateRecipe::print(raw_ostream &O, const Twine &Indent) const { 540 O << " +\n" 541 << Indent << "\"" << (IsUniform ? "CLONE " : "REPLICATE ") 542 << VPlanIngredient(Ingredient); 543 if (AlsoPack) 544 O << " (S->V)"; 545 O << "\\l\""; 546 } 547 548 void VPPredInstPHIRecipe::print(raw_ostream &O, const Twine &Indent) const { 549 O << " +\n" 550 << Indent << "\"PHI-PREDICATED-INSTRUCTION " << VPlanIngredient(PredInst) 551 << "\\l\""; 552 } 553 554 void VPWidenMemoryInstructionRecipe::print(raw_ostream &O, 555 const Twine &Indent) const { 556 O << " +\n" << Indent << "\"WIDEN " << VPlanIngredient(&Instr); 557 if (User) { 558 O << ", "; 559 User->getOperand(0)->printAsOperand(O); 560 } 561 O << "\\l\""; 562 } 563