1 //===- VPlan.cpp - Vectorizer Plan ----------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This is the LLVM vectorization plan. It represents a candidate for 11 /// vectorization, allowing to plan and optimize how to vectorize a given loop 12 /// before generating LLVM-IR. 13 /// The vectorizer uses vectorization plans to estimate the costs of potential 14 /// candidates and if profitable to execute the desired plan, generating vector 15 /// LLVM-IR code. 16 /// 17 //===----------------------------------------------------------------------===// 18 19 #include "VPlan.h" 20 #include "VPlanDominatorTree.h" 21 #include "llvm/ADT/DepthFirstIterator.h" 22 #include "llvm/ADT/PostOrderIterator.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/Twine.h" 25 #include "llvm/Analysis/LoopInfo.h" 26 #include "llvm/IR/BasicBlock.h" 27 #include "llvm/IR/CFG.h" 28 #include "llvm/IR/InstrTypes.h" 29 #include "llvm/IR/Instruction.h" 30 #include "llvm/IR/Instructions.h" 31 #include "llvm/IR/Type.h" 32 #include "llvm/IR/Value.h" 33 #include "llvm/Support/Casting.h" 34 #include "llvm/Support/CommandLine.h" 35 #include "llvm/Support/Debug.h" 36 #include "llvm/Support/ErrorHandling.h" 37 #include "llvm/Support/GenericDomTreeConstruction.h" 38 #include "llvm/Support/GraphWriter.h" 39 #include "llvm/Support/raw_ostream.h" 40 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 41 #include <cassert> 42 #include <iterator> 43 #include <string> 44 #include <vector> 45 46 using namespace llvm; 47 extern cl::opt<bool> EnableVPlanNativePath; 48 49 #define DEBUG_TYPE "vplan" 50 51 raw_ostream &llvm::operator<<(raw_ostream &OS, const VPValue &V) { 52 const VPInstruction *Instr = dyn_cast<VPInstruction>(&V); 53 VPSlotTracker SlotTracker( 54 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr); 55 V.print(OS, SlotTracker); 56 return OS; 57 } 58 59 void VPValue::print(raw_ostream &OS, VPSlotTracker &SlotTracker) const { 60 if (const VPInstruction *Instr = dyn_cast<VPInstruction>(this)) 61 Instr->print(OS, SlotTracker); 62 else 63 printAsOperand(OS, SlotTracker); 64 } 65 66 void VPValue::dump() const { 67 const VPInstruction *Instr = dyn_cast<VPInstruction>(this); 68 VPSlotTracker SlotTracker( 69 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr); 70 print(dbgs(), SlotTracker); 71 dbgs() << "\n"; 72 } 73 74 void VPRecipeBase::dump() const { 75 VPSlotTracker SlotTracker(nullptr); 76 print(dbgs(), "", SlotTracker); 77 dbgs() << "\n"; 78 } 79 80 VPUser *VPRecipeBase::toVPUser() { 81 if (auto *U = dyn_cast<VPInstruction>(this)) 82 return U; 83 if (auto *U = dyn_cast<VPWidenRecipe>(this)) 84 return U; 85 if (auto *U = dyn_cast<VPWidenCallRecipe>(this)) 86 return U; 87 if (auto *U = dyn_cast<VPWidenSelectRecipe>(this)) 88 return U; 89 if (auto *U = dyn_cast<VPWidenGEPRecipe>(this)) 90 return U; 91 if (auto *U = dyn_cast<VPBlendRecipe>(this)) 92 return U; 93 if (auto *U = dyn_cast<VPInterleaveRecipe>(this)) 94 return U; 95 if (auto *U = dyn_cast<VPReplicateRecipe>(this)) 96 return U; 97 if (auto *U = dyn_cast<VPBranchOnMaskRecipe>(this)) 98 return U; 99 if (auto *U = dyn_cast<VPWidenMemoryInstructionRecipe>(this)) 100 return U; 101 return nullptr; 102 } 103 104 // Get the top-most entry block of \p Start. This is the entry block of the 105 // containing VPlan. This function is templated to support both const and non-const blocks 106 template <typename T> static T *getPlanEntry(T *Start) { 107 T *Next = Start; 108 T *Current = Start; 109 while ((Next = Next->getParent())) 110 Current = Next; 111 112 SmallSetVector<T *, 8> WorkList; 113 WorkList.insert(Current); 114 115 for (unsigned i = 0; i < WorkList.size(); i++) { 116 T *Current = WorkList[i]; 117 if (Current->getNumPredecessors() == 0) 118 return Current; 119 auto &Predecessors = Current->getPredecessors(); 120 WorkList.insert(Predecessors.begin(), Predecessors.end()); 121 } 122 123 llvm_unreachable("VPlan without any entry node without predecessors"); 124 } 125 126 VPlan *VPBlockBase::getPlan() { return getPlanEntry(this)->Plan; } 127 128 const VPlan *VPBlockBase::getPlan() const { return getPlanEntry(this)->Plan; } 129 130 /// \return the VPBasicBlock that is the entry of Block, possibly indirectly. 131 const VPBasicBlock *VPBlockBase::getEntryBasicBlock() const { 132 const VPBlockBase *Block = this; 133 while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 134 Block = Region->getEntry(); 135 return cast<VPBasicBlock>(Block); 136 } 137 138 VPBasicBlock *VPBlockBase::getEntryBasicBlock() { 139 VPBlockBase *Block = this; 140 while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 141 Block = Region->getEntry(); 142 return cast<VPBasicBlock>(Block); 143 } 144 145 void VPBlockBase::setPlan(VPlan *ParentPlan) { 146 assert(ParentPlan->getEntry() == this && 147 "Can only set plan on its entry block."); 148 Plan = ParentPlan; 149 } 150 151 /// \return the VPBasicBlock that is the exit of Block, possibly indirectly. 152 const VPBasicBlock *VPBlockBase::getExitBasicBlock() const { 153 const VPBlockBase *Block = this; 154 while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 155 Block = Region->getExit(); 156 return cast<VPBasicBlock>(Block); 157 } 158 159 VPBasicBlock *VPBlockBase::getExitBasicBlock() { 160 VPBlockBase *Block = this; 161 while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 162 Block = Region->getExit(); 163 return cast<VPBasicBlock>(Block); 164 } 165 166 VPBlockBase *VPBlockBase::getEnclosingBlockWithSuccessors() { 167 if (!Successors.empty() || !Parent) 168 return this; 169 assert(Parent->getExit() == this && 170 "Block w/o successors not the exit of its parent."); 171 return Parent->getEnclosingBlockWithSuccessors(); 172 } 173 174 VPBlockBase *VPBlockBase::getEnclosingBlockWithPredecessors() { 175 if (!Predecessors.empty() || !Parent) 176 return this; 177 assert(Parent->getEntry() == this && 178 "Block w/o predecessors not the entry of its parent."); 179 return Parent->getEnclosingBlockWithPredecessors(); 180 } 181 182 void VPBlockBase::deleteCFG(VPBlockBase *Entry) { 183 SmallVector<VPBlockBase *, 8> Blocks; 184 185 VPValue DummyValue; 186 for (VPBlockBase *Block : depth_first(Entry)) { 187 // Drop all references in VPBasicBlocks and replace all uses with 188 // DummyValue. 189 if (auto *VPBB = dyn_cast<VPBasicBlock>(Block)) 190 VPBB->dropAllReferences(&DummyValue); 191 Blocks.push_back(Block); 192 } 193 194 for (VPBlockBase *Block : Blocks) 195 delete Block; 196 } 197 198 BasicBlock * 199 VPBasicBlock::createEmptyBasicBlock(VPTransformState::CFGState &CFG) { 200 // BB stands for IR BasicBlocks. VPBB stands for VPlan VPBasicBlocks. 201 // Pred stands for Predessor. Prev stands for Previous - last visited/created. 202 BasicBlock *PrevBB = CFG.PrevBB; 203 BasicBlock *NewBB = BasicBlock::Create(PrevBB->getContext(), getName(), 204 PrevBB->getParent(), CFG.LastBB); 205 LLVM_DEBUG(dbgs() << "LV: created " << NewBB->getName() << '\n'); 206 207 // Hook up the new basic block to its predecessors. 208 for (VPBlockBase *PredVPBlock : getHierarchicalPredecessors()) { 209 VPBasicBlock *PredVPBB = PredVPBlock->getExitBasicBlock(); 210 auto &PredVPSuccessors = PredVPBB->getSuccessors(); 211 BasicBlock *PredBB = CFG.VPBB2IRBB[PredVPBB]; 212 213 // In outer loop vectorization scenario, the predecessor BBlock may not yet 214 // be visited(backedge). Mark the VPBasicBlock for fixup at the end of 215 // vectorization. We do not encounter this case in inner loop vectorization 216 // as we start out by building a loop skeleton with the vector loop header 217 // and latch blocks. As a result, we never enter this function for the 218 // header block in the non VPlan-native path. 219 if (!PredBB) { 220 assert(EnableVPlanNativePath && 221 "Unexpected null predecessor in non VPlan-native path"); 222 CFG.VPBBsToFix.push_back(PredVPBB); 223 continue; 224 } 225 226 assert(PredBB && "Predecessor basic-block not found building successor."); 227 auto *PredBBTerminator = PredBB->getTerminator(); 228 LLVM_DEBUG(dbgs() << "LV: draw edge from" << PredBB->getName() << '\n'); 229 if (isa<UnreachableInst>(PredBBTerminator)) { 230 assert(PredVPSuccessors.size() == 1 && 231 "Predecessor ending w/o branch must have single successor."); 232 PredBBTerminator->eraseFromParent(); 233 BranchInst::Create(NewBB, PredBB); 234 } else { 235 assert(PredVPSuccessors.size() == 2 && 236 "Predecessor ending with branch must have two successors."); 237 unsigned idx = PredVPSuccessors.front() == this ? 0 : 1; 238 assert(!PredBBTerminator->getSuccessor(idx) && 239 "Trying to reset an existing successor block."); 240 PredBBTerminator->setSuccessor(idx, NewBB); 241 } 242 } 243 return NewBB; 244 } 245 246 void VPBasicBlock::execute(VPTransformState *State) { 247 bool Replica = State->Instance && 248 !(State->Instance->Part == 0 && State->Instance->Lane == 0); 249 VPBasicBlock *PrevVPBB = State->CFG.PrevVPBB; 250 VPBlockBase *SingleHPred = nullptr; 251 BasicBlock *NewBB = State->CFG.PrevBB; // Reuse it if possible. 252 253 // 1. Create an IR basic block, or reuse the last one if possible. 254 // The last IR basic block is reused, as an optimization, in three cases: 255 // A. the first VPBB reuses the loop header BB - when PrevVPBB is null; 256 // B. when the current VPBB has a single (hierarchical) predecessor which 257 // is PrevVPBB and the latter has a single (hierarchical) successor; and 258 // C. when the current VPBB is an entry of a region replica - where PrevVPBB 259 // is the exit of this region from a previous instance, or the predecessor 260 // of this region. 261 if (PrevVPBB && /* A */ 262 !((SingleHPred = getSingleHierarchicalPredecessor()) && 263 SingleHPred->getExitBasicBlock() == PrevVPBB && 264 PrevVPBB->getSingleHierarchicalSuccessor()) && /* B */ 265 !(Replica && getPredecessors().empty())) { /* C */ 266 NewBB = createEmptyBasicBlock(State->CFG); 267 State->Builder.SetInsertPoint(NewBB); 268 // Temporarily terminate with unreachable until CFG is rewired. 269 UnreachableInst *Terminator = State->Builder.CreateUnreachable(); 270 State->Builder.SetInsertPoint(Terminator); 271 // Register NewBB in its loop. In innermost loops its the same for all BB's. 272 Loop *L = State->LI->getLoopFor(State->CFG.LastBB); 273 L->addBasicBlockToLoop(NewBB, *State->LI); 274 State->CFG.PrevBB = NewBB; 275 } 276 277 // 2. Fill the IR basic block with IR instructions. 278 LLVM_DEBUG(dbgs() << "LV: vectorizing VPBB:" << getName() 279 << " in BB:" << NewBB->getName() << '\n'); 280 281 State->CFG.VPBB2IRBB[this] = NewBB; 282 State->CFG.PrevVPBB = this; 283 284 for (VPRecipeBase &Recipe : Recipes) 285 Recipe.execute(*State); 286 287 VPValue *CBV; 288 if (EnableVPlanNativePath && (CBV = getCondBit())) { 289 Value *IRCBV = CBV->getUnderlyingValue(); 290 assert(IRCBV && "Unexpected null underlying value for condition bit"); 291 292 // Condition bit value in a VPBasicBlock is used as the branch selector. In 293 // the VPlan-native path case, since all branches are uniform we generate a 294 // branch instruction using the condition value from vector lane 0 and dummy 295 // successors. The successors are fixed later when the successor blocks are 296 // visited. 297 Value *NewCond = State->Callback.getOrCreateVectorValues(IRCBV, 0); 298 NewCond = State->Builder.CreateExtractElement(NewCond, 299 State->Builder.getInt32(0)); 300 301 // Replace the temporary unreachable terminator with the new conditional 302 // branch. 303 auto *CurrentTerminator = NewBB->getTerminator(); 304 assert(isa<UnreachableInst>(CurrentTerminator) && 305 "Expected to replace unreachable terminator with conditional " 306 "branch."); 307 auto *CondBr = BranchInst::Create(NewBB, nullptr, NewCond); 308 CondBr->setSuccessor(0, nullptr); 309 ReplaceInstWithInst(CurrentTerminator, CondBr); 310 } 311 312 LLVM_DEBUG(dbgs() << "LV: filled BB:" << *NewBB); 313 } 314 315 void VPBasicBlock::dropAllReferences(VPValue *NewValue) { 316 for (VPRecipeBase &R : Recipes) { 317 if (auto *VPV = R.toVPValue()) 318 VPV->replaceAllUsesWith(NewValue); 319 320 if (auto *User = R.toVPUser()) 321 for (unsigned I = 0, E = User->getNumOperands(); I != E; I++) 322 User->setOperand(I, NewValue); 323 } 324 } 325 326 void VPRegionBlock::execute(VPTransformState *State) { 327 ReversePostOrderTraversal<VPBlockBase *> RPOT(Entry); 328 329 if (!isReplicator()) { 330 // Visit the VPBlocks connected to "this", starting from it. 331 for (VPBlockBase *Block : RPOT) { 332 if (EnableVPlanNativePath) { 333 // The inner loop vectorization path does not represent loop preheader 334 // and exit blocks as part of the VPlan. In the VPlan-native path, skip 335 // vectorizing loop preheader block. In future, we may replace this 336 // check with the check for loop preheader. 337 if (Block->getNumPredecessors() == 0) 338 continue; 339 340 // Skip vectorizing loop exit block. In future, we may replace this 341 // check with the check for loop exit. 342 if (Block->getNumSuccessors() == 0) 343 continue; 344 } 345 346 LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n'); 347 Block->execute(State); 348 } 349 return; 350 } 351 352 assert(!State->Instance && "Replicating a Region with non-null instance."); 353 354 // Enter replicating mode. 355 State->Instance = {0, 0}; 356 357 for (unsigned Part = 0, UF = State->UF; Part < UF; ++Part) { 358 State->Instance->Part = Part; 359 assert(!State->VF.isScalable() && "VF is assumed to be non scalable."); 360 for (unsigned Lane = 0, VF = State->VF.getKnownMinValue(); Lane < VF; 361 ++Lane) { 362 State->Instance->Lane = Lane; 363 // Visit the VPBlocks connected to \p this, starting from it. 364 for (VPBlockBase *Block : RPOT) { 365 LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n'); 366 Block->execute(State); 367 } 368 } 369 } 370 371 // Exit replicating mode. 372 State->Instance.reset(); 373 } 374 375 void VPRecipeBase::insertBefore(VPRecipeBase *InsertPos) { 376 assert(!Parent && "Recipe already in some VPBasicBlock"); 377 assert(InsertPos->getParent() && 378 "Insertion position not in any VPBasicBlock"); 379 Parent = InsertPos->getParent(); 380 Parent->getRecipeList().insert(InsertPos->getIterator(), this); 381 } 382 383 void VPRecipeBase::insertAfter(VPRecipeBase *InsertPos) { 384 assert(!Parent && "Recipe already in some VPBasicBlock"); 385 assert(InsertPos->getParent() && 386 "Insertion position not in any VPBasicBlock"); 387 Parent = InsertPos->getParent(); 388 Parent->getRecipeList().insertAfter(InsertPos->getIterator(), this); 389 } 390 391 void VPRecipeBase::removeFromParent() { 392 assert(getParent() && "Recipe not in any VPBasicBlock"); 393 getParent()->getRecipeList().remove(getIterator()); 394 Parent = nullptr; 395 } 396 397 VPValue *VPRecipeBase::toVPValue() { 398 if (auto *V = dyn_cast<VPInstruction>(this)) 399 return V; 400 return nullptr; 401 } 402 403 iplist<VPRecipeBase>::iterator VPRecipeBase::eraseFromParent() { 404 assert(getParent() && "Recipe not in any VPBasicBlock"); 405 return getParent()->getRecipeList().erase(getIterator()); 406 } 407 408 void VPRecipeBase::moveAfter(VPRecipeBase *InsertPos) { 409 removeFromParent(); 410 insertAfter(InsertPos); 411 } 412 413 void VPInstruction::generateInstruction(VPTransformState &State, 414 unsigned Part) { 415 IRBuilder<> &Builder = State.Builder; 416 417 if (Instruction::isBinaryOp(getOpcode())) { 418 Value *A = State.get(getOperand(0), Part); 419 Value *B = State.get(getOperand(1), Part); 420 Value *V = Builder.CreateBinOp((Instruction::BinaryOps)getOpcode(), A, B); 421 State.set(this, V, Part); 422 return; 423 } 424 425 switch (getOpcode()) { 426 case VPInstruction::Not: { 427 Value *A = State.get(getOperand(0), Part); 428 Value *V = Builder.CreateNot(A); 429 State.set(this, V, Part); 430 break; 431 } 432 case VPInstruction::ICmpULE: { 433 Value *IV = State.get(getOperand(0), Part); 434 Value *TC = State.get(getOperand(1), Part); 435 Value *V = Builder.CreateICmpULE(IV, TC); 436 State.set(this, V, Part); 437 break; 438 } 439 case Instruction::Select: { 440 Value *Cond = State.get(getOperand(0), Part); 441 Value *Op1 = State.get(getOperand(1), Part); 442 Value *Op2 = State.get(getOperand(2), Part); 443 Value *V = Builder.CreateSelect(Cond, Op1, Op2); 444 State.set(this, V, Part); 445 break; 446 } 447 case VPInstruction::ActiveLaneMask: { 448 // Get first lane of vector induction variable. 449 Value *VIVElem0 = State.get(getOperand(0), {Part, 0}); 450 // Get the original loop tripcount. 451 Value *ScalarTC = State.TripCount; 452 453 auto *Int1Ty = Type::getInt1Ty(Builder.getContext()); 454 auto *PredTy = FixedVectorType::get(Int1Ty, State.VF.getKnownMinValue()); 455 Instruction *Call = Builder.CreateIntrinsic( 456 Intrinsic::get_active_lane_mask, {PredTy, ScalarTC->getType()}, 457 {VIVElem0, ScalarTC}, nullptr, "active.lane.mask"); 458 State.set(this, Call, Part); 459 break; 460 } 461 default: 462 llvm_unreachable("Unsupported opcode for instruction"); 463 } 464 } 465 466 void VPInstruction::execute(VPTransformState &State) { 467 assert(!State.Instance && "VPInstruction executing an Instance"); 468 for (unsigned Part = 0; Part < State.UF; ++Part) 469 generateInstruction(State, Part); 470 } 471 472 void VPInstruction::print(raw_ostream &O, const Twine &Indent, 473 VPSlotTracker &SlotTracker) const { 474 O << "\"EMIT "; 475 print(O, SlotTracker); 476 } 477 478 void VPInstruction::print(raw_ostream &O) const { 479 VPSlotTracker SlotTracker(getParent()->getPlan()); 480 print(O, SlotTracker); 481 } 482 483 void VPInstruction::print(raw_ostream &O, VPSlotTracker &SlotTracker) const { 484 if (hasResult()) { 485 printAsOperand(O, SlotTracker); 486 O << " = "; 487 } 488 489 switch (getOpcode()) { 490 case VPInstruction::Not: 491 O << "not"; 492 break; 493 case VPInstruction::ICmpULE: 494 O << "icmp ule"; 495 break; 496 case VPInstruction::SLPLoad: 497 O << "combined load"; 498 break; 499 case VPInstruction::SLPStore: 500 O << "combined store"; 501 break; 502 case VPInstruction::ActiveLaneMask: 503 O << "active lane mask"; 504 break; 505 506 default: 507 O << Instruction::getOpcodeName(getOpcode()); 508 } 509 510 for (const VPValue *Operand : operands()) { 511 O << " "; 512 Operand->printAsOperand(O, SlotTracker); 513 } 514 } 515 516 /// Generate the code inside the body of the vectorized loop. Assumes a single 517 /// LoopVectorBody basic-block was created for this. Introduce additional 518 /// basic-blocks as needed, and fill them all. 519 void VPlan::execute(VPTransformState *State) { 520 // -1. Check if the backedge taken count is needed, and if so build it. 521 if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) { 522 Value *TC = State->TripCount; 523 IRBuilder<> Builder(State->CFG.PrevBB->getTerminator()); 524 auto *TCMO = Builder.CreateSub(TC, ConstantInt::get(TC->getType(), 1), 525 "trip.count.minus.1"); 526 auto VF = State->VF; 527 Value *VTCMO = 528 VF == 1 ? TCMO : Builder.CreateVectorSplat(VF, TCMO, "broadcast"); 529 for (unsigned Part = 0, UF = State->UF; Part < UF; ++Part) 530 State->set(BackedgeTakenCount, VTCMO, Part); 531 } 532 533 // 0. Set the reverse mapping from VPValues to Values for code generation. 534 for (auto &Entry : Value2VPValue) 535 State->VPValue2Value[Entry.second] = Entry.first; 536 537 BasicBlock *VectorPreHeaderBB = State->CFG.PrevBB; 538 BasicBlock *VectorHeaderBB = VectorPreHeaderBB->getSingleSuccessor(); 539 assert(VectorHeaderBB && "Loop preheader does not have a single successor."); 540 541 // 1. Make room to generate basic-blocks inside loop body if needed. 542 BasicBlock *VectorLatchBB = VectorHeaderBB->splitBasicBlock( 543 VectorHeaderBB->getFirstInsertionPt(), "vector.body.latch"); 544 Loop *L = State->LI->getLoopFor(VectorHeaderBB); 545 L->addBasicBlockToLoop(VectorLatchBB, *State->LI); 546 // Remove the edge between Header and Latch to allow other connections. 547 // Temporarily terminate with unreachable until CFG is rewired. 548 // Note: this asserts the generated code's assumption that 549 // getFirstInsertionPt() can be dereferenced into an Instruction. 550 VectorHeaderBB->getTerminator()->eraseFromParent(); 551 State->Builder.SetInsertPoint(VectorHeaderBB); 552 UnreachableInst *Terminator = State->Builder.CreateUnreachable(); 553 State->Builder.SetInsertPoint(Terminator); 554 555 // 2. Generate code in loop body. 556 State->CFG.PrevVPBB = nullptr; 557 State->CFG.PrevBB = VectorHeaderBB; 558 State->CFG.LastBB = VectorLatchBB; 559 560 for (VPBlockBase *Block : depth_first(Entry)) 561 Block->execute(State); 562 563 // Setup branch terminator successors for VPBBs in VPBBsToFix based on 564 // VPBB's successors. 565 for (auto VPBB : State->CFG.VPBBsToFix) { 566 assert(EnableVPlanNativePath && 567 "Unexpected VPBBsToFix in non VPlan-native path"); 568 BasicBlock *BB = State->CFG.VPBB2IRBB[VPBB]; 569 assert(BB && "Unexpected null basic block for VPBB"); 570 571 unsigned Idx = 0; 572 auto *BBTerminator = BB->getTerminator(); 573 574 for (VPBlockBase *SuccVPBlock : VPBB->getHierarchicalSuccessors()) { 575 VPBasicBlock *SuccVPBB = SuccVPBlock->getEntryBasicBlock(); 576 BBTerminator->setSuccessor(Idx, State->CFG.VPBB2IRBB[SuccVPBB]); 577 ++Idx; 578 } 579 } 580 581 // 3. Merge the temporary latch created with the last basic-block filled. 582 BasicBlock *LastBB = State->CFG.PrevBB; 583 // Connect LastBB to VectorLatchBB to facilitate their merge. 584 assert((EnableVPlanNativePath || 585 isa<UnreachableInst>(LastBB->getTerminator())) && 586 "Expected InnerLoop VPlan CFG to terminate with unreachable"); 587 assert((!EnableVPlanNativePath || isa<BranchInst>(LastBB->getTerminator())) && 588 "Expected VPlan CFG to terminate with branch in NativePath"); 589 LastBB->getTerminator()->eraseFromParent(); 590 BranchInst::Create(VectorLatchBB, LastBB); 591 592 // Merge LastBB with Latch. 593 bool Merged = MergeBlockIntoPredecessor(VectorLatchBB, nullptr, State->LI); 594 (void)Merged; 595 assert(Merged && "Could not merge last basic block with latch."); 596 VectorLatchBB = LastBB; 597 598 // We do not attempt to preserve DT for outer loop vectorization currently. 599 if (!EnableVPlanNativePath) 600 updateDominatorTree(State->DT, VectorPreHeaderBB, VectorLatchBB, 601 L->getExitBlock()); 602 } 603 604 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 605 LLVM_DUMP_METHOD 606 void VPlan::dump() const { dbgs() << *this << '\n'; } 607 #endif 608 609 void VPlan::updateDominatorTree(DominatorTree *DT, BasicBlock *LoopPreHeaderBB, 610 BasicBlock *LoopLatchBB, 611 BasicBlock *LoopExitBB) { 612 BasicBlock *LoopHeaderBB = LoopPreHeaderBB->getSingleSuccessor(); 613 assert(LoopHeaderBB && "Loop preheader does not have a single successor."); 614 // The vector body may be more than a single basic-block by this point. 615 // Update the dominator tree information inside the vector body by propagating 616 // it from header to latch, expecting only triangular control-flow, if any. 617 BasicBlock *PostDomSucc = nullptr; 618 for (auto *BB = LoopHeaderBB; BB != LoopLatchBB; BB = PostDomSucc) { 619 // Get the list of successors of this block. 620 std::vector<BasicBlock *> Succs(succ_begin(BB), succ_end(BB)); 621 assert(Succs.size() <= 2 && 622 "Basic block in vector loop has more than 2 successors."); 623 PostDomSucc = Succs[0]; 624 if (Succs.size() == 1) { 625 assert(PostDomSucc->getSinglePredecessor() && 626 "PostDom successor has more than one predecessor."); 627 DT->addNewBlock(PostDomSucc, BB); 628 continue; 629 } 630 BasicBlock *InterimSucc = Succs[1]; 631 if (PostDomSucc->getSingleSuccessor() == InterimSucc) { 632 PostDomSucc = Succs[1]; 633 InterimSucc = Succs[0]; 634 } 635 assert(InterimSucc->getSingleSuccessor() == PostDomSucc && 636 "One successor of a basic block does not lead to the other."); 637 assert(InterimSucc->getSinglePredecessor() && 638 "Interim successor has more than one predecessor."); 639 assert(PostDomSucc->hasNPredecessors(2) && 640 "PostDom successor has more than two predecessors."); 641 DT->addNewBlock(InterimSucc, BB); 642 DT->addNewBlock(PostDomSucc, BB); 643 } 644 // Latch block is a new dominator for the loop exit. 645 DT->changeImmediateDominator(LoopExitBB, LoopLatchBB); 646 assert(DT->verify(DominatorTree::VerificationLevel::Fast)); 647 } 648 649 const Twine VPlanPrinter::getUID(const VPBlockBase *Block) { 650 return (isa<VPRegionBlock>(Block) ? "cluster_N" : "N") + 651 Twine(getOrCreateBID(Block)); 652 } 653 654 const Twine VPlanPrinter::getOrCreateName(const VPBlockBase *Block) { 655 const std::string &Name = Block->getName(); 656 if (!Name.empty()) 657 return Name; 658 return "VPB" + Twine(getOrCreateBID(Block)); 659 } 660 661 void VPlanPrinter::dump() { 662 Depth = 1; 663 bumpIndent(0); 664 OS << "digraph VPlan {\n"; 665 OS << "graph [labelloc=t, fontsize=30; label=\"Vectorization Plan"; 666 if (!Plan.getName().empty()) 667 OS << "\\n" << DOT::EscapeString(Plan.getName()); 668 if (Plan.BackedgeTakenCount) { 669 OS << ", where:\\n"; 670 Plan.BackedgeTakenCount->print(OS, SlotTracker); 671 OS << " := BackedgeTakenCount"; 672 } 673 OS << "\"]\n"; 674 OS << "node [shape=rect, fontname=Courier, fontsize=30]\n"; 675 OS << "edge [fontname=Courier, fontsize=30]\n"; 676 OS << "compound=true\n"; 677 678 for (const VPBlockBase *Block : depth_first(Plan.getEntry())) 679 dumpBlock(Block); 680 681 OS << "}\n"; 682 } 683 684 void VPlanPrinter::dumpBlock(const VPBlockBase *Block) { 685 if (const VPBasicBlock *BasicBlock = dyn_cast<VPBasicBlock>(Block)) 686 dumpBasicBlock(BasicBlock); 687 else if (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 688 dumpRegion(Region); 689 else 690 llvm_unreachable("Unsupported kind of VPBlock."); 691 } 692 693 void VPlanPrinter::drawEdge(const VPBlockBase *From, const VPBlockBase *To, 694 bool Hidden, const Twine &Label) { 695 // Due to "dot" we print an edge between two regions as an edge between the 696 // exit basic block and the entry basic of the respective regions. 697 const VPBlockBase *Tail = From->getExitBasicBlock(); 698 const VPBlockBase *Head = To->getEntryBasicBlock(); 699 OS << Indent << getUID(Tail) << " -> " << getUID(Head); 700 OS << " [ label=\"" << Label << '\"'; 701 if (Tail != From) 702 OS << " ltail=" << getUID(From); 703 if (Head != To) 704 OS << " lhead=" << getUID(To); 705 if (Hidden) 706 OS << "; splines=none"; 707 OS << "]\n"; 708 } 709 710 void VPlanPrinter::dumpEdges(const VPBlockBase *Block) { 711 auto &Successors = Block->getSuccessors(); 712 if (Successors.size() == 1) 713 drawEdge(Block, Successors.front(), false, ""); 714 else if (Successors.size() == 2) { 715 drawEdge(Block, Successors.front(), false, "T"); 716 drawEdge(Block, Successors.back(), false, "F"); 717 } else { 718 unsigned SuccessorNumber = 0; 719 for (auto *Successor : Successors) 720 drawEdge(Block, Successor, false, Twine(SuccessorNumber++)); 721 } 722 } 723 724 void VPlanPrinter::dumpBasicBlock(const VPBasicBlock *BasicBlock) { 725 OS << Indent << getUID(BasicBlock) << " [label =\n"; 726 bumpIndent(1); 727 OS << Indent << "\"" << DOT::EscapeString(BasicBlock->getName()) << ":\\n\""; 728 bumpIndent(1); 729 730 // Dump the block predicate. 731 const VPValue *Pred = BasicBlock->getPredicate(); 732 if (Pred) { 733 OS << " +\n" << Indent << " \"BlockPredicate: "; 734 if (const VPInstruction *PredI = dyn_cast<VPInstruction>(Pred)) { 735 PredI->printAsOperand(OS, SlotTracker); 736 OS << " (" << DOT::EscapeString(PredI->getParent()->getName()) 737 << ")\\l\""; 738 } else 739 Pred->printAsOperand(OS, SlotTracker); 740 } 741 742 for (const VPRecipeBase &Recipe : *BasicBlock) { 743 OS << " +\n" << Indent; 744 Recipe.print(OS, Indent, SlotTracker); 745 OS << "\\l\""; 746 } 747 748 // Dump the condition bit. 749 const VPValue *CBV = BasicBlock->getCondBit(); 750 if (CBV) { 751 OS << " +\n" << Indent << " \"CondBit: "; 752 if (const VPInstruction *CBI = dyn_cast<VPInstruction>(CBV)) { 753 CBI->printAsOperand(OS, SlotTracker); 754 OS << " (" << DOT::EscapeString(CBI->getParent()->getName()) << ")\\l\""; 755 } else { 756 CBV->printAsOperand(OS, SlotTracker); 757 OS << "\""; 758 } 759 } 760 761 bumpIndent(-2); 762 OS << "\n" << Indent << "]\n"; 763 dumpEdges(BasicBlock); 764 } 765 766 void VPlanPrinter::dumpRegion(const VPRegionBlock *Region) { 767 OS << Indent << "subgraph " << getUID(Region) << " {\n"; 768 bumpIndent(1); 769 OS << Indent << "fontname=Courier\n" 770 << Indent << "label=\"" 771 << DOT::EscapeString(Region->isReplicator() ? "<xVFxUF> " : "<x1> ") 772 << DOT::EscapeString(Region->getName()) << "\"\n"; 773 // Dump the blocks of the region. 774 assert(Region->getEntry() && "Region contains no inner blocks."); 775 for (const VPBlockBase *Block : depth_first(Region->getEntry())) 776 dumpBlock(Block); 777 bumpIndent(-1); 778 OS << Indent << "}\n"; 779 dumpEdges(Region); 780 } 781 782 void VPlanPrinter::printAsIngredient(raw_ostream &O, Value *V) { 783 std::string IngredientString; 784 raw_string_ostream RSO(IngredientString); 785 if (auto *Inst = dyn_cast<Instruction>(V)) { 786 if (!Inst->getType()->isVoidTy()) { 787 Inst->printAsOperand(RSO, false); 788 RSO << " = "; 789 } 790 RSO << Inst->getOpcodeName() << " "; 791 unsigned E = Inst->getNumOperands(); 792 if (E > 0) { 793 Inst->getOperand(0)->printAsOperand(RSO, false); 794 for (unsigned I = 1; I < E; ++I) 795 Inst->getOperand(I)->printAsOperand(RSO << ", ", false); 796 } 797 } else // !Inst 798 V->printAsOperand(RSO, false); 799 RSO.flush(); 800 O << DOT::EscapeString(IngredientString); 801 } 802 803 void VPWidenCallRecipe::print(raw_ostream &O, const Twine &Indent, 804 VPSlotTracker &SlotTracker) const { 805 O << "\"WIDEN-CALL " << VPlanIngredient(&Ingredient); 806 } 807 808 void VPWidenSelectRecipe::print(raw_ostream &O, const Twine &Indent, 809 VPSlotTracker &SlotTracker) const { 810 O << "\"WIDEN-SELECT" << VPlanIngredient(&Ingredient) 811 << (InvariantCond ? " (condition is loop invariant)" : ""); 812 } 813 814 void VPWidenRecipe::print(raw_ostream &O, const Twine &Indent, 815 VPSlotTracker &SlotTracker) const { 816 O << "\"WIDEN\\l\""; 817 O << "\" " << VPlanIngredient(&Ingredient); 818 } 819 820 void VPWidenIntOrFpInductionRecipe::print(raw_ostream &O, const Twine &Indent, 821 VPSlotTracker &SlotTracker) const { 822 O << "\"WIDEN-INDUCTION"; 823 if (Trunc) { 824 O << "\\l\""; 825 O << " +\n" << Indent << "\" " << VPlanIngredient(IV) << "\\l\""; 826 O << " +\n" << Indent << "\" " << VPlanIngredient(Trunc); 827 } else 828 O << " " << VPlanIngredient(IV); 829 } 830 831 void VPWidenGEPRecipe::print(raw_ostream &O, const Twine &Indent, 832 VPSlotTracker &SlotTracker) const { 833 O << "\"WIDEN-GEP "; 834 O << (IsPtrLoopInvariant ? "Inv" : "Var"); 835 size_t IndicesNumber = IsIndexLoopInvariant.size(); 836 for (size_t I = 0; I < IndicesNumber; ++I) 837 O << "[" << (IsIndexLoopInvariant[I] ? "Inv" : "Var") << "]"; 838 O << "\\l\""; 839 O << " +\n" << Indent << "\" " << VPlanIngredient(GEP); 840 } 841 842 void VPWidenPHIRecipe::print(raw_ostream &O, const Twine &Indent, 843 VPSlotTracker &SlotTracker) const { 844 O << "\"WIDEN-PHI " << VPlanIngredient(Phi); 845 } 846 847 void VPBlendRecipe::print(raw_ostream &O, const Twine &Indent, 848 VPSlotTracker &SlotTracker) const { 849 O << "\"BLEND "; 850 Phi->printAsOperand(O, false); 851 O << " ="; 852 if (getNumIncomingValues() == 1) { 853 // Not a User of any mask: not really blending, this is a 854 // single-predecessor phi. 855 O << " "; 856 getIncomingValue(0)->printAsOperand(O, SlotTracker); 857 } else { 858 for (unsigned I = 0, E = getNumIncomingValues(); I < E; ++I) { 859 O << " "; 860 getIncomingValue(I)->printAsOperand(O, SlotTracker); 861 O << "/"; 862 getMask(I)->printAsOperand(O, SlotTracker); 863 } 864 } 865 } 866 867 void VPReductionRecipe::print(raw_ostream &O, const Twine &Indent, 868 VPSlotTracker &SlotTracker) const { 869 O << "\"REDUCE of" << *I << " as "; 870 ChainOp->printAsOperand(O, SlotTracker); 871 O << " + reduce("; 872 VecOp->printAsOperand(O, SlotTracker); 873 O << ")"; 874 } 875 876 void VPReplicateRecipe::print(raw_ostream &O, const Twine &Indent, 877 VPSlotTracker &SlotTracker) const { 878 O << "\"" << (IsUniform ? "CLONE " : "REPLICATE ") 879 << VPlanIngredient(Ingredient); 880 if (AlsoPack) 881 O << " (S->V)"; 882 } 883 884 void VPPredInstPHIRecipe::print(raw_ostream &O, const Twine &Indent, 885 VPSlotTracker &SlotTracker) const { 886 O << "\"PHI-PREDICATED-INSTRUCTION " << VPlanIngredient(PredInst); 887 } 888 889 void VPWidenMemoryInstructionRecipe::print(raw_ostream &O, const Twine &Indent, 890 VPSlotTracker &SlotTracker) const { 891 O << "\"WIDEN " << VPlanIngredient(&Instr); 892 O << ", "; 893 getAddr()->printAsOperand(O, SlotTracker); 894 VPValue *Mask = getMask(); 895 if (Mask) { 896 O << ", "; 897 Mask->printAsOperand(O, SlotTracker); 898 } 899 } 900 901 void VPWidenCanonicalIVRecipe::execute(VPTransformState &State) { 902 Value *CanonicalIV = State.CanonicalIV; 903 Type *STy = CanonicalIV->getType(); 904 IRBuilder<> Builder(State.CFG.PrevBB->getTerminator()); 905 ElementCount VF = State.VF; 906 assert(!VF.isScalable() && "the code following assumes non scalables ECs"); 907 Value *VStart = VF.isScalar() 908 ? CanonicalIV 909 : Builder.CreateVectorSplat(VF.getKnownMinValue(), 910 CanonicalIV, "broadcast"); 911 for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part) { 912 SmallVector<Constant *, 8> Indices; 913 for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane) 914 Indices.push_back( 915 ConstantInt::get(STy, Part * VF.getKnownMinValue() + Lane)); 916 // If VF == 1, there is only one iteration in the loop above, thus the 917 // element pushed back into Indices is ConstantInt::get(STy, Part) 918 Constant *VStep = VF == 1 ? Indices.back() : ConstantVector::get(Indices); 919 // Add the consecutive indices to the vector value. 920 Value *CanonicalVectorIV = Builder.CreateAdd(VStart, VStep, "vec.iv"); 921 State.set(getVPValue(), CanonicalVectorIV, Part); 922 } 923 } 924 925 void VPWidenCanonicalIVRecipe::print(raw_ostream &O, const Twine &Indent, 926 VPSlotTracker &SlotTracker) const { 927 O << "\"EMIT "; 928 getVPValue()->printAsOperand(O, SlotTracker); 929 O << " = WIDEN-CANONICAL-INDUCTION"; 930 } 931 932 template void DomTreeBuilder::Calculate<VPDominatorTree>(VPDominatorTree &DT); 933 934 void VPValue::replaceAllUsesWith(VPValue *New) { 935 for (unsigned J = 0; J < getNumUsers();) { 936 VPUser *User = Users[J]; 937 unsigned NumUsers = getNumUsers(); 938 for (unsigned I = 0, E = User->getNumOperands(); I < E; ++I) 939 if (User->getOperand(I) == this) 940 User->setOperand(I, New); 941 // If a user got removed after updating the current user, the next user to 942 // update will be moved to the current position, so we only need to 943 // increment the index if the number of users did not change. 944 if (NumUsers == getNumUsers()) 945 J++; 946 } 947 } 948 949 void VPValue::printAsOperand(raw_ostream &OS, VPSlotTracker &Tracker) const { 950 if (const Value *UV = getUnderlyingValue()) { 951 OS << "ir<"; 952 UV->printAsOperand(OS, false); 953 OS << ">"; 954 return; 955 } 956 957 unsigned Slot = Tracker.getSlot(this); 958 if (Slot == unsigned(-1)) 959 OS << "<badref>"; 960 else 961 OS << "vp<%" << Tracker.getSlot(this) << ">"; 962 } 963 964 void VPInterleavedAccessInfo::visitRegion(VPRegionBlock *Region, 965 Old2NewTy &Old2New, 966 InterleavedAccessInfo &IAI) { 967 ReversePostOrderTraversal<VPBlockBase *> RPOT(Region->getEntry()); 968 for (VPBlockBase *Base : RPOT) { 969 visitBlock(Base, Old2New, IAI); 970 } 971 } 972 973 void VPInterleavedAccessInfo::visitBlock(VPBlockBase *Block, Old2NewTy &Old2New, 974 InterleavedAccessInfo &IAI) { 975 if (VPBasicBlock *VPBB = dyn_cast<VPBasicBlock>(Block)) { 976 for (VPRecipeBase &VPI : *VPBB) { 977 assert(isa<VPInstruction>(&VPI) && "Can only handle VPInstructions"); 978 auto *VPInst = cast<VPInstruction>(&VPI); 979 auto *Inst = cast<Instruction>(VPInst->getUnderlyingValue()); 980 auto *IG = IAI.getInterleaveGroup(Inst); 981 if (!IG) 982 continue; 983 984 auto NewIGIter = Old2New.find(IG); 985 if (NewIGIter == Old2New.end()) 986 Old2New[IG] = new InterleaveGroup<VPInstruction>( 987 IG->getFactor(), IG->isReverse(), IG->getAlign()); 988 989 if (Inst == IG->getInsertPos()) 990 Old2New[IG]->setInsertPos(VPInst); 991 992 InterleaveGroupMap[VPInst] = Old2New[IG]; 993 InterleaveGroupMap[VPInst]->insertMember( 994 VPInst, IG->getIndex(Inst), 995 Align(IG->isReverse() ? (-1) * int(IG->getFactor()) 996 : IG->getFactor())); 997 } 998 } else if (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 999 visitRegion(Region, Old2New, IAI); 1000 else 1001 llvm_unreachable("Unsupported kind of VPBlock."); 1002 } 1003 1004 VPInterleavedAccessInfo::VPInterleavedAccessInfo(VPlan &Plan, 1005 InterleavedAccessInfo &IAI) { 1006 Old2NewTy Old2New; 1007 visitRegion(cast<VPRegionBlock>(Plan.getEntry()), Old2New, IAI); 1008 } 1009 1010 void VPSlotTracker::assignSlot(const VPValue *V) { 1011 assert(Slots.find(V) == Slots.end() && "VPValue already has a slot!"); 1012 const Value *UV = V->getUnderlyingValue(); 1013 if (UV) 1014 return; 1015 const auto *VPI = dyn_cast<VPInstruction>(V); 1016 if (VPI && !VPI->hasResult()) 1017 return; 1018 1019 Slots[V] = NextSlot++; 1020 } 1021 1022 void VPSlotTracker::assignSlots(const VPBlockBase *VPBB) { 1023 if (auto *Region = dyn_cast<VPRegionBlock>(VPBB)) 1024 assignSlots(Region); 1025 else 1026 assignSlots(cast<VPBasicBlock>(VPBB)); 1027 } 1028 1029 void VPSlotTracker::assignSlots(const VPRegionBlock *Region) { 1030 ReversePostOrderTraversal<const VPBlockBase *> RPOT(Region->getEntry()); 1031 for (const VPBlockBase *Block : RPOT) 1032 assignSlots(Block); 1033 } 1034 1035 void VPSlotTracker::assignSlots(const VPBasicBlock *VPBB) { 1036 for (const VPRecipeBase &Recipe : *VPBB) { 1037 if (const auto *VPI = dyn_cast<VPInstruction>(&Recipe)) 1038 assignSlot(VPI); 1039 else if (const auto *VPIV = dyn_cast<VPWidenCanonicalIVRecipe>(&Recipe)) 1040 assignSlot(VPIV->getVPValue()); 1041 } 1042 } 1043 1044 void VPSlotTracker::assignSlots(const VPlan &Plan) { 1045 1046 for (const VPValue *V : Plan.VPExternalDefs) 1047 assignSlot(V); 1048 1049 for (auto &E : Plan.Value2VPValue) 1050 if (!isa<VPInstruction>(E.second)) 1051 assignSlot(E.second); 1052 1053 for (const VPValue *V : Plan.VPCBVs) 1054 assignSlot(V); 1055 1056 if (Plan.BackedgeTakenCount) 1057 assignSlot(Plan.BackedgeTakenCount); 1058 1059 ReversePostOrderTraversal<const VPBlockBase *> RPOT(Plan.getEntry()); 1060 for (const VPBlockBase *Block : RPOT) 1061 assignSlots(Block); 1062 } 1063