1 //===- VPlan.cpp - Vectorizer Plan ----------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This is the LLVM vectorization plan. It represents a candidate for 11 /// vectorization, allowing to plan and optimize how to vectorize a given loop 12 /// before generating LLVM-IR. 13 /// The vectorizer uses vectorization plans to estimate the costs of potential 14 /// candidates and if profitable to execute the desired plan, generating vector 15 /// LLVM-IR code. 16 /// 17 //===----------------------------------------------------------------------===// 18 19 #include "VPlan.h" 20 #include "LoopVectorizationPlanner.h" 21 #include "VPlanCFG.h" 22 #include "VPlanDominatorTree.h" 23 #include "VPlanPatternMatch.h" 24 #include "VPlanTransforms.h" 25 #include "VPlanUtils.h" 26 #include "llvm/ADT/PostOrderIterator.h" 27 #include "llvm/ADT/STLExtras.h" 28 #include "llvm/ADT/SmallVector.h" 29 #include "llvm/ADT/StringExtras.h" 30 #include "llvm/ADT/Twine.h" 31 #include "llvm/Analysis/DomTreeUpdater.h" 32 #include "llvm/Analysis/LoopInfo.h" 33 #include "llvm/IR/BasicBlock.h" 34 #include "llvm/IR/CFG.h" 35 #include "llvm/IR/IRBuilder.h" 36 #include "llvm/IR/Instruction.h" 37 #include "llvm/IR/Instructions.h" 38 #include "llvm/IR/Type.h" 39 #include "llvm/IR/Value.h" 40 #include "llvm/Support/Casting.h" 41 #include "llvm/Support/CommandLine.h" 42 #include "llvm/Support/Debug.h" 43 #include "llvm/Support/GraphWriter.h" 44 #include "llvm/Support/raw_ostream.h" 45 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 46 #include "llvm/Transforms/Utils/LoopVersioning.h" 47 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 48 #include <cassert> 49 #include <string> 50 #include <vector> 51 52 using namespace llvm; 53 using namespace llvm::VPlanPatternMatch; 54 55 namespace llvm { 56 extern cl::opt<bool> EnableVPlanNativePath; 57 } 58 extern cl::opt<unsigned> ForceTargetInstructionCost; 59 60 static cl::opt<bool> PrintVPlansInDotFormat( 61 "vplan-print-in-dot-format", cl::Hidden, 62 cl::desc("Use dot format instead of plain text when dumping VPlans")); 63 64 #define DEBUG_TYPE "vplan" 65 66 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 67 raw_ostream &llvm::operator<<(raw_ostream &OS, const VPValue &V) { 68 const VPInstruction *Instr = dyn_cast<VPInstruction>(&V); 69 VPSlotTracker SlotTracker( 70 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr); 71 V.print(OS, SlotTracker); 72 return OS; 73 } 74 #endif 75 76 Value *VPLane::getAsRuntimeExpr(IRBuilderBase &Builder, 77 const ElementCount &VF) const { 78 switch (LaneKind) { 79 case VPLane::Kind::ScalableLast: 80 // Lane = RuntimeVF - VF.getKnownMinValue() + Lane 81 return Builder.CreateSub(getRuntimeVF(Builder, Builder.getInt32Ty(), VF), 82 Builder.getInt32(VF.getKnownMinValue() - Lane)); 83 case VPLane::Kind::First: 84 return Builder.getInt32(Lane); 85 } 86 llvm_unreachable("Unknown lane kind"); 87 } 88 89 VPValue::VPValue(const unsigned char SC, Value *UV, VPDef *Def) 90 : SubclassID(SC), UnderlyingVal(UV), Def(Def) { 91 if (Def) 92 Def->addDefinedValue(this); 93 } 94 95 VPValue::~VPValue() { 96 assert(Users.empty() && "trying to delete a VPValue with remaining users"); 97 if (Def) 98 Def->removeDefinedValue(this); 99 } 100 101 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 102 void VPValue::print(raw_ostream &OS, VPSlotTracker &SlotTracker) const { 103 if (const VPRecipeBase *R = dyn_cast_or_null<VPRecipeBase>(Def)) 104 R->print(OS, "", SlotTracker); 105 else 106 printAsOperand(OS, SlotTracker); 107 } 108 109 void VPValue::dump() const { 110 const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this->Def); 111 VPSlotTracker SlotTracker( 112 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr); 113 print(dbgs(), SlotTracker); 114 dbgs() << "\n"; 115 } 116 117 void VPDef::dump() const { 118 const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this); 119 VPSlotTracker SlotTracker( 120 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr); 121 print(dbgs(), "", SlotTracker); 122 dbgs() << "\n"; 123 } 124 #endif 125 126 VPRecipeBase *VPValue::getDefiningRecipe() { 127 return cast_or_null<VPRecipeBase>(Def); 128 } 129 130 const VPRecipeBase *VPValue::getDefiningRecipe() const { 131 return cast_or_null<VPRecipeBase>(Def); 132 } 133 134 // Get the top-most entry block of \p Start. This is the entry block of the 135 // containing VPlan. This function is templated to support both const and non-const blocks 136 template <typename T> static T *getPlanEntry(T *Start) { 137 T *Next = Start; 138 T *Current = Start; 139 while ((Next = Next->getParent())) 140 Current = Next; 141 142 SmallSetVector<T *, 8> WorkList; 143 WorkList.insert(Current); 144 145 for (unsigned i = 0; i < WorkList.size(); i++) { 146 T *Current = WorkList[i]; 147 if (Current->getNumPredecessors() == 0) 148 return Current; 149 auto &Predecessors = Current->getPredecessors(); 150 WorkList.insert(Predecessors.begin(), Predecessors.end()); 151 } 152 153 llvm_unreachable("VPlan without any entry node without predecessors"); 154 } 155 156 VPlan *VPBlockBase::getPlan() { return getPlanEntry(this)->Plan; } 157 158 const VPlan *VPBlockBase::getPlan() const { return getPlanEntry(this)->Plan; } 159 160 /// \return the VPBasicBlock that is the entry of Block, possibly indirectly. 161 const VPBasicBlock *VPBlockBase::getEntryBasicBlock() const { 162 const VPBlockBase *Block = this; 163 while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 164 Block = Region->getEntry(); 165 return cast<VPBasicBlock>(Block); 166 } 167 168 VPBasicBlock *VPBlockBase::getEntryBasicBlock() { 169 VPBlockBase *Block = this; 170 while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 171 Block = Region->getEntry(); 172 return cast<VPBasicBlock>(Block); 173 } 174 175 void VPBlockBase::setPlan(VPlan *ParentPlan) { 176 assert( 177 (ParentPlan->getEntry() == this || ParentPlan->getPreheader() == this) && 178 "Can only set plan on its entry or preheader block."); 179 Plan = ParentPlan; 180 } 181 182 /// \return the VPBasicBlock that is the exit of Block, possibly indirectly. 183 const VPBasicBlock *VPBlockBase::getExitingBasicBlock() const { 184 const VPBlockBase *Block = this; 185 while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 186 Block = Region->getExiting(); 187 return cast<VPBasicBlock>(Block); 188 } 189 190 VPBasicBlock *VPBlockBase::getExitingBasicBlock() { 191 VPBlockBase *Block = this; 192 while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 193 Block = Region->getExiting(); 194 return cast<VPBasicBlock>(Block); 195 } 196 197 VPBlockBase *VPBlockBase::getEnclosingBlockWithSuccessors() { 198 if (!Successors.empty() || !Parent) 199 return this; 200 assert(Parent->getExiting() == this && 201 "Block w/o successors not the exiting block of its parent."); 202 return Parent->getEnclosingBlockWithSuccessors(); 203 } 204 205 VPBlockBase *VPBlockBase::getEnclosingBlockWithPredecessors() { 206 if (!Predecessors.empty() || !Parent) 207 return this; 208 assert(Parent->getEntry() == this && 209 "Block w/o predecessors not the entry of its parent."); 210 return Parent->getEnclosingBlockWithPredecessors(); 211 } 212 213 void VPBlockBase::deleteCFG(VPBlockBase *Entry) { 214 for (VPBlockBase *Block : to_vector(vp_depth_first_shallow(Entry))) 215 delete Block; 216 } 217 218 VPBasicBlock::iterator VPBasicBlock::getFirstNonPhi() { 219 iterator It = begin(); 220 while (It != end() && It->isPhi()) 221 It++; 222 return It; 223 } 224 225 VPTransformState::VPTransformState(ElementCount VF, unsigned UF, LoopInfo *LI, 226 DominatorTree *DT, IRBuilderBase &Builder, 227 InnerLoopVectorizer *ILV, VPlan *Plan) 228 : VF(VF), CFG(DT), LI(LI), Builder(Builder), ILV(ILV), Plan(Plan), 229 LVer(nullptr), TypeAnalysis(Plan->getCanonicalIV()->getScalarType()) {} 230 231 Value *VPTransformState::get(VPValue *Def, const VPLane &Lane) { 232 if (Def->isLiveIn()) 233 return Def->getLiveInIRValue(); 234 235 if (hasScalarValue(Def, Lane)) 236 return Data.VPV2Scalars[Def][Lane.mapToCacheIndex(VF)]; 237 238 if (!Lane.isFirstLane() && vputils::isUniformAfterVectorization(Def) && 239 hasScalarValue(Def, VPLane::getFirstLane())) { 240 return Data.VPV2Scalars[Def][0]; 241 } 242 243 assert(hasVectorValue(Def)); 244 auto *VecPart = Data.VPV2Vector[Def]; 245 if (!VecPart->getType()->isVectorTy()) { 246 assert(Lane.isFirstLane() && "cannot get lane > 0 for scalar"); 247 return VecPart; 248 } 249 // TODO: Cache created scalar values. 250 Value *LaneV = Lane.getAsRuntimeExpr(Builder, VF); 251 auto *Extract = Builder.CreateExtractElement(VecPart, LaneV); 252 // set(Def, Extract, Instance); 253 return Extract; 254 } 255 256 Value *VPTransformState::get(VPValue *Def, bool NeedsScalar) { 257 if (NeedsScalar) { 258 assert((VF.isScalar() || Def->isLiveIn() || hasVectorValue(Def) || 259 !vputils::onlyFirstLaneUsed(Def) || 260 (hasScalarValue(Def, VPLane(0)) && 261 Data.VPV2Scalars[Def].size() == 1)) && 262 "Trying to access a single scalar per part but has multiple scalars " 263 "per part."); 264 return get(Def, VPLane(0)); 265 } 266 267 // If Values have been set for this Def return the one relevant for \p Part. 268 if (hasVectorValue(Def)) 269 return Data.VPV2Vector[Def]; 270 271 auto GetBroadcastInstrs = [this, Def](Value *V) { 272 bool SafeToHoist = Def->isDefinedOutsideLoopRegions(); 273 if (VF.isScalar()) 274 return V; 275 // Place the code for broadcasting invariant variables in the new preheader. 276 IRBuilder<>::InsertPointGuard Guard(Builder); 277 if (SafeToHoist) { 278 BasicBlock *LoopVectorPreHeader = 279 CFG.VPBB2IRBB[Plan->getVectorPreheader()]; 280 if (LoopVectorPreHeader) 281 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 282 } 283 284 // Place the code for broadcasting invariant variables in the new preheader. 285 // Broadcast the scalar into all locations in the vector. 286 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 287 288 return Shuf; 289 }; 290 291 if (!hasScalarValue(Def, {0})) { 292 assert(Def->isLiveIn() && "expected a live-in"); 293 Value *IRV = Def->getLiveInIRValue(); 294 Value *B = GetBroadcastInstrs(IRV); 295 set(Def, B); 296 return B; 297 } 298 299 Value *ScalarValue = get(Def, VPLane(0)); 300 // If we aren't vectorizing, we can just copy the scalar map values over 301 // to the vector map. 302 if (VF.isScalar()) { 303 set(Def, ScalarValue); 304 return ScalarValue; 305 } 306 307 bool IsUniform = vputils::isUniformAfterVectorization(Def); 308 309 VPLane LastLane(IsUniform ? 0 : VF.getKnownMinValue() - 1); 310 // Check if there is a scalar value for the selected lane. 311 if (!hasScalarValue(Def, LastLane)) { 312 // At the moment, VPWidenIntOrFpInductionRecipes, VPScalarIVStepsRecipes and 313 // VPExpandSCEVRecipes can also be uniform. 314 assert((isa<VPWidenIntOrFpInductionRecipe>(Def->getDefiningRecipe()) || 315 isa<VPScalarIVStepsRecipe>(Def->getDefiningRecipe()) || 316 isa<VPExpandSCEVRecipe>(Def->getDefiningRecipe())) && 317 "unexpected recipe found to be invariant"); 318 IsUniform = true; 319 LastLane = 0; 320 } 321 322 auto *LastInst = cast<Instruction>(get(Def, LastLane)); 323 // Set the insert point after the last scalarized instruction or after the 324 // last PHI, if LastInst is a PHI. This ensures the insertelement sequence 325 // will directly follow the scalar definitions. 326 auto OldIP = Builder.saveIP(); 327 auto NewIP = 328 isa<PHINode>(LastInst) 329 ? BasicBlock::iterator(LastInst->getParent()->getFirstNonPHI()) 330 : std::next(BasicBlock::iterator(LastInst)); 331 Builder.SetInsertPoint(&*NewIP); 332 333 // However, if we are vectorizing, we need to construct the vector values. 334 // If the value is known to be uniform after vectorization, we can just 335 // broadcast the scalar value corresponding to lane zero. Otherwise, we 336 // construct the vector values using insertelement instructions. Since the 337 // resulting vectors are stored in State, we will only generate the 338 // insertelements once. 339 Value *VectorValue = nullptr; 340 if (IsUniform) { 341 VectorValue = GetBroadcastInstrs(ScalarValue); 342 set(Def, VectorValue); 343 } else { 344 // Initialize packing with insertelements to start from undef. 345 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 346 Value *Undef = PoisonValue::get(VectorType::get(LastInst->getType(), VF)); 347 set(Def, Undef); 348 for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane) 349 packScalarIntoVectorValue(Def, Lane); 350 VectorValue = get(Def); 351 } 352 Builder.restoreIP(OldIP); 353 return VectorValue; 354 } 355 356 BasicBlock *VPTransformState::CFGState::getPreheaderBBFor(VPRecipeBase *R) { 357 VPRegionBlock *LoopRegion = R->getParent()->getEnclosingLoopRegion(); 358 return VPBB2IRBB[LoopRegion->getPreheaderVPBB()]; 359 } 360 361 void VPTransformState::addNewMetadata(Instruction *To, 362 const Instruction *Orig) { 363 // If the loop was versioned with memchecks, add the corresponding no-alias 364 // metadata. 365 if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig))) 366 LVer->annotateInstWithNoAlias(To, Orig); 367 } 368 369 void VPTransformState::addMetadata(Value *To, Instruction *From) { 370 // No source instruction to transfer metadata from? 371 if (!From) 372 return; 373 374 if (Instruction *ToI = dyn_cast<Instruction>(To)) { 375 propagateMetadata(ToI, From); 376 addNewMetadata(ToI, From); 377 } 378 } 379 380 void VPTransformState::setDebugLocFrom(DebugLoc DL) { 381 const DILocation *DIL = DL; 382 // When a FSDiscriminator is enabled, we don't need to add the multiply 383 // factors to the discriminators. 384 if (DIL && 385 Builder.GetInsertBlock() 386 ->getParent() 387 ->shouldEmitDebugInfoForProfiling() && 388 !EnableFSDiscriminator) { 389 // FIXME: For scalable vectors, assume vscale=1. 390 unsigned UF = Plan->getUF(); 391 auto NewDIL = 392 DIL->cloneByMultiplyingDuplicationFactor(UF * VF.getKnownMinValue()); 393 if (NewDIL) 394 Builder.SetCurrentDebugLocation(*NewDIL); 395 else 396 LLVM_DEBUG(dbgs() << "Failed to create new discriminator: " 397 << DIL->getFilename() << " Line: " << DIL->getLine()); 398 } else 399 Builder.SetCurrentDebugLocation(DIL); 400 } 401 402 void VPTransformState::packScalarIntoVectorValue(VPValue *Def, 403 const VPLane &Lane) { 404 Value *ScalarInst = get(Def, Lane); 405 Value *VectorValue = get(Def); 406 VectorValue = Builder.CreateInsertElement(VectorValue, ScalarInst, 407 Lane.getAsRuntimeExpr(Builder, VF)); 408 set(Def, VectorValue); 409 } 410 411 BasicBlock * 412 VPBasicBlock::createEmptyBasicBlock(VPTransformState::CFGState &CFG) { 413 // BB stands for IR BasicBlocks. VPBB stands for VPlan VPBasicBlocks. 414 // Pred stands for Predessor. Prev stands for Previous - last visited/created. 415 BasicBlock *PrevBB = CFG.PrevBB; 416 BasicBlock *NewBB = BasicBlock::Create(PrevBB->getContext(), getName(), 417 PrevBB->getParent(), CFG.ExitBB); 418 LLVM_DEBUG(dbgs() << "LV: created " << NewBB->getName() << '\n'); 419 420 // Hook up the new basic block to its predecessors. 421 for (VPBlockBase *PredVPBlock : getHierarchicalPredecessors()) { 422 VPBasicBlock *PredVPBB = PredVPBlock->getExitingBasicBlock(); 423 auto &PredVPSuccessors = PredVPBB->getHierarchicalSuccessors(); 424 BasicBlock *PredBB = CFG.VPBB2IRBB[PredVPBB]; 425 426 assert(PredBB && "Predecessor basic-block not found building successor."); 427 auto *PredBBTerminator = PredBB->getTerminator(); 428 LLVM_DEBUG(dbgs() << "LV: draw edge from" << PredBB->getName() << '\n'); 429 430 auto *TermBr = dyn_cast<BranchInst>(PredBBTerminator); 431 if (isa<UnreachableInst>(PredBBTerminator)) { 432 assert(PredVPSuccessors.size() == 1 && 433 "Predecessor ending w/o branch must have single successor."); 434 DebugLoc DL = PredBBTerminator->getDebugLoc(); 435 PredBBTerminator->eraseFromParent(); 436 auto *Br = BranchInst::Create(NewBB, PredBB); 437 Br->setDebugLoc(DL); 438 } else if (TermBr && !TermBr->isConditional()) { 439 TermBr->setSuccessor(0, NewBB); 440 } else { 441 // Set each forward successor here when it is created, excluding 442 // backedges. A backward successor is set when the branch is created. 443 unsigned idx = PredVPSuccessors.front() == this ? 0 : 1; 444 assert(!TermBr->getSuccessor(idx) && 445 "Trying to reset an existing successor block."); 446 TermBr->setSuccessor(idx, NewBB); 447 } 448 CFG.DTU.applyUpdates({{DominatorTree::Insert, PredBB, NewBB}}); 449 } 450 return NewBB; 451 } 452 453 void VPIRBasicBlock::execute(VPTransformState *State) { 454 assert(getHierarchicalSuccessors().size() <= 2 && 455 "VPIRBasicBlock can have at most two successors at the moment!"); 456 State->Builder.SetInsertPoint(IRBB->getTerminator()); 457 executeRecipes(State, IRBB); 458 // Create a branch instruction to terminate IRBB if one was not created yet 459 // and is needed. 460 if (getSingleSuccessor() && isa<UnreachableInst>(IRBB->getTerminator())) { 461 auto *Br = State->Builder.CreateBr(IRBB); 462 Br->setOperand(0, nullptr); 463 IRBB->getTerminator()->eraseFromParent(); 464 } else { 465 assert( 466 (getNumSuccessors() == 0 || isa<BranchInst>(IRBB->getTerminator())) && 467 "other blocks must be terminated by a branch"); 468 } 469 470 for (VPBlockBase *PredVPBlock : getHierarchicalPredecessors()) { 471 VPBasicBlock *PredVPBB = PredVPBlock->getExitingBasicBlock(); 472 BasicBlock *PredBB = State->CFG.VPBB2IRBB[PredVPBB]; 473 assert(PredBB && "Predecessor basic-block not found building successor."); 474 LLVM_DEBUG(dbgs() << "LV: draw edge from" << PredBB->getName() << '\n'); 475 476 auto *PredBBTerminator = PredBB->getTerminator(); 477 auto *TermBr = cast<BranchInst>(PredBBTerminator); 478 // Set each forward successor here when it is created, excluding 479 // backedges. A backward successor is set when the branch is created. 480 const auto &PredVPSuccessors = PredVPBB->getHierarchicalSuccessors(); 481 unsigned idx = PredVPSuccessors.front() == this ? 0 : 1; 482 assert((!TermBr->getSuccessor(idx) || TermBr->getSuccessor(idx) == IRBB) && 483 "Trying to reset an existing successor block."); 484 TermBr->setSuccessor(idx, IRBB); 485 State->CFG.DTU.applyUpdates({{DominatorTree::Insert, PredBB, IRBB}}); 486 } 487 } 488 489 void VPBasicBlock::execute(VPTransformState *State) { 490 bool Replica = bool(State->Lane); 491 VPBasicBlock *PrevVPBB = State->CFG.PrevVPBB; 492 VPBlockBase *SingleHPred = nullptr; 493 BasicBlock *NewBB = State->CFG.PrevBB; // Reuse it if possible. 494 495 auto IsLoopRegion = [](VPBlockBase *BB) { 496 auto *R = dyn_cast<VPRegionBlock>(BB); 497 return R && !R->isReplicator(); 498 }; 499 500 // 1. Create an IR basic block. 501 if (PrevVPBB && /* A */ 502 !((SingleHPred = getSingleHierarchicalPredecessor()) && 503 SingleHPred->getExitingBasicBlock() == PrevVPBB && 504 PrevVPBB->getSingleHierarchicalSuccessor() && 505 (SingleHPred->getParent() == getEnclosingLoopRegion() && 506 !IsLoopRegion(SingleHPred))) && /* B */ 507 !(Replica && getPredecessors().empty())) { /* C */ 508 // The last IR basic block is reused, as an optimization, in three cases: 509 // A. the first VPBB reuses the loop pre-header BB - when PrevVPBB is null; 510 // B. when the current VPBB has a single (hierarchical) predecessor which 511 // is PrevVPBB and the latter has a single (hierarchical) successor which 512 // both are in the same non-replicator region; and 513 // C. when the current VPBB is an entry of a region replica - where PrevVPBB 514 // is the exiting VPBB of this region from a previous instance, or the 515 // predecessor of this region. 516 517 NewBB = createEmptyBasicBlock(State->CFG); 518 State->Builder.SetInsertPoint(NewBB); 519 // Temporarily terminate with unreachable until CFG is rewired. 520 UnreachableInst *Terminator = State->Builder.CreateUnreachable(); 521 // Register NewBB in its loop. In innermost loops its the same for all 522 // BB's. 523 if (State->CurrentVectorLoop) 524 State->CurrentVectorLoop->addBasicBlockToLoop(NewBB, *State->LI); 525 State->Builder.SetInsertPoint(Terminator); 526 State->CFG.PrevBB = NewBB; 527 } 528 529 // 2. Fill the IR basic block with IR instructions. 530 executeRecipes(State, NewBB); 531 } 532 533 void VPBasicBlock::dropAllReferences(VPValue *NewValue) { 534 for (VPRecipeBase &R : Recipes) { 535 for (auto *Def : R.definedValues()) 536 Def->replaceAllUsesWith(NewValue); 537 538 for (unsigned I = 0, E = R.getNumOperands(); I != E; I++) 539 R.setOperand(I, NewValue); 540 } 541 } 542 543 void VPBasicBlock::executeRecipes(VPTransformState *State, BasicBlock *BB) { 544 LLVM_DEBUG(dbgs() << "LV: vectorizing VPBB:" << getName() 545 << " in BB:" << BB->getName() << '\n'); 546 547 State->CFG.VPBB2IRBB[this] = BB; 548 State->CFG.PrevVPBB = this; 549 550 for (VPRecipeBase &Recipe : Recipes) 551 Recipe.execute(*State); 552 553 LLVM_DEBUG(dbgs() << "LV: filled BB:" << *BB); 554 } 555 556 VPBasicBlock *VPBasicBlock::splitAt(iterator SplitAt) { 557 assert((SplitAt == end() || SplitAt->getParent() == this) && 558 "can only split at a position in the same block"); 559 560 SmallVector<VPBlockBase *, 2> Succs(successors()); 561 // First, disconnect the current block from its successors. 562 for (VPBlockBase *Succ : Succs) 563 VPBlockUtils::disconnectBlocks(this, Succ); 564 565 // Create new empty block after the block to split. 566 auto *SplitBlock = new VPBasicBlock(getName() + ".split"); 567 VPBlockUtils::insertBlockAfter(SplitBlock, this); 568 569 // Add successors for block to split to new block. 570 for (VPBlockBase *Succ : Succs) 571 VPBlockUtils::connectBlocks(SplitBlock, Succ); 572 573 // Finally, move the recipes starting at SplitAt to new block. 574 for (VPRecipeBase &ToMove : 575 make_early_inc_range(make_range(SplitAt, this->end()))) 576 ToMove.moveBefore(*SplitBlock, SplitBlock->end()); 577 578 return SplitBlock; 579 } 580 581 /// Return the enclosing loop region for region \p P. The templated version is 582 /// used to support both const and non-const block arguments. 583 template <typename T> static T *getEnclosingLoopRegionForRegion(T *P) { 584 if (P && P->isReplicator()) { 585 P = P->getParent(); 586 assert(!cast<VPRegionBlock>(P)->isReplicator() && 587 "unexpected nested replicate regions"); 588 } 589 return P; 590 } 591 592 VPRegionBlock *VPBasicBlock::getEnclosingLoopRegion() { 593 return getEnclosingLoopRegionForRegion(getParent()); 594 } 595 596 const VPRegionBlock *VPBasicBlock::getEnclosingLoopRegion() const { 597 return getEnclosingLoopRegionForRegion(getParent()); 598 } 599 600 static bool hasConditionalTerminator(const VPBasicBlock *VPBB) { 601 if (VPBB->empty()) { 602 assert( 603 VPBB->getNumSuccessors() < 2 && 604 "block with multiple successors doesn't have a recipe as terminator"); 605 return false; 606 } 607 608 const VPRecipeBase *R = &VPBB->back(); 609 bool IsCondBranch = isa<VPBranchOnMaskRecipe>(R) || 610 match(R, m_BranchOnCond(m_VPValue())) || 611 match(R, m_BranchOnCount(m_VPValue(), m_VPValue())); 612 (void)IsCondBranch; 613 614 if (VPBB->getNumSuccessors() >= 2 || 615 (VPBB->isExiting() && !VPBB->getParent()->isReplicator())) { 616 assert(IsCondBranch && "block with multiple successors not terminated by " 617 "conditional branch recipe"); 618 619 return true; 620 } 621 622 assert( 623 !IsCondBranch && 624 "block with 0 or 1 successors terminated by conditional branch recipe"); 625 return false; 626 } 627 628 VPRecipeBase *VPBasicBlock::getTerminator() { 629 if (hasConditionalTerminator(this)) 630 return &back(); 631 return nullptr; 632 } 633 634 const VPRecipeBase *VPBasicBlock::getTerminator() const { 635 if (hasConditionalTerminator(this)) 636 return &back(); 637 return nullptr; 638 } 639 640 bool VPBasicBlock::isExiting() const { 641 return getParent() && getParent()->getExitingBasicBlock() == this; 642 } 643 644 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 645 void VPBlockBase::printSuccessors(raw_ostream &O, const Twine &Indent) const { 646 if (getSuccessors().empty()) { 647 O << Indent << "No successors\n"; 648 } else { 649 O << Indent << "Successor(s): "; 650 ListSeparator LS; 651 for (auto *Succ : getSuccessors()) 652 O << LS << Succ->getName(); 653 O << '\n'; 654 } 655 } 656 657 void VPBasicBlock::print(raw_ostream &O, const Twine &Indent, 658 VPSlotTracker &SlotTracker) const { 659 O << Indent << getName() << ":\n"; 660 661 auto RecipeIndent = Indent + " "; 662 for (const VPRecipeBase &Recipe : *this) { 663 Recipe.print(O, RecipeIndent, SlotTracker); 664 O << '\n'; 665 } 666 667 printSuccessors(O, Indent); 668 } 669 #endif 670 671 static std::pair<VPBlockBase *, VPBlockBase *> cloneFrom(VPBlockBase *Entry); 672 673 // Clone the CFG for all nodes reachable from \p Entry, this includes cloning 674 // the blocks and their recipes. Operands of cloned recipes will NOT be updated. 675 // Remapping of operands must be done separately. Returns a pair with the new 676 // entry and exiting blocks of the cloned region. If \p Entry isn't part of a 677 // region, return nullptr for the exiting block. 678 static std::pair<VPBlockBase *, VPBlockBase *> cloneFrom(VPBlockBase *Entry) { 679 DenseMap<VPBlockBase *, VPBlockBase *> Old2NewVPBlocks; 680 VPBlockBase *Exiting = nullptr; 681 bool InRegion = Entry->getParent(); 682 // First, clone blocks reachable from Entry. 683 for (VPBlockBase *BB : vp_depth_first_shallow(Entry)) { 684 VPBlockBase *NewBB = BB->clone(); 685 Old2NewVPBlocks[BB] = NewBB; 686 if (InRegion && BB->getNumSuccessors() == 0) { 687 assert(!Exiting && "Multiple exiting blocks?"); 688 Exiting = BB; 689 } 690 } 691 assert((!InRegion || Exiting) && "regions must have a single exiting block"); 692 693 // Second, update the predecessors & successors of the cloned blocks. 694 for (VPBlockBase *BB : vp_depth_first_shallow(Entry)) { 695 VPBlockBase *NewBB = Old2NewVPBlocks[BB]; 696 SmallVector<VPBlockBase *> NewPreds; 697 for (VPBlockBase *Pred : BB->getPredecessors()) { 698 NewPreds.push_back(Old2NewVPBlocks[Pred]); 699 } 700 NewBB->setPredecessors(NewPreds); 701 SmallVector<VPBlockBase *> NewSuccs; 702 for (VPBlockBase *Succ : BB->successors()) { 703 NewSuccs.push_back(Old2NewVPBlocks[Succ]); 704 } 705 NewBB->setSuccessors(NewSuccs); 706 } 707 708 #if !defined(NDEBUG) 709 // Verify that the order of predecessors and successors matches in the cloned 710 // version. 711 for (const auto &[OldBB, NewBB] : 712 zip(vp_depth_first_shallow(Entry), 713 vp_depth_first_shallow(Old2NewVPBlocks[Entry]))) { 714 for (const auto &[OldPred, NewPred] : 715 zip(OldBB->getPredecessors(), NewBB->getPredecessors())) 716 assert(NewPred == Old2NewVPBlocks[OldPred] && "Different predecessors"); 717 718 for (const auto &[OldSucc, NewSucc] : 719 zip(OldBB->successors(), NewBB->successors())) 720 assert(NewSucc == Old2NewVPBlocks[OldSucc] && "Different successors"); 721 } 722 #endif 723 724 return std::make_pair(Old2NewVPBlocks[Entry], 725 Exiting ? Old2NewVPBlocks[Exiting] : nullptr); 726 } 727 728 VPRegionBlock *VPRegionBlock::clone() { 729 const auto &[NewEntry, NewExiting] = cloneFrom(getEntry()); 730 auto *NewRegion = 731 new VPRegionBlock(NewEntry, NewExiting, getName(), isReplicator()); 732 for (VPBlockBase *Block : vp_depth_first_shallow(NewEntry)) 733 Block->setParent(NewRegion); 734 return NewRegion; 735 } 736 737 void VPRegionBlock::dropAllReferences(VPValue *NewValue) { 738 for (VPBlockBase *Block : vp_depth_first_shallow(Entry)) 739 // Drop all references in VPBasicBlocks and replace all uses with 740 // DummyValue. 741 Block->dropAllReferences(NewValue); 742 } 743 744 void VPRegionBlock::execute(VPTransformState *State) { 745 ReversePostOrderTraversal<VPBlockShallowTraversalWrapper<VPBlockBase *>> 746 RPOT(Entry); 747 748 if (!isReplicator()) { 749 // Create and register the new vector loop. 750 Loop *PrevLoop = State->CurrentVectorLoop; 751 State->CurrentVectorLoop = State->LI->AllocateLoop(); 752 BasicBlock *VectorPH = State->CFG.VPBB2IRBB[getPreheaderVPBB()]; 753 Loop *ParentLoop = State->LI->getLoopFor(VectorPH); 754 755 // Insert the new loop into the loop nest and register the new basic blocks 756 // before calling any utilities such as SCEV that require valid LoopInfo. 757 if (ParentLoop) 758 ParentLoop->addChildLoop(State->CurrentVectorLoop); 759 else 760 State->LI->addTopLevelLoop(State->CurrentVectorLoop); 761 762 // Visit the VPBlocks connected to "this", starting from it. 763 for (VPBlockBase *Block : RPOT) { 764 LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n'); 765 Block->execute(State); 766 } 767 768 State->CurrentVectorLoop = PrevLoop; 769 return; 770 } 771 772 assert(!State->Lane && "Replicating a Region with non-null instance."); 773 774 // Enter replicating mode. 775 assert(!State->VF.isScalable() && "VF is assumed to be non scalable."); 776 State->Lane = VPLane(0); 777 for (unsigned Lane = 0, VF = State->VF.getKnownMinValue(); Lane < VF; 778 ++Lane) { 779 State->Lane = VPLane(Lane, VPLane::Kind::First); 780 // Visit the VPBlocks connected to \p this, starting from it. 781 for (VPBlockBase *Block : RPOT) { 782 LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n'); 783 Block->execute(State); 784 } 785 } 786 787 // Exit replicating mode. 788 State->Lane.reset(); 789 } 790 791 InstructionCost VPBasicBlock::cost(ElementCount VF, VPCostContext &Ctx) { 792 InstructionCost Cost = 0; 793 for (VPRecipeBase &R : Recipes) 794 Cost += R.cost(VF, Ctx); 795 return Cost; 796 } 797 798 InstructionCost VPRegionBlock::cost(ElementCount VF, VPCostContext &Ctx) { 799 if (!isReplicator()) { 800 InstructionCost Cost = 0; 801 for (VPBlockBase *Block : vp_depth_first_shallow(getEntry())) 802 Cost += Block->cost(VF, Ctx); 803 InstructionCost BackedgeCost = 804 ForceTargetInstructionCost.getNumOccurrences() 805 ? InstructionCost(ForceTargetInstructionCost.getNumOccurrences()) 806 : Ctx.TTI.getCFInstrCost(Instruction::Br, TTI::TCK_RecipThroughput); 807 LLVM_DEBUG(dbgs() << "Cost of " << BackedgeCost << " for VF " << VF 808 << ": vector loop backedge\n"); 809 Cost += BackedgeCost; 810 return Cost; 811 } 812 813 // Compute the cost of a replicate region. Replicating isn't supported for 814 // scalable vectors, return an invalid cost for them. 815 // TODO: Discard scalable VPlans with replicate recipes earlier after 816 // construction. 817 if (VF.isScalable()) 818 return InstructionCost::getInvalid(); 819 820 // First compute the cost of the conditionally executed recipes, followed by 821 // account for the branching cost, except if the mask is a header mask or 822 // uniform condition. 823 using namespace llvm::VPlanPatternMatch; 824 VPBasicBlock *Then = cast<VPBasicBlock>(getEntry()->getSuccessors()[0]); 825 InstructionCost ThenCost = Then->cost(VF, Ctx); 826 827 // For the scalar case, we may not always execute the original predicated 828 // block, Thus, scale the block's cost by the probability of executing it. 829 if (VF.isScalar()) 830 return ThenCost / getReciprocalPredBlockProb(); 831 832 return ThenCost; 833 } 834 835 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 836 void VPRegionBlock::print(raw_ostream &O, const Twine &Indent, 837 VPSlotTracker &SlotTracker) const { 838 O << Indent << (isReplicator() ? "<xVFxUF> " : "<x1> ") << getName() << ": {"; 839 auto NewIndent = Indent + " "; 840 for (auto *BlockBase : vp_depth_first_shallow(Entry)) { 841 O << '\n'; 842 BlockBase->print(O, NewIndent, SlotTracker); 843 } 844 O << Indent << "}\n"; 845 846 printSuccessors(O, Indent); 847 } 848 #endif 849 850 VPlan::~VPlan() { 851 if (Entry) { 852 VPValue DummyValue; 853 for (VPBlockBase *Block : vp_depth_first_shallow(Entry)) 854 Block->dropAllReferences(&DummyValue); 855 856 VPBlockBase::deleteCFG(Entry); 857 858 Preheader->dropAllReferences(&DummyValue); 859 delete Preheader; 860 } 861 for (VPValue *VPV : VPLiveInsToFree) 862 delete VPV; 863 if (BackedgeTakenCount) 864 delete BackedgeTakenCount; 865 } 866 867 VPIRBasicBlock *VPIRBasicBlock::fromBasicBlock(BasicBlock *IRBB) { 868 auto *VPIRBB = new VPIRBasicBlock(IRBB); 869 for (Instruction &I : 870 make_range(IRBB->begin(), IRBB->getTerminator()->getIterator())) 871 VPIRBB->appendRecipe(new VPIRInstruction(I)); 872 return VPIRBB; 873 } 874 875 VPlanPtr VPlan::createInitialVPlan(Type *InductionTy, 876 PredicatedScalarEvolution &PSE, 877 bool RequiresScalarEpilogueCheck, 878 bool TailFolded, Loop *TheLoop) { 879 VPIRBasicBlock *Entry = 880 VPIRBasicBlock::fromBasicBlock(TheLoop->getLoopPreheader()); 881 VPBasicBlock *VecPreheader = new VPBasicBlock("vector.ph"); 882 VPIRBasicBlock *ScalarHeader = 883 VPIRBasicBlock::fromBasicBlock(TheLoop->getHeader()); 884 auto Plan = std::make_unique<VPlan>(Entry, VecPreheader, ScalarHeader); 885 886 // Create SCEV and VPValue for the trip count. 887 888 // Currently only loops with countable exits are vectorized, but calling 889 // getSymbolicMaxBackedgeTakenCount allows enablement work for loops with 890 // uncountable exits whilst also ensuring the symbolic maximum and known 891 // back-edge taken count remain identical for loops with countable exits. 892 const SCEV *BackedgeTakenCountSCEV = PSE.getSymbolicMaxBackedgeTakenCount(); 893 assert((!isa<SCEVCouldNotCompute>(BackedgeTakenCountSCEV) && 894 BackedgeTakenCountSCEV == PSE.getBackedgeTakenCount()) && 895 "Invalid loop count"); 896 ScalarEvolution &SE = *PSE.getSE(); 897 const SCEV *TripCount = SE.getTripCountFromExitCount(BackedgeTakenCountSCEV, 898 InductionTy, TheLoop); 899 Plan->TripCount = 900 vputils::getOrCreateVPValueForSCEVExpr(*Plan, TripCount, SE); 901 902 // Create VPRegionBlock, with empty header and latch blocks, to be filled 903 // during processing later. 904 VPBasicBlock *HeaderVPBB = new VPBasicBlock("vector.body"); 905 VPBasicBlock *LatchVPBB = new VPBasicBlock("vector.latch"); 906 VPBlockUtils::insertBlockAfter(LatchVPBB, HeaderVPBB); 907 auto *TopRegion = new VPRegionBlock(HeaderVPBB, LatchVPBB, "vector loop", 908 false /*isReplicator*/); 909 910 VPBlockUtils::insertBlockAfter(TopRegion, VecPreheader); 911 VPBasicBlock *MiddleVPBB = new VPBasicBlock("middle.block"); 912 VPBlockUtils::insertBlockAfter(MiddleVPBB, TopRegion); 913 914 VPBasicBlock *ScalarPH = new VPBasicBlock("scalar.ph"); 915 VPBlockUtils::connectBlocks(ScalarPH, ScalarHeader); 916 if (!RequiresScalarEpilogueCheck) { 917 VPBlockUtils::connectBlocks(MiddleVPBB, ScalarPH); 918 return Plan; 919 } 920 921 // If needed, add a check in the middle block to see if we have completed 922 // all of the iterations in the first vector loop. Three cases: 923 // 1) If (N - N%VF) == N, then we *don't* need to run the remainder. 924 // Thus if tail is to be folded, we know we don't need to run the 925 // remainder and we can set the condition to true. 926 // 2) If we require a scalar epilogue, there is no conditional branch as 927 // we unconditionally branch to the scalar preheader. Do nothing. 928 // 3) Otherwise, construct a runtime check. 929 BasicBlock *IRExitBlock = TheLoop->getUniqueExitBlock(); 930 auto *VPExitBlock = VPIRBasicBlock::fromBasicBlock(IRExitBlock); 931 // The connection order corresponds to the operands of the conditional branch. 932 VPBlockUtils::insertBlockAfter(VPExitBlock, MiddleVPBB); 933 VPBlockUtils::connectBlocks(MiddleVPBB, ScalarPH); 934 935 auto *ScalarLatchTerm = TheLoop->getLoopLatch()->getTerminator(); 936 // Here we use the same DebugLoc as the scalar loop latch terminator instead 937 // of the corresponding compare because they may have ended up with 938 // different line numbers and we want to avoid awkward line stepping while 939 // debugging. Eg. if the compare has got a line number inside the loop. 940 VPBuilder Builder(MiddleVPBB); 941 VPValue *Cmp = 942 TailFolded 943 ? Plan->getOrAddLiveIn(ConstantInt::getTrue( 944 IntegerType::getInt1Ty(TripCount->getType()->getContext()))) 945 : Builder.createICmp(CmpInst::ICMP_EQ, Plan->getTripCount(), 946 &Plan->getVectorTripCount(), 947 ScalarLatchTerm->getDebugLoc(), "cmp.n"); 948 Builder.createNaryOp(VPInstruction::BranchOnCond, {Cmp}, 949 ScalarLatchTerm->getDebugLoc()); 950 return Plan; 951 } 952 953 void VPlan::prepareToExecute(Value *TripCountV, Value *VectorTripCountV, 954 Value *CanonicalIVStartValue, 955 VPTransformState &State) { 956 Type *TCTy = TripCountV->getType(); 957 // Check if the backedge taken count is needed, and if so build it. 958 if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) { 959 IRBuilder<> Builder(State.CFG.PrevBB->getTerminator()); 960 auto *TCMO = Builder.CreateSub(TripCountV, ConstantInt::get(TCTy, 1), 961 "trip.count.minus.1"); 962 BackedgeTakenCount->setUnderlyingValue(TCMO); 963 } 964 965 VectorTripCount.setUnderlyingValue(VectorTripCountV); 966 967 IRBuilder<> Builder(State.CFG.PrevBB->getTerminator()); 968 // FIXME: Model VF * UF computation completely in VPlan. 969 assert(VFxUF.getNumUsers() && "VFxUF expected to always have users"); 970 unsigned UF = getUF(); 971 if (VF.getNumUsers()) { 972 Value *RuntimeVF = getRuntimeVF(Builder, TCTy, State.VF); 973 VF.setUnderlyingValue(RuntimeVF); 974 VFxUF.setUnderlyingValue( 975 UF > 1 ? Builder.CreateMul(RuntimeVF, ConstantInt::get(TCTy, UF)) 976 : RuntimeVF); 977 } else { 978 VFxUF.setUnderlyingValue(createStepForVF(Builder, TCTy, State.VF, UF)); 979 } 980 981 // When vectorizing the epilogue loop, the canonical induction start value 982 // needs to be changed from zero to the value after the main vector loop. 983 // FIXME: Improve modeling for canonical IV start values in the epilogue loop. 984 if (CanonicalIVStartValue) { 985 VPValue *VPV = getOrAddLiveIn(CanonicalIVStartValue); 986 auto *IV = getCanonicalIV(); 987 assert(all_of(IV->users(), 988 [](const VPUser *U) { 989 return isa<VPScalarIVStepsRecipe>(U) || 990 isa<VPScalarCastRecipe>(U) || 991 isa<VPDerivedIVRecipe>(U) || 992 cast<VPInstruction>(U)->getOpcode() == 993 Instruction::Add; 994 }) && 995 "the canonical IV should only be used by its increment or " 996 "ScalarIVSteps when resetting the start value"); 997 IV->setOperand(0, VPV); 998 } 999 } 1000 1001 /// Replace \p VPBB with a VPIRBasicBlock wrapping \p IRBB. All recipes from \p 1002 /// VPBB are moved to the end of the newly created VPIRBasicBlock. VPBB must 1003 /// have a single predecessor, which is rewired to the new VPIRBasicBlock. All 1004 /// successors of VPBB, if any, are rewired to the new VPIRBasicBlock. 1005 static void replaceVPBBWithIRVPBB(VPBasicBlock *VPBB, BasicBlock *IRBB) { 1006 VPIRBasicBlock *IRVPBB = VPIRBasicBlock::fromBasicBlock(IRBB); 1007 for (auto &R : make_early_inc_range(*VPBB)) { 1008 assert(!R.isPhi() && "Tried to move phi recipe to end of block"); 1009 R.moveBefore(*IRVPBB, IRVPBB->end()); 1010 } 1011 1012 VPBlockUtils::reassociateBlocks(VPBB, IRVPBB); 1013 1014 delete VPBB; 1015 } 1016 1017 /// Generate the code inside the preheader and body of the vectorized loop. 1018 /// Assumes a single pre-header basic-block was created for this. Introduce 1019 /// additional basic-blocks as needed, and fill them all. 1020 void VPlan::execute(VPTransformState *State) { 1021 // Initialize CFG state. 1022 State->CFG.PrevVPBB = nullptr; 1023 State->CFG.ExitBB = State->CFG.PrevBB->getSingleSuccessor(); 1024 BasicBlock *VectorPreHeader = State->CFG.PrevBB; 1025 State->Builder.SetInsertPoint(VectorPreHeader->getTerminator()); 1026 1027 // Disconnect VectorPreHeader from ExitBB in both the CFG and DT. 1028 cast<BranchInst>(VectorPreHeader->getTerminator())->setSuccessor(0, nullptr); 1029 State->CFG.DTU.applyUpdates( 1030 {{DominatorTree::Delete, VectorPreHeader, State->CFG.ExitBB}}); 1031 1032 // Replace regular VPBB's for the middle and scalar preheader blocks with 1033 // VPIRBasicBlocks wrapping their IR blocks. The IR blocks are created during 1034 // skeleton creation, so we can only create the VPIRBasicBlocks now during 1035 // VPlan execution rather than earlier during VPlan construction. 1036 BasicBlock *MiddleBB = State->CFG.ExitBB; 1037 VPBasicBlock *MiddleVPBB = 1038 cast<VPBasicBlock>(getVectorLoopRegion()->getSingleSuccessor()); 1039 BasicBlock *ScalarPh = MiddleBB->getSingleSuccessor(); 1040 replaceVPBBWithIRVPBB(getScalarPreheader(), ScalarPh); 1041 replaceVPBBWithIRVPBB(MiddleVPBB, MiddleBB); 1042 1043 // Disconnect the middle block from its single successor (the scalar loop 1044 // header) in both the CFG and DT. The branch will be recreated during VPlan 1045 // execution. 1046 auto *BrInst = new UnreachableInst(MiddleBB->getContext()); 1047 BrInst->insertBefore(MiddleBB->getTerminator()); 1048 MiddleBB->getTerminator()->eraseFromParent(); 1049 State->CFG.DTU.applyUpdates({{DominatorTree::Delete, MiddleBB, ScalarPh}}); 1050 // Disconnect scalar preheader and scalar header, as the dominator tree edge 1051 // will be updated as part of VPlan execution. This allows keeping the DTU 1052 // logic generic during VPlan execution. 1053 State->CFG.DTU.applyUpdates( 1054 {{DominatorTree::Delete, ScalarPh, ScalarPh->getSingleSuccessor()}}); 1055 1056 // Generate code in the loop pre-header and body. 1057 for (VPBlockBase *Block : vp_depth_first_shallow(Entry)) 1058 Block->execute(State); 1059 1060 VPBasicBlock *LatchVPBB = getVectorLoopRegion()->getExitingBasicBlock(); 1061 BasicBlock *VectorLatchBB = State->CFG.VPBB2IRBB[LatchVPBB]; 1062 1063 // Fix the latch value of canonical, reduction and first-order recurrences 1064 // phis in the vector loop. 1065 VPBasicBlock *Header = getVectorLoopRegion()->getEntryBasicBlock(); 1066 for (VPRecipeBase &R : Header->phis()) { 1067 // Skip phi-like recipes that generate their backedege values themselves. 1068 if (isa<VPWidenPHIRecipe>(&R)) 1069 continue; 1070 1071 if (isa<VPWidenPointerInductionRecipe>(&R) || 1072 isa<VPWidenIntOrFpInductionRecipe>(&R)) { 1073 PHINode *Phi = nullptr; 1074 if (isa<VPWidenIntOrFpInductionRecipe>(&R)) { 1075 Phi = cast<PHINode>(State->get(R.getVPSingleValue())); 1076 } else { 1077 auto *WidenPhi = cast<VPWidenPointerInductionRecipe>(&R); 1078 assert(!WidenPhi->onlyScalarsGenerated(State->VF.isScalable()) && 1079 "recipe generating only scalars should have been replaced"); 1080 auto *GEP = cast<GetElementPtrInst>(State->get(WidenPhi)); 1081 Phi = cast<PHINode>(GEP->getPointerOperand()); 1082 } 1083 1084 Phi->setIncomingBlock(1, VectorLatchBB); 1085 1086 // Move the last step to the end of the latch block. This ensures 1087 // consistent placement of all induction updates. 1088 Instruction *Inc = cast<Instruction>(Phi->getIncomingValue(1)); 1089 Inc->moveBefore(VectorLatchBB->getTerminator()->getPrevNode()); 1090 1091 // Use the steps for the last part as backedge value for the induction. 1092 if (auto *IV = dyn_cast<VPWidenIntOrFpInductionRecipe>(&R)) 1093 Inc->setOperand(0, State->get(IV->getLastUnrolledPartOperand())); 1094 continue; 1095 } 1096 1097 auto *PhiR = cast<VPHeaderPHIRecipe>(&R); 1098 bool NeedsScalar = 1099 isa<VPCanonicalIVPHIRecipe, VPEVLBasedIVPHIRecipe>(PhiR) || 1100 (isa<VPReductionPHIRecipe>(PhiR) && 1101 cast<VPReductionPHIRecipe>(PhiR)->isInLoop()); 1102 Value *Phi = State->get(PhiR, NeedsScalar); 1103 Value *Val = State->get(PhiR->getBackedgeValue(), NeedsScalar); 1104 cast<PHINode>(Phi)->addIncoming(Val, VectorLatchBB); 1105 } 1106 1107 State->CFG.DTU.flush(); 1108 assert(State->CFG.DTU.getDomTree().verify( 1109 DominatorTree::VerificationLevel::Fast) && 1110 "DT not preserved correctly"); 1111 } 1112 1113 InstructionCost VPlan::cost(ElementCount VF, VPCostContext &Ctx) { 1114 // For now only return the cost of the vector loop region, ignoring any other 1115 // blocks, like the preheader or middle blocks. 1116 return getVectorLoopRegion()->cost(VF, Ctx); 1117 } 1118 1119 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1120 void VPlan::printLiveIns(raw_ostream &O) const { 1121 VPSlotTracker SlotTracker(this); 1122 1123 if (VF.getNumUsers() > 0) { 1124 O << "\nLive-in "; 1125 VF.printAsOperand(O, SlotTracker); 1126 O << " = VF"; 1127 } 1128 1129 if (VFxUF.getNumUsers() > 0) { 1130 O << "\nLive-in "; 1131 VFxUF.printAsOperand(O, SlotTracker); 1132 O << " = VF * UF"; 1133 } 1134 1135 if (VectorTripCount.getNumUsers() > 0) { 1136 O << "\nLive-in "; 1137 VectorTripCount.printAsOperand(O, SlotTracker); 1138 O << " = vector-trip-count"; 1139 } 1140 1141 if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) { 1142 O << "\nLive-in "; 1143 BackedgeTakenCount->printAsOperand(O, SlotTracker); 1144 O << " = backedge-taken count"; 1145 } 1146 1147 O << "\n"; 1148 if (TripCount->isLiveIn()) 1149 O << "Live-in "; 1150 TripCount->printAsOperand(O, SlotTracker); 1151 O << " = original trip-count"; 1152 O << "\n"; 1153 } 1154 1155 LLVM_DUMP_METHOD 1156 void VPlan::print(raw_ostream &O) const { 1157 VPSlotTracker SlotTracker(this); 1158 1159 O << "VPlan '" << getName() << "' {"; 1160 1161 printLiveIns(O); 1162 1163 if (!getPreheader()->empty()) { 1164 O << "\n"; 1165 getPreheader()->print(O, "", SlotTracker); 1166 } 1167 1168 for (const VPBlockBase *Block : vp_depth_first_shallow(getEntry())) { 1169 O << '\n'; 1170 Block->print(O, "", SlotTracker); 1171 } 1172 1173 O << "}\n"; 1174 } 1175 1176 std::string VPlan::getName() const { 1177 std::string Out; 1178 raw_string_ostream RSO(Out); 1179 RSO << Name << " for "; 1180 if (!VFs.empty()) { 1181 RSO << "VF={" << VFs[0]; 1182 for (ElementCount VF : drop_begin(VFs)) 1183 RSO << "," << VF; 1184 RSO << "},"; 1185 } 1186 1187 if (UFs.empty()) { 1188 RSO << "UF>=1"; 1189 } else { 1190 RSO << "UF={" << UFs[0]; 1191 for (unsigned UF : drop_begin(UFs)) 1192 RSO << "," << UF; 1193 RSO << "}"; 1194 } 1195 1196 return Out; 1197 } 1198 1199 LLVM_DUMP_METHOD 1200 void VPlan::printDOT(raw_ostream &O) const { 1201 VPlanPrinter Printer(O, *this); 1202 Printer.dump(); 1203 } 1204 1205 LLVM_DUMP_METHOD 1206 void VPlan::dump() const { print(dbgs()); } 1207 #endif 1208 1209 static void remapOperands(VPBlockBase *Entry, VPBlockBase *NewEntry, 1210 DenseMap<VPValue *, VPValue *> &Old2NewVPValues) { 1211 // Update the operands of all cloned recipes starting at NewEntry. This 1212 // traverses all reachable blocks. This is done in two steps, to handle cycles 1213 // in PHI recipes. 1214 ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<VPBlockBase *>> 1215 OldDeepRPOT(Entry); 1216 ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<VPBlockBase *>> 1217 NewDeepRPOT(NewEntry); 1218 // First, collect all mappings from old to new VPValues defined by cloned 1219 // recipes. 1220 for (const auto &[OldBB, NewBB] : 1221 zip(VPBlockUtils::blocksOnly<VPBasicBlock>(OldDeepRPOT), 1222 VPBlockUtils::blocksOnly<VPBasicBlock>(NewDeepRPOT))) { 1223 assert(OldBB->getRecipeList().size() == NewBB->getRecipeList().size() && 1224 "blocks must have the same number of recipes"); 1225 for (const auto &[OldR, NewR] : zip(*OldBB, *NewBB)) { 1226 assert(OldR.getNumOperands() == NewR.getNumOperands() && 1227 "recipes must have the same number of operands"); 1228 assert(OldR.getNumDefinedValues() == NewR.getNumDefinedValues() && 1229 "recipes must define the same number of operands"); 1230 for (const auto &[OldV, NewV] : 1231 zip(OldR.definedValues(), NewR.definedValues())) 1232 Old2NewVPValues[OldV] = NewV; 1233 } 1234 } 1235 1236 // Update all operands to use cloned VPValues. 1237 for (VPBasicBlock *NewBB : 1238 VPBlockUtils::blocksOnly<VPBasicBlock>(NewDeepRPOT)) { 1239 for (VPRecipeBase &NewR : *NewBB) 1240 for (unsigned I = 0, E = NewR.getNumOperands(); I != E; ++I) { 1241 VPValue *NewOp = Old2NewVPValues.lookup(NewR.getOperand(I)); 1242 NewR.setOperand(I, NewOp); 1243 } 1244 } 1245 } 1246 1247 VPlan *VPlan::duplicate() { 1248 // Clone blocks. 1249 VPBasicBlock *NewPreheader = Preheader->clone(); 1250 const auto &[NewEntry, __] = cloneFrom(Entry); 1251 1252 BasicBlock *ScalarHeaderIRBB = getScalarHeader()->getIRBasicBlock(); 1253 VPIRBasicBlock *NewScalarHeader = cast<VPIRBasicBlock>(*find_if( 1254 vp_depth_first_shallow(NewEntry), [ScalarHeaderIRBB](VPBlockBase *VPB) { 1255 auto *VPIRBB = dyn_cast<VPIRBasicBlock>(VPB); 1256 return VPIRBB && VPIRBB->getIRBasicBlock() == ScalarHeaderIRBB; 1257 })); 1258 // Create VPlan, clone live-ins and remap operands in the cloned blocks. 1259 auto *NewPlan = 1260 new VPlan(NewPreheader, cast<VPBasicBlock>(NewEntry), NewScalarHeader); 1261 DenseMap<VPValue *, VPValue *> Old2NewVPValues; 1262 for (VPValue *OldLiveIn : VPLiveInsToFree) { 1263 Old2NewVPValues[OldLiveIn] = 1264 NewPlan->getOrAddLiveIn(OldLiveIn->getLiveInIRValue()); 1265 } 1266 Old2NewVPValues[&VectorTripCount] = &NewPlan->VectorTripCount; 1267 Old2NewVPValues[&VF] = &NewPlan->VF; 1268 Old2NewVPValues[&VFxUF] = &NewPlan->VFxUF; 1269 if (BackedgeTakenCount) { 1270 NewPlan->BackedgeTakenCount = new VPValue(); 1271 Old2NewVPValues[BackedgeTakenCount] = NewPlan->BackedgeTakenCount; 1272 } 1273 assert(TripCount && "trip count must be set"); 1274 if (TripCount->isLiveIn()) 1275 Old2NewVPValues[TripCount] = 1276 NewPlan->getOrAddLiveIn(TripCount->getLiveInIRValue()); 1277 // else NewTripCount will be created and inserted into Old2NewVPValues when 1278 // TripCount is cloned. In any case NewPlan->TripCount is updated below. 1279 1280 remapOperands(Preheader, NewPreheader, Old2NewVPValues); 1281 remapOperands(Entry, NewEntry, Old2NewVPValues); 1282 1283 // Initialize remaining fields of cloned VPlan. 1284 NewPlan->VFs = VFs; 1285 NewPlan->UFs = UFs; 1286 // TODO: Adjust names. 1287 NewPlan->Name = Name; 1288 assert(Old2NewVPValues.contains(TripCount) && 1289 "TripCount must have been added to Old2NewVPValues"); 1290 NewPlan->TripCount = Old2NewVPValues[TripCount]; 1291 return NewPlan; 1292 } 1293 1294 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1295 1296 Twine VPlanPrinter::getUID(const VPBlockBase *Block) { 1297 return (isa<VPRegionBlock>(Block) ? "cluster_N" : "N") + 1298 Twine(getOrCreateBID(Block)); 1299 } 1300 1301 Twine VPlanPrinter::getOrCreateName(const VPBlockBase *Block) { 1302 const std::string &Name = Block->getName(); 1303 if (!Name.empty()) 1304 return Name; 1305 return "VPB" + Twine(getOrCreateBID(Block)); 1306 } 1307 1308 void VPlanPrinter::dump() { 1309 Depth = 1; 1310 bumpIndent(0); 1311 OS << "digraph VPlan {\n"; 1312 OS << "graph [labelloc=t, fontsize=30; label=\"Vectorization Plan"; 1313 if (!Plan.getName().empty()) 1314 OS << "\\n" << DOT::EscapeString(Plan.getName()); 1315 1316 { 1317 // Print live-ins. 1318 std::string Str; 1319 raw_string_ostream SS(Str); 1320 Plan.printLiveIns(SS); 1321 SmallVector<StringRef, 0> Lines; 1322 StringRef(Str).rtrim('\n').split(Lines, "\n"); 1323 for (auto Line : Lines) 1324 OS << DOT::EscapeString(Line.str()) << "\\n"; 1325 } 1326 1327 OS << "\"]\n"; 1328 OS << "node [shape=rect, fontname=Courier, fontsize=30]\n"; 1329 OS << "edge [fontname=Courier, fontsize=30]\n"; 1330 OS << "compound=true\n"; 1331 1332 dumpBlock(Plan.getPreheader()); 1333 1334 for (const VPBlockBase *Block : vp_depth_first_shallow(Plan.getEntry())) 1335 dumpBlock(Block); 1336 1337 OS << "}\n"; 1338 } 1339 1340 void VPlanPrinter::dumpBlock(const VPBlockBase *Block) { 1341 if (const VPBasicBlock *BasicBlock = dyn_cast<VPBasicBlock>(Block)) 1342 dumpBasicBlock(BasicBlock); 1343 else if (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 1344 dumpRegion(Region); 1345 else 1346 llvm_unreachable("Unsupported kind of VPBlock."); 1347 } 1348 1349 void VPlanPrinter::drawEdge(const VPBlockBase *From, const VPBlockBase *To, 1350 bool Hidden, const Twine &Label) { 1351 // Due to "dot" we print an edge between two regions as an edge between the 1352 // exiting basic block and the entry basic of the respective regions. 1353 const VPBlockBase *Tail = From->getExitingBasicBlock(); 1354 const VPBlockBase *Head = To->getEntryBasicBlock(); 1355 OS << Indent << getUID(Tail) << " -> " << getUID(Head); 1356 OS << " [ label=\"" << Label << '\"'; 1357 if (Tail != From) 1358 OS << " ltail=" << getUID(From); 1359 if (Head != To) 1360 OS << " lhead=" << getUID(To); 1361 if (Hidden) 1362 OS << "; splines=none"; 1363 OS << "]\n"; 1364 } 1365 1366 void VPlanPrinter::dumpEdges(const VPBlockBase *Block) { 1367 auto &Successors = Block->getSuccessors(); 1368 if (Successors.size() == 1) 1369 drawEdge(Block, Successors.front(), false, ""); 1370 else if (Successors.size() == 2) { 1371 drawEdge(Block, Successors.front(), false, "T"); 1372 drawEdge(Block, Successors.back(), false, "F"); 1373 } else { 1374 unsigned SuccessorNumber = 0; 1375 for (auto *Successor : Successors) 1376 drawEdge(Block, Successor, false, Twine(SuccessorNumber++)); 1377 } 1378 } 1379 1380 void VPlanPrinter::dumpBasicBlock(const VPBasicBlock *BasicBlock) { 1381 // Implement dot-formatted dump by performing plain-text dump into the 1382 // temporary storage followed by some post-processing. 1383 OS << Indent << getUID(BasicBlock) << " [label =\n"; 1384 bumpIndent(1); 1385 std::string Str; 1386 raw_string_ostream SS(Str); 1387 // Use no indentation as we need to wrap the lines into quotes ourselves. 1388 BasicBlock->print(SS, "", SlotTracker); 1389 1390 // We need to process each line of the output separately, so split 1391 // single-string plain-text dump. 1392 SmallVector<StringRef, 0> Lines; 1393 StringRef(Str).rtrim('\n').split(Lines, "\n"); 1394 1395 auto EmitLine = [&](StringRef Line, StringRef Suffix) { 1396 OS << Indent << '"' << DOT::EscapeString(Line.str()) << "\\l\"" << Suffix; 1397 }; 1398 1399 // Don't need the "+" after the last line. 1400 for (auto Line : make_range(Lines.begin(), Lines.end() - 1)) 1401 EmitLine(Line, " +\n"); 1402 EmitLine(Lines.back(), "\n"); 1403 1404 bumpIndent(-1); 1405 OS << Indent << "]\n"; 1406 1407 dumpEdges(BasicBlock); 1408 } 1409 1410 void VPlanPrinter::dumpRegion(const VPRegionBlock *Region) { 1411 OS << Indent << "subgraph " << getUID(Region) << " {\n"; 1412 bumpIndent(1); 1413 OS << Indent << "fontname=Courier\n" 1414 << Indent << "label=\"" 1415 << DOT::EscapeString(Region->isReplicator() ? "<xVFxUF> " : "<x1> ") 1416 << DOT::EscapeString(Region->getName()) << "\"\n"; 1417 // Dump the blocks of the region. 1418 assert(Region->getEntry() && "Region contains no inner blocks."); 1419 for (const VPBlockBase *Block : vp_depth_first_shallow(Region->getEntry())) 1420 dumpBlock(Block); 1421 bumpIndent(-1); 1422 OS << Indent << "}\n"; 1423 dumpEdges(Region); 1424 } 1425 1426 void VPlanIngredient::print(raw_ostream &O) const { 1427 if (auto *Inst = dyn_cast<Instruction>(V)) { 1428 if (!Inst->getType()->isVoidTy()) { 1429 Inst->printAsOperand(O, false); 1430 O << " = "; 1431 } 1432 O << Inst->getOpcodeName() << " "; 1433 unsigned E = Inst->getNumOperands(); 1434 if (E > 0) { 1435 Inst->getOperand(0)->printAsOperand(O, false); 1436 for (unsigned I = 1; I < E; ++I) 1437 Inst->getOperand(I)->printAsOperand(O << ", ", false); 1438 } 1439 } else // !Inst 1440 V->printAsOperand(O, false); 1441 } 1442 1443 #endif 1444 1445 bool VPValue::isDefinedOutsideLoopRegions() const { 1446 return !hasDefiningRecipe() || 1447 !getDefiningRecipe()->getParent()->getEnclosingLoopRegion(); 1448 } 1449 1450 void VPValue::replaceAllUsesWith(VPValue *New) { 1451 replaceUsesWithIf(New, [](VPUser &, unsigned) { return true; }); 1452 } 1453 1454 void VPValue::replaceUsesWithIf( 1455 VPValue *New, 1456 llvm::function_ref<bool(VPUser &U, unsigned Idx)> ShouldReplace) { 1457 // Note that this early exit is required for correctness; the implementation 1458 // below relies on the number of users for this VPValue to decrease, which 1459 // isn't the case if this == New. 1460 if (this == New) 1461 return; 1462 1463 for (unsigned J = 0; J < getNumUsers();) { 1464 VPUser *User = Users[J]; 1465 bool RemovedUser = false; 1466 for (unsigned I = 0, E = User->getNumOperands(); I < E; ++I) { 1467 if (User->getOperand(I) != this || !ShouldReplace(*User, I)) 1468 continue; 1469 1470 RemovedUser = true; 1471 User->setOperand(I, New); 1472 } 1473 // If a user got removed after updating the current user, the next user to 1474 // update will be moved to the current position, so we only need to 1475 // increment the index if the number of users did not change. 1476 if (!RemovedUser) 1477 J++; 1478 } 1479 } 1480 1481 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1482 void VPValue::printAsOperand(raw_ostream &OS, VPSlotTracker &Tracker) const { 1483 OS << Tracker.getOrCreateName(this); 1484 } 1485 1486 void VPUser::printOperands(raw_ostream &O, VPSlotTracker &SlotTracker) const { 1487 interleaveComma(operands(), O, [&O, &SlotTracker](VPValue *Op) { 1488 Op->printAsOperand(O, SlotTracker); 1489 }); 1490 } 1491 #endif 1492 1493 void VPInterleavedAccessInfo::visitRegion(VPRegionBlock *Region, 1494 Old2NewTy &Old2New, 1495 InterleavedAccessInfo &IAI) { 1496 ReversePostOrderTraversal<VPBlockShallowTraversalWrapper<VPBlockBase *>> 1497 RPOT(Region->getEntry()); 1498 for (VPBlockBase *Base : RPOT) { 1499 visitBlock(Base, Old2New, IAI); 1500 } 1501 } 1502 1503 void VPInterleavedAccessInfo::visitBlock(VPBlockBase *Block, Old2NewTy &Old2New, 1504 InterleavedAccessInfo &IAI) { 1505 if (VPBasicBlock *VPBB = dyn_cast<VPBasicBlock>(Block)) { 1506 for (VPRecipeBase &VPI : *VPBB) { 1507 if (isa<VPWidenPHIRecipe>(&VPI)) 1508 continue; 1509 assert(isa<VPInstruction>(&VPI) && "Can only handle VPInstructions"); 1510 auto *VPInst = cast<VPInstruction>(&VPI); 1511 1512 auto *Inst = dyn_cast_or_null<Instruction>(VPInst->getUnderlyingValue()); 1513 if (!Inst) 1514 continue; 1515 auto *IG = IAI.getInterleaveGroup(Inst); 1516 if (!IG) 1517 continue; 1518 1519 auto NewIGIter = Old2New.find(IG); 1520 if (NewIGIter == Old2New.end()) 1521 Old2New[IG] = new InterleaveGroup<VPInstruction>( 1522 IG->getFactor(), IG->isReverse(), IG->getAlign()); 1523 1524 if (Inst == IG->getInsertPos()) 1525 Old2New[IG]->setInsertPos(VPInst); 1526 1527 InterleaveGroupMap[VPInst] = Old2New[IG]; 1528 InterleaveGroupMap[VPInst]->insertMember( 1529 VPInst, IG->getIndex(Inst), 1530 Align(IG->isReverse() ? (-1) * int(IG->getFactor()) 1531 : IG->getFactor())); 1532 } 1533 } else if (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 1534 visitRegion(Region, Old2New, IAI); 1535 else 1536 llvm_unreachable("Unsupported kind of VPBlock."); 1537 } 1538 1539 VPInterleavedAccessInfo::VPInterleavedAccessInfo(VPlan &Plan, 1540 InterleavedAccessInfo &IAI) { 1541 Old2NewTy Old2New; 1542 visitRegion(Plan.getVectorLoopRegion(), Old2New, IAI); 1543 } 1544 1545 void VPSlotTracker::assignName(const VPValue *V) { 1546 assert(!VPValue2Name.contains(V) && "VPValue already has a name!"); 1547 auto *UV = V->getUnderlyingValue(); 1548 auto *VPI = dyn_cast_or_null<VPInstruction>(V->getDefiningRecipe()); 1549 if (!UV && !(VPI && !VPI->getName().empty())) { 1550 VPValue2Name[V] = (Twine("vp<%") + Twine(NextSlot) + ">").str(); 1551 NextSlot++; 1552 return; 1553 } 1554 1555 // Use the name of the underlying Value, wrapped in "ir<>", and versioned by 1556 // appending ".Number" to the name if there are multiple uses. 1557 std::string Name; 1558 if (UV) { 1559 raw_string_ostream S(Name); 1560 UV->printAsOperand(S, false); 1561 } else 1562 Name = VPI->getName(); 1563 1564 assert(!Name.empty() && "Name cannot be empty."); 1565 StringRef Prefix = UV ? "ir<" : "vp<%"; 1566 std::string BaseName = (Twine(Prefix) + Name + Twine(">")).str(); 1567 1568 // First assign the base name for V. 1569 const auto &[A, _] = VPValue2Name.insert({V, BaseName}); 1570 // Integer or FP constants with different types will result in he same string 1571 // due to stripping types. 1572 if (V->isLiveIn() && isa<ConstantInt, ConstantFP>(UV)) 1573 return; 1574 1575 // If it is already used by C > 0 other VPValues, increase the version counter 1576 // C and use it for V. 1577 const auto &[C, UseInserted] = BaseName2Version.insert({BaseName, 0}); 1578 if (!UseInserted) { 1579 C->second++; 1580 A->second = (BaseName + Twine(".") + Twine(C->second)).str(); 1581 } 1582 } 1583 1584 void VPSlotTracker::assignNames(const VPlan &Plan) { 1585 if (Plan.VF.getNumUsers() > 0) 1586 assignName(&Plan.VF); 1587 if (Plan.VFxUF.getNumUsers() > 0) 1588 assignName(&Plan.VFxUF); 1589 assignName(&Plan.VectorTripCount); 1590 if (Plan.BackedgeTakenCount) 1591 assignName(Plan.BackedgeTakenCount); 1592 for (VPValue *LI : Plan.VPLiveInsToFree) 1593 assignName(LI); 1594 assignNames(Plan.getPreheader()); 1595 1596 ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<const VPBlockBase *>> 1597 RPOT(VPBlockDeepTraversalWrapper<const VPBlockBase *>(Plan.getEntry())); 1598 for (const VPBasicBlock *VPBB : 1599 VPBlockUtils::blocksOnly<const VPBasicBlock>(RPOT)) 1600 assignNames(VPBB); 1601 } 1602 1603 void VPSlotTracker::assignNames(const VPBasicBlock *VPBB) { 1604 for (const VPRecipeBase &Recipe : *VPBB) 1605 for (VPValue *Def : Recipe.definedValues()) 1606 assignName(Def); 1607 } 1608 1609 std::string VPSlotTracker::getOrCreateName(const VPValue *V) const { 1610 std::string Name = VPValue2Name.lookup(V); 1611 if (!Name.empty()) 1612 return Name; 1613 1614 // If no name was assigned, no VPlan was provided when creating the slot 1615 // tracker or it is not reachable from the provided VPlan. This can happen, 1616 // e.g. when trying to print a recipe that has not been inserted into a VPlan 1617 // in a debugger. 1618 // TODO: Update VPSlotTracker constructor to assign names to recipes & 1619 // VPValues not associated with a VPlan, instead of constructing names ad-hoc 1620 // here. 1621 const VPRecipeBase *DefR = V->getDefiningRecipe(); 1622 (void)DefR; 1623 assert((!DefR || !DefR->getParent() || !DefR->getParent()->getPlan()) && 1624 "VPValue defined by a recipe in a VPlan?"); 1625 1626 // Use the underlying value's name, if there is one. 1627 if (auto *UV = V->getUnderlyingValue()) { 1628 std::string Name; 1629 raw_string_ostream S(Name); 1630 UV->printAsOperand(S, false); 1631 return (Twine("ir<") + Name + ">").str(); 1632 } 1633 1634 return "<badref>"; 1635 } 1636 1637 bool LoopVectorizationPlanner::getDecisionAndClampRange( 1638 const std::function<bool(ElementCount)> &Predicate, VFRange &Range) { 1639 assert(!Range.isEmpty() && "Trying to test an empty VF range."); 1640 bool PredicateAtRangeStart = Predicate(Range.Start); 1641 1642 for (ElementCount TmpVF : VFRange(Range.Start * 2, Range.End)) 1643 if (Predicate(TmpVF) != PredicateAtRangeStart) { 1644 Range.End = TmpVF; 1645 break; 1646 } 1647 1648 return PredicateAtRangeStart; 1649 } 1650 1651 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF, 1652 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range 1653 /// of VF's starting at a given VF and extending it as much as possible. Each 1654 /// vectorization decision can potentially shorten this sub-range during 1655 /// buildVPlan(). 1656 void LoopVectorizationPlanner::buildVPlans(ElementCount MinVF, 1657 ElementCount MaxVF) { 1658 auto MaxVFTimes2 = MaxVF * 2; 1659 for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFTimes2);) { 1660 VFRange SubRange = {VF, MaxVFTimes2}; 1661 auto Plan = buildVPlan(SubRange); 1662 VPlanTransforms::optimize(*Plan); 1663 VPlans.push_back(std::move(Plan)); 1664 VF = SubRange.End; 1665 } 1666 } 1667 1668 VPlan &LoopVectorizationPlanner::getPlanFor(ElementCount VF) const { 1669 assert(count_if(VPlans, 1670 [VF](const VPlanPtr &Plan) { return Plan->hasVF(VF); }) == 1671 1 && 1672 "Multiple VPlans for VF."); 1673 1674 for (const VPlanPtr &Plan : VPlans) { 1675 if (Plan->hasVF(VF)) 1676 return *Plan.get(); 1677 } 1678 llvm_unreachable("No plan found!"); 1679 } 1680 1681 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1682 void LoopVectorizationPlanner::printPlans(raw_ostream &O) { 1683 if (VPlans.empty()) { 1684 O << "LV: No VPlans built.\n"; 1685 return; 1686 } 1687 for (const auto &Plan : VPlans) 1688 if (PrintVPlansInDotFormat) 1689 Plan->printDOT(O); 1690 else 1691 Plan->print(O); 1692 } 1693 #endif 1694 1695 TargetTransformInfo::OperandValueInfo 1696 VPCostContext::getOperandInfo(VPValue *V) const { 1697 if (!V->isLiveIn()) 1698 return {}; 1699 1700 return TTI::getOperandInfo(V->getLiveInIRValue()); 1701 } 1702