1 //===- VPlan.cpp - Vectorizer Plan ----------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This is the LLVM vectorization plan. It represents a candidate for 11 /// vectorization, allowing to plan and optimize how to vectorize a given loop 12 /// before generating LLVM-IR. 13 /// The vectorizer uses vectorization plans to estimate the costs of potential 14 /// candidates and if profitable to execute the desired plan, generating vector 15 /// LLVM-IR code. 16 /// 17 //===----------------------------------------------------------------------===// 18 19 #include "VPlan.h" 20 #include "VPlanDominatorTree.h" 21 #include "llvm/ADT/DepthFirstIterator.h" 22 #include "llvm/ADT/PostOrderIterator.h" 23 #include "llvm/ADT/STLExtras.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/Twine.h" 26 #include "llvm/Analysis/IVDescriptors.h" 27 #include "llvm/Analysis/LoopInfo.h" 28 #include "llvm/IR/BasicBlock.h" 29 #include "llvm/IR/CFG.h" 30 #include "llvm/IR/InstrTypes.h" 31 #include "llvm/IR/Instruction.h" 32 #include "llvm/IR/Instructions.h" 33 #include "llvm/IR/Type.h" 34 #include "llvm/IR/Value.h" 35 #include "llvm/Support/Casting.h" 36 #include "llvm/Support/CommandLine.h" 37 #include "llvm/Support/Debug.h" 38 #include "llvm/Support/ErrorHandling.h" 39 #include "llvm/Support/GenericDomTreeConstruction.h" 40 #include "llvm/Support/GraphWriter.h" 41 #include "llvm/Support/raw_ostream.h" 42 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 43 #include <cassert> 44 #include <iterator> 45 #include <string> 46 #include <vector> 47 48 using namespace llvm; 49 extern cl::opt<bool> EnableVPlanNativePath; 50 51 #define DEBUG_TYPE "vplan" 52 53 raw_ostream &llvm::operator<<(raw_ostream &OS, const VPValue &V) { 54 const VPInstruction *Instr = dyn_cast<VPInstruction>(&V); 55 VPSlotTracker SlotTracker( 56 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr); 57 V.print(OS, SlotTracker); 58 return OS; 59 } 60 61 VPValue::VPValue(const unsigned char SC, Value *UV, VPDef *Def) 62 : SubclassID(SC), UnderlyingVal(UV), Def(Def) { 63 if (Def) 64 Def->addDefinedValue(this); 65 } 66 67 VPValue::~VPValue() { 68 assert(Users.empty() && "trying to delete a VPValue with remaining users"); 69 if (Def) 70 Def->removeDefinedValue(this); 71 } 72 73 void VPValue::print(raw_ostream &OS, VPSlotTracker &SlotTracker) const { 74 if (const VPRecipeBase *R = dyn_cast_or_null<VPRecipeBase>(Def)) 75 R->print(OS, "", SlotTracker); 76 else 77 printAsOperand(OS, SlotTracker); 78 } 79 80 void VPValue::dump() const { 81 const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this->Def); 82 VPSlotTracker SlotTracker( 83 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr); 84 print(dbgs(), SlotTracker); 85 dbgs() << "\n"; 86 } 87 88 void VPDef::dump() const { 89 const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this); 90 VPSlotTracker SlotTracker( 91 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr); 92 print(dbgs(), "", SlotTracker); 93 dbgs() << "\n"; 94 } 95 96 // Get the top-most entry block of \p Start. This is the entry block of the 97 // containing VPlan. This function is templated to support both const and non-const blocks 98 template <typename T> static T *getPlanEntry(T *Start) { 99 T *Next = Start; 100 T *Current = Start; 101 while ((Next = Next->getParent())) 102 Current = Next; 103 104 SmallSetVector<T *, 8> WorkList; 105 WorkList.insert(Current); 106 107 for (unsigned i = 0; i < WorkList.size(); i++) { 108 T *Current = WorkList[i]; 109 if (Current->getNumPredecessors() == 0) 110 return Current; 111 auto &Predecessors = Current->getPredecessors(); 112 WorkList.insert(Predecessors.begin(), Predecessors.end()); 113 } 114 115 llvm_unreachable("VPlan without any entry node without predecessors"); 116 } 117 118 VPlan *VPBlockBase::getPlan() { return getPlanEntry(this)->Plan; } 119 120 const VPlan *VPBlockBase::getPlan() const { return getPlanEntry(this)->Plan; } 121 122 /// \return the VPBasicBlock that is the entry of Block, possibly indirectly. 123 const VPBasicBlock *VPBlockBase::getEntryBasicBlock() const { 124 const VPBlockBase *Block = this; 125 while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 126 Block = Region->getEntry(); 127 return cast<VPBasicBlock>(Block); 128 } 129 130 VPBasicBlock *VPBlockBase::getEntryBasicBlock() { 131 VPBlockBase *Block = this; 132 while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 133 Block = Region->getEntry(); 134 return cast<VPBasicBlock>(Block); 135 } 136 137 void VPBlockBase::setPlan(VPlan *ParentPlan) { 138 assert(ParentPlan->getEntry() == this && 139 "Can only set plan on its entry block."); 140 Plan = ParentPlan; 141 } 142 143 /// \return the VPBasicBlock that is the exit of Block, possibly indirectly. 144 const VPBasicBlock *VPBlockBase::getExitBasicBlock() const { 145 const VPBlockBase *Block = this; 146 while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 147 Block = Region->getExit(); 148 return cast<VPBasicBlock>(Block); 149 } 150 151 VPBasicBlock *VPBlockBase::getExitBasicBlock() { 152 VPBlockBase *Block = this; 153 while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 154 Block = Region->getExit(); 155 return cast<VPBasicBlock>(Block); 156 } 157 158 VPBlockBase *VPBlockBase::getEnclosingBlockWithSuccessors() { 159 if (!Successors.empty() || !Parent) 160 return this; 161 assert(Parent->getExit() == this && 162 "Block w/o successors not the exit of its parent."); 163 return Parent->getEnclosingBlockWithSuccessors(); 164 } 165 166 VPBlockBase *VPBlockBase::getEnclosingBlockWithPredecessors() { 167 if (!Predecessors.empty() || !Parent) 168 return this; 169 assert(Parent->getEntry() == this && 170 "Block w/o predecessors not the entry of its parent."); 171 return Parent->getEnclosingBlockWithPredecessors(); 172 } 173 174 static VPValue *getSingleOperandOrNull(VPUser &U) { 175 if (U.getNumOperands() == 1) 176 return U.getOperand(0); 177 178 return nullptr; 179 } 180 181 static const VPValue *getSingleOperandOrNull(const VPUser &U) { 182 if (U.getNumOperands() == 1) 183 return U.getOperand(0); 184 185 return nullptr; 186 } 187 188 static void resetSingleOpUser(VPUser &U, VPValue *NewVal) { 189 assert(U.getNumOperands() <= 1 && "Didn't expect more than one operand!"); 190 if (!NewVal) { 191 if (U.getNumOperands() == 1) 192 U.removeLastOperand(); 193 return; 194 } 195 196 if (U.getNumOperands() == 1) 197 U.setOperand(0, NewVal); 198 else 199 U.addOperand(NewVal); 200 } 201 202 VPValue *VPBlockBase::getCondBit() { 203 return getSingleOperandOrNull(CondBitUser); 204 } 205 206 const VPValue *VPBlockBase::getCondBit() const { 207 return getSingleOperandOrNull(CondBitUser); 208 } 209 210 void VPBlockBase::setCondBit(VPValue *CV) { 211 resetSingleOpUser(CondBitUser, CV); 212 } 213 214 VPValue *VPBlockBase::getPredicate() { 215 return getSingleOperandOrNull(PredicateUser); 216 } 217 218 const VPValue *VPBlockBase::getPredicate() const { 219 return getSingleOperandOrNull(PredicateUser); 220 } 221 222 void VPBlockBase::setPredicate(VPValue *CV) { 223 resetSingleOpUser(PredicateUser, CV); 224 } 225 226 void VPBlockBase::deleteCFG(VPBlockBase *Entry) { 227 SmallVector<VPBlockBase *, 8> Blocks(depth_first(Entry)); 228 229 for (VPBlockBase *Block : Blocks) 230 delete Block; 231 } 232 233 VPBasicBlock::iterator VPBasicBlock::getFirstNonPhi() { 234 iterator It = begin(); 235 while (It != end() && (isa<VPWidenPHIRecipe>(&*It) || 236 isa<VPWidenIntOrFpInductionRecipe>(&*It) || 237 isa<VPPredInstPHIRecipe>(&*It) || 238 isa<VPWidenCanonicalIVRecipe>(&*It))) 239 It++; 240 return It; 241 } 242 243 Value *VPTransformState::get(VPValue *Def, const VPIteration &Instance) { 244 if (!Def->getDef()) 245 return Def->getLiveInIRValue(); 246 247 if (hasScalarValue(Def, Instance)) 248 return Data.PerPartScalars[Def][Instance.Part][Instance.Lane]; 249 250 assert(hasVectorValue(Def, Instance.Part)); 251 auto *VecPart = Data.PerPartOutput[Def][Instance.Part]; 252 if (!VecPart->getType()->isVectorTy()) { 253 assert(Instance.Lane == 0 && "cannot get lane > 0 for scalar"); 254 return VecPart; 255 } 256 // TODO: Cache created scalar values. 257 auto *Extract = 258 Builder.CreateExtractElement(VecPart, Builder.getInt32(Instance.Lane)); 259 // set(Def, Extract, Instance); 260 return Extract; 261 } 262 263 BasicBlock * 264 VPBasicBlock::createEmptyBasicBlock(VPTransformState::CFGState &CFG) { 265 // BB stands for IR BasicBlocks. VPBB stands for VPlan VPBasicBlocks. 266 // Pred stands for Predessor. Prev stands for Previous - last visited/created. 267 BasicBlock *PrevBB = CFG.PrevBB; 268 BasicBlock *NewBB = BasicBlock::Create(PrevBB->getContext(), getName(), 269 PrevBB->getParent(), CFG.LastBB); 270 LLVM_DEBUG(dbgs() << "LV: created " << NewBB->getName() << '\n'); 271 272 // Hook up the new basic block to its predecessors. 273 for (VPBlockBase *PredVPBlock : getHierarchicalPredecessors()) { 274 VPBasicBlock *PredVPBB = PredVPBlock->getExitBasicBlock(); 275 auto &PredVPSuccessors = PredVPBB->getSuccessors(); 276 BasicBlock *PredBB = CFG.VPBB2IRBB[PredVPBB]; 277 278 // In outer loop vectorization scenario, the predecessor BBlock may not yet 279 // be visited(backedge). Mark the VPBasicBlock for fixup at the end of 280 // vectorization. We do not encounter this case in inner loop vectorization 281 // as we start out by building a loop skeleton with the vector loop header 282 // and latch blocks. As a result, we never enter this function for the 283 // header block in the non VPlan-native path. 284 if (!PredBB) { 285 assert(EnableVPlanNativePath && 286 "Unexpected null predecessor in non VPlan-native path"); 287 CFG.VPBBsToFix.push_back(PredVPBB); 288 continue; 289 } 290 291 assert(PredBB && "Predecessor basic-block not found building successor."); 292 auto *PredBBTerminator = PredBB->getTerminator(); 293 LLVM_DEBUG(dbgs() << "LV: draw edge from" << PredBB->getName() << '\n'); 294 if (isa<UnreachableInst>(PredBBTerminator)) { 295 assert(PredVPSuccessors.size() == 1 && 296 "Predecessor ending w/o branch must have single successor."); 297 PredBBTerminator->eraseFromParent(); 298 BranchInst::Create(NewBB, PredBB); 299 } else { 300 assert(PredVPSuccessors.size() == 2 && 301 "Predecessor ending with branch must have two successors."); 302 unsigned idx = PredVPSuccessors.front() == this ? 0 : 1; 303 assert(!PredBBTerminator->getSuccessor(idx) && 304 "Trying to reset an existing successor block."); 305 PredBBTerminator->setSuccessor(idx, NewBB); 306 } 307 } 308 return NewBB; 309 } 310 311 void VPBasicBlock::execute(VPTransformState *State) { 312 bool Replica = State->Instance && !State->Instance->isFirstIteration(); 313 VPBasicBlock *PrevVPBB = State->CFG.PrevVPBB; 314 VPBlockBase *SingleHPred = nullptr; 315 BasicBlock *NewBB = State->CFG.PrevBB; // Reuse it if possible. 316 317 // 1. Create an IR basic block, or reuse the last one if possible. 318 // The last IR basic block is reused, as an optimization, in three cases: 319 // A. the first VPBB reuses the loop header BB - when PrevVPBB is null; 320 // B. when the current VPBB has a single (hierarchical) predecessor which 321 // is PrevVPBB and the latter has a single (hierarchical) successor; and 322 // C. when the current VPBB is an entry of a region replica - where PrevVPBB 323 // is the exit of this region from a previous instance, or the predecessor 324 // of this region. 325 if (PrevVPBB && /* A */ 326 !((SingleHPred = getSingleHierarchicalPredecessor()) && 327 SingleHPred->getExitBasicBlock() == PrevVPBB && 328 PrevVPBB->getSingleHierarchicalSuccessor()) && /* B */ 329 !(Replica && getPredecessors().empty())) { /* C */ 330 NewBB = createEmptyBasicBlock(State->CFG); 331 State->Builder.SetInsertPoint(NewBB); 332 // Temporarily terminate with unreachable until CFG is rewired. 333 UnreachableInst *Terminator = State->Builder.CreateUnreachable(); 334 State->Builder.SetInsertPoint(Terminator); 335 // Register NewBB in its loop. In innermost loops its the same for all BB's. 336 Loop *L = State->LI->getLoopFor(State->CFG.LastBB); 337 L->addBasicBlockToLoop(NewBB, *State->LI); 338 State->CFG.PrevBB = NewBB; 339 } 340 341 // 2. Fill the IR basic block with IR instructions. 342 LLVM_DEBUG(dbgs() << "LV: vectorizing VPBB:" << getName() 343 << " in BB:" << NewBB->getName() << '\n'); 344 345 State->CFG.VPBB2IRBB[this] = NewBB; 346 State->CFG.PrevVPBB = this; 347 348 for (VPRecipeBase &Recipe : Recipes) 349 Recipe.execute(*State); 350 351 VPValue *CBV; 352 if (EnableVPlanNativePath && (CBV = getCondBit())) { 353 assert(CBV->getUnderlyingValue() && 354 "Unexpected null underlying value for condition bit"); 355 356 // Condition bit value in a VPBasicBlock is used as the branch selector. In 357 // the VPlan-native path case, since all branches are uniform we generate a 358 // branch instruction using the condition value from vector lane 0 and dummy 359 // successors. The successors are fixed later when the successor blocks are 360 // visited. 361 Value *NewCond = State->get(CBV, {0, 0}); 362 363 // Replace the temporary unreachable terminator with the new conditional 364 // branch. 365 auto *CurrentTerminator = NewBB->getTerminator(); 366 assert(isa<UnreachableInst>(CurrentTerminator) && 367 "Expected to replace unreachable terminator with conditional " 368 "branch."); 369 auto *CondBr = BranchInst::Create(NewBB, nullptr, NewCond); 370 CondBr->setSuccessor(0, nullptr); 371 ReplaceInstWithInst(CurrentTerminator, CondBr); 372 } 373 374 LLVM_DEBUG(dbgs() << "LV: filled BB:" << *NewBB); 375 } 376 377 void VPBasicBlock::dropAllReferences(VPValue *NewValue) { 378 for (VPRecipeBase &R : Recipes) { 379 for (auto *Def : R.definedValues()) 380 Def->replaceAllUsesWith(NewValue); 381 382 for (unsigned I = 0, E = R.getNumOperands(); I != E; I++) 383 R.setOperand(I, NewValue); 384 } 385 } 386 387 void VPRegionBlock::dropAllReferences(VPValue *NewValue) { 388 for (VPBlockBase *Block : depth_first(Entry)) 389 // Drop all references in VPBasicBlocks and replace all uses with 390 // DummyValue. 391 Block->dropAllReferences(NewValue); 392 } 393 394 void VPRegionBlock::execute(VPTransformState *State) { 395 ReversePostOrderTraversal<VPBlockBase *> RPOT(Entry); 396 397 if (!isReplicator()) { 398 // Visit the VPBlocks connected to "this", starting from it. 399 for (VPBlockBase *Block : RPOT) { 400 if (EnableVPlanNativePath) { 401 // The inner loop vectorization path does not represent loop preheader 402 // and exit blocks as part of the VPlan. In the VPlan-native path, skip 403 // vectorizing loop preheader block. In future, we may replace this 404 // check with the check for loop preheader. 405 if (Block->getNumPredecessors() == 0) 406 continue; 407 408 // Skip vectorizing loop exit block. In future, we may replace this 409 // check with the check for loop exit. 410 if (Block->getNumSuccessors() == 0) 411 continue; 412 } 413 414 LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n'); 415 Block->execute(State); 416 } 417 return; 418 } 419 420 assert(!State->Instance && "Replicating a Region with non-null instance."); 421 422 // Enter replicating mode. 423 State->Instance = VPIteration(0, 0); 424 425 for (unsigned Part = 0, UF = State->UF; Part < UF; ++Part) { 426 State->Instance->Part = Part; 427 assert(!State->VF.isScalable() && "VF is assumed to be non scalable."); 428 for (unsigned Lane = 0, VF = State->VF.getKnownMinValue(); Lane < VF; 429 ++Lane) { 430 State->Instance->Lane = Lane; 431 // Visit the VPBlocks connected to \p this, starting from it. 432 for (VPBlockBase *Block : RPOT) { 433 LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n'); 434 Block->execute(State); 435 } 436 } 437 } 438 439 // Exit replicating mode. 440 State->Instance.reset(); 441 } 442 443 void VPRecipeBase::insertBefore(VPRecipeBase *InsertPos) { 444 assert(!Parent && "Recipe already in some VPBasicBlock"); 445 assert(InsertPos->getParent() && 446 "Insertion position not in any VPBasicBlock"); 447 Parent = InsertPos->getParent(); 448 Parent->getRecipeList().insert(InsertPos->getIterator(), this); 449 } 450 451 void VPRecipeBase::insertAfter(VPRecipeBase *InsertPos) { 452 assert(!Parent && "Recipe already in some VPBasicBlock"); 453 assert(InsertPos->getParent() && 454 "Insertion position not in any VPBasicBlock"); 455 Parent = InsertPos->getParent(); 456 Parent->getRecipeList().insertAfter(InsertPos->getIterator(), this); 457 } 458 459 void VPRecipeBase::removeFromParent() { 460 assert(getParent() && "Recipe not in any VPBasicBlock"); 461 getParent()->getRecipeList().remove(getIterator()); 462 Parent = nullptr; 463 } 464 465 iplist<VPRecipeBase>::iterator VPRecipeBase::eraseFromParent() { 466 assert(getParent() && "Recipe not in any VPBasicBlock"); 467 return getParent()->getRecipeList().erase(getIterator()); 468 } 469 470 void VPRecipeBase::moveAfter(VPRecipeBase *InsertPos) { 471 removeFromParent(); 472 insertAfter(InsertPos); 473 } 474 475 void VPRecipeBase::moveBefore(VPBasicBlock &BB, 476 iplist<VPRecipeBase>::iterator I) { 477 assert(I == BB.end() || I->getParent() == &BB); 478 removeFromParent(); 479 Parent = &BB; 480 BB.getRecipeList().insert(I, this); 481 } 482 483 void VPInstruction::generateInstruction(VPTransformState &State, 484 unsigned Part) { 485 IRBuilder<> &Builder = State.Builder; 486 487 if (Instruction::isBinaryOp(getOpcode())) { 488 Value *A = State.get(getOperand(0), Part); 489 Value *B = State.get(getOperand(1), Part); 490 Value *V = Builder.CreateBinOp((Instruction::BinaryOps)getOpcode(), A, B); 491 State.set(this, V, Part); 492 return; 493 } 494 495 switch (getOpcode()) { 496 case VPInstruction::Not: { 497 Value *A = State.get(getOperand(0), Part); 498 Value *V = Builder.CreateNot(A); 499 State.set(this, V, Part); 500 break; 501 } 502 case VPInstruction::ICmpULE: { 503 Value *IV = State.get(getOperand(0), Part); 504 Value *TC = State.get(getOperand(1), Part); 505 Value *V = Builder.CreateICmpULE(IV, TC); 506 State.set(this, V, Part); 507 break; 508 } 509 case Instruction::Select: { 510 Value *Cond = State.get(getOperand(0), Part); 511 Value *Op1 = State.get(getOperand(1), Part); 512 Value *Op2 = State.get(getOperand(2), Part); 513 Value *V = Builder.CreateSelect(Cond, Op1, Op2); 514 State.set(this, V, Part); 515 break; 516 } 517 case VPInstruction::ActiveLaneMask: { 518 // Get first lane of vector induction variable. 519 Value *VIVElem0 = State.get(getOperand(0), VPIteration(Part, 0)); 520 // Get the original loop tripcount. 521 Value *ScalarTC = State.TripCount; 522 523 auto *Int1Ty = Type::getInt1Ty(Builder.getContext()); 524 auto *PredTy = FixedVectorType::get(Int1Ty, State.VF.getKnownMinValue()); 525 Instruction *Call = Builder.CreateIntrinsic( 526 Intrinsic::get_active_lane_mask, {PredTy, ScalarTC->getType()}, 527 {VIVElem0, ScalarTC}, nullptr, "active.lane.mask"); 528 State.set(this, Call, Part); 529 break; 530 } 531 default: 532 llvm_unreachable("Unsupported opcode for instruction"); 533 } 534 } 535 536 void VPInstruction::execute(VPTransformState &State) { 537 assert(!State.Instance && "VPInstruction executing an Instance"); 538 for (unsigned Part = 0; Part < State.UF; ++Part) 539 generateInstruction(State, Part); 540 } 541 542 void VPInstruction::dump() const { 543 VPSlotTracker SlotTracker(getParent()->getPlan()); 544 print(dbgs(), "", SlotTracker); 545 } 546 547 void VPInstruction::print(raw_ostream &O, const Twine &Indent, 548 VPSlotTracker &SlotTracker) const { 549 O << "EMIT "; 550 551 if (hasResult()) { 552 printAsOperand(O, SlotTracker); 553 O << " = "; 554 } 555 556 switch (getOpcode()) { 557 case VPInstruction::Not: 558 O << "not"; 559 break; 560 case VPInstruction::ICmpULE: 561 O << "icmp ule"; 562 break; 563 case VPInstruction::SLPLoad: 564 O << "combined load"; 565 break; 566 case VPInstruction::SLPStore: 567 O << "combined store"; 568 break; 569 case VPInstruction::ActiveLaneMask: 570 O << "active lane mask"; 571 break; 572 573 default: 574 O << Instruction::getOpcodeName(getOpcode()); 575 } 576 577 for (const VPValue *Operand : operands()) { 578 O << " "; 579 Operand->printAsOperand(O, SlotTracker); 580 } 581 } 582 583 /// Generate the code inside the body of the vectorized loop. Assumes a single 584 /// LoopVectorBody basic-block was created for this. Introduce additional 585 /// basic-blocks as needed, and fill them all. 586 void VPlan::execute(VPTransformState *State) { 587 // -1. Check if the backedge taken count is needed, and if so build it. 588 if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) { 589 Value *TC = State->TripCount; 590 IRBuilder<> Builder(State->CFG.PrevBB->getTerminator()); 591 auto *TCMO = Builder.CreateSub(TC, ConstantInt::get(TC->getType(), 1), 592 "trip.count.minus.1"); 593 auto VF = State->VF; 594 Value *VTCMO = 595 VF.isScalar() ? TCMO : Builder.CreateVectorSplat(VF, TCMO, "broadcast"); 596 for (unsigned Part = 0, UF = State->UF; Part < UF; ++Part) 597 State->set(BackedgeTakenCount, VTCMO, Part); 598 } 599 600 // 0. Set the reverse mapping from VPValues to Values for code generation. 601 for (auto &Entry : Value2VPValue) 602 State->VPValue2Value[Entry.second] = Entry.first; 603 604 BasicBlock *VectorPreHeaderBB = State->CFG.PrevBB; 605 BasicBlock *VectorHeaderBB = VectorPreHeaderBB->getSingleSuccessor(); 606 assert(VectorHeaderBB && "Loop preheader does not have a single successor."); 607 608 // 1. Make room to generate basic-blocks inside loop body if needed. 609 BasicBlock *VectorLatchBB = VectorHeaderBB->splitBasicBlock( 610 VectorHeaderBB->getFirstInsertionPt(), "vector.body.latch"); 611 Loop *L = State->LI->getLoopFor(VectorHeaderBB); 612 L->addBasicBlockToLoop(VectorLatchBB, *State->LI); 613 // Remove the edge between Header and Latch to allow other connections. 614 // Temporarily terminate with unreachable until CFG is rewired. 615 // Note: this asserts the generated code's assumption that 616 // getFirstInsertionPt() can be dereferenced into an Instruction. 617 VectorHeaderBB->getTerminator()->eraseFromParent(); 618 State->Builder.SetInsertPoint(VectorHeaderBB); 619 UnreachableInst *Terminator = State->Builder.CreateUnreachable(); 620 State->Builder.SetInsertPoint(Terminator); 621 622 // 2. Generate code in loop body. 623 State->CFG.PrevVPBB = nullptr; 624 State->CFG.PrevBB = VectorHeaderBB; 625 State->CFG.LastBB = VectorLatchBB; 626 627 for (VPBlockBase *Block : depth_first(Entry)) 628 Block->execute(State); 629 630 // Setup branch terminator successors for VPBBs in VPBBsToFix based on 631 // VPBB's successors. 632 for (auto VPBB : State->CFG.VPBBsToFix) { 633 assert(EnableVPlanNativePath && 634 "Unexpected VPBBsToFix in non VPlan-native path"); 635 BasicBlock *BB = State->CFG.VPBB2IRBB[VPBB]; 636 assert(BB && "Unexpected null basic block for VPBB"); 637 638 unsigned Idx = 0; 639 auto *BBTerminator = BB->getTerminator(); 640 641 for (VPBlockBase *SuccVPBlock : VPBB->getHierarchicalSuccessors()) { 642 VPBasicBlock *SuccVPBB = SuccVPBlock->getEntryBasicBlock(); 643 BBTerminator->setSuccessor(Idx, State->CFG.VPBB2IRBB[SuccVPBB]); 644 ++Idx; 645 } 646 } 647 648 // 3. Merge the temporary latch created with the last basic-block filled. 649 BasicBlock *LastBB = State->CFG.PrevBB; 650 // Connect LastBB to VectorLatchBB to facilitate their merge. 651 assert((EnableVPlanNativePath || 652 isa<UnreachableInst>(LastBB->getTerminator())) && 653 "Expected InnerLoop VPlan CFG to terminate with unreachable"); 654 assert((!EnableVPlanNativePath || isa<BranchInst>(LastBB->getTerminator())) && 655 "Expected VPlan CFG to terminate with branch in NativePath"); 656 LastBB->getTerminator()->eraseFromParent(); 657 BranchInst::Create(VectorLatchBB, LastBB); 658 659 // Merge LastBB with Latch. 660 bool Merged = MergeBlockIntoPredecessor(VectorLatchBB, nullptr, State->LI); 661 (void)Merged; 662 assert(Merged && "Could not merge last basic block with latch."); 663 VectorLatchBB = LastBB; 664 665 // We do not attempt to preserve DT for outer loop vectorization currently. 666 if (!EnableVPlanNativePath) 667 updateDominatorTree(State->DT, VectorPreHeaderBB, VectorLatchBB, 668 L->getExitBlock()); 669 } 670 671 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 672 LLVM_DUMP_METHOD 673 void VPlan::dump() const { dbgs() << *this << '\n'; } 674 #endif 675 676 void VPlan::updateDominatorTree(DominatorTree *DT, BasicBlock *LoopPreHeaderBB, 677 BasicBlock *LoopLatchBB, 678 BasicBlock *LoopExitBB) { 679 BasicBlock *LoopHeaderBB = LoopPreHeaderBB->getSingleSuccessor(); 680 assert(LoopHeaderBB && "Loop preheader does not have a single successor."); 681 // The vector body may be more than a single basic-block by this point. 682 // Update the dominator tree information inside the vector body by propagating 683 // it from header to latch, expecting only triangular control-flow, if any. 684 BasicBlock *PostDomSucc = nullptr; 685 for (auto *BB = LoopHeaderBB; BB != LoopLatchBB; BB = PostDomSucc) { 686 // Get the list of successors of this block. 687 std::vector<BasicBlock *> Succs(succ_begin(BB), succ_end(BB)); 688 assert(Succs.size() <= 2 && 689 "Basic block in vector loop has more than 2 successors."); 690 PostDomSucc = Succs[0]; 691 if (Succs.size() == 1) { 692 assert(PostDomSucc->getSinglePredecessor() && 693 "PostDom successor has more than one predecessor."); 694 DT->addNewBlock(PostDomSucc, BB); 695 continue; 696 } 697 BasicBlock *InterimSucc = Succs[1]; 698 if (PostDomSucc->getSingleSuccessor() == InterimSucc) { 699 PostDomSucc = Succs[1]; 700 InterimSucc = Succs[0]; 701 } 702 assert(InterimSucc->getSingleSuccessor() == PostDomSucc && 703 "One successor of a basic block does not lead to the other."); 704 assert(InterimSucc->getSinglePredecessor() && 705 "Interim successor has more than one predecessor."); 706 assert(PostDomSucc->hasNPredecessors(2) && 707 "PostDom successor has more than two predecessors."); 708 DT->addNewBlock(InterimSucc, BB); 709 DT->addNewBlock(PostDomSucc, BB); 710 } 711 // Latch block is a new dominator for the loop exit. 712 DT->changeImmediateDominator(LoopExitBB, LoopLatchBB); 713 assert(DT->verify(DominatorTree::VerificationLevel::Fast)); 714 } 715 716 const Twine VPlanPrinter::getUID(const VPBlockBase *Block) { 717 return (isa<VPRegionBlock>(Block) ? "cluster_N" : "N") + 718 Twine(getOrCreateBID(Block)); 719 } 720 721 const Twine VPlanPrinter::getOrCreateName(const VPBlockBase *Block) { 722 const std::string &Name = Block->getName(); 723 if (!Name.empty()) 724 return Name; 725 return "VPB" + Twine(getOrCreateBID(Block)); 726 } 727 728 void VPlanPrinter::dump() { 729 Depth = 1; 730 bumpIndent(0); 731 OS << "digraph VPlan {\n"; 732 OS << "graph [labelloc=t, fontsize=30; label=\"Vectorization Plan"; 733 if (!Plan.getName().empty()) 734 OS << "\\n" << DOT::EscapeString(Plan.getName()); 735 if (Plan.BackedgeTakenCount) { 736 OS << ", where:\\n"; 737 Plan.BackedgeTakenCount->print(OS, SlotTracker); 738 OS << " := BackedgeTakenCount"; 739 } 740 OS << "\"]\n"; 741 OS << "node [shape=rect, fontname=Courier, fontsize=30]\n"; 742 OS << "edge [fontname=Courier, fontsize=30]\n"; 743 OS << "compound=true\n"; 744 745 for (const VPBlockBase *Block : depth_first(Plan.getEntry())) 746 dumpBlock(Block); 747 748 OS << "}\n"; 749 } 750 751 void VPlanPrinter::dumpBlock(const VPBlockBase *Block) { 752 if (const VPBasicBlock *BasicBlock = dyn_cast<VPBasicBlock>(Block)) 753 dumpBasicBlock(BasicBlock); 754 else if (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 755 dumpRegion(Region); 756 else 757 llvm_unreachable("Unsupported kind of VPBlock."); 758 } 759 760 void VPlanPrinter::drawEdge(const VPBlockBase *From, const VPBlockBase *To, 761 bool Hidden, const Twine &Label) { 762 // Due to "dot" we print an edge between two regions as an edge between the 763 // exit basic block and the entry basic of the respective regions. 764 const VPBlockBase *Tail = From->getExitBasicBlock(); 765 const VPBlockBase *Head = To->getEntryBasicBlock(); 766 OS << Indent << getUID(Tail) << " -> " << getUID(Head); 767 OS << " [ label=\"" << Label << '\"'; 768 if (Tail != From) 769 OS << " ltail=" << getUID(From); 770 if (Head != To) 771 OS << " lhead=" << getUID(To); 772 if (Hidden) 773 OS << "; splines=none"; 774 OS << "]\n"; 775 } 776 777 void VPlanPrinter::dumpEdges(const VPBlockBase *Block) { 778 auto &Successors = Block->getSuccessors(); 779 if (Successors.size() == 1) 780 drawEdge(Block, Successors.front(), false, ""); 781 else if (Successors.size() == 2) { 782 drawEdge(Block, Successors.front(), false, "T"); 783 drawEdge(Block, Successors.back(), false, "F"); 784 } else { 785 unsigned SuccessorNumber = 0; 786 for (auto *Successor : Successors) 787 drawEdge(Block, Successor, false, Twine(SuccessorNumber++)); 788 } 789 } 790 791 void VPlanPrinter::dumpBasicBlock(const VPBasicBlock *BasicBlock) { 792 OS << Indent << getUID(BasicBlock) << " [label =\n"; 793 bumpIndent(1); 794 OS << Indent << "\"" << DOT::EscapeString(BasicBlock->getName()) << ":\\n\""; 795 bumpIndent(1); 796 797 // Dump the block predicate. 798 const VPValue *Pred = BasicBlock->getPredicate(); 799 if (Pred) { 800 OS << " +\n" << Indent << " \"BlockPredicate: \""; 801 if (const VPInstruction *PredI = dyn_cast<VPInstruction>(Pred)) { 802 PredI->printAsOperand(OS, SlotTracker); 803 OS << " (" << DOT::EscapeString(PredI->getParent()->getName()) 804 << ")\\l\""; 805 } else 806 Pred->printAsOperand(OS, SlotTracker); 807 } 808 809 for (const VPRecipeBase &Recipe : *BasicBlock) { 810 OS << " +\n" << Indent << "\""; 811 Recipe.print(OS, Indent, SlotTracker); 812 OS << "\\l\""; 813 } 814 815 // Dump the condition bit. 816 const VPValue *CBV = BasicBlock->getCondBit(); 817 if (CBV) { 818 OS << " +\n" << Indent << " \"CondBit: "; 819 if (const VPInstruction *CBI = dyn_cast<VPInstruction>(CBV)) { 820 CBI->printAsOperand(OS, SlotTracker); 821 OS << " (" << DOT::EscapeString(CBI->getParent()->getName()) << ")\\l\""; 822 } else { 823 CBV->printAsOperand(OS, SlotTracker); 824 OS << "\""; 825 } 826 } 827 828 bumpIndent(-2); 829 OS << "\n" << Indent << "]\n"; 830 dumpEdges(BasicBlock); 831 } 832 833 void VPlanPrinter::dumpRegion(const VPRegionBlock *Region) { 834 OS << Indent << "subgraph " << getUID(Region) << " {\n"; 835 bumpIndent(1); 836 OS << Indent << "fontname=Courier\n" 837 << Indent << "label=\"" 838 << DOT::EscapeString(Region->isReplicator() ? "<xVFxUF> " : "<x1> ") 839 << DOT::EscapeString(Region->getName()) << "\"\n"; 840 // Dump the blocks of the region. 841 assert(Region->getEntry() && "Region contains no inner blocks."); 842 for (const VPBlockBase *Block : depth_first(Region->getEntry())) 843 dumpBlock(Block); 844 bumpIndent(-1); 845 OS << Indent << "}\n"; 846 dumpEdges(Region); 847 } 848 849 void VPlanPrinter::printAsIngredient(raw_ostream &O, const Value *V) { 850 std::string IngredientString; 851 raw_string_ostream RSO(IngredientString); 852 if (auto *Inst = dyn_cast<Instruction>(V)) { 853 if (!Inst->getType()->isVoidTy()) { 854 Inst->printAsOperand(RSO, false); 855 RSO << " = "; 856 } 857 RSO << Inst->getOpcodeName() << " "; 858 unsigned E = Inst->getNumOperands(); 859 if (E > 0) { 860 Inst->getOperand(0)->printAsOperand(RSO, false); 861 for (unsigned I = 1; I < E; ++I) 862 Inst->getOperand(I)->printAsOperand(RSO << ", ", false); 863 } 864 } else // !Inst 865 V->printAsOperand(RSO, false); 866 RSO.flush(); 867 O << DOT::EscapeString(IngredientString); 868 } 869 870 void VPWidenCallRecipe::print(raw_ostream &O, const Twine &Indent, 871 VPSlotTracker &SlotTracker) const { 872 O << "WIDEN-CALL "; 873 874 auto *CI = cast<CallInst>(getUnderlyingInstr()); 875 if (CI->getType()->isVoidTy()) 876 O << "void "; 877 else { 878 printAsOperand(O, SlotTracker); 879 O << " = "; 880 } 881 882 O << "call @" << CI->getCalledFunction()->getName() << "("; 883 printOperands(O, SlotTracker); 884 O << ")"; 885 } 886 887 void VPWidenSelectRecipe::print(raw_ostream &O, const Twine &Indent, 888 VPSlotTracker &SlotTracker) const { 889 O << "WIDEN-SELECT "; 890 printAsOperand(O, SlotTracker); 891 O << " = select "; 892 getOperand(0)->printAsOperand(O, SlotTracker); 893 O << ", "; 894 getOperand(1)->printAsOperand(O, SlotTracker); 895 O << ", "; 896 getOperand(2)->printAsOperand(O, SlotTracker); 897 O << (InvariantCond ? " (condition is loop invariant)" : ""); 898 } 899 900 void VPWidenRecipe::print(raw_ostream &O, const Twine &Indent, 901 VPSlotTracker &SlotTracker) const { 902 O << "WIDEN "; 903 printAsOperand(O, SlotTracker); 904 O << " = " << getUnderlyingInstr()->getOpcodeName() << " "; 905 printOperands(O, SlotTracker); 906 } 907 908 void VPWidenIntOrFpInductionRecipe::print(raw_ostream &O, const Twine &Indent, 909 VPSlotTracker &SlotTracker) const { 910 O << "WIDEN-INDUCTION"; 911 if (getTruncInst()) { 912 O << "\\l\""; 913 O << " +\n" << Indent << "\" " << VPlanIngredient(IV) << "\\l\""; 914 O << " +\n" << Indent << "\" "; 915 getVPValue(0)->printAsOperand(O, SlotTracker); 916 } else 917 O << " " << VPlanIngredient(IV); 918 } 919 920 void VPWidenGEPRecipe::print(raw_ostream &O, const Twine &Indent, 921 VPSlotTracker &SlotTracker) const { 922 O << "WIDEN-GEP "; 923 O << (IsPtrLoopInvariant ? "Inv" : "Var"); 924 size_t IndicesNumber = IsIndexLoopInvariant.size(); 925 for (size_t I = 0; I < IndicesNumber; ++I) 926 O << "[" << (IsIndexLoopInvariant[I] ? "Inv" : "Var") << "]"; 927 928 O << " "; 929 printAsOperand(O, SlotTracker); 930 O << " = getelementptr "; 931 printOperands(O, SlotTracker); 932 } 933 934 void VPWidenPHIRecipe::print(raw_ostream &O, const Twine &Indent, 935 VPSlotTracker &SlotTracker) const { 936 O << "WIDEN-PHI " << VPlanIngredient(getUnderlyingValue()); 937 } 938 939 void VPBlendRecipe::print(raw_ostream &O, const Twine &Indent, 940 VPSlotTracker &SlotTracker) const { 941 O << "BLEND "; 942 Phi->printAsOperand(O, false); 943 O << " ="; 944 if (getNumIncomingValues() == 1) { 945 // Not a User of any mask: not really blending, this is a 946 // single-predecessor phi. 947 O << " "; 948 getIncomingValue(0)->printAsOperand(O, SlotTracker); 949 } else { 950 for (unsigned I = 0, E = getNumIncomingValues(); I < E; ++I) { 951 O << " "; 952 getIncomingValue(I)->printAsOperand(O, SlotTracker); 953 O << "/"; 954 getMask(I)->printAsOperand(O, SlotTracker); 955 } 956 } 957 } 958 959 void VPReductionRecipe::print(raw_ostream &O, const Twine &Indent, 960 VPSlotTracker &SlotTracker) const { 961 O << "REDUCE "; 962 printAsOperand(O, SlotTracker); 963 O << " = "; 964 getChainOp()->printAsOperand(O, SlotTracker); 965 O << " + reduce." << Instruction::getOpcodeName(RdxDesc->getOpcode()) 966 << " ("; 967 getVecOp()->printAsOperand(O, SlotTracker); 968 if (getCondOp()) { 969 O << ", "; 970 getCondOp()->printAsOperand(O, SlotTracker); 971 } 972 O << ")"; 973 } 974 975 void VPReplicateRecipe::print(raw_ostream &O, const Twine &Indent, 976 VPSlotTracker &SlotTracker) const { 977 O << (IsUniform ? "CLONE " : "REPLICATE "); 978 979 if (!getUnderlyingInstr()->getType()->isVoidTy()) { 980 printAsOperand(O, SlotTracker); 981 O << " = "; 982 } 983 O << Instruction::getOpcodeName(getUnderlyingInstr()->getOpcode()) << " "; 984 printOperands(O, SlotTracker); 985 986 if (AlsoPack) 987 O << " (S->V)"; 988 } 989 990 void VPPredInstPHIRecipe::print(raw_ostream &O, const Twine &Indent, 991 VPSlotTracker &SlotTracker) const { 992 O << "PHI-PREDICATED-INSTRUCTION "; 993 printAsOperand(O, SlotTracker); 994 O << " = "; 995 printOperands(O, SlotTracker); 996 } 997 998 void VPWidenMemoryInstructionRecipe::print(raw_ostream &O, const Twine &Indent, 999 VPSlotTracker &SlotTracker) const { 1000 O << "WIDEN "; 1001 1002 if (!isStore()) { 1003 getVPValue()->printAsOperand(O, SlotTracker); 1004 O << " = "; 1005 } 1006 O << Instruction::getOpcodeName(Ingredient.getOpcode()) << " "; 1007 1008 printOperands(O, SlotTracker); 1009 } 1010 1011 void VPWidenCanonicalIVRecipe::execute(VPTransformState &State) { 1012 Value *CanonicalIV = State.CanonicalIV; 1013 Type *STy = CanonicalIV->getType(); 1014 IRBuilder<> Builder(State.CFG.PrevBB->getTerminator()); 1015 ElementCount VF = State.VF; 1016 assert(!VF.isScalable() && "the code following assumes non scalables ECs"); 1017 Value *VStart = VF.isScalar() 1018 ? CanonicalIV 1019 : Builder.CreateVectorSplat(VF.getKnownMinValue(), 1020 CanonicalIV, "broadcast"); 1021 for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part) { 1022 SmallVector<Constant *, 8> Indices; 1023 for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane) 1024 Indices.push_back( 1025 ConstantInt::get(STy, Part * VF.getKnownMinValue() + Lane)); 1026 // If VF == 1, there is only one iteration in the loop above, thus the 1027 // element pushed back into Indices is ConstantInt::get(STy, Part) 1028 Constant *VStep = 1029 VF.isScalar() ? Indices.back() : ConstantVector::get(Indices); 1030 // Add the consecutive indices to the vector value. 1031 Value *CanonicalVectorIV = Builder.CreateAdd(VStart, VStep, "vec.iv"); 1032 State.set(getVPValue(), CanonicalVectorIV, Part); 1033 } 1034 } 1035 1036 void VPWidenCanonicalIVRecipe::print(raw_ostream &O, const Twine &Indent, 1037 VPSlotTracker &SlotTracker) const { 1038 O << "EMIT "; 1039 getVPValue()->printAsOperand(O, SlotTracker); 1040 O << " = WIDEN-CANONICAL-INDUCTION"; 1041 } 1042 1043 template void DomTreeBuilder::Calculate<VPDominatorTree>(VPDominatorTree &DT); 1044 1045 void VPValue::replaceAllUsesWith(VPValue *New) { 1046 for (unsigned J = 0; J < getNumUsers();) { 1047 VPUser *User = Users[J]; 1048 unsigned NumUsers = getNumUsers(); 1049 for (unsigned I = 0, E = User->getNumOperands(); I < E; ++I) 1050 if (User->getOperand(I) == this) 1051 User->setOperand(I, New); 1052 // If a user got removed after updating the current user, the next user to 1053 // update will be moved to the current position, so we only need to 1054 // increment the index if the number of users did not change. 1055 if (NumUsers == getNumUsers()) 1056 J++; 1057 } 1058 } 1059 1060 void VPValue::printAsOperand(raw_ostream &OS, VPSlotTracker &Tracker) const { 1061 if (const Value *UV = getUnderlyingValue()) { 1062 OS << "ir<"; 1063 UV->printAsOperand(OS, false); 1064 OS << ">"; 1065 return; 1066 } 1067 1068 unsigned Slot = Tracker.getSlot(this); 1069 if (Slot == unsigned(-1)) 1070 OS << "<badref>"; 1071 else 1072 OS << "vp<%" << Tracker.getSlot(this) << ">"; 1073 } 1074 1075 void VPUser::printOperands(raw_ostream &O, VPSlotTracker &SlotTracker) const { 1076 interleaveComma(operands(), O, [&O, &SlotTracker](VPValue *Op) { 1077 Op->printAsOperand(O, SlotTracker); 1078 }); 1079 } 1080 1081 void VPInterleavedAccessInfo::visitRegion(VPRegionBlock *Region, 1082 Old2NewTy &Old2New, 1083 InterleavedAccessInfo &IAI) { 1084 ReversePostOrderTraversal<VPBlockBase *> RPOT(Region->getEntry()); 1085 for (VPBlockBase *Base : RPOT) { 1086 visitBlock(Base, Old2New, IAI); 1087 } 1088 } 1089 1090 void VPInterleavedAccessInfo::visitBlock(VPBlockBase *Block, Old2NewTy &Old2New, 1091 InterleavedAccessInfo &IAI) { 1092 if (VPBasicBlock *VPBB = dyn_cast<VPBasicBlock>(Block)) { 1093 for (VPRecipeBase &VPI : *VPBB) { 1094 if (isa<VPWidenPHIRecipe>(&VPI)) 1095 continue; 1096 assert(isa<VPInstruction>(&VPI) && "Can only handle VPInstructions"); 1097 auto *VPInst = cast<VPInstruction>(&VPI); 1098 auto *Inst = cast<Instruction>(VPInst->getUnderlyingValue()); 1099 auto *IG = IAI.getInterleaveGroup(Inst); 1100 if (!IG) 1101 continue; 1102 1103 auto NewIGIter = Old2New.find(IG); 1104 if (NewIGIter == Old2New.end()) 1105 Old2New[IG] = new InterleaveGroup<VPInstruction>( 1106 IG->getFactor(), IG->isReverse(), IG->getAlign()); 1107 1108 if (Inst == IG->getInsertPos()) 1109 Old2New[IG]->setInsertPos(VPInst); 1110 1111 InterleaveGroupMap[VPInst] = Old2New[IG]; 1112 InterleaveGroupMap[VPInst]->insertMember( 1113 VPInst, IG->getIndex(Inst), 1114 Align(IG->isReverse() ? (-1) * int(IG->getFactor()) 1115 : IG->getFactor())); 1116 } 1117 } else if (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 1118 visitRegion(Region, Old2New, IAI); 1119 else 1120 llvm_unreachable("Unsupported kind of VPBlock."); 1121 } 1122 1123 VPInterleavedAccessInfo::VPInterleavedAccessInfo(VPlan &Plan, 1124 InterleavedAccessInfo &IAI) { 1125 Old2NewTy Old2New; 1126 visitRegion(cast<VPRegionBlock>(Plan.getEntry()), Old2New, IAI); 1127 } 1128 1129 void VPSlotTracker::assignSlot(const VPValue *V) { 1130 assert(Slots.find(V) == Slots.end() && "VPValue already has a slot!"); 1131 Slots[V] = NextSlot++; 1132 } 1133 1134 void VPSlotTracker::assignSlots(const VPBlockBase *VPBB) { 1135 if (auto *Region = dyn_cast<VPRegionBlock>(VPBB)) 1136 assignSlots(Region); 1137 else 1138 assignSlots(cast<VPBasicBlock>(VPBB)); 1139 } 1140 1141 void VPSlotTracker::assignSlots(const VPRegionBlock *Region) { 1142 ReversePostOrderTraversal<const VPBlockBase *> RPOT(Region->getEntry()); 1143 for (const VPBlockBase *Block : RPOT) 1144 assignSlots(Block); 1145 } 1146 1147 void VPSlotTracker::assignSlots(const VPBasicBlock *VPBB) { 1148 for (const VPRecipeBase &Recipe : *VPBB) { 1149 for (VPValue *Def : Recipe.definedValues()) 1150 assignSlot(Def); 1151 } 1152 } 1153 1154 void VPSlotTracker::assignSlots(const VPlan &Plan) { 1155 1156 for (const VPValue *V : Plan.VPExternalDefs) 1157 assignSlot(V); 1158 1159 if (Plan.BackedgeTakenCount) 1160 assignSlot(Plan.BackedgeTakenCount); 1161 1162 ReversePostOrderTraversal<const VPBlockBase *> RPOT(Plan.getEntry()); 1163 for (const VPBlockBase *Block : RPOT) 1164 assignSlots(Block); 1165 } 1166